| /* ----------------------------------------------------------------------------- |
| Software License for The Fraunhofer FDK AAC Codec Library for Android |
| |
| © Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten |
| Forschung e.V. All rights reserved. |
| |
| 1. INTRODUCTION |
| The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software |
| that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding |
| scheme for digital audio. This FDK AAC Codec software is intended to be used on |
| a wide variety of Android devices. |
| |
| AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient |
| general perceptual audio codecs. AAC-ELD is considered the best-performing |
| full-bandwidth communications codec by independent studies and is widely |
| deployed. AAC has been standardized by ISO and IEC as part of the MPEG |
| specifications. |
| |
| Patent licenses for necessary patent claims for the FDK AAC Codec (including |
| those of Fraunhofer) may be obtained through Via Licensing |
| (www.vialicensing.com) or through the respective patent owners individually for |
| the purpose of encoding or decoding bit streams in products that are compliant |
| with the ISO/IEC MPEG audio standards. Please note that most manufacturers of |
| Android devices already license these patent claims through Via Licensing or |
| directly from the patent owners, and therefore FDK AAC Codec software may |
| already be covered under those patent licenses when it is used for those |
| licensed purposes only. |
| |
| Commercially-licensed AAC software libraries, including floating-point versions |
| with enhanced sound quality, are also available from Fraunhofer. Users are |
| encouraged to check the Fraunhofer website for additional applications |
| information and documentation. |
| |
| 2. COPYRIGHT LICENSE |
| |
| Redistribution and use in source and binary forms, with or without modification, |
| are permitted without payment of copyright license fees provided that you |
| satisfy the following conditions: |
| |
| You must retain the complete text of this software license in redistributions of |
| the FDK AAC Codec or your modifications thereto in source code form. |
| |
| You must retain the complete text of this software license in the documentation |
| and/or other materials provided with redistributions of the FDK AAC Codec or |
| your modifications thereto in binary form. You must make available free of |
| charge copies of the complete source code of the FDK AAC Codec and your |
| modifications thereto to recipients of copies in binary form. |
| |
| The name of Fraunhofer may not be used to endorse or promote products derived |
| from this library without prior written permission. |
| |
| You may not charge copyright license fees for anyone to use, copy or distribute |
| the FDK AAC Codec software or your modifications thereto. |
| |
| Your modified versions of the FDK AAC Codec must carry prominent notices stating |
| that you changed the software and the date of any change. For modified versions |
| of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" |
| must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK |
| AAC Codec Library for Android." |
| |
| 3. NO PATENT LICENSE |
| |
| NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without |
| limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. |
| Fraunhofer provides no warranty of patent non-infringement with respect to this |
| software. |
| |
| You may use this FDK AAC Codec software or modifications thereto only for |
| purposes that are authorized by appropriate patent licenses. |
| |
| 4. DISCLAIMER |
| |
| This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright |
| holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, |
| including but not limited to the implied warranties of merchantability and |
| fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR |
| CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, |
| or consequential damages, including but not limited to procurement of substitute |
| goods or services; loss of use, data, or profits, or business interruption, |
| however caused and on any theory of liability, whether in contract, strict |
| liability, or tort (including negligence), arising in any way out of the use of |
| this software, even if advised of the possibility of such damage. |
| |
| 5. CONTACT INFORMATION |
| |
| Fraunhofer Institute for Integrated Circuits IIS |
| Attention: Audio and Multimedia Departments - FDK AAC LL |
| Am Wolfsmantel 33 |
| 91058 Erlangen, Germany |
| |
| www.iis.fraunhofer.de/amm |
| amm-info@iis.fraunhofer.de |
| ----------------------------------------------------------------------------- */ |
| |
| /******************* Library for basic calculation routines ******************** |
| |
| Author(s): M. Gayer |
| |
| Description: Fixed point specific mathematical functions |
| |
| *******************************************************************************/ |
| |
| #include "fixpoint_math.h" |
| |
| /* |
| * Hardware specific implementations |
| */ |
| |
| /* |
| * Fallback implementations |
| */ |
| |
| /***************************************************************************** |
| functionname: LdDataVector |
| *****************************************************************************/ |
| LNK_SECTION_CODE_L1 |
| void LdDataVector(FIXP_DBL *srcVector, FIXP_DBL *destVector, INT n) { |
| INT i; |
| for (i = 0; i < n; i++) { |
| destVector[i] = fLog2(srcVector[i], 0); |
| } |
| } |
| |
| #define MAX_POW2_PRECISION 8 |
| #ifndef SINETABLE_16BIT |
| #define POW2_PRECISION MAX_POW2_PRECISION |
| #else |
| #define POW2_PRECISION 5 |
| #endif |
| |
| /* |
| Taylor series coefficients of the function x^2. The first coefficient is |
| ommited (equal to 1.0). |
| |
| pow2Coeff[i-1] = (1/i!) d^i(2^x)/dx^i, i=1..MAX_POW2_PRECISION |
| To evaluate the taylor series around x = 0, the coefficients are: 1/!i * |
| ln(2)^i |
| */ |
| #ifndef POW2COEFF_16BIT |
| RAM_ALIGN |
| LNK_SECTION_CONSTDATA_L1 |
| static const FIXP_DBL pow2Coeff[MAX_POW2_PRECISION] = { |
| FL2FXCONST_DBL(0.693147180559945309417232121458177), /* ln(2)^1 /1! */ |
| FL2FXCONST_DBL(0.240226506959100712333551263163332), /* ln(2)^2 /2! */ |
| FL2FXCONST_DBL(0.0555041086648215799531422637686218), /* ln(2)^3 /3! */ |
| FL2FXCONST_DBL(0.00961812910762847716197907157365887), /* ln(2)^4 /4! */ |
| FL2FXCONST_DBL(0.00133335581464284434234122219879962), /* ln(2)^5 /5! */ |
| FL2FXCONST_DBL(1.54035303933816099544370973327423e-4), /* ln(2)^6 /6! */ |
| FL2FXCONST_DBL(1.52527338040598402800254390120096e-5), /* ln(2)^7 /7! */ |
| FL2FXCONST_DBL(1.32154867901443094884037582282884e-6) /* ln(2)^8 /8! */ |
| }; |
| #else |
| RAM_ALIGN |
| LNK_SECTION_CONSTDATA_L1 |
| static const FIXP_SGL pow2Coeff[MAX_POW2_PRECISION] = { |
| FL2FXCONST_SGL(0.693147180559945309417232121458177), /* ln(2)^1 /1! */ |
| FL2FXCONST_SGL(0.240226506959100712333551263163332), /* ln(2)^2 /2! */ |
| FL2FXCONST_SGL(0.0555041086648215799531422637686218), /* ln(2)^3 /3! */ |
| FL2FXCONST_SGL(0.00961812910762847716197907157365887), /* ln(2)^4 /4! */ |
| FL2FXCONST_SGL(0.00133335581464284434234122219879962), /* ln(2)^5 /5! */ |
| FL2FXCONST_SGL(1.54035303933816099544370973327423e-4), /* ln(2)^6 /6! */ |
| FL2FXCONST_SGL(1.52527338040598402800254390120096e-5), /* ln(2)^7 /7! */ |
| FL2FXCONST_SGL(1.32154867901443094884037582282884e-6) /* ln(2)^8 /8! */ |
| }; |
| #endif |
| |
| /***************************************************************************** |
| |
| functionname: CalcInvLdData |
| description: Delivers the inverse of function CalcLdData(). |
| Delivers 2^(op*LD_DATA_SCALING) |
| input: Input op is assumed to be fractional -1.0 < op < 1.0 |
| output: For op == 0, the result is MAXVAL_DBL (almost 1.0). |
| For negative input values the output should be treated as a |
| positive fractional value. For positive input values the output should be |
| treated as a positive integer value. This function does not output negative |
| values. |
| |
| *****************************************************************************/ |
| /* Date: 06-JULY-2012 Arthur Tritthart, IIS Fraunhofer Erlangen */ |
| /* Version with 3 table lookup and 1 linear interpolations */ |
| /* Algorithm: compute power of 2, argument x is in Q7.25 format */ |
| /* result = 2^(x/64) */ |
| /* We split exponent (x/64) into 5 components: */ |
| /* integer part: represented by b31..b25 (exp) */ |
| /* fractional part 1: represented by b24..b20 (lookup1) */ |
| /* fractional part 2: represented by b19..b15 (lookup2) */ |
| /* fractional part 3: represented by b14..b10 (lookup3) */ |
| /* fractional part 4: represented by b09..b00 (frac) */ |
| /* => result = (lookup1*lookup2*(lookup3+C1*frac)<<3)>>exp */ |
| /* Due to the fact, that all lookup values contain a factor 0.5 */ |
| /* the result has to be shifted by 3 to the right also. */ |
| /* Table exp2_tab_long contains the log2 for 0 to 1.0 in steps */ |
| /* of 1/32, table exp2w_tab_long the log2 for 0 to 1/32 in steps*/ |
| /* of 1/1024, table exp2x_tab_long the log2 for 0 to 1/1024 in */ |
| /* steps of 1/32768. Since the 2-logarithm of very very small */ |
| /* negative value is rather linear, we can use interpolation. */ |
| /* Limitations: */ |
| /* For x <= 0, the result is fractional positive */ |
| /* For x > 0, the result is integer in range 1...7FFF.FFFF */ |
| /* For x < -31/64, we have to clear the result */ |
| /* For x = 0, the result is ~1.0 (0x7FFF.FFFF) */ |
| /* For x >= 31/64, the result is 0x7FFF.FFFF */ |
| |
| /* This table is used for lookup 2^x with */ |
| /* x in range [0...1.0[ in steps of 1/32 */ |
| LNK_SECTION_DATA_L1 |
| const UINT exp2_tab_long[32] = { |
| 0x40000000, 0x4166C34C, 0x42D561B4, 0x444C0740, 0x45CAE0F2, 0x47521CC6, |
| 0x48E1E9BA, 0x4A7A77D4, 0x4C1BF829, 0x4DC69CDD, 0x4F7A9930, 0x51382182, |
| 0x52FF6B55, 0x54D0AD5A, 0x56AC1F75, 0x5891FAC1, 0x5A82799A, 0x5C7DD7A4, |
| 0x5E8451D0, 0x60962665, 0x62B39509, 0x64DCDEC3, 0x6712460B, 0x69540EC9, |
| 0x6BA27E65, 0x6DFDDBCC, 0x70666F76, 0x72DC8374, 0x75606374, 0x77F25CCE, |
| 0x7A92BE8B, 0x7D41D96E |
| // 0x80000000 |
| }; |
| |
| /* This table is used for lookup 2^x with */ |
| /* x in range [0...1/32[ in steps of 1/1024 */ |
| LNK_SECTION_DATA_L1 |
| const UINT exp2w_tab_long[32] = { |
| 0x40000000, 0x400B1818, 0x4016321B, 0x40214E0C, 0x402C6BE9, 0x40378BB4, |
| 0x4042AD6D, 0x404DD113, 0x4058F6A8, 0x40641E2B, 0x406F479E, 0x407A7300, |
| 0x4085A051, 0x4090CF92, 0x409C00C4, 0x40A733E6, 0x40B268FA, 0x40BD9FFF, |
| 0x40C8D8F5, 0x40D413DD, 0x40DF50B8, 0x40EA8F86, 0x40F5D046, 0x410112FA, |
| 0x410C57A2, 0x41179E3D, 0x4122E6CD, 0x412E3152, 0x41397DCC, 0x4144CC3B, |
| 0x41501CA0, 0x415B6EFB, |
| // 0x4166C34C, |
| }; |
| /* This table is used for lookup 2^x with */ |
| /* x in range [0...1/1024[ in steps of 1/32768 */ |
| LNK_SECTION_DATA_L1 |
| const UINT exp2x_tab_long[32] = { |
| 0x40000000, 0x400058B9, 0x4000B173, 0x40010A2D, 0x400162E8, 0x4001BBA3, |
| 0x4002145F, 0x40026D1B, 0x4002C5D8, 0x40031E95, 0x40037752, 0x4003D011, |
| 0x400428CF, 0x4004818E, 0x4004DA4E, 0x4005330E, 0x40058BCE, 0x4005E48F, |
| 0x40063D51, 0x40069613, 0x4006EED5, 0x40074798, 0x4007A05B, 0x4007F91F, |
| 0x400851E4, 0x4008AAA8, 0x4009036E, 0x40095C33, 0x4009B4FA, 0x400A0DC0, |
| 0x400A6688, 0x400ABF4F, |
| // 0x400B1818 |
| }; |
| |
| /***************************************************************************** |
| functionname: InitLdInt and CalcLdInt |
| description: Create and access table with integer LdData (0 to |
| LD_INT_TAB_LEN) |
| *****************************************************************************/ |
| #ifndef LD_INT_TAB_LEN |
| #define LD_INT_TAB_LEN \ |
| 193 /* Default tab length. Lower value should be set in fix.h */ |
| #endif |
| |
| #if (LD_INT_TAB_LEN <= 120) |
| LNK_SECTION_CONSTDATA_L1 |
| static const FIXP_DBL ldIntCoeff[] = { |
| (FIXP_DBL)0x80000001, (FIXP_DBL)0x00000000, (FIXP_DBL)0x02000000, |
| (FIXP_DBL)0x032b8034, (FIXP_DBL)0x04000000, (FIXP_DBL)0x04a4d3c2, |
| (FIXP_DBL)0x052b8034, (FIXP_DBL)0x059d5da0, (FIXP_DBL)0x06000000, |
| (FIXP_DBL)0x06570069, (FIXP_DBL)0x06a4d3c2, (FIXP_DBL)0x06eb3a9f, |
| (FIXP_DBL)0x072b8034, (FIXP_DBL)0x0766a009, (FIXP_DBL)0x079d5da0, |
| (FIXP_DBL)0x07d053f7, (FIXP_DBL)0x08000000, (FIXP_DBL)0x082cc7ee, |
| (FIXP_DBL)0x08570069, (FIXP_DBL)0x087ef05b, (FIXP_DBL)0x08a4d3c2, |
| (FIXP_DBL)0x08c8ddd4, (FIXP_DBL)0x08eb3a9f, (FIXP_DBL)0x090c1050, |
| (FIXP_DBL)0x092b8034, (FIXP_DBL)0x0949a785, (FIXP_DBL)0x0966a009, |
| (FIXP_DBL)0x0982809d, (FIXP_DBL)0x099d5da0, (FIXP_DBL)0x09b74949, |
| (FIXP_DBL)0x09d053f7, (FIXP_DBL)0x09e88c6b, (FIXP_DBL)0x0a000000, |
| (FIXP_DBL)0x0a16bad3, (FIXP_DBL)0x0a2cc7ee, (FIXP_DBL)0x0a423162, |
| (FIXP_DBL)0x0a570069, (FIXP_DBL)0x0a6b3d79, (FIXP_DBL)0x0a7ef05b, |
| (FIXP_DBL)0x0a92203d, (FIXP_DBL)0x0aa4d3c2, (FIXP_DBL)0x0ab7110e, |
| (FIXP_DBL)0x0ac8ddd4, (FIXP_DBL)0x0ada3f60, (FIXP_DBL)0x0aeb3a9f, |
| (FIXP_DBL)0x0afbd42b, (FIXP_DBL)0x0b0c1050, (FIXP_DBL)0x0b1bf312, |
| (FIXP_DBL)0x0b2b8034, (FIXP_DBL)0x0b3abb40, (FIXP_DBL)0x0b49a785, |
| (FIXP_DBL)0x0b584822, (FIXP_DBL)0x0b66a009, (FIXP_DBL)0x0b74b1fd, |
| (FIXP_DBL)0x0b82809d, (FIXP_DBL)0x0b900e61, (FIXP_DBL)0x0b9d5da0, |
| (FIXP_DBL)0x0baa708f, (FIXP_DBL)0x0bb74949, (FIXP_DBL)0x0bc3e9ca, |
| (FIXP_DBL)0x0bd053f7, (FIXP_DBL)0x0bdc899b, (FIXP_DBL)0x0be88c6b, |
| (FIXP_DBL)0x0bf45e09, (FIXP_DBL)0x0c000000, (FIXP_DBL)0x0c0b73cb, |
| (FIXP_DBL)0x0c16bad3, (FIXP_DBL)0x0c21d671, (FIXP_DBL)0x0c2cc7ee, |
| (FIXP_DBL)0x0c379085, (FIXP_DBL)0x0c423162, (FIXP_DBL)0x0c4caba8, |
| (FIXP_DBL)0x0c570069, (FIXP_DBL)0x0c6130af, (FIXP_DBL)0x0c6b3d79, |
| (FIXP_DBL)0x0c7527b9, (FIXP_DBL)0x0c7ef05b, (FIXP_DBL)0x0c88983f, |
| (FIXP_DBL)0x0c92203d, (FIXP_DBL)0x0c9b8926, (FIXP_DBL)0x0ca4d3c2, |
| (FIXP_DBL)0x0cae00d2, (FIXP_DBL)0x0cb7110e, (FIXP_DBL)0x0cc0052b, |
| (FIXP_DBL)0x0cc8ddd4, (FIXP_DBL)0x0cd19bb0, (FIXP_DBL)0x0cda3f60, |
| (FIXP_DBL)0x0ce2c97d, (FIXP_DBL)0x0ceb3a9f, (FIXP_DBL)0x0cf39355, |
| (FIXP_DBL)0x0cfbd42b, (FIXP_DBL)0x0d03fda9, (FIXP_DBL)0x0d0c1050, |
| (FIXP_DBL)0x0d140ca0, (FIXP_DBL)0x0d1bf312, (FIXP_DBL)0x0d23c41d, |
| (FIXP_DBL)0x0d2b8034, (FIXP_DBL)0x0d3327c7, (FIXP_DBL)0x0d3abb40, |
| (FIXP_DBL)0x0d423b08, (FIXP_DBL)0x0d49a785, (FIXP_DBL)0x0d510118, |
| (FIXP_DBL)0x0d584822, (FIXP_DBL)0x0d5f7cff, (FIXP_DBL)0x0d66a009, |
| (FIXP_DBL)0x0d6db197, (FIXP_DBL)0x0d74b1fd, (FIXP_DBL)0x0d7ba190, |
| (FIXP_DBL)0x0d82809d, (FIXP_DBL)0x0d894f75, (FIXP_DBL)0x0d900e61, |
| (FIXP_DBL)0x0d96bdad, (FIXP_DBL)0x0d9d5da0, (FIXP_DBL)0x0da3ee7f, |
| (FIXP_DBL)0x0daa708f, (FIXP_DBL)0x0db0e412, (FIXP_DBL)0x0db74949, |
| (FIXP_DBL)0x0dbda072, (FIXP_DBL)0x0dc3e9ca, (FIXP_DBL)0x0dca258e}; |
| |
| #elif (LD_INT_TAB_LEN <= 193) |
| LNK_SECTION_CONSTDATA_L1 |
| static const FIXP_DBL ldIntCoeff[] = { |
| (FIXP_DBL)0x80000001, (FIXP_DBL)0x00000000, (FIXP_DBL)0x02000000, |
| (FIXP_DBL)0x032b8034, (FIXP_DBL)0x04000000, (FIXP_DBL)0x04a4d3c2, |
| (FIXP_DBL)0x052b8034, (FIXP_DBL)0x059d5da0, (FIXP_DBL)0x06000000, |
| (FIXP_DBL)0x06570069, (FIXP_DBL)0x06a4d3c2, (FIXP_DBL)0x06eb3a9f, |
| (FIXP_DBL)0x072b8034, (FIXP_DBL)0x0766a009, (FIXP_DBL)0x079d5da0, |
| (FIXP_DBL)0x07d053f7, (FIXP_DBL)0x08000000, (FIXP_DBL)0x082cc7ee, |
| (FIXP_DBL)0x08570069, (FIXP_DBL)0x087ef05b, (FIXP_DBL)0x08a4d3c2, |
| (FIXP_DBL)0x08c8ddd4, (FIXP_DBL)0x08eb3a9f, (FIXP_DBL)0x090c1050, |
| (FIXP_DBL)0x092b8034, (FIXP_DBL)0x0949a785, (FIXP_DBL)0x0966a009, |
| (FIXP_DBL)0x0982809d, (FIXP_DBL)0x099d5da0, (FIXP_DBL)0x09b74949, |
| (FIXP_DBL)0x09d053f7, (FIXP_DBL)0x09e88c6b, (FIXP_DBL)0x0a000000, |
| (FIXP_DBL)0x0a16bad3, (FIXP_DBL)0x0a2cc7ee, (FIXP_DBL)0x0a423162, |
| (FIXP_DBL)0x0a570069, (FIXP_DBL)0x0a6b3d79, (FIXP_DBL)0x0a7ef05b, |
| (FIXP_DBL)0x0a92203d, (FIXP_DBL)0x0aa4d3c2, (FIXP_DBL)0x0ab7110e, |
| (FIXP_DBL)0x0ac8ddd4, (FIXP_DBL)0x0ada3f60, (FIXP_DBL)0x0aeb3a9f, |
| (FIXP_DBL)0x0afbd42b, (FIXP_DBL)0x0b0c1050, (FIXP_DBL)0x0b1bf312, |
| (FIXP_DBL)0x0b2b8034, (FIXP_DBL)0x0b3abb40, (FIXP_DBL)0x0b49a785, |
| (FIXP_DBL)0x0b584822, (FIXP_DBL)0x0b66a009, (FIXP_DBL)0x0b74b1fd, |
| (FIXP_DBL)0x0b82809d, (FIXP_DBL)0x0b900e61, (FIXP_DBL)0x0b9d5da0, |
| (FIXP_DBL)0x0baa708f, (FIXP_DBL)0x0bb74949, (FIXP_DBL)0x0bc3e9ca, |
| (FIXP_DBL)0x0bd053f7, (FIXP_DBL)0x0bdc899b, (FIXP_DBL)0x0be88c6b, |
| (FIXP_DBL)0x0bf45e09, (FIXP_DBL)0x0c000000, (FIXP_DBL)0x0c0b73cb, |
| (FIXP_DBL)0x0c16bad3, (FIXP_DBL)0x0c21d671, (FIXP_DBL)0x0c2cc7ee, |
| (FIXP_DBL)0x0c379085, (FIXP_DBL)0x0c423162, (FIXP_DBL)0x0c4caba8, |
| (FIXP_DBL)0x0c570069, (FIXP_DBL)0x0c6130af, (FIXP_DBL)0x0c6b3d79, |
| (FIXP_DBL)0x0c7527b9, (FIXP_DBL)0x0c7ef05b, (FIXP_DBL)0x0c88983f, |
| (FIXP_DBL)0x0c92203d, (FIXP_DBL)0x0c9b8926, (FIXP_DBL)0x0ca4d3c2, |
| (FIXP_DBL)0x0cae00d2, (FIXP_DBL)0x0cb7110e, (FIXP_DBL)0x0cc0052b, |
| (FIXP_DBL)0x0cc8ddd4, (FIXP_DBL)0x0cd19bb0, (FIXP_DBL)0x0cda3f60, |
| (FIXP_DBL)0x0ce2c97d, (FIXP_DBL)0x0ceb3a9f, (FIXP_DBL)0x0cf39355, |
| (FIXP_DBL)0x0cfbd42b, (FIXP_DBL)0x0d03fda9, (FIXP_DBL)0x0d0c1050, |
| (FIXP_DBL)0x0d140ca0, (FIXP_DBL)0x0d1bf312, (FIXP_DBL)0x0d23c41d, |
| (FIXP_DBL)0x0d2b8034, (FIXP_DBL)0x0d3327c7, (FIXP_DBL)0x0d3abb40, |
| (FIXP_DBL)0x0d423b08, (FIXP_DBL)0x0d49a785, (FIXP_DBL)0x0d510118, |
| (FIXP_DBL)0x0d584822, (FIXP_DBL)0x0d5f7cff, (FIXP_DBL)0x0d66a009, |
| (FIXP_DBL)0x0d6db197, (FIXP_DBL)0x0d74b1fd, (FIXP_DBL)0x0d7ba190, |
| (FIXP_DBL)0x0d82809d, (FIXP_DBL)0x0d894f75, (FIXP_DBL)0x0d900e61, |
| (FIXP_DBL)0x0d96bdad, (FIXP_DBL)0x0d9d5da0, (FIXP_DBL)0x0da3ee7f, |
| (FIXP_DBL)0x0daa708f, (FIXP_DBL)0x0db0e412, (FIXP_DBL)0x0db74949, |
| (FIXP_DBL)0x0dbda072, (FIXP_DBL)0x0dc3e9ca, (FIXP_DBL)0x0dca258e, |
| (FIXP_DBL)0x0dd053f7, (FIXP_DBL)0x0dd6753e, (FIXP_DBL)0x0ddc899b, |
| (FIXP_DBL)0x0de29143, (FIXP_DBL)0x0de88c6b, (FIXP_DBL)0x0dee7b47, |
| (FIXP_DBL)0x0df45e09, (FIXP_DBL)0x0dfa34e1, (FIXP_DBL)0x0e000000, |
| (FIXP_DBL)0x0e05bf94, (FIXP_DBL)0x0e0b73cb, (FIXP_DBL)0x0e111cd2, |
| (FIXP_DBL)0x0e16bad3, (FIXP_DBL)0x0e1c4dfb, (FIXP_DBL)0x0e21d671, |
| (FIXP_DBL)0x0e275460, (FIXP_DBL)0x0e2cc7ee, (FIXP_DBL)0x0e323143, |
| (FIXP_DBL)0x0e379085, (FIXP_DBL)0x0e3ce5d8, (FIXP_DBL)0x0e423162, |
| (FIXP_DBL)0x0e477346, (FIXP_DBL)0x0e4caba8, (FIXP_DBL)0x0e51daa8, |
| (FIXP_DBL)0x0e570069, (FIXP_DBL)0x0e5c1d0b, (FIXP_DBL)0x0e6130af, |
| (FIXP_DBL)0x0e663b74, (FIXP_DBL)0x0e6b3d79, (FIXP_DBL)0x0e7036db, |
| (FIXP_DBL)0x0e7527b9, (FIXP_DBL)0x0e7a1030, (FIXP_DBL)0x0e7ef05b, |
| (FIXP_DBL)0x0e83c857, (FIXP_DBL)0x0e88983f, (FIXP_DBL)0x0e8d602e, |
| (FIXP_DBL)0x0e92203d, (FIXP_DBL)0x0e96d888, (FIXP_DBL)0x0e9b8926, |
| (FIXP_DBL)0x0ea03232, (FIXP_DBL)0x0ea4d3c2, (FIXP_DBL)0x0ea96df0, |
| (FIXP_DBL)0x0eae00d2, (FIXP_DBL)0x0eb28c7f, (FIXP_DBL)0x0eb7110e, |
| (FIXP_DBL)0x0ebb8e96, (FIXP_DBL)0x0ec0052b, (FIXP_DBL)0x0ec474e4, |
| (FIXP_DBL)0x0ec8ddd4, (FIXP_DBL)0x0ecd4012, (FIXP_DBL)0x0ed19bb0, |
| (FIXP_DBL)0x0ed5f0c4, (FIXP_DBL)0x0eda3f60, (FIXP_DBL)0x0ede8797, |
| (FIXP_DBL)0x0ee2c97d, (FIXP_DBL)0x0ee70525, (FIXP_DBL)0x0eeb3a9f, |
| (FIXP_DBL)0x0eef69ff, (FIXP_DBL)0x0ef39355, (FIXP_DBL)0x0ef7b6b4, |
| (FIXP_DBL)0x0efbd42b, (FIXP_DBL)0x0effebcd, (FIXP_DBL)0x0f03fda9, |
| (FIXP_DBL)0x0f0809cf, (FIXP_DBL)0x0f0c1050, (FIXP_DBL)0x0f10113b, |
| (FIXP_DBL)0x0f140ca0, (FIXP_DBL)0x0f18028d, (FIXP_DBL)0x0f1bf312, |
| (FIXP_DBL)0x0f1fde3d, (FIXP_DBL)0x0f23c41d, (FIXP_DBL)0x0f27a4c0, |
| (FIXP_DBL)0x0f2b8034}; |
| |
| #else |
| #error "ldInt table size too small" |
| |
| #endif |
| |
| LNK_SECTION_INITCODE |
| void InitLdInt() { /* nothing to do! Use preinitialized logarithm table */ |
| } |
| |
| #if (LD_INT_TAB_LEN != 0) |
| |
| LNK_SECTION_CODE_L1 |
| FIXP_DBL CalcLdInt(INT i) { |
| /* calculates ld(op)/LD_DATA_SCALING */ |
| /* op is assumed to be an integer value between 1 and LD_INT_TAB_LEN */ |
| |
| FDK_ASSERT((LD_INT_TAB_LEN > 0) && |
| ((FIXP_DBL)ldIntCoeff[0] == |
| (FIXP_DBL)0x80000001)); /* tab has to be initialized */ |
| |
| if ((i > 0) && (i < LD_INT_TAB_LEN)) |
| return ldIntCoeff[i]; |
| else { |
| return (0); |
| } |
| } |
| #endif /* (LD_INT_TAB_LEN!=0) */ |
| |
| #if !defined(FUNCTION_schur_div) |
| /***************************************************************************** |
| |
| functionname: schur_div |
| description: delivers op1/op2 with op3-bit accuracy |
| |
| *****************************************************************************/ |
| |
| FIXP_DBL schur_div(FIXP_DBL num, FIXP_DBL denum, INT count) { |
| INT L_num = (LONG)num >> 1; |
| INT L_denum = (LONG)denum >> 1; |
| INT div = 0; |
| INT k = count; |
| |
| FDK_ASSERT(num >= (FIXP_DBL)0); |
| FDK_ASSERT(denum > (FIXP_DBL)0); |
| FDK_ASSERT(num <= denum); |
| |
| if (L_num != 0) |
| while (--k) { |
| div <<= 1; |
| L_num <<= 1; |
| if (L_num >= L_denum) { |
| L_num -= L_denum; |
| div++; |
| } |
| } |
| return (FIXP_DBL)(div << (DFRACT_BITS - count)); |
| } |
| |
| #endif /* !defined(FUNCTION_schur_div) */ |
| |
| #ifndef FUNCTION_fMultNorm |
| FIXP_DBL fMultNorm(FIXP_DBL f1, FIXP_DBL f2, INT *result_e) { |
| INT product = 0; |
| INT norm_f1, norm_f2; |
| |
| if ((f1 == (FIXP_DBL)0) || (f2 == (FIXP_DBL)0)) { |
| *result_e = 0; |
| return (FIXP_DBL)0; |
| } |
| norm_f1 = CountLeadingBits(f1); |
| f1 = f1 << norm_f1; |
| norm_f2 = CountLeadingBits(f2); |
| f2 = f2 << norm_f2; |
| |
| if ((f1 == (FIXP_DBL)MINVAL_DBL) && (f2 == (FIXP_DBL)MINVAL_DBL)) { |
| product = -((FIXP_DBL)MINVAL_DBL >> 1); |
| *result_e = -(norm_f1 + norm_f2 - 1); |
| } else { |
| product = fMult(f1, f2); |
| *result_e = -(norm_f1 + norm_f2); |
| } |
| |
| return (FIXP_DBL)product; |
| } |
| #endif |
| |
| #ifndef FUNCTION_fDivNorm |
| FIXP_DBL fDivNorm(FIXP_DBL L_num, FIXP_DBL L_denum, INT *result_e) { |
| FIXP_DBL div; |
| INT norm_num, norm_den; |
| |
| FDK_ASSERT(L_num >= (FIXP_DBL)0); |
| FDK_ASSERT(L_denum > (FIXP_DBL)0); |
| |
| if (L_num == (FIXP_DBL)0) { |
| *result_e = 0; |
| return ((FIXP_DBL)0); |
| } |
| |
| norm_num = CountLeadingBits(L_num); |
| L_num = L_num << norm_num; |
| L_num = L_num >> 1; |
| *result_e = -norm_num + 1; |
| |
| norm_den = CountLeadingBits(L_denum); |
| L_denum = L_denum << norm_den; |
| *result_e -= -norm_den; |
| |
| div = schur_div(L_num, L_denum, FRACT_BITS); |
| |
| return div; |
| } |
| #endif /* !FUNCTION_fDivNorm */ |
| |
| #ifndef FUNCTION_fDivNorm |
| FIXP_DBL fDivNorm(FIXP_DBL num, FIXP_DBL denom) { |
| INT e; |
| FIXP_DBL res; |
| |
| FDK_ASSERT(denom >= num); |
| |
| res = fDivNorm(num, denom, &e); |
| |
| /* Avoid overflow since we must output a value with exponent 0 |
| there is no other choice than saturating to almost 1.0f */ |
| if (res == (FIXP_DBL)(1 << (DFRACT_BITS - 2)) && e == 1) { |
| res = (FIXP_DBL)MAXVAL_DBL; |
| } else { |
| res = scaleValue(res, e); |
| } |
| |
| return res; |
| } |
| #endif /* !FUNCTION_fDivNorm */ |
| |
| #ifndef FUNCTION_fDivNormSigned |
| FIXP_DBL fDivNormSigned(FIXP_DBL num, FIXP_DBL denom) { |
| INT e; |
| FIXP_DBL res; |
| int sign; |
| |
| if (denom == (FIXP_DBL)0) { |
| return (FIXP_DBL)MAXVAL_DBL; |
| } |
| |
| sign = ((num >= (FIXP_DBL)0) != (denom >= (FIXP_DBL)0)); |
| res = fDivNormSigned(num, denom, &e); |
| |
| /* Saturate since we must output a value with exponent 0 */ |
| if ((e > 0) && (fAbs(res) >= FL2FXCONST_DBL(0.5))) { |
| if (sign) { |
| res = (FIXP_DBL)MINVAL_DBL; |
| } else { |
| res = (FIXP_DBL)MAXVAL_DBL; |
| } |
| } else { |
| res = scaleValue(res, e); |
| } |
| |
| return res; |
| } |
| FIXP_DBL fDivNormSigned(FIXP_DBL L_num, FIXP_DBL L_denum, INT *result_e) { |
| FIXP_DBL div; |
| INT norm_num, norm_den; |
| int sign; |
| |
| sign = ((L_num >= (FIXP_DBL)0) != (L_denum >= (FIXP_DBL)0)); |
| |
| if (L_num == (FIXP_DBL)0) { |
| *result_e = 0; |
| return ((FIXP_DBL)0); |
| } |
| if (L_denum == (FIXP_DBL)0) { |
| *result_e = 14; |
| return ((FIXP_DBL)MAXVAL_DBL); |
| } |
| |
| norm_num = CountLeadingBits(L_num); |
| L_num = L_num << norm_num; |
| L_num = L_num >> 2; |
| L_num = fAbs(L_num); |
| *result_e = -norm_num + 1; |
| |
| norm_den = CountLeadingBits(L_denum); |
| L_denum = L_denum << norm_den; |
| L_denum = L_denum >> 1; |
| L_denum = fAbs(L_denum); |
| *result_e -= -norm_den; |
| |
| div = schur_div(L_num, L_denum, FRACT_BITS); |
| |
| if (sign) { |
| div = -div; |
| } |
| |
| return div; |
| } |
| #endif /* FUNCTION_fDivNormSigned */ |
| |
| #ifndef FUNCTION_fDivNormHighPrec |
| FIXP_DBL fDivNormHighPrec(FIXP_DBL num, FIXP_DBL denom, INT *result_e) { |
| FIXP_DBL div; |
| INT norm_num, norm_den; |
| |
| FDK_ASSERT(num >= (FIXP_DBL)0); |
| FDK_ASSERT(denom > (FIXP_DBL)0); |
| |
| if (num == (FIXP_DBL)0) { |
| *result_e = 0; |
| return ((FIXP_DBL)0); |
| } |
| |
| norm_num = CountLeadingBits(num); |
| num = num << norm_num; |
| num = num >> 1; |
| *result_e = -norm_num + 1; |
| |
| norm_den = CountLeadingBits(denom); |
| denom = denom << norm_den; |
| *result_e -= -norm_den; |
| |
| div = schur_div(num, denom, 31); |
| return div; |
| } |
| #endif /* !FUNCTION_fDivNormHighPrec */ |
| |
| #ifndef FUNCTION_fPow |
| FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e, INT *result_e) { |
| FIXP_DBL frac_part, result_m; |
| INT int_part; |
| |
| if (exp_e > 0) { |
| INT exp_bits = DFRACT_BITS - 1 - exp_e; |
| int_part = exp_m >> exp_bits; |
| frac_part = exp_m - (FIXP_DBL)(int_part << exp_bits); |
| frac_part = frac_part << exp_e; |
| } else { |
| int_part = 0; |
| frac_part = exp_m >> -exp_e; |
| } |
| |
| /* Best accuracy is around 0, so try to get there with the fractional part. */ |
| if (frac_part > FL2FXCONST_DBL(0.5f)) { |
| int_part = int_part + 1; |
| frac_part = frac_part + FL2FXCONST_DBL(-1.0f); |
| } |
| if (frac_part < FL2FXCONST_DBL(-0.5f)) { |
| int_part = int_part - 1; |
| frac_part = -(FL2FXCONST_DBL(-1.0f) - frac_part); |
| } |
| |
| /* "+ 1" compensates fMultAddDiv2() of the polynomial evaluation below. */ |
| *result_e = int_part + 1; |
| |
| /* Evaluate taylor polynomial which approximates 2^x */ |
| { |
| FIXP_DBL p; |
| |
| /* result_m ~= 2^frac_part */ |
| p = frac_part; |
| /* First taylor series coefficient a_0 = 1.0, scaled by 0.5 due to |
| * fMultDiv2(). */ |
| result_m = FL2FXCONST_DBL(1.0f / 2.0f); |
| for (INT i = 0; i < POW2_PRECISION; i++) { |
| /* next taylor series term: a_i * x^i, x=0 */ |
| result_m = fMultAddDiv2(result_m, pow2Coeff[i], p); |
| p = fMult(p, frac_part); |
| } |
| } |
| return result_m; |
| } |
| |
| FIXP_DBL f2Pow(const FIXP_DBL exp_m, const INT exp_e) { |
| FIXP_DBL result_m; |
| INT result_e; |
| |
| result_m = f2Pow(exp_m, exp_e, &result_e); |
| result_e = fixMin(DFRACT_BITS - 1, fixMax(-(DFRACT_BITS - 1), result_e)); |
| |
| return scaleValue(result_m, result_e); |
| } |
| |
| FIXP_DBL fPow(FIXP_DBL base_m, INT base_e, FIXP_DBL exp_m, INT exp_e, |
| INT *result_e) { |
| INT ans_lg2_e, baselg2_e; |
| FIXP_DBL base_lg2, ans_lg2, result; |
| |
| /* Calc log2 of base */ |
| base_lg2 = fLog2(base_m, base_e, &baselg2_e); |
| |
| /* Prepare exp */ |
| { |
| INT leadingBits; |
| |
| leadingBits = CountLeadingBits(fAbs(exp_m)); |
| exp_m = exp_m << leadingBits; |
| exp_e -= leadingBits; |
| } |
| |
| /* Calc base pow exp */ |
| ans_lg2 = fMult(base_lg2, exp_m); |
| ans_lg2_e = exp_e + baselg2_e; |
| |
| /* Calc antilog */ |
| result = f2Pow(ans_lg2, ans_lg2_e, result_e); |
| |
| return result; |
| } |
| |
| FIXP_DBL fLdPow(FIXP_DBL baseLd_m, INT baseLd_e, FIXP_DBL exp_m, INT exp_e, |
| INT *result_e) { |
| INT ans_lg2_e; |
| FIXP_DBL ans_lg2, result; |
| |
| /* Prepare exp */ |
| { |
| INT leadingBits; |
| |
| leadingBits = CountLeadingBits(fAbs(exp_m)); |
| exp_m = exp_m << leadingBits; |
| exp_e -= leadingBits; |
| } |
| |
| /* Calc base pow exp */ |
| ans_lg2 = fMult(baseLd_m, exp_m); |
| ans_lg2_e = exp_e + baseLd_e; |
| |
| /* Calc antilog */ |
| result = f2Pow(ans_lg2, ans_lg2_e, result_e); |
| |
| return result; |
| } |
| |
| FIXP_DBL fLdPow(FIXP_DBL baseLd_m, INT baseLd_e, FIXP_DBL exp_m, INT exp_e) { |
| FIXP_DBL result_m; |
| int result_e; |
| |
| result_m = fLdPow(baseLd_m, baseLd_e, exp_m, exp_e, &result_e); |
| |
| return SATURATE_SHIFT(result_m, -result_e, DFRACT_BITS); |
| } |
| |
| FIXP_DBL fPowInt(FIXP_DBL base_m, INT base_e, INT exp, INT *pResult_e) { |
| FIXP_DBL result; |
| |
| if (exp != 0) { |
| INT result_e = 0; |
| |
| if (base_m != (FIXP_DBL)0) { |
| { |
| INT leadingBits; |
| leadingBits = CountLeadingBits(base_m); |
| base_m <<= leadingBits; |
| base_e -= leadingBits; |
| } |
| |
| result = base_m; |
| |
| { |
| int i; |
| for (i = 1; i < fAbs(exp); i++) { |
| result = fMult(result, base_m); |
| } |
| } |
| |
| if (exp < 0) { |
| /* 1.0 / ans */ |
| result = fDivNorm(FL2FXCONST_DBL(0.5f), result, &result_e); |
| result_e++; |
| } else { |
| int ansScale = CountLeadingBits(result); |
| result <<= ansScale; |
| result_e -= ansScale; |
| } |
| |
| result_e += exp * base_e; |
| |
| } else { |
| result = (FIXP_DBL)0; |
| } |
| *pResult_e = result_e; |
| } else { |
| result = FL2FXCONST_DBL(0.5f); |
| *pResult_e = 1; |
| } |
| |
| return result; |
| } |
| #endif /* FUNCTION_fPow */ |
| |
| #ifndef FUNCTION_fLog2 |
| FIXP_DBL CalcLog2(FIXP_DBL base_m, INT base_e, INT *result_e) { |
| return fLog2(base_m, base_e, result_e); |
| } |
| #endif /* FUNCTION_fLog2 */ |
| |
| INT fixp_floorToInt(FIXP_DBL f_inp, INT sf) { |
| FDK_ASSERT(sf >= 0); |
| INT floorInt = (INT)(f_inp >> ((DFRACT_BITS - 1) - sf)); |
| return floorInt; |
| } |
| |
| FIXP_DBL fixp_floor(FIXP_DBL f_inp, INT sf) { |
| FDK_ASSERT(sf >= 0); |
| INT floorInt = fixp_floorToInt(f_inp, sf); |
| FIXP_DBL f_floor = (FIXP_DBL)(floorInt << ((DFRACT_BITS - 1) - sf)); |
| return f_floor; |
| } |
| |
| INT fixp_ceilToInt(FIXP_DBL f_inp, INT sf) // sf mantissaBits left of dot |
| { |
| FDK_ASSERT(sf >= 0); |
| INT sx = (DFRACT_BITS - 1) - sf; // sx mantissaBits right of dot |
| INT inpINT = (INT)f_inp; |
| |
| INT mask = (0x1 << sx) - 1; |
| INT ceilInt = (INT)(f_inp >> sx); |
| |
| if (inpINT & mask) { |
| ceilInt++; // increment only, if there is at least one set mantissaBit |
| // right of dot [in inpINT] |
| } |
| |
| return ceilInt; |
| } |
| |
| FIXP_DBL fixp_ceil(FIXP_DBL f_inp, INT sf) { |
| FDK_ASSERT(sf >= 0); |
| INT sx = (DFRACT_BITS - 1) - sf; |
| INT ceilInt = fixp_ceilToInt(f_inp, sf); |
| ULONG mask = (ULONG)0x1 << (DFRACT_BITS - 1); // 0x80000000 |
| ceilInt = ceilInt |
| << sx; // no fract warn bec. shift into saturation done on int side |
| |
| if ((f_inp > FL2FXCONST_DBL(0.0f)) && (ceilInt & mask)) { |
| --ceilInt; |
| } |
| FIXP_DBL f_ceil = (FIXP_DBL)ceilInt; |
| |
| return f_ceil; |
| } |
| |
| /***************************************************************************** |
| fixp_truncateToInt() |
| Just remove the fractional part which is located right of decimal point |
| Same as which is done when a float is casted to (INT) : |
| result_INTtype = (INT)b_floatTypeInput; |
| |
| returns INT |
| *****************************************************************************/ |
| INT fixp_truncateToInt(FIXP_DBL f_inp, INT sf) // sf mantissaBits left of dot |
| // (without sign) e.g. at width |
| // 32 this would be [sign]7. |
| // supposed sf equals 8. |
| { |
| FDK_ASSERT(sf >= 0); |
| INT sx = (DFRACT_BITS - 1) - sf; // sx mantissaBits right of dot |
| // at width 32 this would be .24 |
| // supposed sf equals 8. |
| INT fbaccu = (INT)f_inp; |
| INT mask = (0x1 << sx); |
| |
| if ((fbaccu < 0) && (fbaccu & (mask - 1))) { |
| fbaccu = fbaccu + mask; |
| } |
| |
| fbaccu = fbaccu >> sx; |
| return fbaccu; |
| } |
| |
| /***************************************************************************** |
| fixp_truncate() |
| Just remove the fractional part which is located right of decimal point |
| |
| returns FIXP_DBL |
| *****************************************************************************/ |
| FIXP_DBL fixp_truncate(FIXP_DBL f_inp, INT sf) { |
| FDK_ASSERT(sf >= 0); |
| INT truncateInt = fixp_truncateToInt(f_inp, sf); |
| FIXP_DBL f_truncate = (FIXP_DBL)(truncateInt << ((DFRACT_BITS - 1) - sf)); |
| return f_truncate; |
| } |
| |
| /***************************************************************************** |
| fixp_roundToInt() |
| round [typical rounding] |
| |
| See fct roundRef() [which is the reference] |
| returns INT |
| *****************************************************************************/ |
| INT fixp_roundToInt(FIXP_DBL f_inp, INT sf) { |
| FDK_ASSERT(sf >= 0); |
| INT sx = DFRACT_BITS - 1 - sf; |
| INT inp = (INT)f_inp; |
| INT mask1 = (0x1 << (sx - 1)); |
| INT mask2 = (0x1 << (sx)) - 1; |
| INT mask3 = 0x7FFFFFFF; |
| INT iam = inp & mask2; |
| INT rnd; |
| |
| if ((inp < 0) && !(iam == mask1)) |
| rnd = inp + mask1; |
| else if ((inp > 0) && !(inp == mask3)) |
| rnd = inp + mask1; |
| else |
| rnd = inp; |
| |
| rnd = rnd >> sx; |
| |
| if (inp == mask3) rnd++; |
| |
| return rnd; |
| } |
| |
| /***************************************************************************** |
| fixp_round() |
| round [typical rounding] |
| |
| See fct roundRef() [which is the reference] |
| returns FIXP_DBL |
| *****************************************************************************/ |
| FIXP_DBL fixp_round(FIXP_DBL f_inp, INT sf) { |
| FDK_ASSERT(sf >= 0); |
| INT sx = DFRACT_BITS - 1 - sf; |
| INT r = fixp_roundToInt(f_inp, sf); |
| ULONG mask = (ULONG)0x1 << (DFRACT_BITS - 1); // 0x80000000 |
| r = r << sx; |
| |
| if ((f_inp > FL2FXCONST_DBL(0.0f)) && (r & mask)) { |
| --r; |
| } |
| |
| FIXP_DBL f_round = (FIXP_DBL)r; |
| return f_round; |
| } |