blob: 1de33bb8fa6acb48fcc76cf2b6a211bc14cb7ffe [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "AAudio"
//#define LOG_NDEBUG 0
#include <utils/Log.h>
#include <stdint.h>
#include "utility/AudioClock.h"
#include "IsochronousClockModel.h"
#define MIN_LATENESS_NANOS (10 * AAUDIO_NANOS_PER_MICROSECOND)
using namespace android;
using namespace aaudio;
IsochronousClockModel::IsochronousClockModel()
: mMarkerFramePosition(0)
, mMarkerNanoTime(0)
, mSampleRate(48000)
, mFramesPerBurst(64)
, mMaxLatenessInNanos(0)
, mState(STATE_STOPPED)
{
}
IsochronousClockModel::~IsochronousClockModel() {
}
void IsochronousClockModel::start(int64_t nanoTime) {
ALOGD("IsochronousClockModel::start(nanos = %lld)\n", (long long) nanoTime);
mMarkerNanoTime = nanoTime;
mState = STATE_STARTING;
}
void IsochronousClockModel::stop(int64_t nanoTime) {
ALOGD("IsochronousClockModel::stop(nanos = %lld)\n", (long long) nanoTime);
mMarkerNanoTime = nanoTime;
mMarkerFramePosition = convertTimeToPosition(nanoTime); // TODO should we do this?
mState = STATE_STOPPED;
}
void IsochronousClockModel::processTimestamp(int64_t framePosition, int64_t nanoTime) {
int64_t framesDelta = framePosition - mMarkerFramePosition;
int64_t nanosDelta = nanoTime - mMarkerNanoTime;
if (nanosDelta < 1000) {
return;
}
// ALOGD("processTimestamp() - mMarkerFramePosition = %lld at mMarkerNanoTime %llu",
// (long long)mMarkerFramePosition,
// (long long)mMarkerNanoTime);
// ALOGD("processTimestamp() - framePosition = %lld at nanoTime %llu",
// (long long)framePosition,
// (long long)nanoTime);
int64_t expectedNanosDelta = convertDeltaPositionToTime(framesDelta);
// ALOGD("processTimestamp() - expectedNanosDelta = %lld, nanosDelta = %llu",
// (long long)expectedNanosDelta,
// (long long)nanosDelta);
// ALOGD("processTimestamp() - mSampleRate = %d", mSampleRate);
// ALOGD("processTimestamp() - mState = %d", mState);
switch (mState) {
case STATE_STOPPED:
break;
case STATE_STARTING:
mMarkerFramePosition = framePosition;
mMarkerNanoTime = nanoTime;
mState = STATE_SYNCING;
break;
case STATE_SYNCING:
// This will handle a burst of rapid transfer at the beginning.
if (nanosDelta < expectedNanosDelta) {
mMarkerFramePosition = framePosition;
mMarkerNanoTime = nanoTime;
} else {
// ALOGD("processTimestamp() - advance to STATE_RUNNING");
mState = STATE_RUNNING;
}
break;
case STATE_RUNNING:
if (nanosDelta < expectedNanosDelta) {
// Earlier than expected timestamp.
// This data is probably more accurate so use it.
// or we may be drifting due to a slow HW clock.
mMarkerFramePosition = framePosition;
mMarkerNanoTime = nanoTime;
// ALOGD("processTimestamp() - STATE_RUNNING - %d < %d micros - EARLY",
// (int) (nanosDelta / 1000), (int)(expectedNanosDelta / 1000));
} else if (nanosDelta > (expectedNanosDelta + mMaxLatenessInNanos)) {
// Later than expected timestamp.
mMarkerFramePosition = framePosition;
mMarkerNanoTime = nanoTime - mMaxLatenessInNanos;
// ALOGD("processTimestamp() - STATE_RUNNING - %d > %d + %d micros - LATE",
// (int) (nanosDelta / 1000), (int)(expectedNanosDelta / 1000),
// (int) (mMaxLatenessInNanos / 1000));
}
break;
default:
break;
}
}
void IsochronousClockModel::setSampleRate(int32_t sampleRate) {
mSampleRate = sampleRate;
update();
}
void IsochronousClockModel::setFramesPerBurst(int32_t framesPerBurst) {
mFramesPerBurst = framesPerBurst;
update();
}
void IsochronousClockModel::update() {
int64_t nanosLate = convertDeltaPositionToTime(mFramesPerBurst); // uses mSampleRate
mMaxLatenessInNanos = (nanosLate > MIN_LATENESS_NANOS) ? nanosLate : MIN_LATENESS_NANOS;
}
int64_t IsochronousClockModel::convertDeltaPositionToTime(
int64_t framesDelta) const {
return (AAUDIO_NANOS_PER_SECOND * framesDelta) / mSampleRate;
}
int64_t IsochronousClockModel::convertDeltaTimeToPosition(int64_t nanosDelta) const {
return (mSampleRate * nanosDelta) / AAUDIO_NANOS_PER_SECOND;
}
int64_t IsochronousClockModel::convertPositionToTime(int64_t framePosition) const {
if (mState == STATE_STOPPED) {
return mMarkerNanoTime;
}
int64_t nextBurstIndex = (framePosition + mFramesPerBurst - 1) / mFramesPerBurst;
int64_t nextBurstPosition = mFramesPerBurst * nextBurstIndex;
int64_t framesDelta = nextBurstPosition - mMarkerFramePosition;
int64_t nanosDelta = convertDeltaPositionToTime(framesDelta);
int64_t time = (int64_t) (mMarkerNanoTime + nanosDelta);
// ALOGD("IsochronousClockModel::convertPositionToTime: pos = %llu --> time = %llu",
// (unsigned long long)framePosition,
// (unsigned long long)time);
return time;
}
int64_t IsochronousClockModel::convertTimeToPosition(int64_t nanoTime) const {
if (mState == STATE_STOPPED) {
return mMarkerFramePosition;
}
int64_t nanosDelta = nanoTime - mMarkerNanoTime;
int64_t framesDelta = convertDeltaTimeToPosition(nanosDelta);
int64_t nextBurstPosition = mMarkerFramePosition + framesDelta;
int64_t nextBurstIndex = nextBurstPosition / mFramesPerBurst;
int64_t position = nextBurstIndex * mFramesPerBurst;
// ALOGD("IsochronousClockModel::convertTimeToPosition: time = %llu --> pos = %llu",
// (unsigned long long)nanoTime,
// (unsigned long long)position);
// ALOGD("IsochronousClockModel::convertTimeToPosition: framesDelta = %llu, mFramesPerBurst = %d",
// (long long) framesDelta, mFramesPerBurst);
return position;
}