blob: 39de99189d6fd696f230a44c0a9e881efb2da872 [file] [log] [blame]
/*
* Copyright © 2017 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#ifndef VK_UTIL_H
#define VK_UTIL_H
/* common inlines and macros for vulkan drivers */
#include <vulkan/vulkan.h>
#include <stdlib.h>
#include "vk_struct_id.h"
struct vk_struct_common {
VkStructureType sType;
struct vk_struct_common *pNext;
};
struct vk_struct_chain_iterator {
vk_struct_common* value;
};
#define vk_foreach_struct(__iter, __start) \
for (struct vk_struct_common *__iter = (struct vk_struct_common *)(__start); \
__iter; __iter = __iter->pNext)
#define vk_foreach_struct_const(__iter, __start) \
for (const struct vk_struct_common *__iter = (const struct vk_struct_common *)(__start); \
__iter; __iter = __iter->pNext)
/**
* A wrapper for a Vulkan output array. A Vulkan output array is one that
* follows the convention of the parameters to
* vkGetPhysicalDeviceQueueFamilyProperties().
*
* Example Usage:
*
* VkResult
* vkGetPhysicalDeviceQueueFamilyProperties(
* VkPhysicalDevice physicalDevice,
* uint32_t* pQueueFamilyPropertyCount,
* VkQueueFamilyProperties* pQueueFamilyProperties)
* {
* VK_OUTARRAY_MAKE(props, pQueueFamilyProperties,
* pQueueFamilyPropertyCount);
*
* vk_outarray_append(&props, p) {
* p->queueFlags = ...;
* p->queueCount = ...;
* }
*
* vk_outarray_append(&props, p) {
* p->queueFlags = ...;
* p->queueCount = ...;
* }
*
* return vk_outarray_status(&props);
* }
*/
struct __vk_outarray {
/** May be null. */
void *data;
/**
* Capacity, in number of elements. Capacity is unlimited (UINT32_MAX) if
* data is null.
*/
uint32_t cap;
/**
* Count of elements successfully written to the array. Every write is
* considered successful if data is null.
*/
uint32_t *filled_len;
/**
* Count of elements that would have been written to the array if its
* capacity were sufficient. Vulkan functions often return VK_INCOMPLETE
* when `*filled_len < wanted_len`.
*/
uint32_t wanted_len;
};
static inline void
__vk_outarray_init(struct __vk_outarray *a,
void *data, uint32_t * len)
{
a->data = data;
a->cap = *len;
a->filled_len = len;
*a->filled_len = 0;
a->wanted_len = 0;
if (a->data == NULL)
a->cap = UINT32_MAX;
}
static inline VkResult
__vk_outarray_status(const struct __vk_outarray *a)
{
if (*a->filled_len < a->wanted_len)
return VK_INCOMPLETE;
else
return VK_SUCCESS;
}
static inline void *
__vk_outarray_next(struct __vk_outarray *a, size_t elem_size)
{
void *p = NULL;
a->wanted_len += 1;
if (*a->filled_len >= a->cap)
return NULL;
if (a->data != NULL)
p = ((uint8_t*)a->data) + (*a->filled_len) * elem_size;
*a->filled_len += 1;
return p;
}
#define vk_outarray(elem_t) \
struct { \
struct __vk_outarray base; \
elem_t meta[]; \
}
#define vk_outarray_typeof_elem(a) __typeof__((a)->meta[0])
#define vk_outarray_sizeof_elem(a) sizeof((a)->meta[0])
#define vk_outarray_init(a, data, len) \
__vk_outarray_init(&(a)->base, (data), (len))
#define VK_OUTARRAY_MAKE(name, data, len) \
vk_outarray(__typeof__((data)[0])) name; \
vk_outarray_init(&name, (data), (len))
#define vk_outarray_status(a) \
__vk_outarray_status(&(a)->base)
#define vk_outarray_next(a) \
((vk_outarray_typeof_elem(a) *) \
__vk_outarray_next(&(a)->base, vk_outarray_sizeof_elem(a)))
/**
* Append to a Vulkan output array.
*
* This is a block-based macro. For example:
*
* vk_outarray_append(&a, elem) {
* elem->foo = ...;
* elem->bar = ...;
* }
*
* The array `a` has type `vk_outarray(elem_t) *`. It is usually declared with
* VK_OUTARRAY_MAKE(). The variable `elem` is block-scoped and has type
* `elem_t *`.
*
* The macro unconditionally increments the array's `wanted_len`. If the array
* is not full, then the macro also increment its `filled_len` and then
* executes the block. When the block is executed, `elem` is non-null and
* points to the newly appended element.
*/
#define vk_outarray_append(a, elem) \
for (vk_outarray_typeof_elem(a) *elem = vk_outarray_next(a); \
elem != NULL; elem = NULL)
static inline void *
__vk_find_struct(void *start, VkStructureType sType)
{
vk_foreach_struct(s, start) {
if (s->sType == sType)
return s;
}
return NULL;
}
template <class T, class H> T* vk_find_struct(H* head)
{
vk_get_vk_struct_id<H>::id;
return static_cast<T*>(__vk_find_struct(static_cast<void*>(head), vk_get_vk_struct_id<T>::id));
}
template <class T, class H> const T* vk_find_struct(const H* head)
{
vk_get_vk_struct_id<H>::id;
return static_cast<const T*>(__vk_find_struct(const_cast<void*>(static_cast<const void*>(head)),
vk_get_vk_struct_id<T>::id));
}
uint32_t vk_get_driver_version(void);
uint32_t vk_get_version_override(void);
#define VK_EXT_OFFSET (1000000000UL)
#define VK_ENUM_EXTENSION(__enum) \
((__enum) >= VK_EXT_OFFSET ? ((((__enum) - VK_EXT_OFFSET) / 1000UL) + 1) : 0)
#define VK_ENUM_OFFSET(__enum) \
((__enum) >= VK_EXT_OFFSET ? ((__enum) % 1000) : (__enum))
template <class T> T vk_make_orphan_copy(const T& vk_struct) {
T copy = vk_struct;
copy.pNext = NULL;
return copy;
}
template <class T> vk_struct_chain_iterator vk_make_chain_iterator(T* vk_struct)
{
vk_get_vk_struct_id<T>::id;
vk_struct_chain_iterator result = { reinterpret_cast<vk_struct_common*>(vk_struct) };
return result;
}
template <class T> void vk_append_struct(vk_struct_chain_iterator* i, T* vk_struct)
{
vk_get_vk_struct_id<T>::id;
vk_struct_common* p = i->value;
if (p->pNext) {
::abort();
}
p->pNext = reinterpret_cast<vk_struct_common *>(vk_struct);
vk_struct->pNext = NULL;
*i = vk_make_chain_iterator(vk_struct);
}
#endif /* VK_UTIL_H */