blob: 55a1164d5df992026d9b9c945c3694352c3912ef [file] [log] [blame]
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#define LOG_TAG "SimpleC2Component"
#include <log/log.h>
#include <android/hardware_buffer.h>
#include <cutils/properties.h>
#include <media/stagefright/foundation/AMessage.h>
#include <inttypes.h>
#include <C2Config.h>
#include <C2Debug.h>
#include <C2PlatformSupport.h>
#include <Codec2BufferUtils.h>
#include <Codec2CommonUtils.h>
#include <SimpleC2Component.h>
namespace android {
constexpr uint8_t kNeutralUVBitDepth8 = 128;
constexpr uint16_t kNeutralUVBitDepth10 = 512;
void convertYUV420Planar8ToYV12(uint8_t *dstY, uint8_t *dstU, uint8_t *dstV, const uint8_t *srcY,
const uint8_t *srcU, const uint8_t *srcV, size_t srcYStride,
size_t srcUStride, size_t srcVStride, size_t dstYStride,
size_t dstUStride, size_t dstVStride, uint32_t width,
uint32_t height, bool isMonochrome) {
for (size_t i = 0; i < height; ++i) {
memcpy(dstY, srcY, width);
srcY += srcYStride;
dstY += dstYStride;
}
if (isMonochrome) {
// Fill with neutral U/V values.
for (size_t i = 0; i < (height + 1) / 2; ++i) {
memset(dstV, kNeutralUVBitDepth8, (width + 1) / 2);
memset(dstU, kNeutralUVBitDepth8, (width + 1) / 2);
dstV += dstVStride;
dstU += dstUStride;
}
return;
}
for (size_t i = 0; i < (height + 1) / 2; ++i) {
memcpy(dstV, srcV, (width + 1) / 2);
srcV += srcVStride;
dstV += dstVStride;
}
for (size_t i = 0; i < (height + 1) / 2; ++i) {
memcpy(dstU, srcU, (width + 1) / 2);
srcU += srcUStride;
dstU += dstUStride;
}
}
void convertYUV420Planar16ToY410(uint32_t *dst, const uint16_t *srcY, const uint16_t *srcU,
const uint16_t *srcV, size_t srcYStride, size_t srcUStride,
size_t srcVStride, size_t dstStride, size_t width, size_t height) {
// Converting two lines at a time, slightly faster
for (size_t y = 0; y < height; y += 2) {
uint32_t *dstTop = (uint32_t *)dst;
uint32_t *dstBot = (uint32_t *)(dst + dstStride);
uint16_t *ySrcTop = (uint16_t *)srcY;
uint16_t *ySrcBot = (uint16_t *)(srcY + srcYStride);
uint16_t *uSrc = (uint16_t *)srcU;
uint16_t *vSrc = (uint16_t *)srcV;
uint32_t u01, v01, y01, y23, y45, y67, uv0, uv1;
size_t x = 0;
for (; x < width - 3; x += 4) {
u01 = *((uint32_t *)uSrc);
uSrc += 2;
v01 = *((uint32_t *)vSrc);
vSrc += 2;
y01 = *((uint32_t *)ySrcTop);
ySrcTop += 2;
y23 = *((uint32_t *)ySrcTop);
ySrcTop += 2;
y45 = *((uint32_t *)ySrcBot);
ySrcBot += 2;
y67 = *((uint32_t *)ySrcBot);
ySrcBot += 2;
uv0 = (u01 & 0x3FF) | ((v01 & 0x3FF) << 20);
uv1 = (u01 >> 16) | ((v01 >> 16) << 20);
*dstTop++ = 3 << 30 | ((y01 & 0x3FF) << 10) | uv0;
*dstTop++ = 3 << 30 | ((y01 >> 16) << 10) | uv0;
*dstTop++ = 3 << 30 | ((y23 & 0x3FF) << 10) | uv1;
*dstTop++ = 3 << 30 | ((y23 >> 16) << 10) | uv1;
*dstBot++ = 3 << 30 | ((y45 & 0x3FF) << 10) | uv0;
*dstBot++ = 3 << 30 | ((y45 >> 16) << 10) | uv0;
*dstBot++ = 3 << 30 | ((y67 & 0x3FF) << 10) | uv1;
*dstBot++ = 3 << 30 | ((y67 >> 16) << 10) | uv1;
}
// There should be at most 2 more pixels to process. Note that we don't
// need to consider odd case as the buffer is always aligned to even.
if (x < width) {
u01 = *uSrc;
v01 = *vSrc;
y01 = *((uint32_t *)ySrcTop);
y45 = *((uint32_t *)ySrcBot);
uv0 = (u01 & 0x3FF) | ((v01 & 0x3FF) << 20);
*dstTop++ = ((y01 & 0x3FF) << 10) | uv0;
*dstTop++ = ((y01 >> 16) << 10) | uv0;
*dstBot++ = ((y45 & 0x3FF) << 10) | uv0;
*dstBot++ = ((y45 >> 16) << 10) | uv0;
}
srcY += srcYStride * 2;
srcU += srcUStride;
srcV += srcVStride;
dst += dstStride * 2;
}
}
namespace {
static C2ColorAspectsStruct FillMissingColorAspects(
std::shared_ptr<const C2ColorAspectsStruct> aspects,
int32_t width, int32_t height) {
C2ColorAspectsStruct _aspects;
if (aspects) {
_aspects = *aspects;
}
// use matrix for conversion
if (_aspects.matrix == C2Color::MATRIX_UNSPECIFIED) {
// if not specified, deduce matrix from primaries
if (_aspects.primaries == C2Color::PRIMARIES_UNSPECIFIED) {
// if those are also not specified, deduce primaries first from transfer, then from
// width and height
if (_aspects.transfer == C2Color::TRANSFER_ST2084
|| _aspects.transfer == C2Color::TRANSFER_HLG) {
_aspects.primaries = C2Color::PRIMARIES_BT2020;
} else if (width >= 3840 || height >= 3840 || width * (int64_t)height >= 3840 * 1634) {
// TODO: stagefright defaults to BT.2020 for UHD, but perhaps we should default to
// BT.709 for non-HDR 10-bit UHD content
// (see media/libstagefright/foundation/ColorUtils.cpp)
_aspects.primaries = C2Color::PRIMARIES_BT2020;
} else if ((width <= 720 && height <= 576)
|| (height <= 720 && width <= 576)) {
// note: it does not actually matter whether to use 525 or 625 here as the
// conversion is the same
_aspects.primaries = C2Color::PRIMARIES_BT601_625;
} else {
_aspects.primaries = C2Color::PRIMARIES_BT709;
}
}
switch (_aspects.primaries) {
case C2Color::PRIMARIES_BT601_525:
case C2Color::PRIMARIES_BT601_625:
_aspects.matrix = C2Color::MATRIX_BT601;
break;
case C2Color::PRIMARIES_BT709:
_aspects.matrix = C2Color::MATRIX_BT709;
break;
case C2Color::PRIMARIES_BT2020:
default:
_aspects.matrix = C2Color::MATRIX_BT2020;
}
}
return _aspects;
}
// matrix conversion coefficients
// (see media/libstagefright/colorconverter/ColorConverter.cpp for more details)
struct Coeffs {
int32_t _y, _r_v, _g_u, _g_v, _b_u, _c16;
};
static const struct Coeffs GetCoeffsForAspects(const C2ColorAspectsStruct &aspects) {
bool isFullRange = aspects.range == C2Color::RANGE_FULL;
switch (aspects.matrix) {
case C2Color::MATRIX_BT601:
/**
* BT.601: K_R = 0.299; K_B = 0.114
*/
if (isFullRange) {
return Coeffs { 1024, 1436, 352, 731, 1815, 0 };
} else {
return Coeffs { 1196, 1639, 402, 835, 2072, 64 };
}
break;
case C2Color::MATRIX_BT709:
/**
* BT.709: K_R = 0.2126; K_B = 0.0722
*/
if (isFullRange) {
return Coeffs { 1024, 1613, 192, 479, 1900, 0 };
} else {
return Coeffs { 1196, 1841, 219, 547, 2169, 64 };
}
break;
case C2Color::MATRIX_BT2020:
default:
/**
* BT.2020: K_R = 0.2627; K_B = 0.0593
*/
if (isFullRange) {
return Coeffs { 1024, 1510, 169, 585, 1927, 0 };
} else {
return Coeffs { 1196, 1724, 192, 668, 2200, 64 };
}
}
}
}
#define CLIP3(min, v, max) (((v) < (min)) ? (min) : (((max) > (v)) ? (v) : (max)))
void convertYUV420Planar16ToRGBA1010102(
uint32_t *dst, const uint16_t *srcY, const uint16_t *srcU,
const uint16_t *srcV, size_t srcYStride, size_t srcUStride,
size_t srcVStride, size_t dstStride, size_t width,
size_t height,
std::shared_ptr<const C2ColorAspectsStruct> aspects) {
C2ColorAspectsStruct _aspects = FillMissingColorAspects(aspects, width, height);
struct Coeffs coeffs = GetCoeffsForAspects(_aspects);
int32_t _y = coeffs._y;
int32_t _b_u = coeffs._b_u;
int32_t _neg_g_u = -coeffs._g_u;
int32_t _neg_g_v = -coeffs._g_v;
int32_t _r_v = coeffs._r_v;
int32_t _c16 = coeffs._c16;
// Converting two lines at a time, slightly faster
for (size_t y = 0; y < height; y += 2) {
uint32_t *dstTop = (uint32_t *)dst;
uint32_t *dstBot = (uint32_t *)(dst + dstStride);
uint16_t *ySrcTop = (uint16_t *)srcY;
uint16_t *ySrcBot = (uint16_t *)(srcY + srcYStride);
uint16_t *uSrc = (uint16_t *)srcU;
uint16_t *vSrc = (uint16_t *)srcV;
for (size_t x = 0; x < width; x += 2) {
int32_t u, v, y00, y01, y10, y11;
u = *uSrc - 512;
uSrc += 1;
v = *vSrc - 512;
vSrc += 1;
y00 = *ySrcTop - _c16;
ySrcTop += 1;
y01 = *ySrcTop - _c16;
ySrcTop += 1;
y10 = *ySrcBot - _c16;
ySrcBot += 1;
y11 = *ySrcBot - _c16;
ySrcBot += 1;
int32_t u_b = u * _b_u;
int32_t u_g = u * _neg_g_u;
int32_t v_g = v * _neg_g_v;
int32_t v_r = v * _r_v;
int32_t yMult, b, g, r;
yMult = y00 * _y + 512;
b = (yMult + u_b) / 1024;
g = (yMult + v_g + u_g) / 1024;
r = (yMult + v_r) / 1024;
b = CLIP3(0, b, 1023);
g = CLIP3(0, g, 1023);
r = CLIP3(0, r, 1023);
*dstTop++ = 3 << 30 | (b << 20) | (g << 10) | r;
yMult = y01 * _y + 512;
b = (yMult + u_b) / 1024;
g = (yMult + v_g + u_g) / 1024;
r = (yMult + v_r) / 1024;
b = CLIP3(0, b, 1023);
g = CLIP3(0, g, 1023);
r = CLIP3(0, r, 1023);
*dstTop++ = 3 << 30 | (b << 20) | (g << 10) | r;
yMult = y10 * _y + 512;
b = (yMult + u_b) / 1024;
g = (yMult + v_g + u_g) / 1024;
r = (yMult + v_r) / 1024;
b = CLIP3(0, b, 1023);
g = CLIP3(0, g, 1023);
r = CLIP3(0, r, 1023);
*dstBot++ = 3 << 30 | (b << 20) | (g << 10) | r;
yMult = y11 * _y + 512;
b = (yMult + u_b) / 1024;
g = (yMult + v_g + u_g) / 1024;
r = (yMult + v_r) / 1024;
b = CLIP3(0, b, 1023);
g = CLIP3(0, g, 1023);
r = CLIP3(0, r, 1023);
*dstBot++ = 3 << 30 | (b << 20) | (g << 10) | r;
}
srcY += srcYStride * 2;
srcU += srcUStride;
srcV += srcVStride;
dst += dstStride * 2;
}
}
void convertYUV420Planar16ToY410OrRGBA1010102(
uint32_t *dst, const uint16_t *srcY,
const uint16_t *srcU, const uint16_t *srcV,
size_t srcYStride, size_t srcUStride,
size_t srcVStride, size_t dstStride, size_t width, size_t height,
std::shared_ptr<const C2ColorAspectsStruct> aspects) {
if (isAtLeastT()) {
convertYUV420Planar16ToRGBA1010102(dst, srcY, srcU, srcV, srcYStride, srcUStride,
srcVStride, dstStride, width, height, aspects);
} else {
convertYUV420Planar16ToY410(dst, srcY, srcU, srcV, srcYStride, srcUStride, srcVStride,
dstStride, width, height);
}
}
void convertYUV420Planar16ToYV12(uint8_t *dstY, uint8_t *dstU, uint8_t *dstV, const uint16_t *srcY,
const uint16_t *srcU, const uint16_t *srcV, size_t srcYStride,
size_t srcUStride, size_t srcVStride, size_t dstYStride,
size_t dstUVStride, size_t width, size_t height,
bool isMonochrome) {
for (size_t y = 0; y < height; ++y) {
for (size_t x = 0; x < width; ++x) {
dstY[x] = (uint8_t)(srcY[x] >> 2);
}
srcY += srcYStride;
dstY += dstYStride;
}
if (isMonochrome) {
// Fill with neutral U/V values.
for (size_t y = 0; y < (height + 1) / 2; ++y) {
memset(dstV, kNeutralUVBitDepth8, (width + 1) / 2);
memset(dstU, kNeutralUVBitDepth8, (width + 1) / 2);
dstV += dstUVStride;
dstU += dstUVStride;
}
return;
}
for (size_t y = 0; y < (height + 1) / 2; ++y) {
for (size_t x = 0; x < (width + 1) / 2; ++x) {
dstU[x] = (uint8_t)(srcU[x] >> 2);
dstV[x] = (uint8_t)(srcV[x] >> 2);
}
srcU += srcUStride;
srcV += srcVStride;
dstU += dstUVStride;
dstV += dstUVStride;
}
}
void convertYUV420Planar16ToP010(uint16_t *dstY, uint16_t *dstUV, const uint16_t *srcY,
const uint16_t *srcU, const uint16_t *srcV, size_t srcYStride,
size_t srcUStride, size_t srcVStride, size_t dstYStride,
size_t dstUVStride, size_t width, size_t height,
bool isMonochrome) {
for (size_t y = 0; y < height; ++y) {
for (size_t x = 0; x < width; ++x) {
dstY[x] = srcY[x] << 6;
}
srcY += srcYStride;
dstY += dstYStride;
}
if (isMonochrome) {
// Fill with neutral U/V values.
for (size_t y = 0; y < (height + 1) / 2; ++y) {
for (size_t x = 0; x < (width + 1) / 2; ++x) {
dstUV[2 * x] = kNeutralUVBitDepth10 << 6;
dstUV[2 * x + 1] = kNeutralUVBitDepth10 << 6;
}
dstUV += dstUVStride;
}
return;
}
for (size_t y = 0; y < (height + 1) / 2; ++y) {
for (size_t x = 0; x < (width + 1) / 2; ++x) {
dstUV[2 * x] = srcU[x] << 6;
dstUV[2 * x + 1] = srcV[x] << 6;
}
srcU += srcUStride;
srcV += srcVStride;
dstUV += dstUVStride;
}
}
void convertP010ToYUV420Planar16(uint16_t *dstY, uint16_t *dstU, uint16_t *dstV,
const uint16_t *srcY, const uint16_t *srcUV,
size_t srcYStride, size_t srcUVStride, size_t dstYStride,
size_t dstUStride, size_t dstVStride, size_t width,
size_t height, bool isMonochrome) {
for (size_t y = 0; y < height; ++y) {
for (size_t x = 0; x < width; ++x) {
dstY[x] = srcY[x] >> 6;
}
srcY += srcYStride;
dstY += dstYStride;
}
if (isMonochrome) {
// Fill with neutral U/V values.
for (size_t y = 0; y < (height + 1) / 2; ++y) {
for (size_t x = 0; x < (width + 1) / 2; ++x) {
dstU[x] = kNeutralUVBitDepth10;
dstV[x] = kNeutralUVBitDepth10;
}
dstU += dstUStride;
dstV += dstVStride;
}
return;
}
for (size_t y = 0; y < (height + 1) / 2; ++y) {
for (size_t x = 0; x < (width + 1) / 2; ++x) {
dstU[x] = srcUV[2 * x] >> 6;
dstV[x] = srcUV[2 * x + 1] >> 6;
}
dstU += dstUStride;
dstV += dstVStride;
srcUV += srcUVStride;
}
}
static const int16_t bt709Matrix_10bit[2][3][3] = {
{ { 218, 732, 74 }, { -117, -395, 512 }, { 512, -465, -47 } }, /* RANGE_FULL */
{ { 186, 627, 63 }, { -103, -345, 448 }, { 448, -407, -41 } }, /* RANGE_LIMITED */
};
static const int16_t bt2020Matrix_10bit[2][3][3] = {
{ { 269, 694, 61 }, { -143, -369, 512 }, { 512, -471, -41 } }, /* RANGE_FULL */
{ { 230, 594, 52 }, { -125, -323, 448 }, { 448, -412, -36 } }, /* RANGE_LIMITED */
};
void convertRGBA1010102ToYUV420Planar16(uint16_t* dstY, uint16_t* dstU, uint16_t* dstV,
const uint32_t* srcRGBA, size_t srcRGBStride, size_t width,
size_t height, C2Color::matrix_t colorMatrix,
C2Color::range_t colorRange) {
uint16_t r, g, b;
int32_t i32Y, i32U, i32V;
uint16_t zeroLvl = colorRange == C2Color::RANGE_FULL ? 0 : 64;
uint16_t maxLvlLuma = colorRange == C2Color::RANGE_FULL ? 1023 : 940;
uint16_t maxLvlChroma = colorRange == C2Color::RANGE_FULL ? 1023 : 960;
// set default range as limited
if (colorRange != C2Color::RANGE_FULL) {
colorRange = C2Color::RANGE_LIMITED;
}
const int16_t(*weights)[3] = (colorMatrix == C2Color::MATRIX_BT709)
? bt709Matrix_10bit[colorRange - 1]
: bt2020Matrix_10bit[colorRange - 1];
for (size_t y = 0; y < height; ++y) {
for (size_t x = 0; x < width; ++x) {
b = (srcRGBA[x] >> 20) & 0x3FF;
g = (srcRGBA[x] >> 10) & 0x3FF;
r = srcRGBA[x] & 0x3FF;
i32Y = ((r * weights[0][0] + g * weights[0][1] + b * weights[0][2] + 512) >> 10) +
zeroLvl;
dstY[x] = CLIP3(zeroLvl, i32Y, maxLvlLuma);
if (y % 2 == 0 && x % 2 == 0) {
i32U = ((r * weights[1][0] + g * weights[1][1] + b * weights[1][2] + 512) >> 10) +
512;
i32V = ((r * weights[2][0] + g * weights[2][1] + b * weights[2][2] + 512) >> 10) +
512;
dstU[x >> 1] = CLIP3(zeroLvl, i32U, maxLvlChroma);
dstV[x >> 1] = CLIP3(zeroLvl, i32V, maxLvlChroma);
}
}
srcRGBA += srcRGBStride;
dstY += width;
if (y % 2 == 0) {
dstU += width / 2;
dstV += width / 2;
}
}
}
std::unique_ptr<C2Work> SimpleC2Component::WorkQueue::pop_front() {
std::unique_ptr<C2Work> work = std::move(mQueue.front().work);
mQueue.pop_front();
return work;
}
void SimpleC2Component::WorkQueue::push_back(std::unique_ptr<C2Work> work) {
mQueue.push_back({ std::move(work), NO_DRAIN });
}
bool SimpleC2Component::WorkQueue::empty() const {
return mQueue.empty();
}
void SimpleC2Component::WorkQueue::clear() {
mQueue.clear();
}
uint32_t SimpleC2Component::WorkQueue::drainMode() const {
return mQueue.front().drainMode;
}
void SimpleC2Component::WorkQueue::markDrain(uint32_t drainMode) {
mQueue.push_back({ nullptr, drainMode });
}
////////////////////////////////////////////////////////////////////////////////
SimpleC2Component::WorkHandler::WorkHandler() : mRunning(false) {}
void SimpleC2Component::WorkHandler::setComponent(
const std::shared_ptr<SimpleC2Component> &thiz) {
mThiz = thiz;
}
static void Reply(const sp<AMessage> &msg, int32_t *err = nullptr) {
sp<AReplyToken> replyId;
CHECK(msg->senderAwaitsResponse(&replyId));
sp<AMessage> reply = new AMessage;
if (err) {
reply->setInt32("err", *err);
}
reply->postReply(replyId);
}
void SimpleC2Component::WorkHandler::onMessageReceived(const sp<AMessage> &msg) {
std::shared_ptr<SimpleC2Component> thiz = mThiz.lock();
if (!thiz) {
ALOGD("component not yet set; msg = %s", msg->debugString().c_str());
sp<AReplyToken> replyId;
if (msg->senderAwaitsResponse(&replyId)) {
sp<AMessage> reply = new AMessage;
reply->setInt32("err", C2_CORRUPTED);
reply->postReply(replyId);
}
return;
}
switch (msg->what()) {
case kWhatProcess: {
if (mRunning) {
if (thiz->processQueue()) {
(new AMessage(kWhatProcess, this))->post();
}
} else {
ALOGV("Ignore process message as we're not running");
}
break;
}
case kWhatInit: {
int32_t err = thiz->onInit();
Reply(msg, &err);
[[fallthrough]];
}
case kWhatStart: {
mRunning = true;
break;
}
case kWhatStop: {
int32_t err = thiz->onStop();
thiz->mOutputBlockPool.reset();
Reply(msg, &err);
break;
}
case kWhatReset: {
thiz->onReset();
thiz->mOutputBlockPool.reset();
mRunning = false;
Reply(msg);
break;
}
case kWhatRelease: {
thiz->onRelease();
thiz->mOutputBlockPool.reset();
mRunning = false;
Reply(msg);
break;
}
default: {
ALOGD("Unrecognized msg: %d", msg->what());
break;
}
}
}
class SimpleC2Component::BlockingBlockPool : public C2BlockPool {
public:
BlockingBlockPool(const std::shared_ptr<C2BlockPool>& base): mBase{base} {}
virtual local_id_t getLocalId() const override {
return mBase->getLocalId();
}
virtual C2Allocator::id_t getAllocatorId() const override {
return mBase->getAllocatorId();
}
virtual c2_status_t fetchLinearBlock(
uint32_t capacity,
C2MemoryUsage usage,
std::shared_ptr<C2LinearBlock>* block) {
c2_status_t status;
do {
status = mBase->fetchLinearBlock(capacity, usage, block);
} while (status == C2_BLOCKING);
return status;
}
virtual c2_status_t fetchCircularBlock(
uint32_t capacity,
C2MemoryUsage usage,
std::shared_ptr<C2CircularBlock>* block) {
c2_status_t status;
do {
status = mBase->fetchCircularBlock(capacity, usage, block);
} while (status == C2_BLOCKING);
return status;
}
virtual c2_status_t fetchGraphicBlock(
uint32_t width, uint32_t height, uint32_t format,
C2MemoryUsage usage,
std::shared_ptr<C2GraphicBlock>* block) {
c2_status_t status;
do {
status = mBase->fetchGraphicBlock(width, height, format, usage,
block);
} while (status == C2_BLOCKING);
return status;
}
private:
std::shared_ptr<C2BlockPool> mBase;
};
////////////////////////////////////////////////////////////////////////////////
namespace {
struct DummyReadView : public C2ReadView {
DummyReadView() : C2ReadView(C2_NO_INIT) {}
};
} // namespace
SimpleC2Component::SimpleC2Component(
const std::shared_ptr<C2ComponentInterface> &intf)
: mDummyReadView(DummyReadView()),
mIntf(intf),
mLooper(new ALooper),
mHandler(new WorkHandler) {
mLooper->setName(intf->getName().c_str());
(void)mLooper->registerHandler(mHandler);
mLooper->start(false, false, ANDROID_PRIORITY_VIDEO);
}
SimpleC2Component::~SimpleC2Component() {
mLooper->unregisterHandler(mHandler->id());
(void)mLooper->stop();
}
c2_status_t SimpleC2Component::setListener_vb(
const std::shared_ptr<C2Component::Listener> &listener, c2_blocking_t mayBlock) {
mHandler->setComponent(shared_from_this());
Mutexed<ExecState>::Locked state(mExecState);
if (state->mState == RUNNING) {
if (listener) {
return C2_BAD_STATE;
} else if (!mayBlock) {
return C2_BLOCKING;
}
}
state->mListener = listener;
// TODO: wait for listener change to have taken place before returning
// (e.g. if there is an ongoing listener callback)
return C2_OK;
}
c2_status_t SimpleC2Component::queue_nb(std::list<std::unique_ptr<C2Work>> * const items) {
{
Mutexed<ExecState>::Locked state(mExecState);
if (state->mState != RUNNING) {
return C2_BAD_STATE;
}
}
bool queueWasEmpty = false;
{
Mutexed<WorkQueue>::Locked queue(mWorkQueue);
queueWasEmpty = queue->empty();
while (!items->empty()) {
queue->push_back(std::move(items->front()));
items->pop_front();
}
}
if (queueWasEmpty) {
(new AMessage(WorkHandler::kWhatProcess, mHandler))->post();
}
return C2_OK;
}
c2_status_t SimpleC2Component::announce_nb(const std::vector<C2WorkOutline> &items) {
(void)items;
return C2_OMITTED;
}
c2_status_t SimpleC2Component::flush_sm(
flush_mode_t flushMode, std::list<std::unique_ptr<C2Work>>* const flushedWork) {
(void)flushMode;
{
Mutexed<ExecState>::Locked state(mExecState);
if (state->mState != RUNNING) {
return C2_BAD_STATE;
}
}
{
Mutexed<WorkQueue>::Locked queue(mWorkQueue);
queue->incGeneration();
// TODO: queue->splicedBy(flushedWork, flushedWork->end());
while (!queue->empty()) {
std::unique_ptr<C2Work> work = queue->pop_front();
if (work) {
flushedWork->push_back(std::move(work));
}
}
while (!queue->pending().empty()) {
flushedWork->push_back(std::move(queue->pending().begin()->second));
queue->pending().erase(queue->pending().begin());
}
}
return C2_OK;
}
c2_status_t SimpleC2Component::drain_nb(drain_mode_t drainMode) {
if (drainMode == DRAIN_CHAIN) {
return C2_OMITTED;
}
{
Mutexed<ExecState>::Locked state(mExecState);
if (state->mState != RUNNING) {
return C2_BAD_STATE;
}
}
bool queueWasEmpty = false;
{
Mutexed<WorkQueue>::Locked queue(mWorkQueue);
queueWasEmpty = queue->empty();
queue->markDrain(drainMode);
}
if (queueWasEmpty) {
(new AMessage(WorkHandler::kWhatProcess, mHandler))->post();
}
return C2_OK;
}
c2_status_t SimpleC2Component::start() {
Mutexed<ExecState>::Locked state(mExecState);
if (state->mState == RUNNING) {
return C2_BAD_STATE;
}
bool needsInit = (state->mState == UNINITIALIZED);
state.unlock();
if (needsInit) {
sp<AMessage> reply;
(new AMessage(WorkHandler::kWhatInit, mHandler))->postAndAwaitResponse(&reply);
int32_t err;
CHECK(reply->findInt32("err", &err));
if (err != C2_OK) {
return (c2_status_t)err;
}
} else {
(new AMessage(WorkHandler::kWhatStart, mHandler))->post();
}
state.lock();
state->mState = RUNNING;
return C2_OK;
}
c2_status_t SimpleC2Component::stop() {
ALOGV("stop");
{
Mutexed<ExecState>::Locked state(mExecState);
if (state->mState != RUNNING) {
return C2_BAD_STATE;
}
state->mState = STOPPED;
}
{
Mutexed<WorkQueue>::Locked queue(mWorkQueue);
queue->clear();
queue->pending().clear();
}
sp<AMessage> reply;
(new AMessage(WorkHandler::kWhatStop, mHandler))->postAndAwaitResponse(&reply);
int32_t err;
CHECK(reply->findInt32("err", &err));
if (err != C2_OK) {
return (c2_status_t)err;
}
return C2_OK;
}
c2_status_t SimpleC2Component::reset() {
ALOGV("reset");
{
Mutexed<ExecState>::Locked state(mExecState);
state->mState = UNINITIALIZED;
}
{
Mutexed<WorkQueue>::Locked queue(mWorkQueue);
queue->clear();
queue->pending().clear();
}
sp<AMessage> reply;
(new AMessage(WorkHandler::kWhatReset, mHandler))->postAndAwaitResponse(&reply);
return C2_OK;
}
c2_status_t SimpleC2Component::release() {
ALOGV("release");
sp<AMessage> reply;
(new AMessage(WorkHandler::kWhatRelease, mHandler))->postAndAwaitResponse(&reply);
return C2_OK;
}
std::shared_ptr<C2ComponentInterface> SimpleC2Component::intf() {
return mIntf;
}
namespace {
std::list<std::unique_ptr<C2Work>> vec(std::unique_ptr<C2Work> &work) {
std::list<std::unique_ptr<C2Work>> ret;
ret.push_back(std::move(work));
return ret;
}
} // namespace
void SimpleC2Component::finish(
uint64_t frameIndex, std::function<void(const std::unique_ptr<C2Work> &)> fillWork) {
std::unique_ptr<C2Work> work;
{
Mutexed<WorkQueue>::Locked queue(mWorkQueue);
if (queue->pending().count(frameIndex) == 0) {
ALOGW("unknown frame index: %" PRIu64, frameIndex);
return;
}
work = std::move(queue->pending().at(frameIndex));
queue->pending().erase(frameIndex);
}
if (work) {
fillWork(work);
std::shared_ptr<C2Component::Listener> listener = mExecState.lock()->mListener;
listener->onWorkDone_nb(shared_from_this(), vec(work));
ALOGV("returning pending work");
}
}
void SimpleC2Component::cloneAndSend(
uint64_t frameIndex,
const std::unique_ptr<C2Work> &currentWork,
std::function<void(const std::unique_ptr<C2Work> &)> fillWork) {
std::unique_ptr<C2Work> work(new C2Work);
if (currentWork->input.ordinal.frameIndex == frameIndex) {
work->input.flags = currentWork->input.flags;
work->input.ordinal = currentWork->input.ordinal;
} else {
Mutexed<WorkQueue>::Locked queue(mWorkQueue);
if (queue->pending().count(frameIndex) == 0) {
ALOGW("unknown frame index: %" PRIu64, frameIndex);
return;
}
work->input.flags = queue->pending().at(frameIndex)->input.flags;
work->input.ordinal = queue->pending().at(frameIndex)->input.ordinal;
}
work->worklets.emplace_back(new C2Worklet);
if (work) {
fillWork(work);
std::shared_ptr<C2Component::Listener> listener = mExecState.lock()->mListener;
listener->onWorkDone_nb(shared_from_this(), vec(work));
ALOGV("cloned and sending work");
}
}
bool SimpleC2Component::processQueue() {
std::unique_ptr<C2Work> work;
uint64_t generation;
int32_t drainMode;
bool isFlushPending = false;
bool hasQueuedWork = false;
{
Mutexed<WorkQueue>::Locked queue(mWorkQueue);
if (queue->empty()) {
return false;
}
generation = queue->generation();
drainMode = queue->drainMode();
isFlushPending = queue->popPendingFlush();
work = queue->pop_front();
hasQueuedWork = !queue->empty();
}
if (isFlushPending) {
ALOGV("processing pending flush");
c2_status_t err = onFlush_sm();
if (err != C2_OK) {
ALOGD("flush err: %d", err);
// TODO: error
}
}
if (!mOutputBlockPool) {
c2_status_t err = [this] {
// TODO: don't use query_vb
C2StreamBufferTypeSetting::output outputFormat(0u);
std::vector<std::unique_ptr<C2Param>> params;
c2_status_t err = intf()->query_vb(
{ &outputFormat },
{ C2PortBlockPoolsTuning::output::PARAM_TYPE },
C2_DONT_BLOCK,
&params);
if (err != C2_OK && err != C2_BAD_INDEX) {
ALOGD("query err = %d", err);
return err;
}
C2BlockPool::local_id_t poolId =
outputFormat.value == C2BufferData::GRAPHIC
? C2BlockPool::BASIC_GRAPHIC
: C2BlockPool::BASIC_LINEAR;
if (params.size()) {
C2PortBlockPoolsTuning::output *outputPools =
C2PortBlockPoolsTuning::output::From(params[0].get());
if (outputPools && outputPools->flexCount() >= 1) {
poolId = outputPools->m.values[0];
}
}
std::shared_ptr<C2BlockPool> blockPool;
err = GetCodec2BlockPool(poolId, shared_from_this(), &blockPool);
ALOGD("Using output block pool with poolID %llu => got %llu - %d",
(unsigned long long)poolId,
(unsigned long long)(
blockPool ? blockPool->getLocalId() : 111000111),
err);
if (err == C2_OK) {
mOutputBlockPool = std::make_shared<BlockingBlockPool>(blockPool);
}
return err;
}();
if (err != C2_OK) {
Mutexed<ExecState>::Locked state(mExecState);
std::shared_ptr<C2Component::Listener> listener = state->mListener;
state.unlock();
listener->onError_nb(shared_from_this(), err);
return hasQueuedWork;
}
}
if (!work) {
c2_status_t err = drain(drainMode, mOutputBlockPool);
if (err != C2_OK) {
Mutexed<ExecState>::Locked state(mExecState);
std::shared_ptr<C2Component::Listener> listener = state->mListener;
state.unlock();
listener->onError_nb(shared_from_this(), err);
}
return hasQueuedWork;
}
{
std::vector<C2Param *> updates;
for (const std::unique_ptr<C2Param> &param: work->input.configUpdate) {
if (param) {
updates.emplace_back(param.get());
}
}
if (!updates.empty()) {
std::vector<std::unique_ptr<C2SettingResult>> failures;
c2_status_t err = intf()->config_vb(updates, C2_MAY_BLOCK, &failures);
ALOGD("applied %zu configUpdates => %s (%d)", updates.size(), asString(err), err);
}
}
ALOGV("start processing frame #%" PRIu64, work->input.ordinal.frameIndex.peeku());
// If input buffer list is not empty, it means we have some input to process on.
// However, input could be a null buffer. In such case, clear the buffer list
// before making call to process().
if (!work->input.buffers.empty() && !work->input.buffers[0]) {
ALOGD("Encountered null input buffer. Clearing the input buffer");
work->input.buffers.clear();
}
process(work, mOutputBlockPool);
ALOGV("processed frame #%" PRIu64, work->input.ordinal.frameIndex.peeku());
Mutexed<WorkQueue>::Locked queue(mWorkQueue);
if (queue->generation() != generation) {
ALOGD("work form old generation: was %" PRIu64 " now %" PRIu64,
queue->generation(), generation);
work->result = C2_NOT_FOUND;
queue.unlock();
Mutexed<ExecState>::Locked state(mExecState);
std::shared_ptr<C2Component::Listener> listener = state->mListener;
state.unlock();
listener->onWorkDone_nb(shared_from_this(), vec(work));
return hasQueuedWork;
}
if (work->workletsProcessed != 0u) {
queue.unlock();
Mutexed<ExecState>::Locked state(mExecState);
ALOGV("returning this work");
std::shared_ptr<C2Component::Listener> listener = state->mListener;
state.unlock();
listener->onWorkDone_nb(shared_from_this(), vec(work));
} else {
ALOGV("queue pending work");
work->input.buffers.clear();
std::unique_ptr<C2Work> unexpected;
uint64_t frameIndex = work->input.ordinal.frameIndex.peeku();
if (queue->pending().count(frameIndex) != 0) {
unexpected = std::move(queue->pending().at(frameIndex));
queue->pending().erase(frameIndex);
}
(void)queue->pending().insert({ frameIndex, std::move(work) });
queue.unlock();
if (unexpected) {
ALOGD("unexpected pending work");
unexpected->result = C2_CORRUPTED;
Mutexed<ExecState>::Locked state(mExecState);
std::shared_ptr<C2Component::Listener> listener = state->mListener;
state.unlock();
listener->onWorkDone_nb(shared_from_this(), vec(unexpected));
}
}
return hasQueuedWork;
}
int SimpleC2Component::getHalPixelFormatForBitDepth10(bool allowRGBA1010102) {
// Save supported hal pixel formats for bit depth of 10, the first time this is called
if (!mBitDepth10HalPixelFormats.size()) {
std::vector<int> halPixelFormats;
halPixelFormats.push_back(HAL_PIXEL_FORMAT_YCBCR_P010);
// since allowRGBA1010102 can chance in each call, but mBitDepth10HalPixelFormats
// is populated only once, allowRGBA1010102 is not considered at this stage.
halPixelFormats.push_back(HAL_PIXEL_FORMAT_RGBA_1010102);
for (int halPixelFormat : halPixelFormats) {
if (isHalPixelFormatSupported((AHardwareBuffer_Format)halPixelFormat)) {
mBitDepth10HalPixelFormats.push_back(halPixelFormat);
}
}
// Add YV12 in the end as a fall-back option
mBitDepth10HalPixelFormats.push_back(HAL_PIXEL_FORMAT_YV12);
}
// From Android T onwards, HAL_PIXEL_FORMAT_RGBA_1010102 corresponds to true
// RGBA 1010102 format unlike earlier versions where it was used to represent
// YUVA 1010102 data
if (!isAtLeastT()) {
// When RGBA1010102 is not allowed and if the first supported hal pixel is format is
// HAL_PIXEL_FORMAT_RGBA_1010102, then return HAL_PIXEL_FORMAT_YV12
if (!allowRGBA1010102 && mBitDepth10HalPixelFormats[0] == HAL_PIXEL_FORMAT_RGBA_1010102) {
return HAL_PIXEL_FORMAT_YV12;
}
}
// Return the first entry from supported formats
return mBitDepth10HalPixelFormats[0];
}
std::shared_ptr<C2Buffer> SimpleC2Component::createLinearBuffer(
const std::shared_ptr<C2LinearBlock> &block, size_t offset, size_t size) {
return C2Buffer::CreateLinearBuffer(block->share(offset, size, ::C2Fence()));
}
std::shared_ptr<C2Buffer> SimpleC2Component::createGraphicBuffer(
const std::shared_ptr<C2GraphicBlock> &block, const C2Rect &crop) {
return C2Buffer::CreateGraphicBuffer(block->share(crop, ::C2Fence()));
}
} // namespace android