blob: 963558eecf1897dc53128450ec9bb22a9418482e [file] [log] [blame]
/*
* Copyright 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
//#define LOG_NDEBUG 0
#define LOG_TAG "C2GoldfishAvcDec"
#include <inttypes.h>
#include <log/log.h>
#include <media/stagefright/foundation/AUtils.h>
#include <media/stagefright/foundation/MediaDefs.h>
#include <C2AllocatorGralloc.h>
#include <C2PlatformSupport.h>
//#include <android/hardware/graphics/common/1.0/types.h>
#include <android/hardware/graphics/allocator/3.0/IAllocator.h>
#include <android/hardware/graphics/mapper/3.0/IMapper.h>
#include <hidl/LegacySupport.h>
#include <media/stagefright/foundation/MediaDefs.h>
#include <C2Debug.h>
#include <C2PlatformSupport.h>
#include <Codec2Mapper.h>
#include <SimpleC2Interface.h>
#include <goldfish_codec2/store/GoldfishComponentStore.h>
#include <gralloc_cb_bp.h>
#include <color_buffer_utils.h>
#include "C2GoldfishAvcDec.h"
#include <mutex>
#define DEBUG 0
#if DEBUG
#define DDD(...) ALOGD(__VA_ARGS__)
#else
#define DDD(...) ((void)0)
#endif
using ::android::hardware::graphics::common::V1_0::BufferUsage;
using ::android::hardware::graphics::common::V1_2::PixelFormat;
namespace android {
namespace {
constexpr size_t kMinInputBufferSize = 6 * 1024 * 1024;
constexpr char COMPONENT_NAME[] = "c2.goldfish.h264.decoder";
constexpr uint32_t kDefaultOutputDelay = 8;
/* avc specification allows for a maximum delay of 16 frames.
As soft avc decoder supports interlaced, this delay would be 32 fields.
And avc decoder implementation has an additional delay of 2 decode calls.
So total maximum output delay is 34 */
constexpr uint32_t kMaxOutputDelay = 34;
constexpr uint32_t kMinInputBytes = 4;
static std::mutex s_decoder_count_mutex;
static int s_decoder_count = 0;
int allocateDecoderId() {
DDD("calling %s", __func__);
std::lock_guard<std::mutex> lock(s_decoder_count_mutex);
if (s_decoder_count >= 32 || s_decoder_count < 0) {
ALOGE("calling %s failed", __func__);
return -1;
}
++ s_decoder_count;
DDD("calling %s success total decoder %d", __func__, s_decoder_count);
return s_decoder_count;;
}
bool deAllocateDecoderId() {
DDD("calling %s", __func__);
std::lock_guard<std::mutex> lock(s_decoder_count_mutex);
if (s_decoder_count < 1) {
ALOGE("calling %s failed ", __func__);
return false;
}
-- s_decoder_count;
DDD("calling %s success total decoder %d", __func__, s_decoder_count);
return true;
}
} // namespace
class C2GoldfishAvcDec::IntfImpl : public SimpleInterface<void>::BaseParams {
public:
explicit IntfImpl(const std::shared_ptr<C2ReflectorHelper> &helper)
: SimpleInterface<void>::BaseParams(
helper, COMPONENT_NAME, C2Component::KIND_DECODER,
C2Component::DOMAIN_VIDEO, MEDIA_MIMETYPE_VIDEO_AVC) {
noPrivateBuffers(); // TODO: account for our buffers here
noInputReferences();
noOutputReferences();
noInputLatency();
noTimeStretch();
// TODO: Proper support for reorder depth.
addParameter(
DefineParam(mActualOutputDelay, C2_PARAMKEY_OUTPUT_DELAY)
.withDefault(
new C2PortActualDelayTuning::output(kDefaultOutputDelay))
.withFields({C2F(mActualOutputDelay, value)
.inRange(0, kMaxOutputDelay)})
.withSetter(
Setter<
decltype(*mActualOutputDelay)>::StrictValueWithNoDeps)
.build());
// TODO: output latency and reordering
addParameter(DefineParam(mAttrib, C2_PARAMKEY_COMPONENT_ATTRIBUTES)
.withConstValue(new C2ComponentAttributesSetting(
C2Component::ATTRIB_IS_TEMPORAL))
.build());
// coded and output picture size is the same for this codec
addParameter(
DefineParam(mSize, C2_PARAMKEY_PICTURE_SIZE)
.withDefault(new C2StreamPictureSizeInfo::output(0u, 320, 240))
.withFields({
C2F(mSize, width).inRange(2, 4080, 2),
C2F(mSize, height).inRange(2, 4080, 2),
})
.withSetter(SizeSetter)
.build());
addParameter(DefineParam(mMaxSize, C2_PARAMKEY_MAX_PICTURE_SIZE)
.withDefault(new C2StreamMaxPictureSizeTuning::output(
0u, 320, 240))
.withFields({
C2F(mSize, width).inRange(2, 4080, 2),
C2F(mSize, height).inRange(2, 4080, 2),
})
.withSetter(MaxPictureSizeSetter, mSize)
.build());
addParameter(
DefineParam(mProfileLevel, C2_PARAMKEY_PROFILE_LEVEL)
.withDefault(new C2StreamProfileLevelInfo::input(
0u, C2Config::PROFILE_AVC_CONSTRAINED_BASELINE,
C2Config::LEVEL_AVC_5_2))
.withFields(
{C2F(mProfileLevel, profile)
.oneOf({C2Config::PROFILE_AVC_CONSTRAINED_BASELINE,
C2Config::PROFILE_AVC_BASELINE,
C2Config::PROFILE_AVC_MAIN,
C2Config::PROFILE_AVC_CONSTRAINED_HIGH,
C2Config::PROFILE_AVC_PROGRESSIVE_HIGH,
C2Config::PROFILE_AVC_HIGH}),
C2F(mProfileLevel, level)
.oneOf(
{C2Config::LEVEL_AVC_1, C2Config::LEVEL_AVC_1B,
C2Config::LEVEL_AVC_1_1, C2Config::LEVEL_AVC_1_2,
C2Config::LEVEL_AVC_1_3, C2Config::LEVEL_AVC_2,
C2Config::LEVEL_AVC_2_1, C2Config::LEVEL_AVC_2_2,
C2Config::LEVEL_AVC_3, C2Config::LEVEL_AVC_3_1,
C2Config::LEVEL_AVC_3_2, C2Config::LEVEL_AVC_4,
C2Config::LEVEL_AVC_4_1, C2Config::LEVEL_AVC_4_2,
C2Config::LEVEL_AVC_5, C2Config::LEVEL_AVC_5_1,
C2Config::LEVEL_AVC_5_2})})
.withSetter(ProfileLevelSetter, mSize)
.build());
addParameter(
DefineParam(mMaxInputSize, C2_PARAMKEY_INPUT_MAX_BUFFER_SIZE)
.withDefault(new C2StreamMaxBufferSizeInfo::input(
0u, kMinInputBufferSize))
.withFields({
C2F(mMaxInputSize, value).any(),
})
.calculatedAs(MaxInputSizeSetter, mMaxSize)
.build());
C2ChromaOffsetStruct locations[1] = {
C2ChromaOffsetStruct::ITU_YUV_420_0()};
std::shared_ptr<C2StreamColorInfo::output> defaultColorInfo =
C2StreamColorInfo::output::AllocShared(1u, 0u, 8u /* bitDepth */,
C2Color::YUV_420);
memcpy(defaultColorInfo->m.locations, locations, sizeof(locations));
defaultColorInfo = C2StreamColorInfo::output::AllocShared(
{C2ChromaOffsetStruct::ITU_YUV_420_0()}, 0u, 8u /* bitDepth */,
C2Color::YUV_420);
helper->addStructDescriptors<C2ChromaOffsetStruct>();
addParameter(DefineParam(mColorInfo, C2_PARAMKEY_CODED_COLOR_INFO)
.withConstValue(defaultColorInfo)
.build());
addParameter(
DefineParam(mDefaultColorAspects, C2_PARAMKEY_DEFAULT_COLOR_ASPECTS)
.withDefault(new C2StreamColorAspectsTuning::output(
0u, C2Color::RANGE_UNSPECIFIED,
C2Color::PRIMARIES_UNSPECIFIED,
C2Color::TRANSFER_UNSPECIFIED, C2Color::MATRIX_UNSPECIFIED))
.withFields({C2F(mDefaultColorAspects, range)
.inRange(C2Color::RANGE_UNSPECIFIED,
C2Color::RANGE_OTHER),
C2F(mDefaultColorAspects, primaries)
.inRange(C2Color::PRIMARIES_UNSPECIFIED,
C2Color::PRIMARIES_OTHER),
C2F(mDefaultColorAspects, transfer)
.inRange(C2Color::TRANSFER_UNSPECIFIED,
C2Color::TRANSFER_OTHER),
C2F(mDefaultColorAspects, matrix)
.inRange(C2Color::MATRIX_UNSPECIFIED,
C2Color::MATRIX_OTHER)})
.withSetter(DefaultColorAspectsSetter)
.build());
addParameter(
DefineParam(mCodedColorAspects, C2_PARAMKEY_VUI_COLOR_ASPECTS)
.withDefault(new C2StreamColorAspectsInfo::input(
0u, C2Color::RANGE_LIMITED, C2Color::PRIMARIES_UNSPECIFIED,
C2Color::TRANSFER_UNSPECIFIED, C2Color::MATRIX_UNSPECIFIED))
.withFields({C2F(mCodedColorAspects, range)
.inRange(C2Color::RANGE_UNSPECIFIED,
C2Color::RANGE_OTHER),
C2F(mCodedColorAspects, primaries)
.inRange(C2Color::PRIMARIES_UNSPECIFIED,
C2Color::PRIMARIES_OTHER),
C2F(mCodedColorAspects, transfer)
.inRange(C2Color::TRANSFER_UNSPECIFIED,
C2Color::TRANSFER_OTHER),
C2F(mCodedColorAspects, matrix)
.inRange(C2Color::MATRIX_UNSPECIFIED,
C2Color::MATRIX_OTHER)})
.withSetter(CodedColorAspectsSetter)
.build());
addParameter(
DefineParam(mColorAspects, C2_PARAMKEY_COLOR_ASPECTS)
.withDefault(new C2StreamColorAspectsInfo::output(
0u, C2Color::RANGE_UNSPECIFIED,
C2Color::PRIMARIES_UNSPECIFIED,
C2Color::TRANSFER_UNSPECIFIED, C2Color::MATRIX_UNSPECIFIED))
.withFields({C2F(mColorAspects, range)
.inRange(C2Color::RANGE_UNSPECIFIED,
C2Color::RANGE_OTHER),
C2F(mColorAspects, primaries)
.inRange(C2Color::PRIMARIES_UNSPECIFIED,
C2Color::PRIMARIES_OTHER),
C2F(mColorAspects, transfer)
.inRange(C2Color::TRANSFER_UNSPECIFIED,
C2Color::TRANSFER_OTHER),
C2F(mColorAspects, matrix)
.inRange(C2Color::MATRIX_UNSPECIFIED,
C2Color::MATRIX_OTHER)})
.withSetter(ColorAspectsSetter, mDefaultColorAspects,
mCodedColorAspects)
.build());
// TODO: support more formats?
addParameter(DefineParam(mPixelFormat, C2_PARAMKEY_PIXEL_FORMAT)
.withConstValue(new C2StreamPixelFormatInfo::output(
0u, HAL_PIXEL_FORMAT_YCBCR_420_888))
.build());
}
static C2R SizeSetter(bool mayBlock,
const C2P<C2StreamPictureSizeInfo::output> &oldMe,
C2P<C2StreamPictureSizeInfo::output> &me) {
(void)mayBlock;
DDD("calling sizesetter now %d", oldMe.v.height);
DDD("new calling sizesetter now %d", me.v.height);
C2R res = C2R::Ok();
if (!me.F(me.v.width).supportsAtAll(me.v.width)) {
res = res.plus(C2SettingResultBuilder::BadValue(me.F(me.v.width)));
me.set().width = oldMe.v.width;
}
if (!me.F(me.v.height).supportsAtAll(me.v.height)) {
res = res.plus(C2SettingResultBuilder::BadValue(me.F(me.v.height)));
me.set().height = oldMe.v.height;
}
return res;
}
static C2R
MaxPictureSizeSetter(bool mayBlock,
C2P<C2StreamMaxPictureSizeTuning::output> &me,
const C2P<C2StreamPictureSizeInfo::output> &size) {
(void)mayBlock;
// TODO: get max width/height from the size's field helpers vs.
// hardcoding
me.set().width = c2_min(c2_max(me.v.width, size.v.width), 4080u);
me.set().height = c2_min(c2_max(me.v.height, size.v.height), 4080u);
return C2R::Ok();
}
static C2R MaxInputSizeSetter(
bool mayBlock, C2P<C2StreamMaxBufferSizeInfo::input> &me,
const C2P<C2StreamMaxPictureSizeTuning::output> &maxSize) {
(void)mayBlock;
// assume compression ratio of 2
me.set().value = c2_max((((maxSize.v.width + 15) / 16) *
((maxSize.v.height + 15) / 16) * 192),
kMinInputBufferSize);
return C2R::Ok();
}
static C2R
ProfileLevelSetter(bool mayBlock, C2P<C2StreamProfileLevelInfo::input> &me,
const C2P<C2StreamPictureSizeInfo::output> &size) {
(void)mayBlock;
(void)size;
(void)me; // TODO: validate
return C2R::Ok();
}
static C2R
DefaultColorAspectsSetter(bool mayBlock,
C2P<C2StreamColorAspectsTuning::output> &me) {
(void)mayBlock;
if (me.v.range > C2Color::RANGE_OTHER) {
me.set().range = C2Color::RANGE_OTHER;
}
if (me.v.primaries > C2Color::PRIMARIES_OTHER) {
me.set().primaries = C2Color::PRIMARIES_OTHER;
}
if (me.v.transfer > C2Color::TRANSFER_OTHER) {
me.set().transfer = C2Color::TRANSFER_OTHER;
}
if (me.v.matrix > C2Color::MATRIX_OTHER) {
me.set().matrix = C2Color::MATRIX_OTHER;
}
return C2R::Ok();
}
static C2R
CodedColorAspectsSetter(bool mayBlock,
C2P<C2StreamColorAspectsInfo::input> &me) {
(void)mayBlock;
if (me.v.range > C2Color::RANGE_OTHER) {
me.set().range = C2Color::RANGE_OTHER;
}
if (me.v.primaries > C2Color::PRIMARIES_OTHER) {
me.set().primaries = C2Color::PRIMARIES_OTHER;
}
if (me.v.transfer > C2Color::TRANSFER_OTHER) {
me.set().transfer = C2Color::TRANSFER_OTHER;
}
if (me.v.matrix > C2Color::MATRIX_OTHER) {
me.set().matrix = C2Color::MATRIX_OTHER;
}
return C2R::Ok();
}
static C2R
ColorAspectsSetter(bool mayBlock, C2P<C2StreamColorAspectsInfo::output> &me,
const C2P<C2StreamColorAspectsTuning::output> &def,
const C2P<C2StreamColorAspectsInfo::input> &coded) {
(void)mayBlock;
// take default values for all unspecified fields, and coded values for
// specified ones
me.set().range =
coded.v.range == RANGE_UNSPECIFIED ? def.v.range : coded.v.range;
me.set().primaries = coded.v.primaries == PRIMARIES_UNSPECIFIED
? def.v.primaries
: coded.v.primaries;
me.set().transfer = coded.v.transfer == TRANSFER_UNSPECIFIED
? def.v.transfer
: coded.v.transfer;
me.set().matrix = coded.v.matrix == MATRIX_UNSPECIFIED ? def.v.matrix
: coded.v.matrix;
return C2R::Ok();
}
std::shared_ptr<C2StreamColorAspectsInfo::output> getColorAspects_l() {
return mColorAspects;
}
int width() const { return mSize->width; }
int height() const { return mSize->height; }
private:
std::shared_ptr<C2StreamProfileLevelInfo::input> mProfileLevel;
std::shared_ptr<C2StreamPictureSizeInfo::output> mSize;
std::shared_ptr<C2StreamMaxPictureSizeTuning::output> mMaxSize;
std::shared_ptr<C2StreamMaxBufferSizeInfo::input> mMaxInputSize;
std::shared_ptr<C2StreamColorInfo::output> mColorInfo;
std::shared_ptr<C2StreamColorAspectsInfo::input> mCodedColorAspects;
std::shared_ptr<C2StreamColorAspectsTuning::output> mDefaultColorAspects;
std::shared_ptr<C2StreamColorAspectsInfo::output> mColorAspects;
std::shared_ptr<C2StreamPixelFormatInfo::output> mPixelFormat;
};
static void *ivd_aligned_malloc(void *ctxt, uint32_t alignment, uint32_t size) {
(void)ctxt;
return memalign(alignment, size);
}
static void ivd_aligned_free(void *ctxt, void *mem) {
(void)ctxt;
free(mem);
}
C2GoldfishAvcDec::C2GoldfishAvcDec(const char *name, c2_node_id_t id,
const std::shared_ptr<IntfImpl> &intfImpl)
: SimpleC2Component(
std::make_shared<SimpleInterface<IntfImpl>>(name, id, intfImpl)),
mIntf(intfImpl), mOutBufferFlush(nullptr), mWidth(1920), mHeight(1080),
mHeaderDecoded(false), mOutIndex(0u) {
mWidth = mIntf->width();
mHeight = mIntf->height();
DDD("creating avc decoder now w %d h %d", mWidth, mHeight);
}
C2GoldfishAvcDec::~C2GoldfishAvcDec() { onRelease(); }
c2_status_t C2GoldfishAvcDec::onInit() {
ALOGD("calling onInit");
mId = allocateDecoderId();
if (mId <= 0) return C2_NO_MEMORY;
status_t err = initDecoder();
return err == OK ? C2_OK : C2_CORRUPTED;
}
c2_status_t C2GoldfishAvcDec::onStop() {
if (OK != resetDecoder())
return C2_CORRUPTED;
resetPlugin();
return C2_OK;
}
void C2GoldfishAvcDec::onReset() { (void)onStop(); }
void C2GoldfishAvcDec::onRelease() {
DDD("calling onRelease");
if (mId > 0) {
deAllocateDecoderId();
mId = -1;
}
deleteContext();
if (mOutBlock) {
mOutBlock.reset();
}
}
void C2GoldfishAvcDec::decodeHeaderAfterFlush() {
if (mContext && !mCsd0.empty() && !mCsd1.empty()) {
mContext->decodeFrame(&(mCsd0[0]), mCsd0.size(), 0);
mContext->decodeFrame(&(mCsd1[0]), mCsd1.size(), 0);
DDD("resending csd0 and csd1");
}
}
c2_status_t C2GoldfishAvcDec::onFlush_sm() {
if (OK != setFlushMode())
return C2_CORRUPTED;
if (!mContext) {
// just ignore if context is not even created
return C2_OK;
}
uint32_t bufferSize = mStride * mHeight * 3 / 2;
mOutBufferFlush = (uint8_t *)ivd_aligned_malloc(nullptr, 128, bufferSize);
if (!mOutBufferFlush) {
ALOGE("could not allocate tmp output buffer (for flush) of size %u ",
bufferSize);
return C2_NO_MEMORY;
}
while (true) {
mPts = 0;
setDecodeArgs(nullptr, nullptr, 0, 0, 0);
mImg = mContext->getImage();
if (mImg.data == nullptr) {
resetPlugin();
break;
}
}
if (mOutBufferFlush) {
ivd_aligned_free(nullptr, mOutBufferFlush);
mOutBufferFlush = nullptr;
}
deleteContext();
return C2_OK;
}
status_t C2GoldfishAvcDec::createDecoder() {
DDD("creating avc context now w %d h %d", mWidth, mHeight);
if (mEnableAndroidNativeBuffers) {
mContext.reset(new MediaH264Decoder(RenderMode::RENDER_BY_HOST_GPU));
} else {
mContext.reset(new MediaH264Decoder(RenderMode::RENDER_BY_GUEST_CPU));
}
mContext->initH264Context(mWidth, mHeight, mWidth, mHeight,
MediaH264Decoder::PixelFormat::YUV420P);
return OK;
}
status_t C2GoldfishAvcDec::setParams(size_t stride) {
(void)stride;
return OK;
}
status_t C2GoldfishAvcDec::initDecoder() {
mStride = ALIGN2(mWidth);
mSignalledError = false;
resetPlugin();
return OK;
}
bool C2GoldfishAvcDec::setDecodeArgs(C2ReadView *inBuffer,
C2GraphicView *outBuffer, size_t inOffset,
size_t inSize, uint32_t tsMarker) {
uint32_t displayStride = mStride;
(void)inBuffer;
(void)inOffset;
(void)inSize;
(void)tsMarker;
if (outBuffer) {
C2PlanarLayout layout;
layout = outBuffer->layout();
displayStride = layout.planes[C2PlanarLayout::PLANE_Y].rowInc;
}
if (inBuffer) {
//= tsMarker;
mInPBuffer = const_cast<uint8_t *>(inBuffer->data() + inOffset);
mInPBufferSize = inSize;
mInTsMarker = tsMarker;
insertPts(tsMarker, mPts);
}
// uint32_t displayHeight = mHeight;
// size_t lumaSize = displayStride * displayHeight;
// size_t chromaSize = lumaSize >> 2;
if (mStride != displayStride) {
mStride = displayStride;
if (OK != setParams(mStride))
return false;
}
return true;
}
status_t C2GoldfishAvcDec::setFlushMode() {
if (mContext) {
mContext->flush();
}
mHeaderDecoded = false;
return OK;
}
status_t C2GoldfishAvcDec::resetDecoder() {
mStride = 0;
mSignalledError = false;
mHeaderDecoded = false;
deleteContext();
return OK;
}
void C2GoldfishAvcDec::resetPlugin() {
mSignalledOutputEos = false;
gettimeofday(&mTimeStart, nullptr);
gettimeofday(&mTimeEnd, nullptr);
}
void C2GoldfishAvcDec::deleteContext() {
if (mContext) {
mContext->destroyH264Context();
mContext.reset(nullptr);
mPts2Index.clear();
mOldPts2Index.clear();
mIndex2Pts.clear();
}
}
static void fillEmptyWork(const std::unique_ptr<C2Work> &work) {
uint32_t flags = 0;
if (work->input.flags & C2FrameData::FLAG_END_OF_STREAM) {
flags |= C2FrameData::FLAG_END_OF_STREAM;
DDD("signalling eos");
}
DDD("fill empty work");
work->worklets.front()->output.flags = (C2FrameData::flags_t)flags;
work->worklets.front()->output.buffers.clear();
work->worklets.front()->output.ordinal = work->input.ordinal;
work->workletsProcessed = 1u;
}
void C2GoldfishAvcDec::finishWork(uint64_t index,
const std::unique_ptr<C2Work> &work) {
std::shared_ptr<C2Buffer> buffer =
createGraphicBuffer(std::move(mOutBlock), C2Rect(mWidth, mHeight));
mOutBlock = nullptr;
{
IntfImpl::Lock lock = mIntf->lock();
buffer->setInfo(mIntf->getColorAspects_l());
}
class FillWork {
public:
FillWork(uint32_t flags, C2WorkOrdinalStruct ordinal,
const std::shared_ptr<C2Buffer> &buffer)
: mFlags(flags), mOrdinal(ordinal), mBuffer(buffer) {}
~FillWork() = default;
void operator()(const std::unique_ptr<C2Work> &work) {
work->worklets.front()->output.flags = (C2FrameData::flags_t)mFlags;
work->worklets.front()->output.buffers.clear();
work->worklets.front()->output.ordinal = mOrdinal;
work->workletsProcessed = 1u;
work->result = C2_OK;
if (mBuffer) {
work->worklets.front()->output.buffers.push_back(mBuffer);
}
DDD("timestamp = %lld, index = %lld, w/%s buffer",
mOrdinal.timestamp.peekll(), mOrdinal.frameIndex.peekll(),
mBuffer ? "" : "o");
}
private:
const uint32_t mFlags;
const C2WorkOrdinalStruct mOrdinal;
const std::shared_ptr<C2Buffer> mBuffer;
};
auto fillWork = [buffer](const std::unique_ptr<C2Work> &work) {
work->worklets.front()->output.flags = (C2FrameData::flags_t)0;
work->worklets.front()->output.buffers.clear();
work->worklets.front()->output.buffers.push_back(buffer);
work->worklets.front()->output.ordinal = work->input.ordinal;
work->workletsProcessed = 1u;
};
if (work && c2_cntr64_t(index) == work->input.ordinal.frameIndex) {
bool eos = ((work->input.flags & C2FrameData::FLAG_END_OF_STREAM) != 0);
// TODO: Check if cloneAndSend can be avoided by tracking number of
// frames remaining
if (eos) {
if (buffer) {
mOutIndex = index;
C2WorkOrdinalStruct outOrdinal = work->input.ordinal;
DDD("%s %d: cloneAndSend ", __func__, __LINE__);
cloneAndSend(
mOutIndex, work,
FillWork(C2FrameData::FLAG_INCOMPLETE, outOrdinal, buffer));
buffer.reset();
}
} else {
DDD("%s %d: fill", __func__, __LINE__);
fillWork(work);
}
} else {
DDD("%s %d: finish", __func__, __LINE__);
finish(index, fillWork);
}
}
c2_status_t
C2GoldfishAvcDec::ensureDecoderState(const std::shared_ptr<C2BlockPool> &pool) {
if (mOutBlock && (mOutBlock->width() != ALIGN2(mWidth) ||
mOutBlock->height() != mHeight)) {
mOutBlock.reset();
}
if (!mOutBlock) {
uint32_t format = HAL_PIXEL_FORMAT_YCBCR_420_888;
C2MemoryUsage usage = {C2MemoryUsage::CPU_READ,
C2MemoryUsage::CPU_WRITE};
usage.expected = (uint64_t)(BufferUsage::VIDEO_DECODER);
// C2MemoryUsage usage = {(unsigned
// int)(BufferUsage::GPU_DATA_BUFFER)};// { C2MemoryUsage::CPU_READ,
// C2MemoryUsage::CPU_WRITE };
c2_status_t err = pool->fetchGraphicBlock(ALIGN2(mWidth), mHeight,
format, usage, &mOutBlock);
if (err != C2_OK) {
ALOGE("fetchGraphicBlock for Output failed with status %d", err);
return err;
}
if (mEnableAndroidNativeBuffers) {
auto c2Handle = mOutBlock->handle();
native_handle_t *grallocHandle =
UnwrapNativeCodec2GrallocHandle(c2Handle);
mHostColorBufferId = getColorBufferHandle(grallocHandle);
DDD("found handle %d", mHostColorBufferId);
}
DDD("provided (%dx%d) required (%dx%d)", mOutBlock->width(),
mOutBlock->height(), ALIGN2(mWidth), mHeight);
}
return C2_OK;
}
void C2GoldfishAvcDec::checkMode(const std::shared_ptr<C2BlockPool> &pool) {
mWidth = mIntf->width();
mHeight = mIntf->height();
const bool isGraphic = (pool->getAllocatorId() & C2Allocator::GRAPHIC);
DDD("buffer id %d", (int)(pool->getAllocatorId()));
if (isGraphic) {
DDD("decoding to host color buffer");
mEnableAndroidNativeBuffers = true;
} else {
DDD("decoding to guest byte buffer");
mEnableAndroidNativeBuffers = false;
}
}
void C2GoldfishAvcDec::getVuiParams(h264_image_t &img) {
VuiColorAspects vuiColorAspects;
vuiColorAspects.primaries = img.color_primaries;
vuiColorAspects.transfer = img.color_trc;
vuiColorAspects.coeffs = img.colorspace;
vuiColorAspects.fullRange = img.color_range == 2 ? true : false;
// convert vui aspects to C2 values if changed
if (!(vuiColorAspects == mBitstreamColorAspects)) {
mBitstreamColorAspects = vuiColorAspects;
ColorAspects sfAspects;
C2StreamColorAspectsInfo::input codedAspects = {0u};
ColorUtils::convertIsoColorAspectsToCodecAspects(
vuiColorAspects.primaries, vuiColorAspects.transfer,
vuiColorAspects.coeffs, vuiColorAspects.fullRange, sfAspects);
if (!C2Mapper::map(sfAspects.mPrimaries, &codedAspects.primaries)) {
codedAspects.primaries = C2Color::PRIMARIES_UNSPECIFIED;
}
if (!C2Mapper::map(sfAspects.mRange, &codedAspects.range)) {
codedAspects.range = C2Color::RANGE_UNSPECIFIED;
}
if (!C2Mapper::map(sfAspects.mMatrixCoeffs, &codedAspects.matrix)) {
codedAspects.matrix = C2Color::MATRIX_UNSPECIFIED;
}
if (!C2Mapper::map(sfAspects.mTransfer, &codedAspects.transfer)) {
codedAspects.transfer = C2Color::TRANSFER_UNSPECIFIED;
}
std::vector<std::unique_ptr<C2SettingResult>> failures;
(void)mIntf->config({&codedAspects}, C2_MAY_BLOCK, &failures);
}
}
void C2GoldfishAvcDec::copyImageData(h264_image_t &img) {
getVuiParams(img);
if (mEnableAndroidNativeBuffers)
return;
auto writeView = mOutBlock->map().get();
if (writeView.error()) {
ALOGE("graphic view map failed %d", writeView.error());
return;
}
size_t dstYStride = writeView.layout().planes[C2PlanarLayout::PLANE_Y].rowInc;
size_t dstUVStride = writeView.layout().planes[C2PlanarLayout::PLANE_U].rowInc;
uint8_t *pYBuffer = const_cast<uint8_t *>(writeView.data()[C2PlanarLayout::PLANE_Y]);
uint8_t *pUBuffer = const_cast<uint8_t *>(writeView.data()[C2PlanarLayout::PLANE_U]);
uint8_t *pVBuffer = const_cast<uint8_t *>(writeView.data()[C2PlanarLayout::PLANE_V]);
for (int i = 0; i < mHeight; ++i) {
memcpy(pYBuffer + i * dstYStride, img.data + i * mWidth, mWidth);
}
for (int i = 0; i < mHeight / 2; ++i) {
memcpy(pUBuffer + i * dstUVStride,
img.data + mWidth * mHeight + i * mWidth / 2, mWidth / 2);
}
for (int i = 0; i < mHeight / 2; ++i) {
memcpy(pVBuffer + i * dstUVStride,
img.data + mWidth * mHeight * 5 / 4 + i * mWidth / 2,
mWidth / 2);
}
}
uint64_t C2GoldfishAvcDec::getWorkIndex(uint64_t pts) {
if (!mOldPts2Index.empty()) {
auto iter = mOldPts2Index.find(pts);
if (iter != mOldPts2Index.end()) {
auto index = iter->second;
DDD("found index %d for pts %" PRIu64, (int)index, pts);
return index;
}
}
auto iter = mPts2Index.find(pts);
if (iter != mPts2Index.end()) {
auto index = iter->second;
DDD("found index %d for pts %" PRIu64, (int)index, pts);
return index;
}
DDD("not found index for pts %" PRIu64, pts);
return 0;
}
void C2GoldfishAvcDec::insertPts(uint32_t work_index, uint64_t pts) {
auto iter = mPts2Index.find(pts);
if (iter != mPts2Index.end()) {
// we have a collision here:
// apparently, older session is not done yet,
// lets save them
DDD("inserted to old pts %" PRIu64 " with index %d", pts, (int)iter->second);
mOldPts2Index[iter->first] = iter->second;
}
DDD("inserted pts %" PRIu64 " with index %d", pts, (int)work_index);
mIndex2Pts[work_index] = pts;
mPts2Index[pts] = work_index;
}
void C2GoldfishAvcDec::removePts(uint64_t pts) {
bool found = false;
uint64_t index = 0;
// note: check old pts first to see
// if we have some left over, check them
if (!mOldPts2Index.empty()) {
auto iter = mOldPts2Index.find(pts);
if (iter != mOldPts2Index.end()) {
mOldPts2Index.erase(iter);
index = iter->second;
found = true;
}
} else {
auto iter = mPts2Index.find(pts);
if (iter != mPts2Index.end()) {
mPts2Index.erase(iter);
index = iter->second;
found = true;
}
}
if (!found) return;
auto iter2 = mIndex2Pts.find(index);
if (iter2 == mIndex2Pts.end()) return;
mIndex2Pts.erase(iter2);
}
// TODO: can overall error checking be improved?
// TODO: allow configuration of color format and usage for graphic buffers
// instead
// of hard coding them to HAL_PIXEL_FORMAT_YV12
// TODO: pass coloraspects information to surface
// TODO: test support for dynamic change in resolution
// TODO: verify if the decoder sent back all frames
void C2GoldfishAvcDec::process(const std::unique_ptr<C2Work> &work,
const std::shared_ptr<C2BlockPool> &pool) {
// Initialize output work
work->result = C2_OK;
work->workletsProcessed = 0u;
work->worklets.front()->output.flags = work->input.flags;
if (mSignalledError || mSignalledOutputEos) {
work->result = C2_BAD_VALUE;
return;
}
DDD("process work");
if (!mContext) {
DDD("creating decoder context to host in process work");
checkMode(pool);
createDecoder();
decodeHeaderAfterFlush();
}
size_t inOffset = 0u;
size_t inSize = 0u;
uint32_t workIndex = work->input.ordinal.frameIndex.peeku() & 0xFFFFFFFF;
mPts = work->input.ordinal.timestamp.peeku();
C2ReadView rView = mDummyReadView;
if (!work->input.buffers.empty()) {
rView =
work->input.buffers[0]->data().linearBlocks().front().map().get();
inSize = rView.capacity();
if (inSize && rView.error()) {
ALOGE("read view map failed %d", rView.error());
work->result = rView.error();
return;
}
}
bool eos = ((work->input.flags & C2FrameData::FLAG_END_OF_STREAM) != 0);
bool hasPicture = (inSize > 0);
DDD("in buffer attr. size %zu timestamp %d frameindex %d, flags %x", inSize,
(int)work->input.ordinal.timestamp.peeku(),
(int)work->input.ordinal.frameIndex.peeku(), work->input.flags);
size_t inPos = 0;
while (inPos < inSize && inSize - inPos >= kMinInputBytes) {
if (C2_OK != ensureDecoderState(pool)) {
mSignalledError = true;
work->workletsProcessed = 1u;
work->result = C2_CORRUPTED;
return;
}
{
// C2GraphicView wView;// = mOutBlock->map().get();
// if (wView.error()) {
// ALOGE("graphic view map failed %d", wView.error());
// work->result = wView.error();
// return;
//}
if (!setDecodeArgs(&rView, nullptr, inOffset + inPos,
inSize - inPos, workIndex)) {
mSignalledError = true;
work->workletsProcessed = 1u;
work->result = C2_CORRUPTED;
return;
}
DDD("flag is %x", work->input.flags);
if (work->input.flags & C2FrameData::FLAG_CODEC_CONFIG) {
hasPicture = false;
if (mCsd0.empty()) {
mCsd0.assign(mInPBuffer, mInPBuffer + mInPBufferSize);
DDD("assign to csd0 with %d bytpes", mInPBufferSize);
} else if (mCsd1.empty()) {
mCsd1.assign(mInPBuffer, mInPBuffer + mInPBufferSize);
DDD("assign to csd1 with %d bytpes", mInPBufferSize);
}
// this is not really a valid pts from config
removePts(mPts);
}
bool whChanged = false;
if (GoldfishH264Helper::isSpsFrame(mInPBuffer, mInPBufferSize)) {
mH264Helper.reset(new GoldfishH264Helper(mWidth, mHeight));
whChanged = mH264Helper->decodeHeader(mInPBuffer, mInPBufferSize);
if (whChanged) {
DDD("w changed from old %d to new %d\n", mWidth, mH264Helper->getWidth());
DDD("h changed from old %d to new %d\n", mHeight, mH264Helper->getHeight());
if (1) {
drainInternal(DRAIN_COMPONENT_NO_EOS, pool, work);
resetDecoder();
resetPlugin();
work->workletsProcessed = 0u;
}
{
mWidth = mH264Helper->getWidth();
mHeight = mH264Helper->getHeight();
C2StreamPictureSizeInfo::output size(0u, mWidth, mHeight);
std::vector<std::unique_ptr<C2SettingResult>> failures;
c2_status_t err = mIntf->config({&size}, C2_MAY_BLOCK, &failures);
if (err == OK) {
work->worklets.front()->output.configUpdate.push_back(
C2Param::Copy(size));
ensureDecoderState(pool);
} else {
ALOGE("Cannot set width and height");
mSignalledError = true;
work->workletsProcessed = 1u;
work->result = C2_CORRUPTED;
return;
}
}
if (!mContext) {
DDD("creating decoder context to host in process work");
checkMode(pool);
createDecoder();
}
continue;
} // end of whChanged
} // end of isSpsFrame
uint32_t delay;
GETTIME(&mTimeStart, nullptr);
TIME_DIFF(mTimeEnd, mTimeStart, delay);
(void)delay;
//(void) ivdec_api_function(mDecHandle, &s_decode_ip, &s_decode_op);
DDD("decoding");
h264_result_t h264Res =
mContext->decodeFrame(mInPBuffer, mInPBufferSize, mIndex2Pts[mInTsMarker]);
mConsumedBytes = h264Res.bytesProcessed;
DDD("decoding consumed %d", (int)mConsumedBytes);
if (mHostColorBufferId > 0) {
mImg = mContext->renderOnHostAndReturnImageMetadata(
mHostColorBufferId);
} else {
mImg = mContext->getImage();
}
uint32_t decodeTime;
GETTIME(&mTimeEnd, nullptr);
TIME_DIFF(mTimeStart, mTimeEnd, decodeTime);
(void)decodeTime;
}
if (mImg.data != nullptr) {
DDD("got data %" PRIu64 " with pts %" PRIu64, getWorkIndex(mImg.pts), mImg.pts);
mHeaderDecoded = true;
copyImageData(mImg);
finishWork(getWorkIndex(mImg.pts), work);
removePts(mImg.pts);
} else {
work->workletsProcessed = 0u;
}
inPos += mConsumedBytes;
}
if (eos) {
DDD("drain because of eos");
drainInternal(DRAIN_COMPONENT_WITH_EOS, pool, work);
mSignalledOutputEos = true;
} else if (!hasPicture) {
DDD("no picture, fill empty work");
fillEmptyWork(work);
}
work->input.buffers.clear();
}
c2_status_t
C2GoldfishAvcDec::drainInternal(uint32_t drainMode,
const std::shared_ptr<C2BlockPool> &pool,
const std::unique_ptr<C2Work> &work) {
if (drainMode == NO_DRAIN) {
ALOGW("drain with NO_DRAIN: no-op");
return C2_OK;
}
if (drainMode == DRAIN_CHAIN) {
ALOGW("DRAIN_CHAIN not supported");
return C2_OMITTED;
}
if (OK != setFlushMode())
return C2_CORRUPTED;
while (true) {
if (C2_OK != ensureDecoderState(pool)) {
mSignalledError = true;
work->workletsProcessed = 1u;
work->result = C2_CORRUPTED;
return C2_CORRUPTED;
}
/*
C2GraphicView wView = mOutBlock->map().get();
if (wView.error()) {
ALOGE("graphic view map failed %d", wView.error());
return C2_CORRUPTED;
}
if (!setDecodeArgs(nullptr, &wView, 0, 0, 0)) {
mSignalledError = true;
work->workletsProcessed = 1u;
return C2_CORRUPTED;
}
*/
if (mHostColorBufferId > 0) {
mImg = mContext->renderOnHostAndReturnImageMetadata(
mHostColorBufferId);
} else {
mImg = mContext->getImage();
}
// TODO: maybe keep rendering to screen
// mImg = mContext->getImage();
if (mImg.data != nullptr) {
DDD("got data in drain mode %" PRIu64 " with pts %" PRIu64, getWorkIndex(mImg.pts), mImg.pts);
copyImageData(mImg);
finishWork(getWorkIndex(mImg.pts), work);
removePts(mImg.pts);
} else {
fillEmptyWork(work);
break;
}
}
return C2_OK;
}
c2_status_t C2GoldfishAvcDec::drain(uint32_t drainMode,
const std::shared_ptr<C2BlockPool> &pool) {
DDD("drainInternal because of drain");
return drainInternal(drainMode, pool, nullptr);
}
class C2GoldfishAvcDecFactory : public C2ComponentFactory {
public:
C2GoldfishAvcDecFactory()
: mHelper(std::static_pointer_cast<C2ReflectorHelper>(
GoldfishComponentStore::Create()->getParamReflector())) {}
virtual c2_status_t
createComponent(c2_node_id_t id,
std::shared_ptr<C2Component> *const component,
std::function<void(C2Component *)> deleter) override {
*component = std::shared_ptr<C2Component>(
new C2GoldfishAvcDec(
COMPONENT_NAME, id,
std::make_shared<C2GoldfishAvcDec::IntfImpl>(mHelper)),
deleter);
return C2_OK;
}
virtual c2_status_t createInterface(
c2_node_id_t id, std::shared_ptr<C2ComponentInterface> *const interface,
std::function<void(C2ComponentInterface *)> deleter) override {
*interface = std::shared_ptr<C2ComponentInterface>(
new SimpleInterface<C2GoldfishAvcDec::IntfImpl>(
COMPONENT_NAME, id,
std::make_shared<C2GoldfishAvcDec::IntfImpl>(mHelper)),
deleter);
return C2_OK;
}
virtual ~C2GoldfishAvcDecFactory() override = default;
private:
std::shared_ptr<C2ReflectorHelper> mHelper;
};
} // namespace android
extern "C" ::C2ComponentFactory *CreateCodec2Factory() {
DDD("in %s", __func__);
return new ::android::C2GoldfishAvcDecFactory();
}
extern "C" void DestroyCodec2Factory(::C2ComponentFactory *factory) {
DDD("in %s", __func__);
delete factory;
}