| /* ----------------------------------------------------------------------------- |
| Software License for The Fraunhofer FDK AAC Codec Library for Android |
| |
| © Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten |
| Forschung e.V. All rights reserved. |
| |
| 1. INTRODUCTION |
| The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software |
| that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding |
| scheme for digital audio. This FDK AAC Codec software is intended to be used on |
| a wide variety of Android devices. |
| |
| AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient |
| general perceptual audio codecs. AAC-ELD is considered the best-performing |
| full-bandwidth communications codec by independent studies and is widely |
| deployed. AAC has been standardized by ISO and IEC as part of the MPEG |
| specifications. |
| |
| Patent licenses for necessary patent claims for the FDK AAC Codec (including |
| those of Fraunhofer) may be obtained through Via Licensing |
| (www.vialicensing.com) or through the respective patent owners individually for |
| the purpose of encoding or decoding bit streams in products that are compliant |
| with the ISO/IEC MPEG audio standards. Please note that most manufacturers of |
| Android devices already license these patent claims through Via Licensing or |
| directly from the patent owners, and therefore FDK AAC Codec software may |
| already be covered under those patent licenses when it is used for those |
| licensed purposes only. |
| |
| Commercially-licensed AAC software libraries, including floating-point versions |
| with enhanced sound quality, are also available from Fraunhofer. Users are |
| encouraged to check the Fraunhofer website for additional applications |
| information and documentation. |
| |
| 2. COPYRIGHT LICENSE |
| |
| Redistribution and use in source and binary forms, with or without modification, |
| are permitted without payment of copyright license fees provided that you |
| satisfy the following conditions: |
| |
| You must retain the complete text of this software license in redistributions of |
| the FDK AAC Codec or your modifications thereto in source code form. |
| |
| You must retain the complete text of this software license in the documentation |
| and/or other materials provided with redistributions of the FDK AAC Codec or |
| your modifications thereto in binary form. You must make available free of |
| charge copies of the complete source code of the FDK AAC Codec and your |
| modifications thereto to recipients of copies in binary form. |
| |
| The name of Fraunhofer may not be used to endorse or promote products derived |
| from this library without prior written permission. |
| |
| You may not charge copyright license fees for anyone to use, copy or distribute |
| the FDK AAC Codec software or your modifications thereto. |
| |
| Your modified versions of the FDK AAC Codec must carry prominent notices stating |
| that you changed the software and the date of any change. For modified versions |
| of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" |
| must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK |
| AAC Codec Library for Android." |
| |
| 3. NO PATENT LICENSE |
| |
| NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without |
| limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. |
| Fraunhofer provides no warranty of patent non-infringement with respect to this |
| software. |
| |
| You may use this FDK AAC Codec software or modifications thereto only for |
| purposes that are authorized by appropriate patent licenses. |
| |
| 4. DISCLAIMER |
| |
| This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright |
| holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, |
| including but not limited to the implied warranties of merchantability and |
| fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR |
| CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, |
| or consequential damages, including but not limited to procurement of substitute |
| goods or services; loss of use, data, or profits, or business interruption, |
| however caused and on any theory of liability, whether in contract, strict |
| liability, or tort (including negligence), arising in any way out of the use of |
| this software, even if advised of the possibility of such damage. |
| |
| 5. CONTACT INFORMATION |
| |
| Fraunhofer Institute for Integrated Circuits IIS |
| Attention: Audio and Multimedia Departments - FDK AAC LL |
| Am Wolfsmantel 33 |
| 91058 Erlangen, Germany |
| |
| www.iis.fraunhofer.de/amm |
| amm-info@iis.fraunhofer.de |
| ----------------------------------------------------------------------------- */ |
| |
| /**************************** AAC decoder library ****************************** |
| |
| Author(s): |
| |
| Description: ACELP |
| |
| *******************************************************************************/ |
| |
| #include "usacdec_ace_d4t64.h" |
| |
| #define L_SUBFR 64 /* Subframe size */ |
| |
| /* |
| * D_ACELP_add_pulse |
| * |
| * Parameters: |
| * pos I: position of pulse |
| * nb_pulse I: number of pulses |
| * track I: track |
| * code O: fixed codebook |
| * |
| * Function: |
| * Add pulses to fixed codebook |
| * |
| * Returns: |
| * void |
| */ |
| static void D_ACELP_add_pulse(SHORT pos[], SHORT nb_pulse, SHORT track, |
| FIXP_COD code[]) { |
| SHORT i, k; |
| for (k = 0; k < nb_pulse; k++) { |
| /* i = ((pos[k] & (16-1))*NB_TRACK) + track; */ |
| i = ((pos[k] & (16 - 1)) << 2) + track; |
| if ((pos[k] & 16) == 0) { |
| code[i] = code[i] + (FIXP_COD)(512 << (COD_BITS - FRACT_BITS)); |
| } else { |
| code[i] = code[i] - (FIXP_COD)(512 << (COD_BITS - FRACT_BITS)); |
| } |
| } |
| return; |
| } |
| /* |
| * D_ACELP_decode_1p_N1 |
| * |
| * Parameters: |
| * index I: pulse index |
| * N I: number of bits for position |
| * offset I: offset |
| * pos O: position of the pulse |
| * |
| * Function: |
| * Decode 1 pulse with N+1 bits |
| * |
| * Returns: |
| * void |
| */ |
| static void D_ACELP_decode_1p_N1(LONG index, SHORT N, SHORT offset, |
| SHORT pos[]) { |
| SHORT pos1; |
| LONG i, mask; |
| |
| mask = ((1 << N) - 1); |
| /* |
| * Decode 1 pulse with N+1 bits |
| */ |
| pos1 = (SHORT)((index & mask) + offset); |
| i = ((index >> N) & 1); |
| if (i == 1) { |
| pos1 += 16; |
| } |
| pos[0] = pos1; |
| return; |
| } |
| /* |
| * D_ACELP_decode_2p_2N1 |
| * |
| * Parameters: |
| * index I: pulse index |
| * N I: number of bits for position |
| * offset I: offset |
| * pos O: position of the pulse |
| * |
| * Function: |
| * Decode 2 pulses with 2*N+1 bits |
| * |
| * Returns: |
| * void |
| */ |
| static void D_ACELP_decode_2p_2N1(LONG index, SHORT N, SHORT offset, |
| SHORT pos[]) { |
| SHORT pos1, pos2; |
| LONG mask, i; |
| mask = ((1 << N) - 1); |
| /* |
| * Decode 2 pulses with 2*N+1 bits |
| */ |
| pos1 = (SHORT)(((index >> N) & mask) + offset); |
| i = (index >> (2 * N)) & 1; |
| pos2 = (SHORT)((index & mask) + offset); |
| if ((pos2 - pos1) < 0) { |
| if (i == 1) { |
| pos1 += 16; |
| } else { |
| pos2 += 16; |
| } |
| } else { |
| if (i == 1) { |
| pos1 += 16; |
| pos2 += 16; |
| } |
| } |
| pos[0] = pos1; |
| pos[1] = pos2; |
| return; |
| } |
| /* |
| * D_ACELP_decode_3p_3N1 |
| * |
| * Parameters: |
| * index I: pulse index |
| * N I: number of bits for position |
| * offset I: offset |
| * pos O: position of the pulse |
| * |
| * Function: |
| * Decode 3 pulses with 3*N+1 bits |
| * |
| * Returns: |
| * void |
| */ |
| static void D_ACELP_decode_3p_3N1(LONG index, SHORT N, SHORT offset, |
| SHORT pos[]) { |
| SHORT j; |
| LONG mask, idx; |
| |
| /* |
| * Decode 3 pulses with 3*N+1 bits |
| */ |
| mask = ((1 << ((2 * N) - 1)) - 1); |
| idx = index & mask; |
| j = offset; |
| if (((index >> ((2 * N) - 1)) & 1) == 1) { |
| j += (1 << (N - 1)); |
| } |
| D_ACELP_decode_2p_2N1(idx, N - 1, j, pos); |
| mask = ((1 << (N + 1)) - 1); |
| idx = (index >> (2 * N)) & mask; |
| D_ACELP_decode_1p_N1(idx, N, offset, pos + 2); |
| return; |
| } |
| /* |
| * D_ACELP_decode_4p_4N1 |
| * |
| * Parameters: |
| * index I: pulse index |
| * N I: number of bits for position |
| * offset I: offset |
| * pos O: position of the pulse |
| * |
| * Function: |
| * Decode 4 pulses with 4*N+1 bits |
| * |
| * Returns: |
| * void |
| */ |
| static void D_ACELP_decode_4p_4N1(LONG index, SHORT N, SHORT offset, |
| SHORT pos[]) { |
| SHORT j; |
| LONG mask, idx; |
| /* |
| * Decode 4 pulses with 4*N+1 bits |
| */ |
| mask = ((1 << ((2 * N) - 1)) - 1); |
| idx = index & mask; |
| j = offset; |
| if (((index >> ((2 * N) - 1)) & 1) == 1) { |
| j += (1 << (N - 1)); |
| } |
| D_ACELP_decode_2p_2N1(idx, N - 1, j, pos); |
| mask = ((1 << ((2 * N) + 1)) - 1); |
| idx = (index >> (2 * N)) & mask; |
| D_ACELP_decode_2p_2N1(idx, N, offset, pos + 2); |
| return; |
| } |
| /* |
| * D_ACELP_decode_4p_4N |
| * |
| * Parameters: |
| * index I: pulse index |
| * N I: number of bits for position |
| * offset I: offset |
| * pos O: position of the pulse |
| * |
| * Function: |
| * Decode 4 pulses with 4*N bits |
| * |
| * Returns: |
| * void |
| */ |
| static void D_ACELP_decode_4p_4N(LONG index, SHORT N, SHORT offset, |
| SHORT pos[]) { |
| SHORT j, n_1; |
| /* |
| * Decode 4 pulses with 4*N bits |
| */ |
| n_1 = N - 1; |
| j = offset + (1 << n_1); |
| switch ((index >> ((4 * N) - 2)) & 3) { |
| case 0: |
| if (((index >> ((4 * n_1) + 1)) & 1) == 0) { |
| D_ACELP_decode_4p_4N1(index, n_1, offset, pos); |
| } else { |
| D_ACELP_decode_4p_4N1(index, n_1, j, pos); |
| } |
| break; |
| case 1: |
| D_ACELP_decode_1p_N1((index >> ((3 * n_1) + 1)), n_1, offset, pos); |
| D_ACELP_decode_3p_3N1(index, n_1, j, pos + 1); |
| break; |
| case 2: |
| D_ACELP_decode_2p_2N1((index >> ((2 * n_1) + 1)), n_1, offset, pos); |
| D_ACELP_decode_2p_2N1(index, n_1, j, pos + 2); |
| break; |
| case 3: |
| D_ACELP_decode_3p_3N1((index >> (n_1 + 1)), n_1, offset, pos); |
| D_ACELP_decode_1p_N1(index, n_1, j, pos + 3); |
| break; |
| } |
| return; |
| } |
| |
| /* |
| * D_ACELP_decode_4t |
| * |
| * Parameters: |
| * index I: index |
| * mode I: speech mode |
| * code I: (Q9) algebraic (fixed) codebook excitation |
| * |
| * Function: |
| * 20, 36, 44, 52, 64, 72, 88 bits algebraic codebook. |
| * 4 tracks x 16 positions per track = 64 samples. |
| * |
| * 20 bits 5+5+5+5 --> 4 pulses in a frame of 64 samples. |
| * 36 bits 9+9+9+9 --> 8 pulses in a frame of 64 samples. |
| * 44 bits 13+9+13+9 --> 10 pulses in a frame of 64 samples. |
| * 52 bits 13+13+13+13 --> 12 pulses in a frame of 64 samples. |
| * 64 bits 2+2+2+2+14+14+14+14 --> 16 pulses in a frame of 64 samples. |
| * 72 bits 10+2+10+2+10+14+10+14 --> 18 pulses in a frame of 64 samples. |
| * 88 bits 11+11+11+11+11+11+11+11 --> 24 pulses in a frame of 64 samples. |
| * |
| * All pulses can have two (2) possible amplitudes: +1 or -1. |
| * Each pulse can sixteen (16) possible positions. |
| * |
| * codevector length 64 |
| * number of track 4 |
| * number of position 16 |
| * |
| * Returns: |
| * void |
| */ |
| void D_ACELP_decode_4t64(SHORT index[], int nbits, FIXP_COD code[]) { |
| LONG L_index; |
| SHORT k, pos[6]; |
| |
| FDKmemclear(code, L_SUBFR * sizeof(FIXP_COD)); |
| |
| /* decode the positions and signs of pulses and build the codeword */ |
| switch (nbits) { |
| case 12: |
| for (k = 0; k < 4; k += 2) { |
| L_index = index[2 * (k / 2) + 1]; |
| D_ACELP_decode_1p_N1(L_index, 4, 0, pos); |
| D_ACELP_add_pulse(pos, 1, 2 * (index[2 * (k / 2)]) + k / 2, code); |
| } |
| break; |
| case 16: { |
| int i = 0; |
| int offset = index[i++]; |
| offset = (offset == 0) ? 1 : 3; |
| for (k = 0; k < 4; k++) { |
| if (k != offset) { |
| L_index = index[i++]; |
| D_ACELP_decode_1p_N1(L_index, 4, 0, pos); |
| D_ACELP_add_pulse(pos, 1, k, code); |
| } |
| } |
| } break; |
| case 20: |
| for (k = 0; k < 4; k++) { |
| L_index = (LONG)index[k]; |
| D_ACELP_decode_1p_N1(L_index, 4, 0, pos); |
| D_ACELP_add_pulse(pos, 1, k, code); |
| } |
| break; |
| case 28: |
| for (k = 0; k < 4 - 2; k++) { |
| L_index = (LONG)index[k]; |
| D_ACELP_decode_2p_2N1(L_index, 4, 0, pos); |
| D_ACELP_add_pulse(pos, 2, k, code); |
| } |
| for (k = 2; k < 4; k++) { |
| L_index = (LONG)index[k]; |
| D_ACELP_decode_1p_N1(L_index, 4, 0, pos); |
| D_ACELP_add_pulse(pos, 1, k, code); |
| } |
| break; |
| case 36: |
| for (k = 0; k < 4; k++) { |
| L_index = (LONG)index[k]; |
| D_ACELP_decode_2p_2N1(L_index, 4, 0, pos); |
| D_ACELP_add_pulse(pos, 2, k, code); |
| } |
| break; |
| case 44: |
| for (k = 0; k < 4 - 2; k++) { |
| L_index = (LONG)index[k]; |
| D_ACELP_decode_3p_3N1(L_index, 4, 0, pos); |
| D_ACELP_add_pulse(pos, 3, k, code); |
| } |
| for (k = 2; k < 4; k++) { |
| L_index = (LONG)index[k]; |
| D_ACELP_decode_2p_2N1(L_index, 4, 0, pos); |
| D_ACELP_add_pulse(pos, 2, k, code); |
| } |
| break; |
| case 52: |
| for (k = 0; k < 4; k++) { |
| L_index = (LONG)index[k]; |
| D_ACELP_decode_3p_3N1(L_index, 4, 0, pos); |
| D_ACELP_add_pulse(pos, 3, k, code); |
| } |
| break; |
| case 64: |
| for (k = 0; k < 4; k++) { |
| L_index = (((LONG)index[k] << 14) + (LONG)index[k + 4]); |
| D_ACELP_decode_4p_4N(L_index, 4, 0, pos); |
| D_ACELP_add_pulse(pos, 4, k, code); |
| } |
| break; |
| default: |
| FDK_ASSERT(0); |
| } |
| return; |
| } |