blob: 8d36e31f6ee25481bd5670add6c069a5cedfd7f7 [file] [log] [blame]
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
// #define LOG_NDEBUG 0
#define LOG_TAG "MediaSampleReader"
#include <android-base/logging.h>
#include <media/MediaSampleReaderNDK.h>
#include <algorithm>
#include <cmath>
namespace android {
// Check that the extractor sample flags have the expected NDK meaning.
static_assert(SAMPLE_FLAG_SYNC_SAMPLE == AMEDIAEXTRACTOR_SAMPLE_FLAG_SYNC,
"Sample flag mismatch: SYNC_SAMPLE");
// static
std::shared_ptr<MediaSampleReader> MediaSampleReaderNDK::createFromFd(int fd, size_t offset,
size_t size) {
AMediaExtractor* extractor = AMediaExtractor_new();
if (extractor == nullptr) {
LOG(ERROR) << "Unable to allocate AMediaExtractor";
return nullptr;
}
media_status_t status = AMediaExtractor_setDataSourceFd(extractor, fd, offset, size);
if (status != AMEDIA_OK) {
LOG(ERROR) << "AMediaExtractor_setDataSourceFd returned error: " << status;
AMediaExtractor_delete(extractor);
return nullptr;
}
auto sampleReader = std::shared_ptr<MediaSampleReaderNDK>(new MediaSampleReaderNDK(extractor));
return sampleReader;
}
MediaSampleReaderNDK::MediaSampleReaderNDK(AMediaExtractor* extractor)
: mExtractor(extractor), mTrackCount(AMediaExtractor_getTrackCount(mExtractor)) {
if (mTrackCount > 0) {
mTrackCursors.resize(mTrackCount);
}
}
MediaSampleReaderNDK::~MediaSampleReaderNDK() {
if (mExtractor != nullptr) {
AMediaExtractor_delete(mExtractor);
}
}
void MediaSampleReaderNDK::advanceTrack_l(int trackIndex) {
if (!mEnforceSequentialAccess) {
// Note: Positioning the extractor before advancing the track is needed for two reasons:
// 1. To enable multiple advances without explicitly letting the extractor catch up.
// 2. To prevent the extractor from being farther than "next".
(void)moveToTrack_l(trackIndex);
}
SampleCursor& cursor = mTrackCursors[trackIndex];
cursor.previous = cursor.current;
cursor.current = cursor.next;
cursor.next.reset();
if (mEnforceSequentialAccess && trackIndex == mExtractorTrackIndex) {
while (advanceExtractor_l()) {
SampleCursor& cursor = mTrackCursors[mExtractorTrackIndex];
if (cursor.current.isSet && cursor.current.index == mExtractorSampleIndex) {
if (mExtractorTrackIndex != trackIndex) {
mTrackSignals[mExtractorTrackIndex].notify_all();
}
break;
}
}
}
return;
}
bool MediaSampleReaderNDK::advanceExtractor_l() {
// Reset the "next" sample time whenever the extractor advances past a sample that is current,
// to ensure that "next" is appropriately updated when the extractor advances over the next
// sample of that track.
if (mTrackCursors[mExtractorTrackIndex].current.isSet &&
mTrackCursors[mExtractorTrackIndex].current.index == mExtractorSampleIndex) {
mTrackCursors[mExtractorTrackIndex].next.reset();
}
// Update the extractor's sample index even if this track reaches EOS, so that the other tracks
// are not given an incorrect extractor position.
mExtractorSampleIndex++;
if (!AMediaExtractor_advance(mExtractor)) {
LOG(DEBUG) << " EOS in advanceExtractor_l";
mEosReached = true;
for (auto it = mTrackSignals.begin(); it != mTrackSignals.end(); ++it) {
it->second.notify_all();
}
return false;
}
mExtractorTrackIndex = AMediaExtractor_getSampleTrackIndex(mExtractor);
SampleCursor& cursor = mTrackCursors[mExtractorTrackIndex];
if (mExtractorSampleIndex > cursor.previous.index) {
if (!cursor.current.isSet) {
cursor.current.set(mExtractorSampleIndex, AMediaExtractor_getSampleTime(mExtractor));
} else if (!cursor.next.isSet && mExtractorSampleIndex > cursor.current.index) {
cursor.next.set(mExtractorSampleIndex, AMediaExtractor_getSampleTime(mExtractor));
}
}
return true;
}
media_status_t MediaSampleReaderNDK::seekExtractorBackwards_l(int64_t targetTimeUs,
int targetTrackIndex,
uint64_t targetSampleIndex) {
if (targetSampleIndex > mExtractorSampleIndex) {
LOG(ERROR) << "Error: Forward seek is not supported";
return AMEDIA_ERROR_UNSUPPORTED;
}
// AMediaExtractor supports reading negative timestamps but does not support seeking to them.
const int64_t seekToTimeUs = std::max(targetTimeUs, (int64_t)0);
media_status_t status =
AMediaExtractor_seekTo(mExtractor, seekToTimeUs, AMEDIAEXTRACTOR_SEEK_PREVIOUS_SYNC);
if (status != AMEDIA_OK) {
LOG(ERROR) << "Unable to seek to " << seekToTimeUs << ", target " << targetTimeUs;
return status;
}
mEosReached = false;
mExtractorTrackIndex = AMediaExtractor_getSampleTrackIndex(mExtractor);
int64_t sampleTimeUs = AMediaExtractor_getSampleTime(mExtractor);
while (sampleTimeUs != targetTimeUs || mExtractorTrackIndex != targetTrackIndex) {
if (!AMediaExtractor_advance(mExtractor)) {
return AMEDIA_ERROR_END_OF_STREAM;
}
mExtractorTrackIndex = AMediaExtractor_getSampleTrackIndex(mExtractor);
sampleTimeUs = AMediaExtractor_getSampleTime(mExtractor);
}
mExtractorSampleIndex = targetSampleIndex;
return AMEDIA_OK;
}
media_status_t MediaSampleReaderNDK::moveToSample_l(SamplePosition& pos, int trackIndex) {
// Seek backwards if the extractor is ahead of the sample.
if (pos.isSet && mExtractorSampleIndex > pos.index) {
media_status_t status = seekExtractorBackwards_l(pos.timeStampUs, trackIndex, pos.index);
if (status != AMEDIA_OK) return status;
}
// Advance until extractor points to the sample.
while (!(pos.isSet && pos.index == mExtractorSampleIndex)) {
if (!advanceExtractor_l()) {
return AMEDIA_ERROR_END_OF_STREAM;
}
}
return AMEDIA_OK;
}
media_status_t MediaSampleReaderNDK::moveToTrack_l(int trackIndex) {
return moveToSample_l(mTrackCursors[trackIndex].current, trackIndex);
}
media_status_t MediaSampleReaderNDK::waitForTrack_l(int trackIndex,
std::unique_lock<std::mutex>& lockHeld) {
while (trackIndex != mExtractorTrackIndex && !mEosReached && mEnforceSequentialAccess) {
mTrackSignals[trackIndex].wait(lockHeld);
}
if (mEosReached) {
return AMEDIA_ERROR_END_OF_STREAM;
}
if (!mEnforceSequentialAccess) {
return moveToTrack_l(trackIndex);
}
return AMEDIA_OK;
}
media_status_t MediaSampleReaderNDK::primeExtractorForTrack_l(
int trackIndex, std::unique_lock<std::mutex>& lockHeld) {
if (mExtractorTrackIndex < 0) {
mExtractorTrackIndex = AMediaExtractor_getSampleTrackIndex(mExtractor);
if (mExtractorTrackIndex < 0) {
return AMEDIA_ERROR_END_OF_STREAM;
}
mTrackCursors[mExtractorTrackIndex].current.set(mExtractorSampleIndex,
AMediaExtractor_getSampleTime(mExtractor));
}
if (mEnforceSequentialAccess) {
return waitForTrack_l(trackIndex, lockHeld);
} else {
return moveToTrack_l(trackIndex);
}
}
media_status_t MediaSampleReaderNDK::selectTrack(int trackIndex) {
std::scoped_lock lock(mExtractorMutex);
if (trackIndex < 0 || trackIndex >= mTrackCount) {
LOG(ERROR) << "Invalid trackIndex " << trackIndex << " for trackCount " << mTrackCount;
return AMEDIA_ERROR_INVALID_PARAMETER;
} else if (mTrackSignals.find(trackIndex) != mTrackSignals.end()) {
LOG(ERROR) << "TrackIndex " << trackIndex << " already selected";
return AMEDIA_ERROR_INVALID_PARAMETER;
} else if (mExtractorTrackIndex >= 0) {
LOG(ERROR) << "Tracks must be selected before sample reading begins.";
return AMEDIA_ERROR_UNSUPPORTED;
}
media_status_t status = AMediaExtractor_selectTrack(mExtractor, trackIndex);
if (status != AMEDIA_OK) {
LOG(ERROR) << "AMediaExtractor_selectTrack returned error: " << status;
return status;
}
mTrackSignals.emplace(std::piecewise_construct, std::forward_as_tuple(trackIndex),
std::forward_as_tuple());
return AMEDIA_OK;
}
media_status_t MediaSampleReaderNDK::unselectTrack(int trackIndex) {
std::scoped_lock lock(mExtractorMutex);
if (trackIndex < 0 || trackIndex >= mTrackCount) {
LOG(ERROR) << "Invalid trackIndex " << trackIndex << " for trackCount " << mTrackCount;
return AMEDIA_ERROR_INVALID_PARAMETER;
} else if (mExtractorTrackIndex >= 0) {
LOG(ERROR) << "unselectTrack must be called before sample reading begins.";
return AMEDIA_ERROR_UNSUPPORTED;
}
auto it = mTrackSignals.find(trackIndex);
if (it == mTrackSignals.end()) {
LOG(ERROR) << "TrackIndex " << trackIndex << " is not selected";
return AMEDIA_ERROR_INVALID_PARAMETER;
}
mTrackSignals.erase(it);
media_status_t status = AMediaExtractor_unselectTrack(mExtractor, trackIndex);
if (status != AMEDIA_OK) {
LOG(ERROR) << "AMediaExtractor_selectTrack returned error: " << status;
return status;
}
return AMEDIA_OK;
}
media_status_t MediaSampleReaderNDK::setEnforceSequentialAccess(bool enforce) {
LOG(DEBUG) << "setEnforceSequentialAccess( " << enforce << " )";
std::scoped_lock lock(mExtractorMutex);
if (mEnforceSequentialAccess && !enforce) {
// If switching from enforcing to not enforcing sequential access there may be threads
// waiting that needs to be woken up.
for (auto it = mTrackSignals.begin(); it != mTrackSignals.end(); ++it) {
it->second.notify_all();
}
} else if (!mEnforceSequentialAccess && enforce && mExtractorTrackIndex >= 0) {
// If switching from not enforcing to enforcing sequential access the extractor needs to be
// positioned for the track farthest behind so that it won't get stuck waiting.
struct {
SamplePosition* pos = nullptr;
int trackIndex = -1;
} earliestSample;
for (int trackIndex = 0; trackIndex < mTrackCount; ++trackIndex) {
SamplePosition& lastKnownTrackPosition = mTrackCursors[trackIndex].current.isSet
? mTrackCursors[trackIndex].current
: mTrackCursors[trackIndex].previous;
if (lastKnownTrackPosition.isSet) {
if (earliestSample.pos == nullptr ||
earliestSample.pos->index > lastKnownTrackPosition.index) {
earliestSample.pos = &lastKnownTrackPosition;
earliestSample.trackIndex = trackIndex;
}
}
}
if (earliestSample.pos == nullptr) {
LOG(ERROR) << "No known sample position found";
return AMEDIA_ERROR_UNKNOWN;
}
media_status_t status = moveToSample_l(*earliestSample.pos, earliestSample.trackIndex);
if (status != AMEDIA_OK) return status;
while (!(mTrackCursors[mExtractorTrackIndex].current.isSet &&
mTrackCursors[mExtractorTrackIndex].current.index == mExtractorSampleIndex)) {
if (!advanceExtractor_l()) {
return AMEDIA_ERROR_END_OF_STREAM;
}
}
}
mEnforceSequentialAccess = enforce;
return AMEDIA_OK;
}
media_status_t MediaSampleReaderNDK::getEstimatedBitrateForTrack(int trackIndex, int32_t* bitrate) {
std::scoped_lock lock(mExtractorMutex);
media_status_t status = AMEDIA_OK;
if (mTrackSignals.find(trackIndex) == mTrackSignals.end()) {
LOG(ERROR) << "Track is not selected.";
return AMEDIA_ERROR_INVALID_PARAMETER;
} else if (bitrate == nullptr) {
LOG(ERROR) << "bitrate pointer is NULL.";
return AMEDIA_ERROR_INVALID_PARAMETER;
} else if (mExtractorTrackIndex >= 0) {
LOG(ERROR) << "getEstimatedBitrateForTrack must be called before sample reading begins.";
return AMEDIA_ERROR_UNSUPPORTED;
}
// Sample the track.
static constexpr int64_t kSamplingDurationUs = 10 * 1000 * 1000; // 10 seconds
size_t lastSampleSize = 0;
size_t totalSampleSize = 0;
int64_t firstSampleTimeUs = 0;
int64_t lastSampleTimeUs = 0;
do {
if (AMediaExtractor_getSampleTrackIndex(mExtractor) == trackIndex) {
lastSampleTimeUs = AMediaExtractor_getSampleTime(mExtractor);
if (totalSampleSize == 0) {
firstSampleTimeUs = lastSampleTimeUs;
}
lastSampleSize = AMediaExtractor_getSampleSize(mExtractor);
totalSampleSize += lastSampleSize;
}
} while ((lastSampleTimeUs - firstSampleTimeUs) < kSamplingDurationUs &&
AMediaExtractor_advance(mExtractor));
// Reset the extractor to the beginning.
status = AMediaExtractor_seekTo(mExtractor, 0, AMEDIAEXTRACTOR_SEEK_PREVIOUS_SYNC);
if (status != AMEDIA_OK) {
LOG(ERROR) << "Unable to reset extractor: " << status;
return status;
}
int64_t durationUs = 0;
const int64_t sampledDurationUs = lastSampleTimeUs - firstSampleTimeUs;
if (sampledDurationUs < kSamplingDurationUs) {
// Track is shorter than the sampling duration so use the full track duration to get better
// accuracy (i.e. don't skip the last sample).
AMediaFormat* trackFormat = getTrackFormat(trackIndex);
if (!AMediaFormat_getInt64(trackFormat, AMEDIAFORMAT_KEY_DURATION, &durationUs)) {
durationUs = 0;
}
AMediaFormat_delete(trackFormat);
}
if (durationUs == 0) {
// The sampled duration does not account for the last sample's duration so its size should
// not be included either.
totalSampleSize -= lastSampleSize;
durationUs = sampledDurationUs;
}
if (totalSampleSize == 0 || durationUs <= 0) {
LOG(ERROR) << "Unable to estimate track bitrate";
return AMEDIA_ERROR_MALFORMED;
}
*bitrate = roundf((float)totalSampleSize * 8 * 1000000 / durationUs);
return AMEDIA_OK;
}
media_status_t MediaSampleReaderNDK::getSampleInfoForTrack(int trackIndex, MediaSampleInfo* info) {
std::unique_lock<std::mutex> lock(mExtractorMutex);
if (mTrackSignals.find(trackIndex) == mTrackSignals.end()) {
LOG(ERROR) << "Track not selected.";
return AMEDIA_ERROR_INVALID_PARAMETER;
} else if (info == nullptr) {
LOG(ERROR) << "MediaSampleInfo pointer is NULL.";
return AMEDIA_ERROR_INVALID_PARAMETER;
}
media_status_t status = primeExtractorForTrack_l(trackIndex, lock);
if (status == AMEDIA_OK) {
info->presentationTimeUs = AMediaExtractor_getSampleTime(mExtractor);
info->flags = AMediaExtractor_getSampleFlags(mExtractor);
info->size = AMediaExtractor_getSampleSize(mExtractor);
} else if (status == AMEDIA_ERROR_END_OF_STREAM) {
info->presentationTimeUs = 0;
info->flags = SAMPLE_FLAG_END_OF_STREAM;
info->size = 0;
LOG(DEBUG) << " getSampleInfoForTrack #" << trackIndex << ": End Of Stream";
} else {
LOG(ERROR) << " getSampleInfoForTrack #" << trackIndex << ": Error " << status;
}
return status;
}
media_status_t MediaSampleReaderNDK::readSampleDataForTrack(int trackIndex, uint8_t* buffer,
size_t bufferSize) {
std::unique_lock<std::mutex> lock(mExtractorMutex);
if (mTrackSignals.find(trackIndex) == mTrackSignals.end()) {
LOG(ERROR) << "Track not selected.";
return AMEDIA_ERROR_INVALID_PARAMETER;
} else if (buffer == nullptr) {
LOG(ERROR) << "buffer pointer is NULL";
return AMEDIA_ERROR_INVALID_PARAMETER;
}
media_status_t status = primeExtractorForTrack_l(trackIndex, lock);
if (status != AMEDIA_OK) {
return status;
}
ssize_t sampleSize = AMediaExtractor_getSampleSize(mExtractor);
if (bufferSize < sampleSize) {
LOG(ERROR) << "Buffer is too small for sample, " << bufferSize << " vs " << sampleSize;
return AMEDIA_ERROR_INVALID_PARAMETER;
}
ssize_t bytesRead = AMediaExtractor_readSampleData(mExtractor, buffer, bufferSize);
if (bytesRead < sampleSize) {
LOG(ERROR) << "Unable to read full sample, " << bytesRead << " vs " << sampleSize;
return AMEDIA_ERROR_INVALID_PARAMETER;
}
advanceTrack_l(trackIndex);
return AMEDIA_OK;
}
void MediaSampleReaderNDK::advanceTrack(int trackIndex) {
std::scoped_lock lock(mExtractorMutex);
if (mTrackSignals.find(trackIndex) != mTrackSignals.end()) {
advanceTrack_l(trackIndex);
} else {
LOG(ERROR) << "Trying to advance a track that is not selected (#" << trackIndex << ")";
}
}
AMediaFormat* MediaSampleReaderNDK::getFileFormat() {
return AMediaExtractor_getFileFormat(mExtractor);
}
size_t MediaSampleReaderNDK::getTrackCount() const {
return mTrackCount;
}
AMediaFormat* MediaSampleReaderNDK::getTrackFormat(int trackIndex) {
if (trackIndex < 0 || trackIndex >= mTrackCount) {
LOG(ERROR) << "Invalid trackIndex " << trackIndex << " for trackCount " << mTrackCount;
return AMediaFormat_new();
}
return AMediaExtractor_getTrackFormat(mExtractor, trackIndex);
}
} // namespace android