blob: 377814fc788e6f719fa98b69b2c90cb5da4549ec [file] [log] [blame]
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <math.h>
#include <stdio.h>
static double sinc(double x) {
if (fabs(x) == 0.0f) return 1.0f;
return sin(x) / x;
}
static double sqr(double x) {
return x*x;
}
static double I0(double x) {
// from the Numerical Recipes in C p. 237
double ax,ans,y;
ax=fabs(x);
if (ax < 3.75) {
y=x/3.75;
y*=y;
ans=1.0+y*(3.5156229+y*(3.0899424+y*(1.2067492
+y*(0.2659732+y*(0.360768e-1+y*0.45813e-2)))));
} else {
y=3.75/ax;
ans=(exp(ax)/sqrt(ax))*(0.39894228+y*(0.1328592e-1
+y*(0.225319e-2+y*(-0.157565e-2+y*(0.916281e-2
+y*(-0.2057706e-1+y*(0.2635537e-1+y*(-0.1647633e-1
+y*0.392377e-2))))))));
}
return ans;
}
static double kaiser(int k, int N, double alpha) {
if (k < 0 || k > N)
return 0;
return I0(M_PI*alpha * sqrt(1.0 - sqr((2.0*k)/N - 1.0))) / I0(M_PI*alpha);
}
int main(int argc, char** argv)
{
// nc is the number of bits to store the coefficients
int nc = 32;
// ni is the minimum number of bits needed for interpolation
// (not used for generating the coefficients)
const int ni = nc / 2;
// cut off frequency ratio Fc/Fs
// The bigger the stop-band, the less coefficients we'll need.
double Fcr = 20000.0 / 48000.0;
// nzc is the number of zero-crossing on one half of the filter
int nzc = 8;
// alpha parameter of the kaiser window
// Larger numbers reduce ripples in the rejection band but increase
// the width of the transition band.
// the table below gives some value of alpha for a given
// stop-band attenuation.
// 30 dB 2.210
// 40 dB 3.384
// 50 dB 4.538
// 60 dB 5.658
// 70 dB 6.764
// 80 dB 7.865
// 90 dB 8.960
// 100 dB 10.056
double alpha = 7.865; // -80dB stop-band attenuation
// 2^nz is the number coefficients per zero-crossing
// (int theory this should be 1<<(nc/2))
const int nz = 4;
// total number of coefficients
const int N = (1 << nz) * nzc;
// generate the right half of the filter
printf("const int32_t RESAMPLE_FIR_SIZE = %d;\n", N);
printf("const int32_t RESAMPLE_FIR_NUM_COEF = %d;\n", nzc);
printf("const int32_t RESAMPLE_FIR_COEF_BITS = %d;\n", nc);
printf("const int32_t RESAMPLE_FIR_LERP_FRAC_BITS = %d;\n", ni);
printf("const int32_t RESAMPLE_FIR_LERP_INT_BITS = %d;\n", nz);
printf("\n");
printf("static int16_t resampleFIR[%d] = {", N);
for (int i=0 ; i<N ; i++)
{
double x = (2.0 * M_PI * i * Fcr) / (1 << nz);
double y = kaiser(i+N, 2*N, alpha) * sinc(x);
long yi = floor(y * ((1ULL<<(nc-1))) + 0.5);
if (yi >= (1LL<<(nc-1))) yi = (1LL<<(nc-1))-1;
if ((i % (1 << 4)) == 0) printf("\n ");
if (nc > 16)
printf("0x%08x, ", int(yi));
else
printf("0x%04x, ", int(yi)&0xFFFF);
}
printf("\n};\n");
return 0;
}
// http://www.dsptutor.freeuk.com/KaiserFilterDesign/KaiserFilterDesign.html
// http://www.csee.umbc.edu/help/sound/AFsp-V2R1/html/audio/ResampAudio.html