blob: 56b5dae8032195cd3babdb4f08479674122cae9d [file] [log] [blame]
/*
* Copyright (C) 2004-2010 NXP Software
* Copyright (C) 2010 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/**********************************************************************************
INCLUDE FILES
***********************************************************************************/
#include "LVC_Mixer_Private.h"
#include "ScalarArithmetic.h"
#include "LVM_Macros.h"
/**********************************************************************************
FUNCTION LVC_Core_MixSoft_1St_2i_D16C31_WRA
***********************************************************************************/
#ifdef BUILD_FLOAT
static LVM_FLOAT ADD2_SAT_FLOAT(LVM_FLOAT a,
LVM_FLOAT b,
LVM_FLOAT c)
{
LVM_FLOAT temp;
temp = a + b ;
if (temp < -1.0f)
c = -1.0f;
else if (temp > 1.0f)
c = 1.0f;
else
c = temp;
return c;
}
void LVC_Core_MixSoft_1St_2i_D16C31_WRA( LVMixer3_FLOAT_st *ptrInstance1,
LVMixer3_FLOAT_st *ptrInstance2,
const LVM_FLOAT *src,
LVM_FLOAT *dst,
LVM_INT16 n)
{
LVM_INT16 OutLoop;
LVM_INT16 InLoop;
LVM_INT32 ii;
Mix_Private_FLOAT_st *pInstanceL = (Mix_Private_FLOAT_st *)(ptrInstance1->PrivateParams);
Mix_Private_FLOAT_st *pInstanceR = (Mix_Private_FLOAT_st *)(ptrInstance2->PrivateParams);
LVM_FLOAT DeltaL = pInstanceL->Delta;
LVM_FLOAT CurrentL = pInstanceL->Current;
LVM_FLOAT TargetL = pInstanceL->Target;
LVM_FLOAT DeltaR = pInstanceR->Delta;
LVM_FLOAT CurrentR = pInstanceR->Current;
LVM_FLOAT TargetR = pInstanceR->Target;
LVM_FLOAT Temp = 0;
InLoop = (LVM_INT16)(n >> 2); /* Process per 4 samples */
OutLoop = (LVM_INT16)(n - (InLoop << 2));
if (OutLoop)
{
if(CurrentL < TargetL)
{
ADD2_SAT_FLOAT(CurrentL, DeltaL, Temp);
CurrentL = Temp;
if (CurrentL > TargetL)
CurrentL = TargetL;
}
else
{
CurrentL -= DeltaL;
if (CurrentL < TargetL)
CurrentL = TargetL;
}
if(CurrentR < TargetR)
{
ADD2_SAT_FLOAT(CurrentR, DeltaR, Temp);
CurrentR = Temp;
if (CurrentR > TargetR)
CurrentR = TargetR;
}
else
{
CurrentR -= DeltaR;
if (CurrentR < TargetR)
CurrentR = TargetR;
}
for (ii = OutLoop * 2; ii != 0; ii -= 2)
{
*(dst++) = (LVM_FLOAT)(((LVM_FLOAT)*(src++) * (LVM_FLOAT)CurrentL));
*(dst++) = (LVM_FLOAT)(((LVM_FLOAT)*(src++) * (LVM_FLOAT)CurrentR));
}
}
for (ii = InLoop * 2; ii != 0; ii-=2)
{
if(CurrentL < TargetL)
{
ADD2_SAT_FLOAT(CurrentL, DeltaL, Temp);
CurrentL = Temp;
if (CurrentL > TargetL)
CurrentL = TargetL;
}
else
{
CurrentL -= DeltaL;
if (CurrentL < TargetL)
CurrentL = TargetL;
}
if(CurrentR < TargetR)
{
ADD2_SAT_FLOAT(CurrentR, DeltaR, Temp);
CurrentR = Temp;
if (CurrentR > TargetR)
CurrentR = TargetR;
}
else
{
CurrentR -= DeltaR;
if (CurrentR < TargetR)
CurrentR = TargetR;
}
*(dst++) = (LVM_FLOAT)(((LVM_FLOAT)*(src++) * (LVM_FLOAT)CurrentL));
*(dst++) = (LVM_FLOAT)(((LVM_FLOAT)*(src++) * (LVM_FLOAT)CurrentR));
*(dst++) = (LVM_FLOAT)(((LVM_FLOAT)*(src++) * (LVM_FLOAT)CurrentL));
*(dst++) = (LVM_FLOAT)(((LVM_FLOAT)*(src++) * (LVM_FLOAT)CurrentR));
*(dst++) = (LVM_FLOAT)(((LVM_FLOAT)*(src++) * (LVM_FLOAT)CurrentL));
*(dst++) = (LVM_FLOAT)(((LVM_FLOAT)*(src++) * (LVM_FLOAT)CurrentR));
*(dst++) = (LVM_FLOAT)(((LVM_FLOAT)*(src++) * (LVM_FLOAT)CurrentL));
*(dst++) = (LVM_FLOAT)(((LVM_FLOAT)*(src++) * (LVM_FLOAT)CurrentR));
}
pInstanceL->Current = CurrentL;
pInstanceR->Current = CurrentR;
}
#ifdef SUPPORT_MC
void LVC_Core_MixSoft_1St_MC_float_WRA (Mix_Private_FLOAT_st **ptrInstance,
const LVM_FLOAT *src,
LVM_FLOAT *dst,
LVM_INT16 NrFrames,
LVM_INT16 NrChannels)
{
LVM_INT32 ii, ch;
LVM_FLOAT Temp =0.0f;
LVM_FLOAT tempCurrent[NrChannels];
for (ch = 0; ch < NrChannels; ch++)
{
tempCurrent[ch] = ptrInstance[ch]->Current;
}
for (ii = NrFrames; ii > 0; ii--)
{
for (ch = 0; ch < NrChannels; ch++)
{
Mix_Private_FLOAT_st *pInstance = ptrInstance[ch];
const LVM_FLOAT Delta = pInstance->Delta;
LVM_FLOAT Current = tempCurrent[ch];
const LVM_FLOAT Target = pInstance->Target;
if (Current < Target)
{
ADD2_SAT_FLOAT(Current, Delta, Temp);
Current = Temp;
if (Current > Target)
Current = Target;
}
else
{
Current -= Delta;
if (Current < Target)
Current = Target;
}
*dst++ = *src++ * Current;
tempCurrent[ch] = Current;
}
}
for (ch = 0; ch < NrChannels; ch++)
{
ptrInstance[ch]->Current = tempCurrent[ch];
}
}
#endif
#else
void LVC_Core_MixSoft_1St_2i_D16C31_WRA( LVMixer3_st *ptrInstance1,
LVMixer3_st *ptrInstance2,
const LVM_INT16 *src,
LVM_INT16 *dst,
LVM_INT16 n)
{
LVM_INT16 OutLoop;
LVM_INT16 InLoop;
LVM_INT16 CurrentShortL;
LVM_INT16 CurrentShortR;
LVM_INT32 ii;
Mix_Private_st *pInstanceL=(Mix_Private_st *)(ptrInstance1->PrivateParams);
Mix_Private_st *pInstanceR=(Mix_Private_st *)(ptrInstance2->PrivateParams);
LVM_INT32 DeltaL=pInstanceL->Delta;
LVM_INT32 CurrentL=pInstanceL->Current;
LVM_INT32 TargetL=pInstanceL->Target;
LVM_INT32 DeltaR=pInstanceR->Delta;
LVM_INT32 CurrentR=pInstanceR->Current;
LVM_INT32 TargetR=pInstanceR->Target;
LVM_INT32 Temp;
InLoop = (LVM_INT16)(n >> 2); /* Process per 4 samples */
OutLoop = (LVM_INT16)(n - (InLoop << 2));
if (OutLoop)
{
if(CurrentL<TargetL)
{
ADD2_SAT_32x32(CurrentL,DeltaL,Temp); /* Q31 + Q31 into Q31*/
CurrentL=Temp;
if (CurrentL > TargetL)
CurrentL = TargetL;
}
else
{
CurrentL -= DeltaL; /* Q31 + Q31 into Q31*/
if (CurrentL < TargetL)
CurrentL = TargetL;
}
if(CurrentR<TargetR)
{
ADD2_SAT_32x32(CurrentR,DeltaR,Temp); /* Q31 + Q31 into Q31*/
CurrentR=Temp;
if (CurrentR > TargetR)
CurrentR = TargetR;
}
else
{
CurrentR -= DeltaR; /* Q31 + Q31 into Q31*/
if (CurrentR < TargetR)
CurrentR = TargetR;
}
CurrentShortL = (LVM_INT16)(CurrentL>>16); /* From Q31 to Q15*/
CurrentShortR = (LVM_INT16)(CurrentR>>16); /* From Q31 to Q15*/
for (ii = OutLoop*2; ii != 0; ii-=2)
{
*(dst++) = (LVM_INT16)(((LVM_INT32)*(src++) * (LVM_INT32)CurrentShortL)>>15); /* Q15*Q15>>15 into Q15 */
*(dst++) = (LVM_INT16)(((LVM_INT32)*(src++) * (LVM_INT32)CurrentShortR)>>15); /* Q15*Q15>>15 into Q15 */
}
}
for (ii = InLoop*2; ii != 0; ii-=2)
{
if(CurrentL<TargetL)
{
ADD2_SAT_32x32(CurrentL,DeltaL,Temp); /* Q31 + Q31 into Q31*/
CurrentL=Temp;
if (CurrentL > TargetL)
CurrentL = TargetL;
}
else
{
CurrentL -= DeltaL; /* Q31 + Q31 into Q31*/
if (CurrentL < TargetL)
CurrentL = TargetL;
}
if(CurrentR<TargetR)
{
ADD2_SAT_32x32(CurrentR,DeltaR,Temp); /* Q31 + Q31 into Q31*/
CurrentR=Temp;
if (CurrentR > TargetR)
CurrentR = TargetR;
}
else
{
CurrentR -= DeltaR; /* Q31 + Q31 into Q31*/
if (CurrentR < TargetR)
CurrentR = TargetR;
}
CurrentShortL = (LVM_INT16)(CurrentL>>16); /* From Q31 to Q15*/
CurrentShortR = (LVM_INT16)(CurrentR>>16); /* From Q31 to Q15*/
*(dst++) = (LVM_INT16)(((LVM_INT32)*(src++) * (LVM_INT32)CurrentShortL)>>15); /* Q15*Q15>>15 into Q15 */
*(dst++) = (LVM_INT16)(((LVM_INT32)*(src++) * (LVM_INT32)CurrentShortR)>>15); /* Q15*Q15>>15 into Q15 */
*(dst++) = (LVM_INT16)(((LVM_INT32)*(src++) * (LVM_INT32)CurrentShortL)>>15);
*(dst++) = (LVM_INT16)(((LVM_INT32)*(src++) * (LVM_INT32)CurrentShortR)>>15);
*(dst++) = (LVM_INT16)(((LVM_INT32)*(src++) * (LVM_INT32)CurrentShortL)>>15);
*(dst++) = (LVM_INT16)(((LVM_INT32)*(src++) * (LVM_INT32)CurrentShortR)>>15);
*(dst++) = (LVM_INT16)(((LVM_INT32)*(src++) * (LVM_INT32)CurrentShortL)>>15);
*(dst++) = (LVM_INT16)(((LVM_INT32)*(src++) * (LVM_INT32)CurrentShortR)>>15);
}
pInstanceL->Current=CurrentL;
pInstanceR->Current=CurrentR;
}
#endif
/**********************************************************************************/