blob: 5209d549e5141c1c21f085f12b0971b682d3be39 [file] [log] [blame]
/*
* Copyright (C) 2023 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "PosePredictor.h"
namespace android::media {
namespace {
#ifdef ENABLE_VERIFICATION
constexpr bool kEnableVerification = true;
constexpr std::array<int, 3> kLookAheadMs{ 50, 100, 200 };
#else
constexpr bool kEnableVerification = false;
constexpr std::array<int, 0> kLookAheadMs{};
#endif
} // namespace
void LeastSquaresPredictor::add(int64_t atNs, const Pose3f& pose, const Twist3f& twist)
{
(void)twist;
mLastAtNs = atNs;
mLastPose = pose;
const auto q = pose.rotation();
const double datNs = static_cast<double>(atNs);
mRw.add({datNs, q.w()});
mRx.add({datNs, q.x()});
mRy.add({datNs, q.y()});
mRz.add({datNs, q.z()});
}
Pose3f LeastSquaresPredictor::predict(int64_t atNs) const
{
if (mRw.getN() < kMinimumSamplesForPrediction) return mLastPose;
/*
* Using parametric form, we have q(t) = { w(t), x(t), y(t), z(t) }.
* We compute the least squares prediction of w, x, y, z.
*/
const double dLookahead = static_cast<double>(atNs);
Eigen::Quaternionf lsq(
mRw.getYFromX(dLookahead),
mRx.getYFromX(dLookahead),
mRy.getYFromX(dLookahead),
mRz.getYFromX(dLookahead));
/*
* We cheat here, since the result lsq is the least squares prediction
* in H (arbitrary quaternion), not the least squares prediction in
* SO(3) (unit quaternion).
*
* In other words, the result for lsq is most likely not a unit quaternion.
* To solve this, we normalize, thereby selecting the closest unit quaternion
* in SO(3) to the prediction in H.
*/
lsq.normalize();
return Pose3f(lsq);
}
void LeastSquaresPredictor::reset() {
mLastAtNs = {};
mLastPose = {};
mRw.reset();
mRx.reset();
mRy.reset();
mRz.reset();
}
std::string LeastSquaresPredictor::toString(size_t index) const {
std::string s(index, ' ');
s.append("LeastSquaresPredictor using alpha: ")
.append(std::to_string(mAlpha))
.append(" last pose: ")
.append(mLastPose.toString())
.append("\n");
return s;
}
// Formatting
static inline std::vector<size_t> createDelimiterIdx(size_t predictors, size_t lookaheads) {
if (lookaheads == 0) return {};
--lookaheads;
std::vector<size_t> delimiterIdx(lookaheads);
for (size_t i = 0; i < lookaheads; ++i) {
delimiterIdx[i] = (i + 1) * predictors;
}
return delimiterIdx;
}
PosePredictor::PosePredictor()
: mPredictors{
// First predictors must match switch in getCurrentPredictor()
std::make_shared<LastPredictor>(),
std::make_shared<TwistPredictor>(),
std::make_shared<LeastSquaresPredictor>(),
// After this, can place additional predictors here for comparison such as
// std::make_shared<LeastSquaresPredictor>(0.25),
}
, mLookaheadMs(kLookAheadMs.begin(), kLookAheadMs.end())
, mVerifiers(std::size(mLookaheadMs) * std::size(mPredictors))
, mDelimiterIdx(createDelimiterIdx(std::size(mPredictors), std::size(mLookaheadMs)))
, mPredictionRecorder(
std::size(mVerifiers) /* vectorSize */, std::chrono::seconds(1), 10 /* maxLogLine */,
mDelimiterIdx)
, mPredictionDurableRecorder(
std::size(mVerifiers) /* vectorSize */, std::chrono::minutes(1), 10 /* maxLogLine */,
mDelimiterIdx)
{
}
Pose3f PosePredictor::predict(
int64_t timestampNs, const Pose3f& pose, const Twist3f& twist, float predictionDurationNs)
{
if (timestampNs - mLastTimestampNs > kMaximumSampleIntervalBeforeResetNs) {
for (const auto& predictor : mPredictors) {
predictor->reset();
}
++mResets;
}
mLastTimestampNs = timestampNs;
auto selectedPredictor = getCurrentPredictor();
if constexpr (kEnableVerification) {
// Update all Predictors
for (const auto& predictor : mPredictors) {
predictor->add(timestampNs, pose, twist);
}
// Update Verifiers and calculate errors
std::vector<float> error(std::size(mVerifiers));
for (size_t i = 0; i < mLookaheadMs.size(); ++i) {
constexpr float RADIAN_TO_DEGREES = 180 / M_PI;
const int64_t atNs =
timestampNs + mLookaheadMs[i] * PosePredictorVerifier::kMillisToNanos;
for (size_t j = 0; j < mPredictors.size(); ++j) {
const size_t idx = i * std::size(mPredictors) + j;
mVerifiers[idx].verifyActualPose(timestampNs, pose);
mVerifiers[idx].addPredictedPose(atNs, mPredictors[j]->predict(atNs));
error[idx] = RADIAN_TO_DEGREES * mVerifiers[idx].lastError();
}
}
// Record errors
mPredictionRecorder.record(error);
mPredictionDurableRecorder.record(error);
} else /* constexpr */ {
selectedPredictor->add(timestampNs, pose, twist);
}
// Deliver prediction
const int64_t predictionTimeNs = timestampNs + (int64_t)predictionDurationNs;
return selectedPredictor->predict(predictionTimeNs);
}
void PosePredictor::setPosePredictorType(PosePredictorType type) {
if (!isValidPosePredictorType(type)) return;
if (type == mSetType) return;
mSetType = type;
if (type == android::media::PosePredictorType::AUTO) {
type = android::media::PosePredictorType::LEAST_SQUARES;
}
if (type != mCurrentType) {
mCurrentType = type;
if constexpr (!kEnableVerification) {
// Verification keeps all predictors up-to-date.
// If we don't enable verification, we must reset the current predictor.
getCurrentPredictor()->reset();
}
}
}
std::string PosePredictor::toString(size_t index) const {
std::string prefixSpace(index, ' ');
std::string ss(prefixSpace);
ss.append("PosePredictor:\n")
.append(prefixSpace)
.append(" Current Prediction Type: ")
.append(android::media::toString(mCurrentType))
.append("\n")
.append(prefixSpace)
.append(" Resets: ")
.append(std::to_string(mResets))
.append("\n")
.append(getCurrentPredictor()->toString(index + 1));
if constexpr (kEnableVerification) {
// dump verification
ss.append(prefixSpace)
.append(" Prediction abs error (L1) degrees [ type (");
for (size_t i = 0; i < mPredictors.size(); ++i) {
if (i > 0) ss.append(" , ");
ss.append(mPredictors[i]->name());
}
ss.append(" ) x ( ");
for (size_t i = 0; i < mLookaheadMs.size(); ++i) {
if (i > 0) ss.append(" : ");
ss.append(std::to_string(mLookaheadMs[i]));
}
std::vector<float> cumulativeAverageErrors(std::size(mVerifiers));
for (size_t i = 0; i < cumulativeAverageErrors.size(); ++i) {
cumulativeAverageErrors[i] = mVerifiers[i].cumulativeAverageError();
}
ss.append(" ) ms ]\n")
.append(prefixSpace)
.append(" Cumulative Average Error:\n")
.append(prefixSpace)
.append(" ")
.append(VectorRecorder::toString(cumulativeAverageErrors, mDelimiterIdx, "%.3g"))
.append("\n")
.append(prefixSpace)
.append(" PerMinuteHistory:\n")
.append(mPredictionDurableRecorder.toString(index + 3))
.append(prefixSpace)
.append(" PerSecondHistory:\n")
.append(mPredictionRecorder.toString(index + 3));
}
return ss;
}
std::shared_ptr<PredictorBase> PosePredictor::getCurrentPredictor() const {
// we don't use a map here, we look up directly
switch (mCurrentType) {
default:
case android::media::PosePredictorType::LAST:
return mPredictors[0];
case android::media::PosePredictorType::TWIST:
return mPredictors[1];
case android::media::PosePredictorType::AUTO: // shouldn't occur here.
case android::media::PosePredictorType::LEAST_SQUARES:
return mPredictors[2];
}
}
} // namespace android::media