blob: b57936b4fc8d417359aa32b58bb3cce2b30d32ac [file] [log] [blame]
// Copyright (C) 2015 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "TextureDraw.h"
#include "OpenGLESDispatch/DispatchTables.h"
#include "host-common/crash_reporter.h"
#include <algorithm>
#include <string>
#include <assert.h>
#include <string.h>
#include <stdio.h>
#define ERR(...) fprintf(stderr, __VA_ARGS__)
namespace gfxstream {
namespace gl {
namespace {
// Helper function to create a new shader.
// |shaderType| is the shader type (e.g. GL_VERTEX_SHADER).
// |shaderText| is a 0-terminated C string for the shader source to use.
// On success, return the handle of the new compiled shader, or 0 on failure.
GLuint createShader(GLint shaderType, const char* shaderText) {
// Create new shader handle and attach source.
GLuint shader = s_gles2.glCreateShader(shaderType);
if (!shader) {
return 0;
}
const GLchar* text = static_cast<const GLchar*>(shaderText);
const GLint textLen = ::strlen(shaderText);
s_gles2.glShaderSource(shader, 1, &text, &textLen);
// Compiler the shader.
GLint success;
s_gles2.glCompileShader(shader);
s_gles2.glGetShaderiv(shader, GL_COMPILE_STATUS, &success);
if (success == GL_FALSE) {
GLint infoLogLength;
s_gles2.glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &infoLogLength);
std::string infoLog(infoLogLength + 1, '\0');
fprintf(stderr, "%s: TextureDraw shader compile failed.\n", __func__);
s_gles2.glGetShaderInfoLog(shader, infoLogLength, 0, &infoLog[0]);
fprintf(stderr, "%s: Info log:\n%s\n", __func__,
infoLog.c_str());
fprintf(stderr, "%s: Source:\n%s\n", __func__,
shaderText);
s_gles2.glDeleteShader(shader);
// No point in continuing as it's going to be a black screen.
// Send a crash report.
// emugl::emugl_crash_reporter(
// "FATAL: Could not compile shader for guest framebuffer blit. "
// "There may be an issue with the GPU drivers on your machine. "
// "Try using software rendering; launch the emulator "
// "from the command line with -gpu swiftshader_indirect. ");
}
return shader;
}
// No scaling / projection since we want to fill the whole viewport with
// the texture, hence a trivial vertex shader that only supports translation.
// Note: we used to have a proper free-angle rotation support in this shader,
// but looks like SwiftShader doesn't support either complicated calculations
// for gl_Position/varyings or just doesn't like trigonometric functions in
// shader; anyway the new code has hardcoded texture coordinate mapping for
// different rotation angles and works in both native OpenGL and SwiftShader.
const char kVertexShaderSource[] =
"attribute vec4 position;\n"
"attribute vec2 inCoord;\n"
"varying vec2 outCoord;\n"
"uniform vec2 translation;\n"
"uniform vec2 scale;\n"
"uniform vec2 coordTranslation;\n"
"uniform vec2 coordScale;\n"
"void main(void) {\n"
" gl_Position.xy = position.xy * scale.xy - translation.xy;\n"
" gl_Position.zw = position.zw;\n"
" outCoord = inCoord * coordScale + coordTranslation;\n"
"}\n";
// Similarly, just interpolate texture coordinates.
const char kFragmentShaderSource[] =
"#define kComposeModeDevice 2\n"
"precision mediump float;\n"
"varying lowp vec2 outCoord;\n"
"uniform sampler2D tex;\n"
"uniform float alpha;\n"
"uniform int composeMode;\n"
"uniform vec4 color ;\n"
"void main(void) {\n"
" if (composeMode == kComposeModeDevice) {\n"
" gl_FragColor = alpha * texture2D(tex, outCoord);\n"
" } else {\n"
" gl_FragColor = alpha * color;\n"
" }\n"
"}\n";
// Hard-coded arrays of vertex information.
struct Vertex {
float pos[3];
float coord[2];
};
const Vertex kVertices[] = {
// 0 degree
{{ +1, -1, +0 }, { +1, +0 }},
{{ +1, +1, +0 }, { +1, +1 }},
{{ -1, +1, +0 }, { +0, +1 }},
{{ -1, -1, +0 }, { +0, +0 }},
// 90 degree clock-wise
{{ +1, -1, +0 }, { +1, +1 }},
{{ +1, +1, +0 }, { +0, +1 }},
{{ -1, +1, +0 }, { +0, +0 }},
{{ -1, -1, +0 }, { +1, +0 }},
// 180 degree clock-wise
{{ +1, -1, +0 }, { +0, +1 }},
{{ +1, +1, +0 }, { +0, +0 }},
{{ -1, +1, +0 }, { +1, +0 }},
{{ -1, -1, +0 }, { +1, +1 }},
// 270 degree clock-wise
{{ +1, -1, +0 }, { +0, +0 }},
{{ +1, +1, +0 }, { +1, +0 }},
{{ -1, +1, +0 }, { +1, +1 }},
{{ -1, -1, +0 }, { +0, +1 }},
// flip horizontally
{{ +1, -1, +0 }, { +0, +0 }},
{{ +1, +1, +0 }, { +0, +1 }},
{{ -1, +1, +0 }, { +1, +1 }},
{{ -1, -1, +0 }, { +1, +0 }},
// flip vertically
{{ +1, -1, +0 }, { +1, +1 }},
{{ +1, +1, +0 }, { +1, +0 }},
{{ -1, +1, +0 }, { +0, +0 }},
{{ -1, -1, +0 }, { +0, +1 }},
// flip source image horizontally, the rotate 90 degrees clock-wise
{{ +1, -1, +0 }, { +0, +1 }},
{{ +1, +1, +0 }, { +1, +1 }},
{{ -1, +1, +0 }, { +1, +0 }},
{{ -1, -1, +0 }, { +0, +0 }},
// flip source image vertically, the rotate 90 degrees clock-wise
{{ +1, -1, +0 }, { +1, +0 }},
{{ +1, +1, +0 }, { +0, +0 }},
{{ -1, +1, +0 }, { +0, +1 }},
{{ -1, -1, +0 }, { +1, +1 }},
};
// Vertex indices for predefined rotation angles.
const GLubyte kIndices[] = {
0, 1, 2, 2, 3, 0, // 0
4, 5, 6, 6, 7, 4, // 90
8, 9, 10, 10, 11, 8, // 180
12, 13, 14, 14, 15, 12, // 270
16, 17, 18 ,18, 19, 16, // flip h
20, 21, 22, 22, 23, 20, // flip v
24, 25, 26, 26, 27, 24, // flip h, 90
28, 29, 30, 30, 31, 28 // flip v, 90
};
const GLint kIndicesPerDraw = 6;
} // namespace
TextureDraw::TextureDraw()
: mVertexShader(0),
mFragmentShader(0),
mProgram(0),
mCoordTranslation(-1),
mCoordScale(-1),
mPositionSlot(-1),
mInCoordSlot(-1),
mScaleSlot(-1),
mTextureSlot(-1),
mTranslationSlot(-1),
mMaskTexture(0),
mMaskTextureWidth(0),
mMaskTextureHeight(0),
mHaveNewMask(false),
mMaskIsValid(false),
mShouldReallocateTexture(true) {
// Create shaders and program.
mVertexShader = createShader(GL_VERTEX_SHADER, kVertexShaderSource);
mFragmentShader = createShader(GL_FRAGMENT_SHADER, kFragmentShaderSource);
mProgram = s_gles2.glCreateProgram();
s_gles2.glAttachShader(mProgram, mVertexShader);
s_gles2.glAttachShader(mProgram, mFragmentShader);
GLint success;
s_gles2.glLinkProgram(mProgram);
s_gles2.glGetProgramiv(mProgram, GL_LINK_STATUS, &success);
if (success == GL_FALSE) {
GLchar messages[256];
s_gles2.glGetProgramInfoLog(
mProgram, sizeof(messages), 0, &messages[0]);
ERR("%s: Could not create/link program: %s\n", __FUNCTION__, messages);
s_gles2.glDeleteProgram(mProgram);
mProgram = 0;
return;
}
s_gles2.glUseProgram(mProgram);
// Retrieve attribute/uniform locations.
mPositionSlot = s_gles2.glGetAttribLocation(mProgram, "position");
s_gles2.glEnableVertexAttribArray(mPositionSlot);
mInCoordSlot = s_gles2.glGetAttribLocation(mProgram, "inCoord");
s_gles2.glEnableVertexAttribArray(mInCoordSlot);
mAlpha = s_gles2.glGetUniformLocation(mProgram, "alpha");
mComposeMode = s_gles2.glGetUniformLocation(mProgram, "composeMode");
mColor = s_gles2.glGetUniformLocation(mProgram, "color");
mCoordTranslation = s_gles2.glGetUniformLocation(mProgram, "coordTranslation");
mCoordScale = s_gles2.glGetUniformLocation(mProgram, "coordScale");
mScaleSlot = s_gles2.glGetUniformLocation(mProgram, "scale");
mTranslationSlot = s_gles2.glGetUniformLocation(mProgram, "translation");
mTextureSlot = s_gles2.glGetUniformLocation(mProgram, "tex");
// set default uniform values
s_gles2.glUniform1f(mAlpha, 1.0);
s_gles2.glUniform1i(mComposeMode, 2);
s_gles2.glUniform2f(mTranslationSlot, 0.0, 0.0);
s_gles2.glUniform2f(mScaleSlot, 1.0, 1.0);
s_gles2.glUniform2f(mCoordTranslation, 0.0, 0.0);
s_gles2.glUniform2f(mCoordScale, 1.0, 1.0);
#if 0
printf("SLOTS position=%d inCoord=%d texture=%d translation=%d\n",
mPositionSlot, mInCoordSlot, mTextureSlot, mTranslationSlot);
#endif
// Create vertex and index buffers.
s_gles2.glGenBuffers(1, &mVertexBuffer);
s_gles2.glBindBuffer(GL_ARRAY_BUFFER, mVertexBuffer);
s_gles2.glBufferData(
GL_ARRAY_BUFFER, sizeof(kVertices), kVertices, GL_STATIC_DRAW);
s_gles2.glGenBuffers(1, &mIndexBuffer);
s_gles2.glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mIndexBuffer);
s_gles2.glBufferData(GL_ELEMENT_ARRAY_BUFFER,
sizeof(kIndices),
kIndices,
GL_STATIC_DRAW);
// Reset state.
s_gles2.glUseProgram(0);
s_gles2.glDisableVertexAttribArray(mPositionSlot);
s_gles2.glDisableVertexAttribArray(mInCoordSlot);
s_gles2.glBindBuffer(GL_ARRAY_BUFFER, 0);
s_gles2.glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
// Create a texture handle for use with an overlay mask
s_gles2.glGenTextures(1, &mMaskTexture);
}
bool TextureDraw::drawImpl(GLuint texture, float rotation,
float dx, float dy, bool wantOverlay) {
if (!mProgram) {
ERR("%s: no program\n", __FUNCTION__);
return false;
}
// TODO(digit): Save previous program state.
s_gles2.glUseProgram(mProgram);
#ifndef NDEBUG
GLenum err = s_gles2.glGetError();
if (err != GL_NO_ERROR) {
ERR("%s: Could not use program error=0x%x\n",
__FUNCTION__, err);
}
#endif
// Setup the |position| attribute values.
s_gles2.glBindBuffer(GL_ARRAY_BUFFER, mVertexBuffer);
#ifndef NDEBUG
err = s_gles2.glGetError();
if (err != GL_NO_ERROR) {
ERR("%s: Could not bind GL_ARRAY_BUFFER error=0x%x\n",
__FUNCTION__, err);
}
#endif
s_gles2.glEnableVertexAttribArray(mPositionSlot);
s_gles2.glVertexAttribPointer(mPositionSlot,
3,
GL_FLOAT,
GL_FALSE,
sizeof(Vertex),
0);
#ifndef NDEBUG
err = s_gles2.glGetError();
if (err != GL_NO_ERROR) {
ERR("%s: Could glVertexAttribPointer with mPositionSlot error=0x%x\n",
__FUNCTION__, err);
}
#endif
// Setup the |inCoord| attribute values.
s_gles2.glEnableVertexAttribArray(mInCoordSlot);
s_gles2.glVertexAttribPointer(mInCoordSlot,
2,
GL_FLOAT,
GL_FALSE,
sizeof(Vertex),
reinterpret_cast<GLvoid*>(
static_cast<uintptr_t>(
sizeof(float) * 3)));
// setup the |texture| uniform value.
s_gles2.glActiveTexture(GL_TEXTURE0);
s_gles2.glBindTexture(GL_TEXTURE_2D, texture);
s_gles2.glUniform1i(mTextureSlot, 0);
// setup the |translation| uniform value.
s_gles2.glUniform2f(mTranslationSlot, dx, dy);
#ifndef NDEBUG
// Validate program, just to be sure.
s_gles2.glValidateProgram(mProgram);
GLint validState = 0;
s_gles2.glGetProgramiv(mProgram, GL_VALIDATE_STATUS, &validState);
if (validState == GL_FALSE) {
GLchar messages[256] = {};
s_gles2.glGetProgramInfoLog(
mProgram, sizeof(messages), 0, &messages[0]);
ERR("%s: Could not run program: '%s'\n", __FUNCTION__, messages);
return false;
}
#endif
// Do the rendering.
s_gles2.glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mIndexBuffer);
#ifndef NDEBUG
err = s_gles2.glGetError();
if (err != GL_NO_ERROR) {
ERR("%s: Could not glBindBuffer(GL_ELEMENT_ARRAY_BUFFER) error=0x%x\n",
__FUNCTION__, err);
}
#endif
// We may only get 0, 90, 180, 270 in |rotation| so far.
const int intRotation = ((int)rotation)/90;
assert(intRotation >= 0 && intRotation <= 3);
intptr_t indexShift = 0;
switch (intRotation) {
case 0:
indexShift = 5 * kIndicesPerDraw;
break;
case 1:
indexShift = 7 * kIndicesPerDraw;
break;
case 2:
indexShift = 4 * kIndicesPerDraw;
break;
case 3:
indexShift = 6 * kIndicesPerDraw;
break;
}
s_gles2.glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
s_gles2.glClear(GL_COLOR_BUFFER_BIT);
s_gles2.glDrawElements(GL_TRIANGLES, kIndicesPerDraw, GL_UNSIGNED_BYTE,
(const GLvoid*)indexShift);
bool shouldDrawMask = false;
GLfloat scale[2];
s_gles2.glGetUniformfv(mProgram, mScaleSlot, scale);
GLfloat overlayScale[2];
{
android::base::AutoLock lock(mMaskLock);
if (wantOverlay && mHaveNewMask) {
// Create a texture from the mask image and make it
// available to be blended
GLint prevUnpackAlignment;
s_gles2.glGetIntegerv(GL_UNPACK_ALIGNMENT, &prevUnpackAlignment);
s_gles2.glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
s_gles2.glBindTexture(GL_TEXTURE_2D, mMaskTexture);
s_gles2.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
s_gles2.glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
if (mShouldReallocateTexture) {
mMaskTextureWidth = std::max(mMaskTextureWidth, mMaskWidth);
mMaskTextureHeight = std::max(mMaskTextureHeight, mMaskHeight);
// mMaskPixels is actually not used here, we only use
// glTexImage2D here to resize the texture
s_gles2.glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8,
mMaskTextureWidth, mMaskTextureHeight, 0,
GL_RGBA, GL_UNSIGNED_BYTE,
mMaskPixels.data());
mShouldReallocateTexture = false;
}
// Put the new texture in the center.
s_gles2.glTexSubImage2D(
GL_TEXTURE_2D, 0, (mMaskTextureWidth - mMaskWidth) / 2,
(mMaskTextureHeight - mMaskHeight) / 2, mMaskWidth,
mMaskHeight, GL_RGBA, GL_UNSIGNED_BYTE, mMaskPixels.data());
s_gles2.glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
s_gles2.glEnable(GL_BLEND);
s_gles2.glPixelStorei(GL_UNPACK_ALIGNMENT, prevUnpackAlignment);
mHaveNewMask = false;
mMaskIsValid = true;
}
shouldDrawMask = mMaskIsValid && wantOverlay;
// Scale the texture to only show that actual mask.
overlayScale[0] = static_cast<float>(mMaskTextureWidth) /
static_cast<float>(mMaskWidth) * scale[0];
overlayScale[1] = static_cast<float>(mMaskTextureHeight) /
static_cast<float>(mMaskHeight) * scale[1];
}
if (shouldDrawMask) {
if (mBlendResetNeeded) {
s_gles2.glEnable(GL_BLEND);
mBlendResetNeeded = false;
}
s_gles2.glUniform2f(mScaleSlot, overlayScale[0], overlayScale[1]);
// mMaskTexture should only be accessed on the thread where drawImpl is
// called, hence no need for lock.
s_gles2.glBindTexture(GL_TEXTURE_2D, mMaskTexture);
s_gles2.glDrawElements(GL_TRIANGLES, kIndicesPerDraw, GL_UNSIGNED_BYTE,
(const GLvoid*)indexShift);
// Reset to the "normal" texture
s_gles2.glBindTexture(GL_TEXTURE_2D, texture);
s_gles2.glUniform2f(mScaleSlot, scale[0], scale[1]);
}
#ifndef NDEBUG
err = s_gles2.glGetError();
if (err != GL_NO_ERROR) {
ERR("%s: Could not glDrawElements() error=0x%x\n",
__FUNCTION__, err);
}
#endif
// TODO(digit): Restore previous program state.
// For now, reset back to zero and assume other users will
// follow the same protocol.
s_gles2.glUseProgram(0);
s_gles2.glDisableVertexAttribArray(mPositionSlot);
s_gles2.glDisableVertexAttribArray(mInCoordSlot);
s_gles2.glBindBuffer(GL_ARRAY_BUFFER, 0);
s_gles2.glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);
return true;
}
TextureDraw::~TextureDraw() {
s_gles2.glDeleteBuffers(1, &mIndexBuffer);
s_gles2.glDeleteBuffers(1, &mVertexBuffer);
if (mFragmentShader) {
s_gles2.glDeleteShader(mFragmentShader);
}
if (mVertexShader) {
s_gles2.glDeleteShader(mVertexShader);
}
if (mMaskTexture) {
s_gles2.glDeleteTextures(1, &mMaskTexture);
}
}
void TextureDraw::setScreenMask(int width, int height, const unsigned char* rgbaData) {
android::base::AutoLock lock(mMaskLock);
if (width <= 0 || height <= 0 || rgbaData == nullptr) {
mMaskIsValid = false;
return;
}
mShouldReallocateTexture =
(width > mMaskTextureWidth) || (height > mMaskTextureHeight);
auto nextMaskTextureWidth = std::max(width, mMaskTextureWidth);
auto nextMaskTextureHeight = std::max(height, mMaskTextureHeight);
mMaskPixels.resize(nextMaskTextureWidth * nextMaskTextureHeight * 4);
// Save the data for use in the right context
std::copy(rgbaData, rgbaData + width * height * 4, mMaskPixels.begin());
mHaveNewMask = true;
mMaskWidth = width;
mMaskHeight = height;
}
void TextureDraw::preDrawLayer() {
if (!mProgram) {
ERR("%s: no program\n", __FUNCTION__);
return;
}
s_gles2.glUseProgram(mProgram);
#ifndef NDEBUG
GLenum err = s_gles2.glGetError();
if (err != GL_NO_ERROR) {
ERR("%s: Could not use program error=0x%x\n",
__FUNCTION__, err);
}
#endif
s_gles2.glBindBuffer(GL_ARRAY_BUFFER, mVertexBuffer);
#ifndef NDEBUG
err = s_gles2.glGetError();
if (err != GL_NO_ERROR) {
ERR("%s: Could not bind GL_ARRAY_BUFFER error=0x%x\n",
__FUNCTION__, err);
}
#endif
s_gles2.glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mIndexBuffer);
#ifndef NDEBUG
err = s_gles2.glGetError();
if (err != GL_NO_ERROR) {
ERR("%s: Could not glBindBuffer(GL_ELEMENT_ARRAY_BUFFER) error=0x%x\n",
__FUNCTION__, err);
}
#endif
s_gles2.glEnableVertexAttribArray(mPositionSlot);
s_gles2.glVertexAttribPointer(mPositionSlot,
3,
GL_FLOAT,
GL_FALSE,
sizeof(Vertex),
0);
s_gles2.glEnableVertexAttribArray(mInCoordSlot);
s_gles2.glVertexAttribPointer(mInCoordSlot,
2,
GL_FLOAT,
GL_FALSE,
sizeof(Vertex),
reinterpret_cast<GLvoid*>(
static_cast<uintptr_t>(
sizeof(float) * 3)));
#ifndef NDEBUG
err = s_gles2.glGetError();
if (err != GL_NO_ERROR) {
ERR("%s: Could glVertexAttribPointer with mPositionSlot error=0x%x\n",
__FUNCTION__, err);
}
#endif
// set composition default
s_gles2.glUniform1i(mComposeMode, 2);
s_gles2.glActiveTexture(GL_TEXTURE0);
s_gles2.glUniform1i(mTextureSlot, 0);
s_gles2.glEnable(GL_BLEND);
s_gles2.glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
}
void TextureDraw::prepareForDrawLayer() {
// clear color
s_gles2.glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
}
void TextureDraw::drawLayer(const ComposeLayer& layer, int frameWidth, int frameHeight,
int cbWidth, int cbHeight, GLuint texture) {
preDrawLayer();
switch(layer.composeMode) {
case HWC2_COMPOSITION_DEVICE:
s_gles2.glBindTexture(GL_TEXTURE_2D, texture);
break;
case HWC2_COMPOSITION_SOLID_COLOR: {
s_gles2.glUniform1i(mComposeMode, layer.composeMode);
s_gles2.glUniform4f(mColor,
layer.color.r/255.0, layer.color.g/255.0,
layer.color.b/255.0, layer.color.a/255.0);
break;
}
case HWC2_COMPOSITION_CLIENT:
case HWC2_COMPOSITION_CURSOR:
case HWC2_COMPOSITION_SIDEBAND:
case HWC2_COMPOSITION_INVALID:
default:
ERR("%s: invalid composition mode %d", __FUNCTION__, layer.composeMode);
return;
}
switch(layer.blendMode) {
case HWC2_BLEND_MODE_NONE:
s_gles2.glDisable(GL_BLEND);
mBlendResetNeeded = true;
break;
case HWC2_BLEND_MODE_PREMULTIPLIED:
break;
case HWC2_BLEND_MODE_INVALID:
case HWC2_BLEND_MODE_COVERAGE:
default:
ERR("%s: invalid blendMode %d", __FUNCTION__, layer.blendMode);
return;
}
s_gles2.glUniform1f(mAlpha, layer.alpha);
float edges[4];
edges[0] = 1 - 2.0 * (frameWidth - layer.displayFrame.left)/frameWidth;
edges[1] = 1 - 2.0 * (frameHeight - layer.displayFrame.top)/frameHeight;
edges[2] = 1 - 2.0 * (frameWidth - layer.displayFrame.right)/frameWidth;
edges[3] = 1- 2.0 * (frameHeight - layer.displayFrame.bottom)/frameHeight;
float crop[4];
crop[0] = layer.crop.left/cbWidth;
crop[1] = layer.crop.top/cbHeight;
crop[2] = layer.crop.right/cbWidth;
crop[3] = layer.crop.bottom/cbHeight;
// setup the |translation| uniform value.
s_gles2.glUniform2f(mTranslationSlot, (-edges[2] - edges[0])/2,
(-edges[3] - edges[1])/2);
s_gles2.glUniform2f(mScaleSlot, (edges[2] - edges[0])/2,
(edges[1] - edges[3])/2);
s_gles2.glUniform2f(mCoordTranslation, crop[0], crop[3]);
s_gles2.glUniform2f(mCoordScale, crop[2] - crop[0], crop[1] - crop[3]);
intptr_t indexShift;
switch(layer.transform) {
case HWC_TRANSFORM_ROT_90:
indexShift = 1 * kIndicesPerDraw;
break;
case HWC_TRANSFORM_ROT_180:
indexShift = 2 * kIndicesPerDraw;
break;
case HWC_TRANSFORM_ROT_270:
indexShift = 3 * kIndicesPerDraw;
break;
case HWC_TRANSFORM_FLIP_H:
indexShift = 4 * kIndicesPerDraw;
break;
case HWC_TRANSFORM_FLIP_V:
indexShift = 5 * kIndicesPerDraw;
break;
case HWC_TRANSFORM_FLIP_H_ROT_90:
indexShift = 6 * kIndicesPerDraw;
break;
case HWC_TRANSFORM_FLIP_V_ROT_90:
indexShift = 7 * kIndicesPerDraw;
break;
default:
indexShift = 0;
}
s_gles2.glDrawElements(GL_TRIANGLES, kIndicesPerDraw, GL_UNSIGNED_BYTE,
(const GLvoid*)indexShift);
#ifndef NDEBUG
GLenum err = s_gles2.glGetError();
if (err != GL_NO_ERROR) {
ERR("%s: Could not glDrawElements() error=0x%x\n",
__FUNCTION__, err);
}
#endif
// restore the default value for the next draw layer
if (layer.composeMode != HWC2_COMPOSITION_DEVICE) {
s_gles2.glUniform1i(mComposeMode, HWC2_COMPOSITION_DEVICE);
}
if (layer.blendMode != HWC2_BLEND_MODE_PREMULTIPLIED) {
s_gles2.glEnable(GL_BLEND);
mBlendResetNeeded = false;
s_gles2.glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA);
}
}
// Do Post right after drawing each layer, so keep using this program
void TextureDraw::cleanupForDrawLayer() {
s_gles2.glUniform1f(mAlpha, 1.0);
s_gles2.glUniform1i(mComposeMode, HWC2_COMPOSITION_DEVICE);
s_gles2.glUniform2f(mTranslationSlot, 0.0, 0.0);
s_gles2.glUniform2f(mScaleSlot, 1.0, 1.0);
s_gles2.glUniform2f(mCoordTranslation, 0.0, 0.0);
s_gles2.glUniform2f(mCoordScale, 1.0, 1.0);
}
} // namespace gl
} // namespace gfxstream