blob: cfeca00fc471ad186dcec9692ea3d3ea2d7106e1 [file] [log] [blame]
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <gtest/gtest.h>
#include "media/QuaternionUtil.h"
#include "TestUtil.h"
using Eigen::Quaternionf;
using Eigen::Vector3f;
namespace android {
namespace media {
namespace {
TEST(QuaternionUtil, RotationVectorToQuaternion) {
// 90 degrees around Z.
Vector3f rot = {0, 0, M_PI_2};
Quaternionf quat = rotationVectorToQuaternion(rot);
ASSERT_EQ(quat * Vector3f(1, 0, 0), Vector3f(0, 1, 0));
ASSERT_EQ(quat * Vector3f(0, 1, 0), Vector3f(-1, 0, 0));
ASSERT_EQ(quat * Vector3f(0, 0, 1), Vector3f(0, 0, 1));
}
TEST(QuaternionUtil, QuaternionToRotationVector) {
Quaternionf quat = Quaternionf::FromTwoVectors(Vector3f(1, 0, 0), Vector3f(0, 1, 0));
Vector3f rot = quaternionToRotationVector(quat);
ASSERT_EQ(rot, Vector3f(0, 0, M_PI_2));
}
TEST(QuaternionUtil, RoundTripFromQuaternion) {
Quaternionf quaternion = Quaternionf::UnitRandom();
EXPECT_EQ(quaternion, rotationVectorToQuaternion(quaternionToRotationVector(quaternion)));
}
TEST(QuaternionUtil, RoundTripFromVector) {
Vector3f vec{0.1, 0.2, 0.3};
EXPECT_EQ(vec, quaternionToRotationVector(rotationVectorToQuaternion(vec)));
}
// Float precision necessitates this precision (1e-4f fails)
constexpr float NEAR = 1e-3f;
TEST(QuaternionUtil, quaternionToAngles_basic) {
float pitch, roll, yaw;
// angles as reported.
// choose 11 angles between -M_PI / 2 to M_PI / 2
for (int step = -5; step <= 5; ++step) {
const float angle = M_PI * step * 0.1f;
quaternionToAngles(rotationVectorToQuaternion({angle, 0.f, 0.f}), &pitch, &roll, &yaw);
EXPECT_NEAR(angle, pitch, NEAR);
EXPECT_NEAR(0.f, roll, NEAR);
EXPECT_NEAR(0.f, yaw, NEAR);
quaternionToAngles(rotationVectorToQuaternion({0.f, angle, 0.f}), &pitch, &roll, &yaw);
EXPECT_NEAR(0.f, pitch, NEAR);
EXPECT_NEAR(angle, roll, NEAR);
EXPECT_NEAR(0.f, yaw, NEAR);
quaternionToAngles(rotationVectorToQuaternion({0.f, 0.f, angle}), &pitch, &roll, &yaw);
EXPECT_NEAR(0.f, pitch, NEAR);
EXPECT_NEAR(0.f, roll, NEAR);
EXPECT_NEAR(angle, yaw, NEAR);
}
// Generates a debug string
const std::string s = quaternionToAngles<true /* DEBUG */>(
rotationVectorToQuaternion({M_PI, 0.f, 0.f}), &pitch, &roll, &yaw);
ASSERT_FALSE(s.empty());
}
TEST(QuaternionUtil, quaternionToAngles_zaxis) {
float pitch, roll, yaw;
for (int rot_step = -10; rot_step <= 10; ++rot_step) {
const float rot_angle = M_PI * rot_step * 0.1f;
// pitch independent of world Z rotation
// We don't test the boundaries of pitch +-M_PI/2 as roll can become
// degenerate and atan(0, 0) may report 0, PI, or -PI.
for (int step = -4; step <= 4; ++step) {
const float angle = M_PI * step * 0.1f;
auto q = rotationVectorToQuaternion({angle, 0.f, 0.f});
auto world_z = rotationVectorToQuaternion({0.f, 0.f, rot_angle});
// Sequential active rotations (on world frame) compose as R_2 * R_1.
quaternionToAngles(world_z * q, &pitch, &roll, &yaw);
EXPECT_NEAR(angle, pitch, NEAR);
EXPECT_NEAR(0.f, roll, NEAR);
}
// roll independent of world Z rotation
for (int step = -5; step <= 5; ++step) {
const float angle = M_PI * step * 0.1f;
auto q = rotationVectorToQuaternion({0.f, angle, 0.f});
auto world_z = rotationVectorToQuaternion({0.f, 0.f, rot_angle});
// Sequential active rotations (on world frame) compose as R_2 * R_1.
quaternionToAngles(world_z * q, &pitch, &roll, &yaw);
EXPECT_NEAR(0.f, pitch, NEAR);
EXPECT_NEAR(angle, roll, NEAR);
// Convert extrinsic (world-based) active rotations to a sequence of
// intrinsic rotations (each rotation based off of previous rotation
// frame).
//
// R_1 * R_intrinsic = R_extrinsic * R_1
// implies
// R_intrinsic = (R_1)^-1 R_extrinsic R_1
//
auto world_z_intrinsic = rotationVectorToQuaternion(
q.inverse() * Vector3f(0.f, 0.f, rot_angle));
// Sequential intrinsic rotations compose as R_1 * R_2.
quaternionToAngles(q * world_z_intrinsic, &pitch, &roll, &yaw);
EXPECT_NEAR(0.f, pitch, NEAR);
EXPECT_NEAR(angle, roll, NEAR);
}
}
}
} // namespace
} // namespace media
} // namespace android