| /* ----------------------------------------------------------------------------- |
| Software License for The Fraunhofer FDK AAC Codec Library for Android |
| |
| © Copyright 1995 - 2018 Fraunhofer-Gesellschaft zur Förderung der angewandten |
| Forschung e.V. All rights reserved. |
| |
| 1. INTRODUCTION |
| The Fraunhofer FDK AAC Codec Library for Android ("FDK AAC Codec") is software |
| that implements the MPEG Advanced Audio Coding ("AAC") encoding and decoding |
| scheme for digital audio. This FDK AAC Codec software is intended to be used on |
| a wide variety of Android devices. |
| |
| AAC's HE-AAC and HE-AAC v2 versions are regarded as today's most efficient |
| general perceptual audio codecs. AAC-ELD is considered the best-performing |
| full-bandwidth communications codec by independent studies and is widely |
| deployed. AAC has been standardized by ISO and IEC as part of the MPEG |
| specifications. |
| |
| Patent licenses for necessary patent claims for the FDK AAC Codec (including |
| those of Fraunhofer) may be obtained through Via Licensing |
| (www.vialicensing.com) or through the respective patent owners individually for |
| the purpose of encoding or decoding bit streams in products that are compliant |
| with the ISO/IEC MPEG audio standards. Please note that most manufacturers of |
| Android devices already license these patent claims through Via Licensing or |
| directly from the patent owners, and therefore FDK AAC Codec software may |
| already be covered under those patent licenses when it is used for those |
| licensed purposes only. |
| |
| Commercially-licensed AAC software libraries, including floating-point versions |
| with enhanced sound quality, are also available from Fraunhofer. Users are |
| encouraged to check the Fraunhofer website for additional applications |
| information and documentation. |
| |
| 2. COPYRIGHT LICENSE |
| |
| Redistribution and use in source and binary forms, with or without modification, |
| are permitted without payment of copyright license fees provided that you |
| satisfy the following conditions: |
| |
| You must retain the complete text of this software license in redistributions of |
| the FDK AAC Codec or your modifications thereto in source code form. |
| |
| You must retain the complete text of this software license in the documentation |
| and/or other materials provided with redistributions of the FDK AAC Codec or |
| your modifications thereto in binary form. You must make available free of |
| charge copies of the complete source code of the FDK AAC Codec and your |
| modifications thereto to recipients of copies in binary form. |
| |
| The name of Fraunhofer may not be used to endorse or promote products derived |
| from this library without prior written permission. |
| |
| You may not charge copyright license fees for anyone to use, copy or distribute |
| the FDK AAC Codec software or your modifications thereto. |
| |
| Your modified versions of the FDK AAC Codec must carry prominent notices stating |
| that you changed the software and the date of any change. For modified versions |
| of the FDK AAC Codec, the term "Fraunhofer FDK AAC Codec Library for Android" |
| must be replaced by the term "Third-Party Modified Version of the Fraunhofer FDK |
| AAC Codec Library for Android." |
| |
| 3. NO PATENT LICENSE |
| |
| NO EXPRESS OR IMPLIED LICENSES TO ANY PATENT CLAIMS, including without |
| limitation the patents of Fraunhofer, ARE GRANTED BY THIS SOFTWARE LICENSE. |
| Fraunhofer provides no warranty of patent non-infringement with respect to this |
| software. |
| |
| You may use this FDK AAC Codec software or modifications thereto only for |
| purposes that are authorized by appropriate patent licenses. |
| |
| 4. DISCLAIMER |
| |
| This FDK AAC Codec software is provided by Fraunhofer on behalf of the copyright |
| holders and contributors "AS IS" and WITHOUT ANY EXPRESS OR IMPLIED WARRANTIES, |
| including but not limited to the implied warranties of merchantability and |
| fitness for a particular purpose. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR |
| CONTRIBUTORS BE LIABLE for any direct, indirect, incidental, special, exemplary, |
| or consequential damages, including but not limited to procurement of substitute |
| goods or services; loss of use, data, or profits, or business interruption, |
| however caused and on any theory of liability, whether in contract, strict |
| liability, or tort (including negligence), arising in any way out of the use of |
| this software, even if advised of the possibility of such damage. |
| |
| 5. CONTACT INFORMATION |
| |
| Fraunhofer Institute for Integrated Circuits IIS |
| Attention: Audio and Multimedia Departments - FDK AAC LL |
| Am Wolfsmantel 33 |
| 91058 Erlangen, Germany |
| |
| www.iis.fraunhofer.de/amm |
| amm-info@iis.fraunhofer.de |
| ----------------------------------------------------------------------------- */ |
| |
| /******************* Library for basic calculation routines ******************** |
| |
| Author(s): Haricharan Lakshman, Manuel Jander |
| |
| Description: Trigonometric functions fixed point fractional implementation. |
| |
| *******************************************************************************/ |
| |
| #include "FDK_trigFcts.h" |
| |
| #include "fixpoint_math.h" |
| |
| #define IMPROVE_ATAN2_ACCURACY 1 /* 0 --> 59 dB SNR 1 --> 65 dB SNR */ |
| #define MINSFTAB 7 |
| #define MAXSFTAB 25 |
| |
| #if IMPROVE_ATAN2_ACCURACY |
| static const FIXP_DBL f_atan_expand_range[MAXSFTAB - (MINSFTAB - 1)] = { |
| /***************************************************************************** |
| * |
| * Table holds fixp_atan() output values which are outside of input range |
| * of fixp_atan() to improve SNR of fixp_atan2(). |
| * |
| * This Table might also be used in fixp_atan() so there a wider input |
| * range can be covered, too. |
| * |
| *****************************************************************************/ |
| FL2FXCONST_DBL(7.775862990872099e-001), |
| FL2FXCONST_DBL(7.814919928673978e-001), |
| FL2FXCONST_DBL(7.834450483314648e-001), |
| FL2FXCONST_DBL(7.844216021392089e-001), |
| FL2FXCONST_DBL(7.849098823026687e-001), |
| FL2FXCONST_DBL(7.851540227918509e-001), |
| FL2FXCONST_DBL(7.852760930873737e-001), |
| FL2FXCONST_DBL(7.853371282415015e-001), |
| FL2FXCONST_DBL(7.853676458193612e-001), |
| FL2FXCONST_DBL(7.853829046083906e-001), |
| FL2FXCONST_DBL(7.853905340029177e-001), |
| FL2FXCONST_DBL(7.853943487001828e-001), |
| FL2FXCONST_DBL(7.853962560488155e-001), |
| FL2FXCONST_DBL(7.853972097231319e-001), |
| FL2FXCONST_DBL(7.853976865602901e-001), |
| FL2FXCONST_DBL(7.853979249788692e-001), |
| FL2FXCONST_DBL(7.853980441881587e-001), |
| FL2FXCONST_DBL(7.853981037928035e-001), |
| FL2FXCONST_DBL(7.853981335951259e-001) |
| /* pi/4 = 0.785398163397448 = pi/2/ATO_SCALE */ |
| }; |
| #endif |
| |
| FIXP_DBL fixp_atan2(FIXP_DBL y, FIXP_DBL x) { |
| FIXP_DBL q; |
| FIXP_DBL at; /* atan out */ |
| FIXP_DBL at2; /* atan2 out */ |
| FIXP_DBL ret = FL2FXCONST_DBL(-1.0f); |
| INT sf, sfo, stf; |
| |
| /* --- division */ |
| |
| if (y > FL2FXCONST_DBL(0.0f)) { |
| if (x > FL2FXCONST_DBL(0.0f)) { |
| q = fDivNormHighPrec(y, x, &sf); /* both pos. */ |
| } else if (x < FL2FXCONST_DBL(0.0f)) { |
| q = -fDivNormHighPrec(y, -x, &sf); /* x neg. */ |
| } else { /* (x == FL2FXCONST_DBL(0.0f)) */ |
| q = FL2FXCONST_DBL(+1.0f); /* y/x = pos/zero = +Inf */ |
| sf = 0; |
| } |
| } else if (y < FL2FXCONST_DBL(0.0f)) { |
| if (x > FL2FXCONST_DBL(0.0f)) { |
| q = -fDivNormHighPrec(-y, x, &sf); /* y neg. */ |
| } else if (x < FL2FXCONST_DBL(0.0f)) { |
| q = fDivNormHighPrec(-y, -x, &sf); /* both neg. */ |
| } else { /* (x == FL2FXCONST_DBL(0.0f)) */ |
| q = FL2FXCONST_DBL(-1.0f); /* y/x = neg/zero = -Inf */ |
| sf = 0; |
| } |
| } else { /* (y == FL2FXCONST_DBL(0.0f)) */ |
| q = FL2FXCONST_DBL(0.0f); |
| sf = 0; |
| } |
| sfo = sf; |
| |
| /* --- atan() */ |
| |
| if (sfo > ATI_SF) { |
| /* --- could not calc fixp_atan() here bec of input data out of range */ |
| /* ==> therefore give back boundary values */ |
| |
| #if IMPROVE_ATAN2_ACCURACY |
| if (sfo > MAXSFTAB) sfo = MAXSFTAB; |
| #endif |
| |
| if (q > FL2FXCONST_DBL(0.0f)) { |
| #if IMPROVE_ATAN2_ACCURACY |
| at = +f_atan_expand_range[sfo - ATI_SF - 1]; |
| #else |
| at = FL2FXCONST_DBL(+M_PI / 2 / ATO_SCALE); |
| #endif |
| } else if (q < FL2FXCONST_DBL(0.0f)) { |
| #if IMPROVE_ATAN2_ACCURACY |
| at = -f_atan_expand_range[sfo - ATI_SF - 1]; |
| #else |
| at = FL2FXCONST_DBL(-M_PI / 2 / ATO_SCALE); |
| #endif |
| } else { /* q == FL2FXCONST_DBL(0.0f) */ |
| at = FL2FXCONST_DBL(0.0f); |
| } |
| } else { |
| /* --- calc of fixp_atan() is possible; input data within range */ |
| /* ==> set q on fixed scale level as desired from fixp_atan() */ |
| stf = sfo - ATI_SF; |
| if (stf > 0) |
| q = q << (INT)fMin(stf, DFRACT_BITS - 1); |
| else |
| q = q >> (INT)fMin(-stf, DFRACT_BITS - 1); |
| at = fixp_atan(q); /* ATO_SF */ |
| } |
| |
| // --- atan2() |
| |
| at2 = at >> (AT2O_SF - ATO_SF); // now AT2O_SF for atan2 |
| if (x > FL2FXCONST_DBL(0.0f)) { |
| ret = at2; |
| } else if (x < FL2FXCONST_DBL(0.0f)) { |
| if (y >= FL2FXCONST_DBL(0.0f)) { |
| ret = at2 + FL2FXCONST_DBL(M_PI / AT2O_SCALE); |
| } else { |
| ret = at2 - FL2FXCONST_DBL(M_PI / AT2O_SCALE); |
| } |
| } else { |
| // x == 0 |
| if (y > FL2FXCONST_DBL(0.0f)) { |
| ret = FL2FXCONST_DBL(+M_PI / 2 / AT2O_SCALE); |
| } else if (y < FL2FXCONST_DBL(0.0f)) { |
| ret = FL2FXCONST_DBL(-M_PI / 2 / AT2O_SCALE); |
| } else if (y == FL2FXCONST_DBL(0.0f)) { |
| ret = FL2FXCONST_DBL(0.0f); |
| } |
| } |
| return ret; |
| } |
| |
| FIXP_DBL fixp_atan(FIXP_DBL x) { |
| INT sign; |
| FIXP_DBL result, temp; |
| |
| /* SNR of fixp_atan() = 56 dB */ |
| FIXP_DBL P281 = (FIXP_DBL)0x00013000; // 0.281 in q18 |
| FIXP_DBL ONEP571 = (FIXP_DBL)0x6487ef00; // 1.571 in q30 |
| |
| if (x < FIXP_DBL(0)) { |
| sign = 1; |
| x = -x; |
| } else { |
| sign = 0; |
| } |
| FDK_ASSERT(FL2FXCONST_DBL(1.0 / 64.0) == Q(Q_ATANINP)); |
| /* calc of arctan */ |
| if (x < FL2FXCONST_DBL(1.0 / 64.0)) |
| /* |
| Chebyshev polynomial approximation of atan(x) |
| 5th-order approximation: atan(x) = a1*x + a2*x^3 + a3*x^5 = x(a1 + x^2*(a2 + |
| a3*x^2)); a1 = 0.9949493661166540f, a2 = 0.2870606355326520f, a3 = |
| 0.0780371764464410f; 7th-order approximation: atan(x) = a1*x + a2*x^3 + |
| a3*x^5 + a3*x^7 = x(a1 + x^2*(a2 + x^2*(a3 + a4*x^2))); a1 = |
| 0.9991334482227801, a2 = -0.3205332923816640, a3 = 0.1449824901444650, a4 = |
| -0.0382544649702990; 7th-order approximation in use (the most accurate |
| solution) |
| */ |
| { |
| x <<= ATI_SF; |
| FIXP_DBL x2 = fPow2(x); |
| temp = fMultAddDiv2((FL2FXCONST_DBL(0.1449824901444650f) >> 1), x2, |
| FL2FXCONST_DBL(-0.0382544649702990)); |
| temp = fMultAddDiv2((FL2FXCONST_DBL(-0.3205332923816640f) >> 2), x2, temp); |
| temp = fMultAddDiv2((FL2FXCONST_DBL(0.9991334482227801f) >> 3), x2, temp); |
| result = fMult(x, (temp << 2)); |
| } else if (x < FL2FXCONST_DBL(1.28 / 64.0)) { |
| FIXP_DBL delta_fix; |
| FIXP_DBL PI_BY_4 = FL2FXCONST_DBL(3.1415926 / 4.0) >> 1; /* pi/4 in q30 */ |
| |
| delta_fix = (x - FL2FXCONST_DBL(1.0 / 64.0)) << 5; /* q30 */ |
| result = PI_BY_4 + (delta_fix >> 1) - (fPow2Div2(delta_fix)); |
| } else { |
| /* Other approximation for |x| > 1.28 */ |
| INT res_e; |
| |
| temp = fPow2Div2(x); /* q25 * q25 - (DFRACT_BITS-1) - 1 = q18 */ |
| temp = temp + P281; /* q18 + q18 = q18 */ |
| result = fDivNorm(x, temp, &res_e); |
| result = scaleValue(result, |
| (Q_ATANOUT - Q_ATANINP + 18 - DFRACT_BITS + 1) + res_e); |
| result = ONEP571 - result; /* q30 + q30 = q30 */ |
| } |
| if (sign) { |
| result = -result; |
| } |
| |
| return (result); |
| } |
| |
| #include "FDK_tools_rom.h" |
| |
| FIXP_DBL fixp_cos(FIXP_DBL x, int scale) { |
| FIXP_DBL residual, error, sine, cosine; |
| |
| residual = fixp_sin_cos_residual_inline(x, scale, &sine, &cosine); |
| error = fMult(sine, residual); |
| |
| #ifdef SINETABLE_16BIT |
| return cosine - error; |
| #else |
| /* Undo downscaling by 1 which was done at fixp_sin_cos_residual_inline */ |
| return SATURATE_LEFT_SHIFT(cosine - error, 1, DFRACT_BITS); |
| #endif |
| } |
| |
| FIXP_DBL fixp_sin(FIXP_DBL x, int scale) { |
| FIXP_DBL residual, error, sine, cosine; |
| |
| residual = fixp_sin_cos_residual_inline(x, scale, &sine, &cosine); |
| error = fMult(cosine, residual); |
| |
| #ifdef SINETABLE_16BIT |
| return sine + error; |
| #else |
| return SATURATE_LEFT_SHIFT(sine + error, 1, DFRACT_BITS); |
| #endif |
| } |
| |
| void fixp_cos_sin(FIXP_DBL x, int scale, FIXP_DBL *cos, FIXP_DBL *sin) { |
| FIXP_DBL residual, error0, error1, sine, cosine; |
| |
| residual = fixp_sin_cos_residual_inline(x, scale, &sine, &cosine); |
| error0 = fMult(sine, residual); |
| error1 = fMult(cosine, residual); |
| |
| #ifdef SINETABLE_16BIT |
| *cos = cosine - error0; |
| *sin = sine + error1; |
| #else |
| *cos = SATURATE_LEFT_SHIFT(cosine - error0, 1, DFRACT_BITS); |
| *sin = SATURATE_LEFT_SHIFT(sine + error1, 1, DFRACT_BITS); |
| #endif |
| } |