blob: dbefcc6549ff5801d5166c0b916eedc17f762309 [file] [log] [blame]
/*
* Copyright 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "VsyncThread.h"
#include <thread>
namespace android {
namespace {
std::chrono::time_point<std::chrono::steady_clock> asTimePoint(int64_t nanos) {
return std::chrono::time_point<std::chrono::steady_clock>(
std::chrono::nanoseconds(nanos));
}
hwc2_vsync_period_t asNanos(std::chrono::nanoseconds duration) {
return duration.count();
}
int64_t asNanos(std::chrono::time_point<std::chrono::steady_clock> time) {
std::chrono::time_point<std::chrono::steady_clock> zero(
std::chrono::nanoseconds(0));
return std::chrono::duration_cast<std::chrono::nanoseconds>(time - zero)
.count();
}
// Returns the timepoint of the next vsync after the 'now' timepoint that is
// a multiple of 'vsyncPeriod' in-phase/offset-from 'previousSync'.
//
// Some examples:
// * vsyncPeriod=50ns previousVsync=500ns now=510ns => 550ns
// * vsyncPeriod=50ns previousVsync=300ns now=510ns => 550ns
// * vsyncPeriod=50ns previousVsync=500ns now=550ns => 550ns
std::chrono::time_point<std::chrono::steady_clock> GetNextVsyncInPhase(
std::chrono::nanoseconds vsyncPeriod,
std::chrono::time_point<std::chrono::steady_clock> previousVsync,
std::chrono::time_point<std::chrono::steady_clock> now) {
const auto elapsed = std::chrono::nanoseconds(now - previousVsync);
const auto nextMultiple = (elapsed / vsyncPeriod) + 1;
return previousVsync + (nextMultiple * vsyncPeriod);
}
} // namespace
VsyncThread::VsyncThread(hwc2_display_t id) : mDisplayId(id) {
mPreviousVsync = std::chrono::steady_clock::now() - mVsyncPeriod;
}
HWC2::Error VsyncThread::start(hwc2_vsync_period_t vsyncPeriod) {
DEBUG_LOG("%s for display:%" PRIu64, __FUNCTION__, mDisplayId);
mVsyncPeriod = std::chrono::nanoseconds(vsyncPeriod);
const std::string threadName =
"display_" + std::to_string(mDisplayId) + "_vsync_thread";
this->run(threadName.c_str(), ANDROID_PRIORITY_URGENT_DISPLAY);
return HWC2::Error::None;
}
HWC2::Error VsyncThread::setVsyncCallback(HWC2_PFN_VSYNC callback,
hwc2_callback_data_t callbackData) {
DEBUG_LOG("%s for display:%" PRIu64, __FUNCTION__, mDisplayId);
std::unique_lock<std::mutex> lock(mStateMutex);
mVsyncCallback = callback;
mVsyncCallbackData = callbackData;
return HWC2::Error::None;
}
HWC2::Error VsyncThread::setVsync24Callback(HWC2_PFN_VSYNC_2_4 callback,
hwc2_callback_data_t callbackData) {
DEBUG_LOG("%s for display:%" PRIu64, __FUNCTION__, mDisplayId);
std::unique_lock<std::mutex> lock(mStateMutex);
mVsync24Callback = callback;
mVsync24CallbackData = callbackData;
return HWC2::Error::None;
}
HWC2::Error VsyncThread::setVsyncEnabled(bool enabled) {
DEBUG_LOG("%s for display:%" PRIu64 " enabled:%d", __FUNCTION__, mDisplayId,
enabled);
std::unique_lock<std::mutex> lock(mStateMutex);
mVsyncEnabled = enabled;
return HWC2::Error::None;
}
HWC2::Error VsyncThread::scheduleVsyncUpdate(
hwc2_vsync_period_t newVsyncPeriod,
hwc_vsync_period_change_constraints_t* newVsyncPeriodConstraints,
hwc_vsync_period_change_timeline_t* outTimeline) {
DEBUG_LOG("%s for display:%" PRIu64, __FUNCTION__, mDisplayId);
PendingUpdate update;
update.period = std::chrono::nanoseconds(newVsyncPeriod);
update.updateAfter = asTimePoint(newVsyncPeriodConstraints->desiredTimeNanos);
std::unique_lock<std::mutex> lock(mStateMutex);
mPendingUpdate.emplace(std::move(update));
auto nextVsync =
GetNextVsyncInPhase(mVsyncPeriod, mPreviousVsync, update.updateAfter);
outTimeline->newVsyncAppliedTimeNanos = asNanos(nextVsync);
outTimeline->refreshRequired = false;
outTimeline->refreshTimeNanos = 0;
return HWC2::Error::None;
}
std::chrono::nanoseconds VsyncThread::updateVsyncPeriodLocked(
std::chrono::time_point<std::chrono::steady_clock> now) {
if (mPendingUpdate && now > mPendingUpdate->updateAfter) {
mVsyncPeriod = mPendingUpdate->period;
mPendingUpdate.reset();
}
return mVsyncPeriod;
}
bool VsyncThread::threadLoop() {
DEBUG_LOG("%s: for display:%" PRIu64 " started", __FUNCTION__, mDisplayId);
std::chrono::nanoseconds vsyncPeriod = mVsyncPeriod;
int vsyncs = 0;
auto previousLog = std::chrono::steady_clock::now();
while (true) {
auto now = std::chrono::steady_clock::now();
auto nextVsync = GetNextVsyncInPhase(vsyncPeriod, mPreviousVsync, now);
std::this_thread::sleep_until(nextVsync);
{
std::unique_lock<std::mutex> lock(mStateMutex);
mPreviousVsync = nextVsync;
// Display has finished refreshing at previous vsync period. Update the
// vsync period if there was a pending update.
vsyncPeriod = updateVsyncPeriodLocked(mPreviousVsync);
}
if (mVsyncEnabled) {
if (mVsync24Callback) {
DEBUG_LOG("%s: for display:%" PRIu64 " calling vsync_2_4", __FUNCTION__,
mDisplayId);
mVsync24Callback(mVsync24CallbackData, mDisplayId, asNanos(nextVsync),
asNanos(vsyncPeriod));
} else if (mVsyncCallback) {
DEBUG_LOG("%s: for display:%" PRIu64 " calling vsync", __FUNCTION__,
mDisplayId);
mVsyncCallback(mVsyncCallbackData, mDisplayId, asNanos(nextVsync));
}
}
static constexpr const int kLogIntervalSeconds = 60;
if (now > (previousLog + std::chrono::seconds(kLogIntervalSeconds))) {
DEBUG_LOG("%s: for display:%" PRIu64 " send %" PRIu32
" in last %d seconds",
__FUNCTION__, mDisplayId, vsyncs, kLogIntervalSeconds);
previousLog = now;
vsyncs = 0;
}
++vsyncs;
}
DEBUG_LOG("%s: for display:%" PRIu64 " started", __FUNCTION__, mDisplayId);
return false;
}
} // namespace android