blob: d42ecf42d1830e7f2540d3ff54d4b9dc19fa5eb0 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "HostConnection.h"
#include "aemu/base/threads/AndroidThread.h"
#include "aemu/base/AndroidHealthMonitor.h"
#include "aemu/base/AndroidHealthMonitorConsumerBasic.h"
#include "cutils/properties.h"
#include "renderControl_types.h"
#ifdef HOST_BUILD
#include "aemu/base/Tracing.h"
#endif
#include "aemu/base/Process.h"
#define DEBUG_HOSTCONNECTION 0
#if DEBUG_HOSTCONNECTION
#define DPRINT(fmt,...) ALOGD("%s: " fmt, __FUNCTION__, ##__VA_ARGS__);
#else
#define DPRINT(...)
#endif
using android::base::guest::CreateHealthMonitor;
using android::base::guest::HealthMonitor;
using android::base::guest::HealthMonitorConsumerBasic;
#ifdef GOLDFISH_NO_GL
struct gl_client_context_t {
int placeholder;
};
class GLEncoder : public gl_client_context_t {
public:
GLEncoder(IOStream*, ChecksumCalculator*) { }
void setContextAccessor(gl_client_context_t *()) { }
};
struct gl2_client_context_t {
int placeholder;
};
class GL2Encoder : public gl2_client_context_t {
public:
GL2Encoder(IOStream*, ChecksumCalculator*) { }
void setContextAccessor(gl2_client_context_t *()) { }
void setNoHostError(bool) { }
void setDrawCallFlushInterval(uint32_t) { }
void setHasAsyncUnmapBuffer(int) { }
void setHasSyncBufferData(int) { }
};
#else
#include "GLEncoder.h"
#include "GL2Encoder.h"
#endif
#ifdef GFXSTREAM
#include "VkEncoder.h"
#include "AddressSpaceStream.h"
#else
namespace goldfish_vk {
struct VkEncoder {
VkEncoder(IOStream* stream, HealthMonitor<>* healthMonitor = nullptr) { }
void decRef() { }
int placeholder;
};
} // namespace goldfish_vk
class QemuPipeStream;
typedef QemuPipeStream AddressSpaceStream;
AddressSpaceStream* createAddressSpaceStream(size_t bufSize, HealthMonitor<>* healthMonitor) {
ALOGE("%s: FATAL: Trying to create ASG stream in unsupported build\n", __func__);
abort();
}
AddressSpaceStream* createVirtioGpuAddressSpaceStream(HealthMonitor<>* healthMonitor) {
ALOGE("%s: FATAL: Trying to create VirtioGpu ASG stream in unsupported build\n", __func__);
abort();
}
#endif
using goldfish_vk::VkEncoder;
#include "ProcessPipe.h"
#include "QemuPipeStream.h"
#include "TcpStream.h"
#include "ThreadInfo.h"
#include <gralloc_cb_bp.h>
#include <unistd.h>
using android::base::guest::getCurrentThreadId;
#ifdef VIRTIO_GPU
#include "VirtGpu.h"
#include "VirtioGpuPipeStream.h"
#include "virtgpu_drm.h"
#include <cros_gralloc_handle.h>
#include <xf86drm.h>
#endif
#if defined(__linux__) || defined(__ANDROID__)
#include <fstream>
#include <string>
#endif
#undef LOG_TAG
#define LOG_TAG "HostConnection"
#if PLATFORM_SDK_VERSION < 26
#include <cutils/log.h>
#else
#include <log/log.h>
#endif
#define STREAM_BUFFER_SIZE (4*1024*1024)
#define STREAM_PORT_NUM 22468
HealthMonitor<>* getGlobalHealthMonitor() {
// Initialize HealthMonitor
// Rather than inject as a construct arg, we keep it as a static variable in the .cpp
// to avoid setting up dependencies in other repos (external/qemu)
static HealthMonitorConsumerBasic sHealthMonitorConsumerBasic;
static std::unique_ptr<HealthMonitor<>> sHealthMonitor = CreateHealthMonitor(sHealthMonitorConsumerBasic);
return sHealthMonitor.get();
}
static HostConnectionType getConnectionTypeFromProperty() {
#ifdef __Fuchsia__
return HOST_CONNECTION_ADDRESS_SPACE;
#elif defined(__ANDROID__) || defined(HOST_BUILD)
char transportValue[PROPERTY_VALUE_MAX] = "";
do {
property_get("ro.boot.qemu.gltransport.name", transportValue, "");
if (transportValue[0]) { break; }
property_get("ro.boot.qemu.gltransport", transportValue, "");
if (transportValue[0]) { break; }
property_get("ro.boot.hardware.gltransport", transportValue, "");
} while (false);
if (!transportValue[0]) return HOST_CONNECTION_QEMU_PIPE;
if (!strcmp("tcp", transportValue)) return HOST_CONNECTION_TCP;
if (!strcmp("pipe", transportValue)) return HOST_CONNECTION_QEMU_PIPE;
if (!strcmp("asg", transportValue)) return HOST_CONNECTION_ADDRESS_SPACE;
if (!strcmp("virtio-gpu-pipe", transportValue)) return HOST_CONNECTION_VIRTIO_GPU_PIPE;
if (!strcmp("virtio-gpu-asg", transportValue)) return HOST_CONNECTION_VIRTIO_GPU_ADDRESS_SPACE;
return HOST_CONNECTION_QEMU_PIPE;
#else
return HOST_CONNECTION_VIRTIO_GPU_ADDRESS_SPACE;
#endif
}
static uint32_t getDrawCallFlushIntervalFromProperty() {
constexpr uint32_t kDefaultValue = 800;
char flushValue[PROPERTY_VALUE_MAX] = "";
property_get("ro.boot.qemu.gltransport.drawFlushInterval", flushValue, "");
if (!flushValue[0]) return kDefaultValue;
const long interval = strtol(flushValue, 0, 10);
return (interval > 0) ? uint32_t(interval) : kDefaultValue;
}
static GrallocType getGrallocTypeFromProperty() {
char value[PROPERTY_VALUE_MAX] = "";
property_get("ro.hardware.gralloc", value, "");
if (!value[0]) return GRALLOC_TYPE_RANCHU;
if (!strcmp("ranchu", value)) return GRALLOC_TYPE_RANCHU;
if (!strcmp("minigbm", value)) return GRALLOC_TYPE_MINIGBM;
return GRALLOC_TYPE_RANCHU;
}
class GoldfishGralloc : public Gralloc
{
public:
virtual uint32_t createColorBuffer(
ExtendedRCEncoderContext* rcEnc,
int width, int height, uint32_t glformat) {
return rcEnc->rcCreateColorBuffer(
rcEnc, width, height, glformat);
}
virtual uint32_t getHostHandle(native_handle_t const* handle)
{
return cb_handle_t::from(handle)->hostHandle;
}
virtual int getFormat(native_handle_t const* handle)
{
return cb_handle_t::from(handle)->format;
}
virtual size_t getAllocatedSize(native_handle_t const* handle)
{
return static_cast<size_t>(cb_handle_t::from(handle)->allocatedSize());
}
};
static inline uint32_t align_up(uint32_t n, uint32_t a) {
return ((n + a - 1) / a) * a;
}
#if defined(VIRTIO_GPU)
class MinigbmGralloc : public Gralloc {
public:
virtual uint32_t createColorBuffer(
ExtendedRCEncoderContext*,
int width, int height, uint32_t glformat) {
// Only supported format for pbuffers in gfxstream
// should be RGBA8
const uint32_t kGlRGB = 0x1907;
const uint32_t kGlRGBA = 0x1908;
const uint32_t kVirglFormatRGBA = 67; // VIRGL_FORMAT_R8G8B8A8_UNORM;
uint32_t virtgpu_format = 0;
uint32_t bpp = 0;
switch (glformat) {
case kGlRGB:
DPRINT("Note: egl wanted GL_RGB, still using RGBA");
virtgpu_format = kVirglFormatRGBA;
bpp = 4;
break;
case kGlRGBA:
virtgpu_format = kVirglFormatRGBA;
bpp = 4;
break;
default:
DPRINT("Note: egl wanted 0x%x, still using RGBA", glformat);
virtgpu_format = kVirglFormatRGBA;
bpp = 4;
break;
}
const uint32_t kPipeTexture2D = 2; // PIPE_TEXTURE_2D
const uint32_t kBindRenderTarget = 1 << 1; // VIRGL_BIND_RENDER_TARGET
struct drm_virtgpu_resource_create res_create;
memset(&res_create, 0, sizeof(res_create));
res_create.target = kPipeTexture2D;
res_create.format = virtgpu_format;
res_create.bind = kBindRenderTarget;
res_create.width = width;
res_create.height = height;
res_create.depth = 1;
res_create.array_size = 1;
res_create.last_level = 0;
res_create.nr_samples = 0;
res_create.stride = bpp * width;
res_create.size = align_up(bpp * width * height, PAGE_SIZE);
int ret = drmIoctl(m_fd, DRM_IOCTL_VIRTGPU_RESOURCE_CREATE, &res_create);
if (ret) {
ALOGE("%s: DRM_IOCTL_VIRTGPU_RESOURCE_CREATE failed with %s (%d)\n", __func__,
strerror(errno), errno);
abort();
}
return res_create.res_handle;
}
virtual uint32_t getHostHandle(native_handle_t const* handle) {
struct drm_virtgpu_resource_info info;
if (!getResInfo(handle, &info)) {
ALOGE("%s: failed to get resource info\n", __func__);
return 0;
}
return info.res_handle;
}
virtual int getFormat(native_handle_t const* handle) {
return ((cros_gralloc_handle *)handle)->droid_format;
}
virtual uint32_t getFormatDrmFourcc(native_handle_t const* handle) override {
return ((cros_gralloc_handle *)handle)->format;
}
virtual size_t getAllocatedSize(native_handle_t const* handle) {
struct drm_virtgpu_resource_info info;
if (!getResInfo(handle, &info)) {
ALOGE("%s: failed to get resource info\n", __func__);
return 0;
}
return info.size;
}
void setFd(int fd) { m_fd = fd; }
private:
bool getResInfo(native_handle_t const* handle,
struct drm_virtgpu_resource_info* info) {
memset(info, 0x0, sizeof(*info));
if (m_fd < 0) {
ALOGE("%s: Error, rendernode fd missing\n", __func__);
return false;
}
struct drm_gem_close gem_close;
memset(&gem_close, 0x0, sizeof(gem_close));
cros_gralloc_handle const* cros_handle =
reinterpret_cast<cros_gralloc_handle const*>(handle);
uint32_t prime_handle;
int ret = drmPrimeFDToHandle(m_fd, cros_handle->fds[0], &prime_handle);
if (ret) {
ALOGE("%s: DRM_IOCTL_PRIME_FD_TO_HANDLE failed: %s (errno %d)\n",
__func__, strerror(errno), errno);
return false;
}
struct ManagedDrmGem {
ManagedDrmGem(const ManagedDrmGem&) = delete;
~ManagedDrmGem() {
struct drm_gem_close gem_close {
.handle = m_prime_handle,
.pad = 0,
};
int ret = drmIoctl(m_fd, DRM_IOCTL_GEM_CLOSE, &gem_close);
if (ret) {
ALOGE("%s: DRM_IOCTL_GEM_CLOSE failed on handle %" PRIu32 ": %s(%d).",
__func__, m_prime_handle, strerror(errno), errno);
}
}
int m_fd;
uint32_t m_prime_handle;
} managed_prime_handle{
.m_fd = m_fd,
.m_prime_handle = prime_handle,
};
info->bo_handle = managed_prime_handle.m_prime_handle;
struct drm_virtgpu_3d_wait virtgpuWait{
.handle = managed_prime_handle.m_prime_handle,
.flags = 0,
};
// This only works for host resources by VIRTGPU_RESOURCE_CREATE ioctl.
// We need to use a different mechanism to synchonize with the host if
// the minigbm gralloc swiches to virtio-gpu blobs or cross-domain
// backend.
ret = drmIoctl(m_fd, DRM_IOCTL_VIRTGPU_WAIT, &virtgpuWait);
if (ret) {
ALOGE("%s: DRM_IOCTL_VIRTGPU_WAIT failed: %s(%d)", __func__, strerror(errno), errno);
return false;
}
ret = drmIoctl(m_fd, DRM_IOCTL_VIRTGPU_RESOURCE_INFO, info);
if (ret) {
ALOGE("%s: DRM_IOCTL_VIRTGPU_RESOURCE_INFO failed: %s (errno %d)\n",
__func__, strerror(errno), errno);
return false;
}
return true;
}
int m_fd = -1;
};
#else
class MinigbmGralloc : public Gralloc {
public:
virtual uint32_t createColorBuffer(
ExtendedRCEncoderContext*,
int width, int height, uint32_t glformat) {
ALOGE("%s: Error: using minigbm without -DVIRTIO_GPU\n", __func__);
return 0;
}
virtual uint32_t getHostHandle(native_handle_t const* handle) {
ALOGE("%s: Error: using minigbm without -DVIRTIO_GPU\n", __func__);
return 0;
}
virtual int getFormat(native_handle_t const* handle) {
ALOGE("%s: Error: using minigbm without -DVIRTIO_GPU\n", __func__);
return 0;
}
virtual size_t getAllocatedSize(native_handle_t const* handle) {
ALOGE("%s: Error: using minigbm without -DVIRTIO_GPU\n", __func__);
return 0;
}
void setFd(int fd) { m_fd = fd; }
private:
int m_fd = -1;
};
#endif
class GoldfishProcessPipe : public ProcessPipe
{
public:
bool processPipeInit(int stream_handle, HostConnectionType connType, renderControl_encoder_context_t *rcEnc)
{
return ::processPipeInit(stream_handle, connType, rcEnc);
}
};
static GoldfishGralloc m_goldfishGralloc;
static GoldfishProcessPipe m_goldfishProcessPipe;
HostConnection::HostConnection() :
exitUncleanly(false),
m_checksumHelper(),
m_hostExtensions(),
m_grallocOnly(true),
m_noHostError(true),
m_rendernodeFd(-1) {
#ifdef HOST_BUILD
android::base::initializeTracing();
#endif
}
HostConnection::~HostConnection()
{
// round-trip to ensure that queued commands have been processed
// before process pipe closure is detected.
if (m_rcEnc && !exitUncleanly) {
(void)m_rcEnc->rcGetRendererVersion(m_rcEnc.get());
}
if (m_grallocType == GRALLOC_TYPE_MINIGBM) {
delete m_grallocHelper;
}
if (m_vkEnc) {
m_vkEnc->decRef();
}
if (m_stream) {
m_stream->decRef();
}
}
// static
std::unique_ptr<HostConnection> HostConnection::connect(uint32_t capset_id) {
const enum HostConnectionType connType = getConnectionTypeFromProperty();
// Use "new" to access a non-public constructor.
auto con = std::unique_ptr<HostConnection>(new HostConnection);
switch (connType) {
case HOST_CONNECTION_ADDRESS_SPACE: {
auto stream = createAddressSpaceStream(STREAM_BUFFER_SIZE, getGlobalHealthMonitor());
if (!stream) {
ALOGE("Failed to create AddressSpaceStream for host connection\n");
return nullptr;
}
con->m_connectionType = HOST_CONNECTION_ADDRESS_SPACE;
con->m_grallocType = GRALLOC_TYPE_RANCHU;
con->m_stream = stream;
con->m_grallocHelper = &m_goldfishGralloc;
con->m_processPipe = &m_goldfishProcessPipe;
break;
}
case HOST_CONNECTION_QEMU_PIPE: {
auto stream = new QemuPipeStream(STREAM_BUFFER_SIZE);
if (!stream) {
ALOGE("Failed to create QemuPipeStream for host connection\n");
return nullptr;
}
if (stream->connect() < 0) {
ALOGE("Failed to connect to host (QemuPipeStream)\n");
return nullptr;
}
con->m_connectionType = HOST_CONNECTION_QEMU_PIPE;
con->m_grallocType = GRALLOC_TYPE_RANCHU;
con->m_stream = stream;
con->m_grallocHelper = &m_goldfishGralloc;
con->m_processPipe = &m_goldfishProcessPipe;
break;
}
case HOST_CONNECTION_TCP: {
#ifndef __ANDROID__
ALOGE("Failed to create TCP connection on non-Android guest\n");
return nullptr;
break;
#else
auto stream = new TcpStream(STREAM_BUFFER_SIZE);
if (!stream) {
ALOGE("Failed to create TcpStream for host connection\n");
return nullptr;
}
if (stream->connect("10.0.2.2", STREAM_PORT_NUM) < 0) {
ALOGE("Failed to connect to host (TcpStream)\n");
return nullptr;
}
con->m_connectionType = HOST_CONNECTION_TCP;
con->m_grallocType = GRALLOC_TYPE_RANCHU;
con->m_stream = stream;
con->m_grallocHelper = &m_goldfishGralloc;
con->m_processPipe = &m_goldfishProcessPipe;
break;
#endif
}
#if defined(VIRTIO_GPU) && !defined(HOST_BUILD)
case HOST_CONNECTION_VIRTIO_GPU_PIPE: {
auto stream = new VirtioGpuPipeStream(STREAM_BUFFER_SIZE);
if (!stream) {
ALOGE("Failed to create VirtioGpu for host connection\n");
return nullptr;
}
if (stream->connect() < 0) {
ALOGE("Failed to connect to host (VirtioGpu)\n");
return nullptr;
}
con->m_connectionType = HOST_CONNECTION_VIRTIO_GPU_PIPE;
con->m_grallocType = getGrallocTypeFromProperty();
auto rendernodeFd = stream->getRendernodeFd();
con->m_stream = stream;
con->m_rendernodeFd = rendernodeFd;
switch (con->m_grallocType) {
case GRALLOC_TYPE_RANCHU:
con->m_grallocHelper = &m_goldfishGralloc;
break;
case GRALLOC_TYPE_MINIGBM: {
MinigbmGralloc* m = new MinigbmGralloc;
m->setFd(rendernodeFd);
con->m_grallocHelper = m;
break;
}
default:
ALOGE("Fatal: Unknown gralloc type 0x%x\n", con->m_grallocType);
abort();
}
con->m_processPipe = &m_goldfishProcessPipe;
break;
}
case HOST_CONNECTION_VIRTIO_GPU_ADDRESS_SPACE: {
VirtGpuDevice& instance = VirtGpuDevice::getInstance((enum VirtGpuCapset)capset_id);
auto deviceHandle = instance.getDeviceHandle();
auto stream = createVirtioGpuAddressSpaceStream(getGlobalHealthMonitor());
if (!stream) {
ALOGE("Failed to create virtgpu AddressSpaceStream\n");
return nullptr;
}
con->m_connectionType = HOST_CONNECTION_VIRTIO_GPU_ADDRESS_SPACE;
con->m_grallocType = getGrallocTypeFromProperty();
con->m_stream = stream;
con->m_rendernodeFd = deviceHandle;
switch (con->m_grallocType) {
case GRALLOC_TYPE_RANCHU:
con->m_grallocHelper = &m_goldfishGralloc;
break;
case GRALLOC_TYPE_MINIGBM: {
MinigbmGralloc* m = new MinigbmGralloc;
m->setFd(deviceHandle);
con->m_grallocHelper = m;
break;
}
default:
ALOGE("Fatal: Unknown gralloc type 0x%x\n", con->m_grallocType);
abort();
}
con->m_processPipe = &m_goldfishProcessPipe;
break;
}
#endif // !VIRTIO_GPU && !HOST_BUILD_
default:
break;
}
// send zero 'clientFlags' to the host.
unsigned int *pClientFlags =
(unsigned int *)con->m_stream->allocBuffer(sizeof(unsigned int));
*pClientFlags = 0;
con->m_stream->commitBuffer(sizeof(unsigned int));
#if defined(__linux__) || defined(__ANDROID__)
auto rcEnc = con->rcEncoder();
if (rcEnc != nullptr) {
auto processName = android::base::guest::getProcessName();
if (!processName.empty()) {
rcEnc->rcSetProcessMetadata(
rcEnc, const_cast<char*>("process_name"),
const_cast<RenderControlByte*>(processName.c_str()),
strlen(processName.c_str())+ 1);
}
}
#endif
return con;
}
HostConnection *HostConnection::get() {
return getWithThreadInfo(getEGLThreadInfo(), VIRTIO_GPU_CAPSET_NONE);
}
HostConnection *HostConnection::getOrCreate(uint32_t capset_id) {
return getWithThreadInfo(getEGLThreadInfo(), capset_id);
}
HostConnection *HostConnection::getWithThreadInfo(EGLThreadInfo* tinfo, uint32_t capset_id) {
// Get thread info
if (!tinfo) {
return NULL;
}
if (tinfo->hostConn == NULL) {
tinfo->hostConn = HostConnection::createUnique(capset_id);
}
return tinfo->hostConn.get();
}
void HostConnection::exit() {
EGLThreadInfo *tinfo = getEGLThreadInfo();
if (!tinfo) {
return;
}
tinfo->hostConn.reset();
}
void HostConnection::exitUnclean() {
EGLThreadInfo *tinfo = getEGLThreadInfo();
if (!tinfo) {
return;
}
tinfo->hostConn->exitUncleanly = true;
tinfo->hostConn.reset();
}
// static
std::unique_ptr<HostConnection> HostConnection::createUnique(uint32_t capset_id) {
return connect(capset_id);
}
GLEncoder *HostConnection::glEncoder()
{
if (!m_glEnc) {
m_glEnc = std::make_unique<GLEncoder>(m_stream, checksumHelper());
DBG("HostConnection::glEncoder new encoder %p, tid %lu", m_glEnc, getCurrentThreadId());
m_glEnc->setContextAccessor(s_getGLContext);
}
return m_glEnc.get();
}
GL2Encoder *HostConnection::gl2Encoder()
{
if (!m_gl2Enc) {
m_gl2Enc =
std::make_unique<GL2Encoder>(m_stream, checksumHelper());
DBG("HostConnection::gl2Encoder new encoder %p, tid %lu", m_gl2Enc, getCurrentThreadId());
m_gl2Enc->setContextAccessor(s_getGL2Context);
m_gl2Enc->setNoHostError(m_noHostError);
m_gl2Enc->setDrawCallFlushInterval(
getDrawCallFlushIntervalFromProperty());
m_gl2Enc->setHasAsyncUnmapBuffer(m_rcEnc->hasAsyncUnmapBuffer());
m_gl2Enc->setHasSyncBufferData(m_rcEnc->hasSyncBufferData());
}
return m_gl2Enc.get();
}
VkEncoder *HostConnection::vkEncoder()
{
rcEncoder();
if (!m_vkEnc) {
m_vkEnc = new VkEncoder(m_stream, getGlobalHealthMonitor());
}
return m_vkEnc;
}
ExtendedRCEncoderContext *HostConnection::rcEncoder()
{
if (!m_rcEnc) {
m_rcEnc = std::make_unique<ExtendedRCEncoderContext>(m_stream,
checksumHelper());
ExtendedRCEncoderContext* rcEnc = m_rcEnc.get();
setChecksumHelper(rcEnc);
queryAndSetSyncImpl(rcEnc);
queryAndSetDmaImpl(rcEnc);
queryAndSetGLESMaxVersion(rcEnc);
queryAndSetNoErrorState(rcEnc);
queryAndSetHostCompositionImpl(rcEnc);
queryAndSetDirectMemSupport(rcEnc);
queryAndSetVulkanSupport(rcEnc);
queryAndSetDeferredVulkanCommandsSupport(rcEnc);
queryAndSetVulkanNullOptionalStringsSupport(rcEnc);
queryAndSetVulkanCreateResourcesWithRequirementsSupport(rcEnc);
queryAndSetVulkanIgnoredHandles(rcEnc);
queryAndSetYUVCache(rcEnc);
queryAndSetAsyncUnmapBuffer(rcEnc);
queryAndSetVirtioGpuNext(rcEnc);
queryHasSharedSlotsHostMemoryAllocator(rcEnc);
queryAndSetVulkanFreeMemorySync(rcEnc);
queryAndSetVirtioGpuNativeSync(rcEnc);
queryAndSetVulkanShaderFloat16Int8Support(rcEnc);
queryAndSetVulkanAsyncQueueSubmitSupport(rcEnc);
queryAndSetHostSideTracingSupport(rcEnc);
queryAndSetAsyncFrameCommands(rcEnc);
queryAndSetVulkanQueueSubmitWithCommandsSupport(rcEnc);
queryAndSetVulkanBatchedDescriptorSetUpdateSupport(rcEnc);
queryAndSetSyncBufferData(rcEnc);
queryAndSetVulkanAsyncQsri(rcEnc);
queryAndSetReadColorBufferDma(rcEnc);
queryAndSetHWCMultiConfigs(rcEnc);
queryAndSetVulkanAuxCommandBufferMemory(rcEnc);
queryVersion(rcEnc);
if (m_processPipe) {
auto fd = (m_connectionType == HOST_CONNECTION_VIRTIO_GPU_ADDRESS_SPACE) ? m_rendernodeFd : -1;
m_processPipe->processPipeInit(fd, m_connectionType, rcEnc);
}
}
return m_rcEnc.get();
}
gl_client_context_t *HostConnection::s_getGLContext()
{
EGLThreadInfo *ti = getEGLThreadInfo();
if (ti->hostConn) {
return ti->hostConn->m_glEnc.get();
}
return NULL;
}
gl2_client_context_t *HostConnection::s_getGL2Context()
{
EGLThreadInfo *ti = getEGLThreadInfo();
if (ti->hostConn) {
return ti->hostConn->m_gl2Enc.get();
}
return NULL;
}
const std::string& HostConnection::queryHostExtensions(ExtendedRCEncoderContext *rcEnc) {
if (!m_hostExtensions.empty()) {
return m_hostExtensions;
}
// Extensions strings are usually quite long, preallocate enough here.
std::string extensionsBuffer(1023, '\0');
// Returns the required size including the 0-terminator, so
// account it when passing/using the sizes.
int extensionSize = rcEnc->rcGetHostExtensionsString(rcEnc,
extensionsBuffer.size() + 1,
&extensionsBuffer[0]);
if (extensionSize < 0) {
extensionsBuffer.resize(-extensionSize);
extensionSize = rcEnc->rcGetHostExtensionsString(rcEnc,
-extensionSize + 1,
&extensionsBuffer[0]);
}
if (extensionSize > 0) {
extensionsBuffer.resize(extensionSize - 1);
m_hostExtensions.swap(extensionsBuffer);
}
return m_hostExtensions;
}
void HostConnection::queryAndSetHostCompositionImpl(ExtendedRCEncoderContext *rcEnc) {
const std::string& hostExtensions = queryHostExtensions(rcEnc);
DPRINT("HostComposition ext %s", hostExtensions.c_str());
// make sure V2 is checked first before V1, as host may declare supporting both
if (hostExtensions.find(kHostCompositionV2) != std::string::npos) {
rcEnc->setHostComposition(HOST_COMPOSITION_V2);
}
else if (hostExtensions.find(kHostCompositionV1) != std::string::npos) {
rcEnc->setHostComposition(HOST_COMPOSITION_V1);
}
else {
rcEnc->setHostComposition(HOST_COMPOSITION_NONE);
}
}
void HostConnection::setChecksumHelper(ExtendedRCEncoderContext *rcEnc) {
const std::string& hostExtensions = queryHostExtensions(rcEnc);
// check the host supported version
uint32_t checksumVersion = 0;
const char* checksumPrefix = ChecksumCalculator::getMaxVersionStrPrefix();
const char* glProtocolStr = strstr(hostExtensions.c_str(), checksumPrefix);
if (glProtocolStr) {
uint32_t maxVersion = ChecksumCalculator::getMaxVersion();
sscanf(glProtocolStr+strlen(checksumPrefix), "%d", &checksumVersion);
if (maxVersion < checksumVersion) {
checksumVersion = maxVersion;
}
// The ordering of the following two commands matters!
// Must tell the host first before setting it in the guest
rcEnc->rcSelectChecksumHelper(rcEnc, checksumVersion, 0);
m_checksumHelper.setVersion(checksumVersion);
}
}
void HostConnection::queryAndSetSyncImpl(ExtendedRCEncoderContext *rcEnc) {
const std::string& hostExtensions = queryHostExtensions(rcEnc);
if (hostExtensions.find(kRCNativeSyncV4) != std::string::npos) {
rcEnc->setSyncImpl(SYNC_IMPL_NATIVE_SYNC_V4);
} else if (hostExtensions.find(kRCNativeSyncV3) != std::string::npos) {
rcEnc->setSyncImpl(SYNC_IMPL_NATIVE_SYNC_V3);
} else if (hostExtensions.find(kRCNativeSyncV2) != std::string::npos) {
rcEnc->setSyncImpl(SYNC_IMPL_NATIVE_SYNC_V2);
} else {
rcEnc->setSyncImpl(SYNC_IMPL_NONE);
}
}
void HostConnection::queryAndSetDmaImpl(ExtendedRCEncoderContext *rcEnc) {
std::string hostExtensions = queryHostExtensions(rcEnc);
if (hostExtensions.find(kDmaExtStr_v1) != std::string::npos) {
rcEnc->setDmaImpl(DMA_IMPL_v1);
} else {
rcEnc->setDmaImpl(DMA_IMPL_NONE);
}
}
void HostConnection::queryAndSetGLESMaxVersion(ExtendedRCEncoderContext* rcEnc) {
std::string hostExtensions = queryHostExtensions(rcEnc);
if (hostExtensions.find(kGLESMaxVersion_2) != std::string::npos) {
rcEnc->setGLESMaxVersion(GLES_MAX_VERSION_2);
} else if (hostExtensions.find(kGLESMaxVersion_3_0) != std::string::npos) {
rcEnc->setGLESMaxVersion(GLES_MAX_VERSION_3_0);
} else if (hostExtensions.find(kGLESMaxVersion_3_1) != std::string::npos) {
rcEnc->setGLESMaxVersion(GLES_MAX_VERSION_3_1);
} else if (hostExtensions.find(kGLESMaxVersion_3_2) != std::string::npos) {
rcEnc->setGLESMaxVersion(GLES_MAX_VERSION_3_2);
} else {
ALOGW("Unrecognized GLES max version string in extensions: %s",
hostExtensions.c_str());
rcEnc->setGLESMaxVersion(GLES_MAX_VERSION_2);
}
}
void HostConnection::queryAndSetNoErrorState(ExtendedRCEncoderContext* rcEnc) {
std::string hostExtensions = queryHostExtensions(rcEnc);
if (hostExtensions.find(kGLESUseHostError) != std::string::npos) {
m_noHostError = false;
}
}
void HostConnection::queryAndSetDirectMemSupport(ExtendedRCEncoderContext* rcEnc) {
std::string hostExtensions = queryHostExtensions(rcEnc);
if (hostExtensions.find(kGLDirectMem) != std::string::npos) {
rcEnc->featureInfo()->hasDirectMem = true;
}
}
void HostConnection::queryAndSetVulkanSupport(ExtendedRCEncoderContext* rcEnc) {
std::string hostExtensions = queryHostExtensions(rcEnc);
if (hostExtensions.find(kVulkan) != std::string::npos) {
rcEnc->featureInfo()->hasVulkan = true;
}
}
void HostConnection::queryAndSetDeferredVulkanCommandsSupport(ExtendedRCEncoderContext* rcEnc) {
std::string hostExtensions = queryHostExtensions(rcEnc);
if (hostExtensions.find(kDeferredVulkanCommands) != std::string::npos) {
rcEnc->featureInfo()->hasDeferredVulkanCommands = true;
}
}
void HostConnection::queryAndSetVulkanNullOptionalStringsSupport(ExtendedRCEncoderContext* rcEnc) {
std::string hostExtensions = queryHostExtensions(rcEnc);
if (hostExtensions.find(kVulkanNullOptionalStrings) != std::string::npos) {
rcEnc->featureInfo()->hasVulkanNullOptionalStrings = true;
}
}
void HostConnection::queryAndSetVulkanCreateResourcesWithRequirementsSupport(ExtendedRCEncoderContext* rcEnc) {
std::string hostExtensions = queryHostExtensions(rcEnc);
if (hostExtensions.find(kVulkanCreateResourcesWithRequirements) != std::string::npos) {
rcEnc->featureInfo()->hasVulkanCreateResourcesWithRequirements = true;
}
}
void HostConnection::queryAndSetVulkanIgnoredHandles(ExtendedRCEncoderContext* rcEnc) {
std::string hostExtensions = queryHostExtensions(rcEnc);
if (hostExtensions.find(kVulkanIgnoredHandles) != std::string::npos) {
rcEnc->featureInfo()->hasVulkanIgnoredHandles = true;
}
}
void HostConnection::queryAndSetYUVCache(ExtendedRCEncoderContext* rcEnc) {
std::string hostExtensions = queryHostExtensions(rcEnc);
if (hostExtensions.find(kYUVCache) != std::string::npos) {
rcEnc->featureInfo()->hasYUVCache = true;
}
}
void HostConnection::queryAndSetAsyncUnmapBuffer(ExtendedRCEncoderContext* rcEnc) {
std::string hostExtensions = queryHostExtensions(rcEnc);
if (hostExtensions.find(kAsyncUnmapBuffer) != std::string::npos) {
rcEnc->featureInfo()->hasAsyncUnmapBuffer = true;
}
}
void HostConnection::queryAndSetVirtioGpuNext(ExtendedRCEncoderContext* rcEnc) {
std::string hostExtensions = queryHostExtensions(rcEnc);
if (hostExtensions.find(kVirtioGpuNext) != std::string::npos) {
rcEnc->featureInfo()->hasVirtioGpuNext = true;
}
}
void HostConnection::queryHasSharedSlotsHostMemoryAllocator(ExtendedRCEncoderContext *rcEnc) {
const std::string& hostExtensions = queryHostExtensions(rcEnc);
if (hostExtensions.find(kHasSharedSlotsHostMemoryAllocator) != std::string::npos) {
rcEnc->featureInfo()->hasSharedSlotsHostMemoryAllocator = true;
}
}
void HostConnection::queryAndSetVulkanFreeMemorySync(ExtendedRCEncoderContext *rcEnc) {
const std::string& hostExtensions = queryHostExtensions(rcEnc);
if (hostExtensions.find(kVulkanFreeMemorySync) != std::string::npos) {
rcEnc->featureInfo()->hasVulkanFreeMemorySync = true;
}
}
void HostConnection::queryAndSetVirtioGpuNativeSync(ExtendedRCEncoderContext* rcEnc) {
std::string hostExtensions = queryHostExtensions(rcEnc);
if (hostExtensions.find(kVirtioGpuNativeSync) != std::string::npos) {
rcEnc->featureInfo()->hasVirtioGpuNativeSync = true;
}
}
void HostConnection::queryAndSetVulkanShaderFloat16Int8Support(ExtendedRCEncoderContext* rcEnc) {
std::string hostExtensions = queryHostExtensions(rcEnc);
if (hostExtensions.find(kVulkanShaderFloat16Int8) != std::string::npos) {
rcEnc->featureInfo()->hasVulkanShaderFloat16Int8 = true;
}
}
void HostConnection::queryAndSetVulkanAsyncQueueSubmitSupport(ExtendedRCEncoderContext* rcEnc) {
std::string hostExtensions = queryHostExtensions(rcEnc);
if (hostExtensions.find(kVulkanAsyncQueueSubmit) != std::string::npos) {
rcEnc->featureInfo()->hasVulkanAsyncQueueSubmit = true;
}
}
void HostConnection::queryAndSetHostSideTracingSupport(ExtendedRCEncoderContext* rcEnc) {
std::string hostExtensions = queryHostExtensions(rcEnc);
if (hostExtensions.find(kHostSideTracing) != std::string::npos) {
rcEnc->featureInfo()->hasHostSideTracing = true;
}
}
void HostConnection::queryAndSetAsyncFrameCommands(ExtendedRCEncoderContext* rcEnc) {
std::string hostExtensions = queryHostExtensions(rcEnc);
if (hostExtensions.find(kAsyncFrameCommands) != std::string::npos) {
rcEnc->featureInfo()->hasAsyncFrameCommands = true;
}
}
void HostConnection::queryAndSetVulkanQueueSubmitWithCommandsSupport(ExtendedRCEncoderContext* rcEnc) {
std::string hostExtensions = queryHostExtensions(rcEnc);
if (hostExtensions.find(kVulkanQueueSubmitWithCommands) != std::string::npos) {
rcEnc->featureInfo()->hasVulkanQueueSubmitWithCommands = true;
}
}
void HostConnection::queryAndSetVulkanBatchedDescriptorSetUpdateSupport(ExtendedRCEncoderContext* rcEnc) {
std::string hostExtensions = queryHostExtensions(rcEnc);
if (hostExtensions.find(kVulkanBatchedDescriptorSetUpdate) != std::string::npos) {
rcEnc->featureInfo()->hasVulkanBatchedDescriptorSetUpdate = true;
}
}
void HostConnection::queryAndSetSyncBufferData(ExtendedRCEncoderContext* rcEnc) {
std::string hostExtensions = queryHostExtensions(rcEnc);
if (hostExtensions.find(kSyncBufferData) != std::string::npos) {
rcEnc->featureInfo()->hasSyncBufferData = true;
}
}
void HostConnection::queryAndSetVulkanAsyncQsri(ExtendedRCEncoderContext* rcEnc) {
std::string hostExtensions = queryHostExtensions(rcEnc);
if (hostExtensions.find(kVulkanAsyncQsri) != std::string::npos) {
rcEnc->featureInfo()->hasVulkanAsyncQsri = true;
}
}
void HostConnection::queryAndSetReadColorBufferDma(ExtendedRCEncoderContext* rcEnc) {
std::string hostExtensions = queryHostExtensions(rcEnc);
if (hostExtensions.find(kReadColorBufferDma) != std::string::npos) {
rcEnc->featureInfo()->hasReadColorBufferDma = true;
}
}
void HostConnection::queryAndSetHWCMultiConfigs(ExtendedRCEncoderContext* rcEnc) {
std::string hostExtensions = queryHostExtensions(rcEnc);
if (hostExtensions.find(kHWCMultiConfigs) != std::string::npos) {
rcEnc->featureInfo()->hasHWCMultiConfigs = true;
}
}
void HostConnection::queryAndSetVulkanAuxCommandBufferMemory(ExtendedRCEncoderContext* rcEnc) {
std::string hostExtensions = queryHostExtensions(rcEnc);
rcEnc->featureInfo()->hasVulkanAuxCommandMemory = hostExtensions.find(kVulkanAuxCommandMemory) != std::string::npos;
}
GLint HostConnection::queryVersion(ExtendedRCEncoderContext* rcEnc) {
GLint version = m_rcEnc->rcGetRendererVersion(m_rcEnc.get());
return version;
}