blob: 17c6274db755ee727bdc3aa149a6e2a7bfec6978 [file] [log] [blame]
/*
* Copyright (C) 2022 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cstdlib>
#include <functional>
#include <memory>
#include <type_traits>
namespace android::mediautils {
namespace detail {
// Vtable interface for erased types
template <typename Ret, typename... Args>
struct ICallableTable {
// Destroy the erased type
void (*destroy)(void* storage) = nullptr;
// Call the erased object
Ret (*invoke)(void* storage, Args&&...) = nullptr;
// **Note** the next two functions only copy object data, not the vptr
// Copy the erased object to a new InPlaceFunction buffer
void (*copy_to)(const void* storage, void* other) = nullptr;
// Move the erased object to a new InPlaceFunction buffer
void (*move_to)(void* storage, void* other) = nullptr;
};
} // namespace detail
// This class is an *almost* drop-in replacement for std::function which is guaranteed to never
// allocate, and always holds the type erased functional object in an in-line small buffer of
// templated size. If the object is too large to hold, the type will fail to instantiate.
//
// Some notable differences are:
// - operator() is not const (unlike std::function where the call operator is
// const even if the erased type is not const callable). This retains const
// correctness by default. A workaround is keeping InPlaceFunction mutable.
// - Moving from an InPlaceFunction leaves the object in a valid state (operator
// bool remains true), similar to std::optional/std::variant.
// Calls to the object are still defined (and are equivalent
// to calling the underlying type after it has been moved from). To opt-out
// (and/or ensure safety), clearing the object is recommended:
// func1 = std::move(func2); // func2 still valid (and moved-from) after this line
// func2 = nullptr; // calling func2 will now abort
// - Unsafe implicit conversions of the return value to a reference type are
// prohibited due to the risk of dangling references (some of this safety was
// added to std::function in c++23). Only converting a reference to a reference to base class is
// permitted:
// std::function<Base&()> = []() -> Derived& {...}
// - Some (current libc++ implementation) implementations of std::function
// incorrectly fail to handle returning non-moveable types which is valid given
// mandatory copy elision.
//
// Additionally, the stored functional will use the typical rules of overload
// resolution to disambiguate the correct call, except, the target class will
// always be implicitly a non-const lvalue when called. If a different overload
// is preferred, wrapping the target class in a lambda with explicit casts is
// recommended (or using inheritance, mixins or CRTP). This avoids the
// complexity of utilizing abonimable function types as template params.
template <typename, size_t BufferSize = 32>
class InPlaceFunction;
// We partially specialize to match types which are spelled like functions
template <typename Ret, typename... Args, size_t BufferSize>
class InPlaceFunction<Ret(Args...), BufferSize> {
public:
// Storage Type Details
static constexpr size_t Size = BufferSize;
static constexpr size_t Alignment = alignof(std::max_align_t);
using Buffer_t = std::aligned_storage_t<Size, Alignment>;
template <typename T, size_t Other>
friend class InPlaceFunction;
private:
// Callable which is used for empty InPlaceFunction objects (to match the
// std::function interface).
struct BadCallable {
[[noreturn]] Ret operator()(Args...) { std::abort(); }
};
static_assert(std::is_trivially_destructible_v<BadCallable>);
// Implementation of vtable interface for erased types.
// Contains only static vtable instantiated once for each erased type and
// static helpers.
template <typename T>
struct TableImpl {
// T should be a decayed type
static_assert(std::is_same_v<T, std::decay_t<T>>);
// Helper functions to get an unerased reference to the type held in the
// buffer. std::launder is required to avoid strict aliasing rules.
// The cast is always defined, as a precondition for these calls is that
// (exactly) a T was placement new constructed into the buffer.
constexpr static T& getRef(void* storage) {
return *std::launder(reinterpret_cast<T*>(storage));
}
constexpr static const T& getRef(const void* storage) {
return *std::launder(reinterpret_cast<const T*>(storage));
}
// Constexpr implies inline
constexpr static detail::ICallableTable<Ret, Args...> table = {
// Stateless lambdas are convertible to function ptrs
.destroy = [](void* storage) { getRef(storage).~T(); },
.invoke = [](void* storage, Args&&... args) -> Ret {
if constexpr (std::is_void_v<Ret>) {
std::invoke(getRef(storage), std::forward<Args>(args)...);
} else {
return std::invoke(getRef(storage), std::forward<Args>(args)...);
}
},
.copy_to = [](const void* storage,
void* other) { ::new (other) T(getRef(storage)); },
.move_to = [](void* storage,
void* other) { ::new (other) T(std::move(getRef(storage))); },
};
};
// Check size/align requirements for the T in Buffer_t.
template <typename T>
static constexpr bool WillFit_v = sizeof(T) <= Size && alignof(T) <= Alignment;
// Check size/align requirements for a function to function conversion
template <typename T>
static constexpr bool ConversionWillFit_v = (T::Size < Size) && (T::Alignment <= Alignment);
template <typename T>
struct IsInPlaceFunction : std::false_type {};
template <size_t BufferSize_>
struct IsInPlaceFunction<InPlaceFunction<Ret(Args...), BufferSize_>> : std::true_type {};
template <typename T>
static T BetterDeclval();
template <typename T>
static void CheckImplicitConversion(T);
template <class T, class U, class = void>
struct CanImplicitConvert : std::false_type {};
// std::is_convertible/std::invokeable has a bug (in libc++) regarding
// mandatory copy elision for non-moveable types. So, we roll our own.
// https://github.com/llvm/llvm-project/issues/55346
template <class From, class To>
struct CanImplicitConvert<From, To,
decltype(CheckImplicitConversion<To>(BetterDeclval<From>()))>
: std::true_type {};
// Check if the provided type is a valid functional to be type-erased.
// if constexpr utilized for short-circuit behavior
template <typename T>
static constexpr bool isValidFunctional() {
using Target = std::decay_t<T>;
if constexpr (IsInPlaceFunction<Target>::value || std::is_same_v<Target, std::nullptr_t>) {
// Other overloads handle these cases
return false;
} else if constexpr (std::is_invocable_v<Target, Args...>) {
// The target type is a callable (with some unknown return value)
if constexpr (std::is_void_v<Ret>) {
// Any return value can be dropped to model a void returning
// function.
return WillFit_v<Target>;
} else {
using RawRet = std::invoke_result_t<Target, Args...>;
if constexpr (CanImplicitConvert<RawRet, Ret>::value) {
if constexpr (std::is_reference_v<Ret>) {
// If the return type is a reference, in order to
// avoid dangling references, we only permit functionals
// which return a reference to the exact type, or a base
// type.
if constexpr (std::is_reference_v<RawRet> &&
(std::is_same_v<std::decay_t<Ret>, std::decay_t<RawRet>> ||
std::is_base_of_v<std::decay_t<Ret>,
std::decay_t<RawRet>>)) {
return WillFit_v<Target>;
}
return false;
}
return WillFit_v<Target>;
}
// If we can't convert the raw return type, the functional is invalid.
return false;
}
}
return false;
}
template <typename T>
static constexpr bool IsValidFunctional_v = isValidFunctional<T>();
// Check if the type is a strictly smaller sized InPlaceFunction
template <typename T>
static constexpr bool isConvertibleFunc() {
using Target = std::decay_t<T>;
if constexpr (IsInPlaceFunction<Target>::value) {
return ConversionWillFit_v<Target>;
}
return false;
}
template <typename T>
static constexpr bool IsConvertibleFunc_v = isConvertibleFunc<T>();
// Members below
// This must come first for alignment
Buffer_t storage_;
const detail::ICallableTable<Ret, Args...>* vptr_;
constexpr void copy_to(InPlaceFunction& other) const {
vptr_->copy_to(std::addressof(storage_), std::addressof(other.storage_));
other.vptr_ = vptr_;
}
constexpr void move_to(InPlaceFunction& other) {
vptr_->move_to(std::addressof(storage_), std::addressof(other.storage_));
other.vptr_ = vptr_;
}
constexpr void destroy() { vptr_->destroy(std::addressof(storage_)); }
template <typename T, typename Target = std::decay_t<T>>
constexpr void genericInit(T&& t) {
vptr_ = &TableImpl<Target>::table;
::new (std::addressof(storage_)) Target(std::forward<T>(t));
}
template <typename T, typename Target = std::decay_t<T>>
constexpr void convertingInit(T&& smallerFunc) {
// Redundant, but just in-case
static_assert(Target::Size < Size && Target::Alignment <= Alignment);
if constexpr (std::is_lvalue_reference_v<T>) {
smallerFunc.vptr_->copy_to(std::addressof(smallerFunc.storage_),
std::addressof(storage_));
} else {
smallerFunc.vptr_->move_to(std::addressof(smallerFunc.storage_),
std::addressof(storage_));
}
vptr_ = smallerFunc.vptr_;
}
public:
// Public interface
template <typename T, std::enable_if_t<IsValidFunctional_v<T>>* = nullptr>
constexpr InPlaceFunction(T&& t) {
genericInit(std::forward<T>(t));
}
// Conversion from smaller functions.
template <typename T, std::enable_if_t<IsConvertibleFunc_v<T>>* = nullptr>
constexpr InPlaceFunction(T&& t) {
convertingInit(std::forward<T>(t));
}
constexpr InPlaceFunction(const InPlaceFunction& other) { other.copy_to(*this); }
constexpr InPlaceFunction(InPlaceFunction&& other) { other.move_to(*this); }
// Making functions default constructible has pros and cons, we will align
// with the standard
constexpr InPlaceFunction() : InPlaceFunction(BadCallable{}) {}
constexpr InPlaceFunction(std::nullptr_t) : InPlaceFunction(BadCallable{}) {}
#if __cplusplus >= 202002L
constexpr ~InPlaceFunction() {
#else
~InPlaceFunction() {
#endif
destroy();
}
// The std::function call operator is marked const, but this violates const
// correctness. We deviate from the standard and do not mark the operator as
// const. Collections of InPlaceFunctions should probably be mutable.
constexpr Ret operator()(Args... args) {
if constexpr (std::is_void_v<Ret>) {
vptr_->invoke(std::addressof(storage_), std::forward<Args>(args)...);
} else {
return vptr_->invoke(std::addressof(storage_), std::forward<Args>(args)...);
}
}
constexpr InPlaceFunction& operator=(const InPlaceFunction& other) {
if (std::addressof(other) == this) return *this;
destroy();
other.copy_to(*this);
return *this;
}
constexpr InPlaceFunction& operator=(InPlaceFunction&& other) {
if (std::addressof(other) == this) return *this;
destroy();
other.move_to(*this);
return *this;
}
template <typename T, std::enable_if_t<IsValidFunctional_v<T>>* = nullptr>
constexpr InPlaceFunction& operator=(T&& t) {
// We can't assign to ourselves, since T is a different type
destroy();
genericInit(std::forward<T>(t));
return *this;
}
// Explicitly defining this function saves a move/dtor
template <typename T, std::enable_if_t<IsConvertibleFunc_v<T>>* = nullptr>
constexpr InPlaceFunction& operator=(T&& t) {
// We can't assign to ourselves, since T is different type
destroy();
convertingInit(std::forward<T>(t));
return *this;
}
constexpr InPlaceFunction& operator=(std::nullptr_t) { return operator=(BadCallable{}); }
// Moved from InPlaceFunctions are still considered valid (similar to
// std::optional). If using std::move on a function object explicitly, it is
// recommended that the object is reset using nullptr.
constexpr explicit operator bool() const { return vptr_ != &TableImpl<BadCallable>::table; }
constexpr void swap(InPlaceFunction& other) {
if (std::addressof(other) == this) return;
InPlaceFunction tmp{std::move(other)};
other.destroy();
move_to(other);
destroy();
tmp.move_to(*this);
}
friend constexpr void swap(InPlaceFunction& lhs, InPlaceFunction& rhs) { lhs.swap(rhs); }
};
} // namespace android::mediautils