| // Copyright (C) 2018 The Android Open Source Project |
| // Copyright (C) 2018 Google Inc. |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include "ResourceTracker.h" |
| |
| #include "android/base/Optional.h" |
| #include "android/base/threads/AndroidWorkPool.h" |
| |
| #include "goldfish_vk_private_defs.h" |
| |
| #include "../OpenglSystemCommon/EmulatorFeatureInfo.h" |
| #include "../OpenglSystemCommon/HostConnection.h" |
| |
| #ifdef VK_USE_PLATFORM_ANDROID_KHR |
| |
| #include "../egl/goldfish_sync.h" |
| |
| typedef uint32_t zx_handle_t; |
| #define ZX_HANDLE_INVALID ((zx_handle_t)0) |
| void zx_handle_close(zx_handle_t) { } |
| void zx_event_create(int, zx_handle_t*) { } |
| |
| #include "AndroidHardwareBuffer.h" |
| |
| #ifndef HOST_BUILD |
| #include <drm/virtgpu_drm.h> |
| #include <xf86drm.h> |
| #endif |
| |
| #include "VirtioGpuNext.h" |
| |
| #endif // VK_USE_PLATFORM_ANDROID_KHR |
| |
| #ifdef VK_USE_PLATFORM_FUCHSIA |
| |
| #include <cutils/native_handle.h> |
| #include <fuchsia/hardware/goldfish/cpp/fidl.h> |
| #include <fuchsia/sysmem/cpp/fidl.h> |
| #include <lib/zx/channel.h> |
| #include <lib/zx/vmo.h> |
| #include <zircon/process.h> |
| #include <zircon/syscalls.h> |
| #include <zircon/syscalls/object.h> |
| |
| #include "services/service_connector.h" |
| |
| struct AHardwareBuffer; |
| |
| void AHardwareBuffer_release(AHardwareBuffer*) { } |
| |
| native_handle_t *AHardwareBuffer_getNativeHandle(AHardwareBuffer*) { return NULL; } |
| |
| uint64_t getAndroidHardwareBufferUsageFromVkUsage( |
| const VkImageCreateFlags vk_create, |
| const VkImageUsageFlags vk_usage) { |
| return AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE; |
| } |
| |
| VkResult importAndroidHardwareBuffer( |
| Gralloc *grallocHelper, |
| const VkImportAndroidHardwareBufferInfoANDROID* info, |
| struct AHardwareBuffer **importOut) { |
| return VK_SUCCESS; |
| } |
| |
| VkResult createAndroidHardwareBuffer( |
| bool hasDedicatedImage, |
| bool hasDedicatedBuffer, |
| const VkExtent3D& imageExtent, |
| uint32_t imageLayers, |
| VkFormat imageFormat, |
| VkImageUsageFlags imageUsage, |
| VkImageCreateFlags imageCreateFlags, |
| VkDeviceSize bufferSize, |
| VkDeviceSize allocationInfoAllocSize, |
| struct AHardwareBuffer **out) { |
| return VK_SUCCESS; |
| } |
| |
| namespace goldfish_vk { |
| struct HostVisibleMemoryVirtualizationInfo; |
| } |
| |
| VkResult getAndroidHardwareBufferPropertiesANDROID( |
| Gralloc *grallocHelper, |
| const goldfish_vk::HostVisibleMemoryVirtualizationInfo*, |
| VkDevice, |
| const AHardwareBuffer*, |
| VkAndroidHardwareBufferPropertiesANDROID*) { return VK_SUCCESS; } |
| |
| VkResult getMemoryAndroidHardwareBufferANDROID(struct AHardwareBuffer **) { return VK_SUCCESS; } |
| |
| #endif // VK_USE_PLATFORM_FUCHSIA |
| |
| #include "HostVisibleMemoryVirtualization.h" |
| #include "Resources.h" |
| #include "VkEncoder.h" |
| |
| #include "android/base/AlignedBuf.h" |
| #include "android/base/synchronization/AndroidLock.h" |
| |
| #include "goldfish_address_space.h" |
| #include "goldfish_vk_private_defs.h" |
| #include "vk_format_info.h" |
| #include "vk_util.h" |
| |
| #include <set> |
| #include <string> |
| #include <unordered_map> |
| #include <unordered_set> |
| |
| #include <vndk/hardware_buffer.h> |
| #include <log/log.h> |
| #include <stdlib.h> |
| #include <sync/sync.h> |
| |
| #ifdef VK_USE_PLATFORM_ANDROID_KHR |
| |
| #include <sys/mman.h> |
| #include <sys/syscall.h> |
| |
| #ifdef HOST_BUILD |
| #include "android/utils/tempfile.h" |
| #endif |
| |
| static inline int |
| inline_memfd_create(const char *name, unsigned int flags) { |
| #ifdef HOST_BUILD |
| TempFile* tmpFile = tempfile_create(); |
| return open(tempfile_path(tmpFile), O_RDWR); |
| // TODO: Windows is not suppose to support VkSemaphoreGetFdInfoKHR |
| #else |
| return syscall(SYS_memfd_create, name, flags); |
| #endif |
| } |
| #define memfd_create inline_memfd_create |
| #endif // !VK_USE_PLATFORM_ANDROID_KHR |
| |
| #define RESOURCE_TRACKER_DEBUG 0 |
| |
| #if RESOURCE_TRACKER_DEBUG |
| #undef D |
| #define D(fmt,...) ALOGD("%s: " fmt, __func__, ##__VA_ARGS__); |
| #else |
| #ifndef D |
| #define D(fmt,...) |
| #endif |
| #endif |
| |
| using android::aligned_buf_alloc; |
| using android::aligned_buf_free; |
| using android::base::Optional; |
| using android::base::guest::AutoLock; |
| using android::base::guest::Lock; |
| using android::base::guest::WorkPool; |
| |
| namespace goldfish_vk { |
| |
| #define MAKE_HANDLE_MAPPING_FOREACH(type_name, map_impl, map_to_u64_impl, map_from_u64_impl) \ |
| void mapHandles_##type_name(type_name* handles, size_t count) override { \ |
| for (size_t i = 0; i < count; ++i) { \ |
| map_impl; \ |
| } \ |
| } \ |
| void mapHandles_##type_name##_u64(const type_name* handles, uint64_t* handle_u64s, size_t count) override { \ |
| for (size_t i = 0; i < count; ++i) { \ |
| map_to_u64_impl; \ |
| } \ |
| } \ |
| void mapHandles_u64_##type_name(const uint64_t* handle_u64s, type_name* handles, size_t count) override { \ |
| for (size_t i = 0; i < count; ++i) { \ |
| map_from_u64_impl; \ |
| } \ |
| } \ |
| |
| #define DEFINE_RESOURCE_TRACKING_CLASS(class_name, impl) \ |
| class class_name : public VulkanHandleMapping { \ |
| public: \ |
| virtual ~class_name() { } \ |
| GOLDFISH_VK_LIST_HANDLE_TYPES(impl) \ |
| }; \ |
| |
| #define CREATE_MAPPING_IMPL_FOR_TYPE(type_name) \ |
| MAKE_HANDLE_MAPPING_FOREACH(type_name, \ |
| handles[i] = new_from_host_##type_name(handles[i]); ResourceTracker::get()->register_##type_name(handles[i]);, \ |
| handle_u64s[i] = (uint64_t)new_from_host_##type_name(handles[i]), \ |
| handles[i] = (type_name)new_from_host_u64_##type_name(handle_u64s[i]); ResourceTracker::get()->register_##type_name(handles[i]);) |
| |
| #define UNWRAP_MAPPING_IMPL_FOR_TYPE(type_name) \ |
| MAKE_HANDLE_MAPPING_FOREACH(type_name, \ |
| handles[i] = get_host_##type_name(handles[i]), \ |
| handle_u64s[i] = (uint64_t)get_host_u64_##type_name(handles[i]), \ |
| handles[i] = (type_name)get_host_##type_name((type_name)handle_u64s[i])) |
| |
| #define DESTROY_MAPPING_IMPL_FOR_TYPE(type_name) \ |
| MAKE_HANDLE_MAPPING_FOREACH(type_name, \ |
| ResourceTracker::get()->unregister_##type_name(handles[i]); delete_goldfish_##type_name(handles[i]), \ |
| (void)handle_u64s[i]; delete_goldfish_##type_name(handles[i]), \ |
| (void)handles[i]; delete_goldfish_##type_name((type_name)handle_u64s[i])) |
| |
| DEFINE_RESOURCE_TRACKING_CLASS(CreateMapping, CREATE_MAPPING_IMPL_FOR_TYPE) |
| DEFINE_RESOURCE_TRACKING_CLASS(UnwrapMapping, UNWRAP_MAPPING_IMPL_FOR_TYPE) |
| DEFINE_RESOURCE_TRACKING_CLASS(DestroyMapping, DESTROY_MAPPING_IMPL_FOR_TYPE) |
| |
| class ResourceTracker::Impl { |
| public: |
| Impl() = default; |
| CreateMapping createMapping; |
| UnwrapMapping unwrapMapping; |
| DestroyMapping destroyMapping; |
| DefaultHandleMapping defaultMapping; |
| |
| #define HANDLE_DEFINE_TRIVIAL_INFO_STRUCT(type) \ |
| struct type##_Info { \ |
| uint32_t unused; \ |
| }; \ |
| |
| GOLDFISH_VK_LIST_TRIVIAL_HANDLE_TYPES(HANDLE_DEFINE_TRIVIAL_INFO_STRUCT) |
| |
| struct VkInstance_Info { |
| uint32_t highestApiVersion; |
| std::set<std::string> enabledExtensions; |
| // Fodder for vkEnumeratePhysicalDevices. |
| std::vector<VkPhysicalDevice> physicalDevices; |
| }; |
| |
| using HostMemBlocks = std::vector<HostMemAlloc>; |
| using HostMemBlockIndex = size_t; |
| |
| #define INVALID_HOST_MEM_BLOCK (-1) |
| |
| struct VkDevice_Info { |
| VkPhysicalDevice physdev; |
| VkPhysicalDeviceProperties props; |
| VkPhysicalDeviceMemoryProperties memProps; |
| std::vector<HostMemBlocks> hostMemBlocks { VK_MAX_MEMORY_TYPES }; |
| uint32_t apiVersion; |
| std::set<std::string> enabledExtensions; |
| }; |
| |
| struct VirtioGpuHostmemResourceInfo { |
| uint32_t resourceId = 0; |
| int primeFd = -1; |
| }; |
| |
| struct VkDeviceMemory_Info { |
| VkDeviceSize allocationSize = 0; |
| VkDeviceSize mappedSize = 0; |
| uint8_t* mappedPtr = nullptr; |
| uint32_t memoryTypeIndex = 0; |
| bool virtualHostVisibleBacking = false; |
| bool directMapped = false; |
| GoldfishAddressSpaceBlock* |
| goldfishAddressSpaceBlock = nullptr; |
| VirtioGpuHostmemResourceInfo resInfo; |
| SubAlloc subAlloc; |
| AHardwareBuffer* ahw = nullptr; |
| zx_handle_t vmoHandle = ZX_HANDLE_INVALID; |
| }; |
| |
| struct VkCommandBuffer_Info { |
| VkEncoder** lastUsedEncoderPtr = nullptr; |
| uint32_t sequenceNumber = 0; |
| }; |
| |
| // custom guest-side structs for images/buffers because of AHardwareBuffer :(( |
| struct VkImage_Info { |
| VkDevice device; |
| VkImageCreateInfo createInfo; |
| bool external = false; |
| VkExternalMemoryImageCreateInfo externalCreateInfo; |
| VkDeviceMemory currentBacking = VK_NULL_HANDLE; |
| VkDeviceSize currentBackingOffset = 0; |
| VkDeviceSize currentBackingSize = 0; |
| bool baseRequirementsKnown = false; |
| VkMemoryRequirements baseRequirements; |
| #ifdef VK_USE_PLATFORM_FUCHSIA |
| bool isSysmemBackedMemory = false; |
| #endif |
| }; |
| |
| struct VkBuffer_Info { |
| VkDevice device; |
| VkBufferCreateInfo createInfo; |
| bool external = false; |
| VkExternalMemoryBufferCreateInfo externalCreateInfo; |
| VkDeviceMemory currentBacking = VK_NULL_HANDLE; |
| VkDeviceSize currentBackingOffset = 0; |
| VkDeviceSize currentBackingSize = 0; |
| bool baseRequirementsKnown = false; |
| VkMemoryRequirements baseRequirements; |
| #ifdef VK_USE_PLATFORM_FUCHSIA |
| bool isSysmemBackedMemory = false; |
| #endif |
| }; |
| |
| struct VkSemaphore_Info { |
| VkDevice device; |
| zx_handle_t eventHandle = ZX_HANDLE_INVALID; |
| int syncFd = -1; |
| }; |
| |
| struct VkDescriptorUpdateTemplate_Info { |
| std::vector<VkDescriptorUpdateTemplateEntry> templateEntries; |
| |
| // Flattened versions |
| std::vector<uint32_t> imageInfoEntryIndices; |
| std::vector<uint32_t> bufferInfoEntryIndices; |
| std::vector<uint32_t> bufferViewEntryIndices; |
| std::vector<VkDescriptorImageInfo> imageInfos; |
| std::vector<VkDescriptorBufferInfo> bufferInfos; |
| std::vector<VkBufferView> bufferViews; |
| }; |
| |
| struct VkFence_Info { |
| VkDevice device; |
| bool external = false; |
| VkExportFenceCreateInfo exportFenceCreateInfo; |
| #ifdef VK_USE_PLATFORM_ANDROID_KHR |
| int syncFd = -1; |
| #endif |
| }; |
| |
| struct VkDescriptorPool_Info { |
| std::unordered_set<VkDescriptorSet> allocedSets; |
| VkDescriptorPoolCreateFlags createFlags; |
| }; |
| |
| struct VkDescriptorSet_Info { |
| VkDescriptorPool pool; |
| std::vector<bool> bindingIsImmutableSampler; |
| }; |
| |
| struct VkDescriptorSetLayout_Info { |
| std::vector<VkDescriptorSetLayoutBinding> bindings; |
| }; |
| |
| #define HANDLE_REGISTER_IMPL_IMPL(type) \ |
| std::unordered_map<type, type##_Info> info_##type; \ |
| void register_##type(type obj) { \ |
| AutoLock lock(mLock); \ |
| info_##type[obj] = type##_Info(); \ |
| } \ |
| |
| #define HANDLE_UNREGISTER_IMPL_IMPL(type) \ |
| void unregister_##type(type obj) { \ |
| AutoLock lock(mLock); \ |
| info_##type.erase(obj); \ |
| } \ |
| |
| GOLDFISH_VK_LIST_HANDLE_TYPES(HANDLE_REGISTER_IMPL_IMPL) |
| GOLDFISH_VK_LIST_TRIVIAL_HANDLE_TYPES(HANDLE_UNREGISTER_IMPL_IMPL) |
| |
| void unregister_VkInstance(VkInstance instance) { |
| AutoLock lock(mLock); |
| |
| auto it = info_VkInstance.find(instance); |
| if (it == info_VkInstance.end()) return; |
| auto info = it->second; |
| info_VkInstance.erase(instance); |
| lock.unlock(); |
| } |
| |
| void unregister_VkDevice(VkDevice device) { |
| AutoLock lock(mLock); |
| |
| auto it = info_VkDevice.find(device); |
| if (it == info_VkDevice.end()) return; |
| auto info = it->second; |
| info_VkDevice.erase(device); |
| lock.unlock(); |
| } |
| |
| void unregister_VkCommandBuffer(VkCommandBuffer commandBuffer) { |
| AutoLock lock(mLock); |
| |
| auto it = info_VkCommandBuffer.find(commandBuffer); |
| if (it == info_VkCommandBuffer.end()) return; |
| auto& info = it->second; |
| auto lastUsedEncoder = |
| info.lastUsedEncoderPtr ? |
| *(info.lastUsedEncoderPtr) : nullptr; |
| |
| if (lastUsedEncoder) { |
| lastUsedEncoder->unregisterCleanupCallback(commandBuffer); |
| delete info.lastUsedEncoderPtr; |
| } |
| |
| info_VkCommandBuffer.erase(commandBuffer); |
| } |
| |
| void unregister_VkDeviceMemory(VkDeviceMemory mem) { |
| AutoLock lock(mLock); |
| |
| auto it = info_VkDeviceMemory.find(mem); |
| if (it == info_VkDeviceMemory.end()) return; |
| |
| auto& memInfo = it->second; |
| |
| if (memInfo.ahw) { |
| AHardwareBuffer_release(memInfo.ahw); |
| } |
| |
| if (memInfo.vmoHandle != ZX_HANDLE_INVALID) { |
| zx_handle_close(memInfo.vmoHandle); |
| } |
| |
| if (memInfo.mappedPtr && |
| !memInfo.virtualHostVisibleBacking && |
| !memInfo.directMapped) { |
| aligned_buf_free(memInfo.mappedPtr); |
| } |
| |
| if (memInfo.directMapped) { |
| subFreeHostMemory(&memInfo.subAlloc); |
| } |
| |
| delete memInfo.goldfishAddressSpaceBlock; |
| |
| info_VkDeviceMemory.erase(mem); |
| } |
| |
| void unregister_VkImage(VkImage img) { |
| AutoLock lock(mLock); |
| |
| auto it = info_VkImage.find(img); |
| if (it == info_VkImage.end()) return; |
| |
| auto& imageInfo = it->second; |
| |
| info_VkImage.erase(img); |
| } |
| |
| void unregister_VkBuffer(VkBuffer buf) { |
| AutoLock lock(mLock); |
| |
| auto it = info_VkBuffer.find(buf); |
| if (it == info_VkBuffer.end()) return; |
| |
| info_VkBuffer.erase(buf); |
| } |
| |
| void unregister_VkSemaphore(VkSemaphore sem) { |
| AutoLock lock(mLock); |
| |
| auto it = info_VkSemaphore.find(sem); |
| if (it == info_VkSemaphore.end()) return; |
| |
| auto& semInfo = it->second; |
| |
| if (semInfo.eventHandle != ZX_HANDLE_INVALID) { |
| zx_handle_close(semInfo.eventHandle); |
| } |
| |
| info_VkSemaphore.erase(sem); |
| } |
| |
| void unregister_VkDescriptorUpdateTemplate(VkDescriptorUpdateTemplate templ) { |
| info_VkDescriptorUpdateTemplate.erase(templ); |
| } |
| |
| void unregister_VkFence(VkFence fence) { |
| AutoLock lock(mLock); |
| auto it = info_VkFence.find(fence); |
| if (it == info_VkFence.end()) return; |
| |
| auto& fenceInfo = it->second; |
| (void)fenceInfo; |
| |
| #ifdef VK_USE_PLATFORM_ANDROID_KHR |
| if (fenceInfo.syncFd >= 0) { |
| close(fenceInfo.syncFd); |
| } |
| #endif |
| |
| info_VkFence.erase(fence); |
| } |
| |
| void unregister_VkDescriptorSet_locked(VkDescriptorSet set) { |
| auto it = info_VkDescriptorSet.find(set); |
| if (it == info_VkDescriptorSet.end()) return; |
| |
| const auto& setInfo = it->second; |
| |
| auto poolIt = info_VkDescriptorPool.find(setInfo.pool); |
| |
| info_VkDescriptorSet.erase(set); |
| |
| if (poolIt == info_VkDescriptorPool.end()) return; |
| |
| auto& poolInfo = poolIt->second; |
| poolInfo.allocedSets.erase(set); |
| } |
| |
| void unregister_VkDescriptorSet(VkDescriptorSet set) { |
| AutoLock lock(mLock); |
| unregister_VkDescriptorSet_locked(set); |
| } |
| |
| void unregister_VkDescriptorSetLayout(VkDescriptorSetLayout setLayout) { |
| AutoLock lock(mLock); |
| info_VkDescriptorSetLayout.erase(setLayout); |
| } |
| |
| void initDescriptorSetStateLocked(const VkDescriptorSetAllocateInfo* ci, const VkDescriptorSet* sets) { |
| auto it = info_VkDescriptorPool.find(ci->descriptorPool); |
| if (it == info_VkDescriptorPool.end()) return; |
| |
| auto& info = it->second; |
| for (uint32_t i = 0; i < ci->descriptorSetCount; ++i) { |
| info.allocedSets.insert(sets[i]); |
| |
| auto setIt = info_VkDescriptorSet.find(sets[i]); |
| if (setIt == info_VkDescriptorSet.end()) continue; |
| |
| auto& setInfo = setIt->second; |
| setInfo.pool = ci->descriptorPool; |
| |
| VkDescriptorSetLayout setLayout = ci->pSetLayouts[i]; |
| auto layoutIt = info_VkDescriptorSetLayout.find(setLayout); |
| if (layoutIt == info_VkDescriptorSetLayout.end()) continue; |
| |
| const auto& layoutInfo = layoutIt->second; |
| for (size_t i = 0; i < layoutInfo.bindings.size(); ++i) { |
| // Bindings can be sparsely defined |
| const auto& binding = layoutInfo.bindings[i]; |
| uint32_t bindingIndex = binding.binding; |
| if (setInfo.bindingIsImmutableSampler.size() <= bindingIndex) { |
| setInfo.bindingIsImmutableSampler.resize(bindingIndex + 1, false); |
| } |
| setInfo.bindingIsImmutableSampler[bindingIndex] = |
| binding.descriptorCount > 0 && |
| (binding.descriptorType == VK_DESCRIPTOR_TYPE_SAMPLER || |
| binding.descriptorType == |
| VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) && |
| binding.pImmutableSamplers; |
| } |
| } |
| } |
| |
| VkWriteDescriptorSet |
| createImmutableSamplersFilteredWriteDescriptorSetLocked( |
| const VkWriteDescriptorSet* descriptorWrite, |
| std::vector<VkDescriptorImageInfo>* imageInfoArray) { |
| |
| VkWriteDescriptorSet res = *descriptorWrite; |
| |
| if (descriptorWrite->descriptorCount == 0) return res; |
| |
| if (descriptorWrite->descriptorType != VK_DESCRIPTOR_TYPE_SAMPLER && |
| descriptorWrite->descriptorType != VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER) return res; |
| |
| VkDescriptorSet set = descriptorWrite->dstSet; |
| auto descSetIt = info_VkDescriptorSet.find(set); |
| if (descSetIt == info_VkDescriptorSet.end()) { |
| ALOGE("%s: error: descriptor set 0x%llx not found\n", __func__, |
| (unsigned long long)set); |
| return res; |
| } |
| |
| const auto& descInfo = descSetIt->second; |
| uint32_t binding = descriptorWrite->dstBinding; |
| |
| bool immutableSampler = descInfo.bindingIsImmutableSampler[binding]; |
| |
| if (!immutableSampler) return res; |
| |
| for (uint32_t i = 0; i < descriptorWrite->descriptorCount; ++i) { |
| VkDescriptorImageInfo imageInfo = descriptorWrite->pImageInfo[i]; |
| imageInfo.sampler = 0; |
| imageInfoArray->push_back(imageInfo); |
| } |
| |
| res.pImageInfo = imageInfoArray->data(); |
| |
| return res; |
| } |
| |
| // Also unregisters underlying descriptor sets |
| // and deletes their guest-side wrapped handles. |
| void clearDescriptorPoolLocked(VkDescriptorPool pool) { |
| auto it = info_VkDescriptorPool.find(pool); |
| if (it == info_VkDescriptorPool.end()) return; |
| |
| std::vector<VkDescriptorSet> toClear; |
| for (auto set : it->second.allocedSets) { |
| toClear.push_back(set); |
| } |
| |
| for (auto set : toClear) { |
| unregister_VkDescriptorSet_locked(set); |
| delete_goldfish_VkDescriptorSet(set); |
| } |
| } |
| |
| void unregister_VkDescriptorPool(VkDescriptorPool pool) { |
| AutoLock lock(mLock); |
| clearDescriptorPoolLocked(pool); |
| info_VkDescriptorPool.erase(pool); |
| } |
| |
| bool descriptorPoolSupportsIndividualFreeLocked(VkDescriptorPool pool) { |
| auto it = info_VkDescriptorPool.find(pool); |
| if (it == info_VkDescriptorPool.end()) return false; |
| |
| const auto& info = it->second; |
| |
| return VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT & |
| info.createFlags; |
| } |
| |
| bool descriptorSetReallyAllocedFromPoolLocked(VkDescriptorSet set, VkDescriptorPool pool) { |
| auto it = info_VkDescriptorSet.find(set); |
| if (it == info_VkDescriptorSet.end()) return false; |
| |
| const auto& info = it->second; |
| |
| if (pool != info.pool) return false; |
| |
| auto poolIt = info_VkDescriptorPool.find(info.pool); |
| if (poolIt == info_VkDescriptorPool.end()) return false; |
| |
| const auto& poolInfo = poolIt->second; |
| |
| if (poolInfo.allocedSets.find(set) == poolInfo.allocedSets.end()) return false; |
| |
| return true; |
| } |
| |
| static constexpr uint32_t kDefaultApiVersion = VK_MAKE_VERSION(1, 1, 0); |
| |
| void setInstanceInfo(VkInstance instance, |
| uint32_t enabledExtensionCount, |
| const char* const* ppEnabledExtensionNames, |
| uint32_t apiVersion) { |
| AutoLock lock(mLock); |
| auto& info = info_VkInstance[instance]; |
| info.highestApiVersion = apiVersion; |
| |
| if (!ppEnabledExtensionNames) return; |
| |
| for (uint32_t i = 0; i < enabledExtensionCount; ++i) { |
| info.enabledExtensions.insert(ppEnabledExtensionNames[i]); |
| } |
| } |
| |
| void setDeviceInfo(VkDevice device, |
| VkPhysicalDevice physdev, |
| VkPhysicalDeviceProperties props, |
| VkPhysicalDeviceMemoryProperties memProps, |
| uint32_t enabledExtensionCount, |
| const char* const* ppEnabledExtensionNames) { |
| AutoLock lock(mLock); |
| auto& info = info_VkDevice[device]; |
| info.physdev = physdev; |
| info.props = props; |
| info.memProps = memProps; |
| initHostVisibleMemoryVirtualizationInfo( |
| physdev, &memProps, |
| mFeatureInfo.get(), |
| &mHostVisibleMemoryVirtInfo); |
| info.apiVersion = props.apiVersion; |
| |
| if (!ppEnabledExtensionNames) return; |
| |
| for (uint32_t i = 0; i < enabledExtensionCount; ++i) { |
| info.enabledExtensions.insert(ppEnabledExtensionNames[i]); |
| } |
| } |
| |
| void setDeviceMemoryInfo(VkDevice device, |
| VkDeviceMemory memory, |
| VkDeviceSize allocationSize, |
| VkDeviceSize mappedSize, |
| uint8_t* ptr, |
| uint32_t memoryTypeIndex, |
| AHardwareBuffer* ahw = nullptr, |
| zx_handle_t vmoHandle = ZX_HANDLE_INVALID) { |
| AutoLock lock(mLock); |
| auto& deviceInfo = info_VkDevice[device]; |
| auto& info = info_VkDeviceMemory[memory]; |
| |
| info.allocationSize = allocationSize; |
| info.mappedSize = mappedSize; |
| info.mappedPtr = ptr; |
| info.memoryTypeIndex = memoryTypeIndex; |
| info.ahw = ahw; |
| info.vmoHandle = vmoHandle; |
| } |
| |
| void setImageInfo(VkImage image, |
| VkDevice device, |
| const VkImageCreateInfo *pCreateInfo) { |
| AutoLock lock(mLock); |
| auto& info = info_VkImage[image]; |
| |
| info.device = device; |
| info.createInfo = *pCreateInfo; |
| } |
| |
| bool isMemoryTypeHostVisible(VkDevice device, uint32_t typeIndex) const { |
| AutoLock lock(mLock); |
| const auto it = info_VkDevice.find(device); |
| |
| if (it == info_VkDevice.end()) return false; |
| |
| const auto& info = it->second; |
| return info.memProps.memoryTypes[typeIndex].propertyFlags & |
| VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT; |
| } |
| |
| uint8_t* getMappedPointer(VkDeviceMemory memory) { |
| AutoLock lock(mLock); |
| const auto it = info_VkDeviceMemory.find(memory); |
| if (it == info_VkDeviceMemory.end()) return nullptr; |
| |
| const auto& info = it->second; |
| return info.mappedPtr; |
| } |
| |
| VkDeviceSize getMappedSize(VkDeviceMemory memory) { |
| AutoLock lock(mLock); |
| const auto it = info_VkDeviceMemory.find(memory); |
| if (it == info_VkDeviceMemory.end()) return 0; |
| |
| const auto& info = it->second; |
| return info.mappedSize; |
| } |
| |
| VkDeviceSize getNonCoherentExtendedSize(VkDevice device, VkDeviceSize basicSize) const { |
| AutoLock lock(mLock); |
| const auto it = info_VkDevice.find(device); |
| if (it == info_VkDevice.end()) return basicSize; |
| const auto& info = it->second; |
| |
| VkDeviceSize nonCoherentAtomSize = |
| info.props.limits.nonCoherentAtomSize; |
| VkDeviceSize atoms = |
| (basicSize + nonCoherentAtomSize - 1) / nonCoherentAtomSize; |
| return atoms * nonCoherentAtomSize; |
| } |
| |
| bool isValidMemoryRange(const VkMappedMemoryRange& range) const { |
| AutoLock lock(mLock); |
| const auto it = info_VkDeviceMemory.find(range.memory); |
| if (it == info_VkDeviceMemory.end()) return false; |
| const auto& info = it->second; |
| |
| if (!info.mappedPtr) return false; |
| |
| VkDeviceSize offset = range.offset; |
| VkDeviceSize size = range.size; |
| |
| if (size == VK_WHOLE_SIZE) { |
| return offset <= info.mappedSize; |
| } |
| |
| return offset + size <= info.mappedSize; |
| } |
| |
| void setupFeatures(const EmulatorFeatureInfo* features) { |
| if (!features || mFeatureInfo) return; |
| mFeatureInfo.reset(new EmulatorFeatureInfo); |
| *mFeatureInfo = *features; |
| |
| if (mFeatureInfo->hasDirectMem) { |
| mGoldfishAddressSpaceBlockProvider.reset( |
| new GoldfishAddressSpaceBlockProvider( |
| GoldfishAddressSpaceSubdeviceType::NoSubdevice)); |
| } |
| |
| #ifdef VK_USE_PLATFORM_FUCHSIA |
| if (mFeatureInfo->hasVulkan) { |
| zx::channel channel(GetConnectToServiceFunction()("/dev/class/goldfish-control/000")); |
| if (!channel) { |
| ALOGE("failed to open control device"); |
| abort(); |
| } |
| mControlDevice.Bind(std::move(channel)); |
| |
| zx::channel sysmem_channel(GetConnectToServiceFunction()("/svc/fuchsia.sysmem.Allocator")); |
| if (!sysmem_channel) { |
| ALOGE("failed to open sysmem connection"); |
| } |
| mSysmemAllocator.Bind(std::move(sysmem_channel)); |
| } |
| #endif |
| |
| if (mFeatureInfo->hasVulkanNullOptionalStrings) { |
| mStreamFeatureBits |= VULKAN_STREAM_FEATURE_NULL_OPTIONAL_STRINGS_BIT; |
| } |
| if (mFeatureInfo->hasVulkanIgnoredHandles) { |
| mStreamFeatureBits |= VULKAN_STREAM_FEATURE_IGNORED_HANDLES_BIT; |
| } |
| if (mFeatureInfo->hasVulkanShaderFloat16Int8) { |
| mStreamFeatureBits |= VULKAN_STREAM_FEATURE_SHADER_FLOAT16_INT8_BIT; |
| } |
| |
| #if !defined(HOST_BUILD) && defined(VK_USE_PLATFORM_ANDROID_KHR) |
| if (mFeatureInfo->hasVirtioGpuNext) { |
| ALOGD("%s: has virtio-gpu-next; create hostmem rendernode\n", __func__); |
| mRendernodeFd = drmOpenRender(128 /* RENDERNODE_MINOR */); |
| } |
| #endif |
| } |
| |
| void setThreadingCallbacks(const ResourceTracker::ThreadingCallbacks& callbacks) { |
| mThreadingCallbacks = callbacks; |
| } |
| |
| bool hostSupportsVulkan() const { |
| if (!mFeatureInfo) return false; |
| |
| return mFeatureInfo->hasVulkan; |
| } |
| |
| bool usingDirectMapping() const { |
| return mHostVisibleMemoryVirtInfo.virtualizationSupported; |
| } |
| |
| uint32_t getStreamFeatures() const { |
| return mStreamFeatureBits; |
| } |
| |
| bool supportsDeferredCommands() const { |
| if (!mFeatureInfo) return false; |
| return mFeatureInfo->hasDeferredVulkanCommands; |
| } |
| |
| bool supportsCreateResourcesWithRequirements() const { |
| if (!mFeatureInfo) return false; |
| return mFeatureInfo->hasVulkanCreateResourcesWithRequirements; |
| } |
| |
| int getHostInstanceExtensionIndex(const std::string& extName) const { |
| int i = 0; |
| for (const auto& prop : mHostInstanceExtensions) { |
| if (extName == std::string(prop.extensionName)) { |
| return i; |
| } |
| ++i; |
| } |
| return -1; |
| } |
| |
| int getHostDeviceExtensionIndex(const std::string& extName) const { |
| int i = 0; |
| for (const auto& prop : mHostDeviceExtensions) { |
| if (extName == std::string(prop.extensionName)) { |
| return i; |
| } |
| ++i; |
| } |
| return -1; |
| } |
| |
| void deviceMemoryTransform_tohost( |
| VkDeviceMemory* memory, uint32_t memoryCount, |
| VkDeviceSize* offset, uint32_t offsetCount, |
| VkDeviceSize* size, uint32_t sizeCount, |
| uint32_t* typeIndex, uint32_t typeIndexCount, |
| uint32_t* typeBits, uint32_t typeBitsCount) { |
| |
| (void)memoryCount; |
| (void)offsetCount; |
| (void)sizeCount; |
| |
| const auto& hostVirt = |
| mHostVisibleMemoryVirtInfo; |
| |
| if (!hostVirt.virtualizationSupported) return; |
| |
| if (memory) { |
| AutoLock lock (mLock); |
| |
| for (uint32_t i = 0; i < memoryCount; ++i) { |
| VkDeviceMemory mem = memory[i]; |
| |
| auto it = info_VkDeviceMemory.find(mem); |
| if (it == info_VkDeviceMemory.end()) return; |
| |
| const auto& info = it->second; |
| |
| if (!info.directMapped) continue; |
| |
| memory[i] = info.subAlloc.baseMemory; |
| |
| if (offset) { |
| offset[i] = info.subAlloc.baseOffset + offset[i]; |
| } |
| |
| if (size) { |
| if (size[i] == VK_WHOLE_SIZE) { |
| size[i] = info.subAlloc.subMappedSize; |
| } |
| } |
| |
| // TODO |
| (void)memory; |
| (void)offset; |
| (void)size; |
| } |
| } |
| |
| for (uint32_t i = 0; i < typeIndexCount; ++i) { |
| typeIndex[i] = |
| hostVirt.memoryTypeIndexMappingToHost[typeIndex[i]]; |
| } |
| |
| for (uint32_t i = 0; i < typeBitsCount; ++i) { |
| uint32_t bits = 0; |
| for (uint32_t j = 0; j < VK_MAX_MEMORY_TYPES; ++j) { |
| bool guestHas = typeBits[i] & (1 << j); |
| uint32_t hostIndex = |
| hostVirt.memoryTypeIndexMappingToHost[j]; |
| bits |= guestHas ? (1 << hostIndex) : 0; |
| } |
| typeBits[i] = bits; |
| } |
| } |
| |
| void deviceMemoryTransform_fromhost( |
| VkDeviceMemory* memory, uint32_t memoryCount, |
| VkDeviceSize* offset, uint32_t offsetCount, |
| VkDeviceSize* size, uint32_t sizeCount, |
| uint32_t* typeIndex, uint32_t typeIndexCount, |
| uint32_t* typeBits, uint32_t typeBitsCount) { |
| |
| (void)memoryCount; |
| (void)offsetCount; |
| (void)sizeCount; |
| |
| const auto& hostVirt = |
| mHostVisibleMemoryVirtInfo; |
| |
| if (!hostVirt.virtualizationSupported) return; |
| |
| AutoLock lock (mLock); |
| |
| for (uint32_t i = 0; i < memoryCount; ++i) { |
| // TODO |
| (void)memory; |
| (void)offset; |
| (void)size; |
| } |
| |
| for (uint32_t i = 0; i < typeIndexCount; ++i) { |
| typeIndex[i] = |
| hostVirt.memoryTypeIndexMappingFromHost[typeIndex[i]]; |
| } |
| |
| for (uint32_t i = 0; i < typeBitsCount; ++i) { |
| uint32_t bits = 0; |
| for (uint32_t j = 0; j < VK_MAX_MEMORY_TYPES; ++j) { |
| bool hostHas = typeBits[i] & (1 << j); |
| uint32_t guestIndex = |
| hostVirt.memoryTypeIndexMappingFromHost[j]; |
| bits |= hostHas ? (1 << guestIndex) : 0; |
| |
| if (hostVirt.memoryTypeBitsShouldAdvertiseBoth[j]) { |
| bits |= hostHas ? (1 << j) : 0; |
| } |
| } |
| typeBits[i] = bits; |
| } |
| } |
| |
| VkResult on_vkEnumerateInstanceExtensionProperties( |
| void* context, |
| VkResult, |
| const char*, |
| uint32_t* pPropertyCount, |
| VkExtensionProperties* pProperties) { |
| std::vector<const char*> allowedExtensionNames = { |
| "VK_KHR_get_physical_device_properties2", |
| "VK_KHR_sampler_ycbcr_conversion", |
| #ifdef VK_USE_PLATFORM_ANDROID_KHR |
| "VK_KHR_external_semaphore_capabilities", |
| "VK_KHR_external_memory_capabilities", |
| "VK_KHR_external_fence_capabilities", |
| #endif |
| // TODO: |
| // VK_KHR_external_memory_capabilities |
| }; |
| |
| VkEncoder* enc = (VkEncoder*)context; |
| |
| // Only advertise a select set of extensions. |
| if (mHostInstanceExtensions.empty()) { |
| uint32_t hostPropCount = 0; |
| enc->vkEnumerateInstanceExtensionProperties(nullptr, &hostPropCount, nullptr); |
| mHostInstanceExtensions.resize(hostPropCount); |
| |
| VkResult hostRes = |
| enc->vkEnumerateInstanceExtensionProperties( |
| nullptr, &hostPropCount, mHostInstanceExtensions.data()); |
| |
| if (hostRes != VK_SUCCESS) { |
| return hostRes; |
| } |
| } |
| |
| std::vector<VkExtensionProperties> filteredExts; |
| |
| for (size_t i = 0; i < allowedExtensionNames.size(); ++i) { |
| auto extIndex = getHostInstanceExtensionIndex(allowedExtensionNames[i]); |
| if (extIndex != -1) { |
| filteredExts.push_back(mHostInstanceExtensions[extIndex]); |
| } |
| } |
| |
| VkExtensionProperties anbExtProps[] = { |
| #ifdef VK_USE_PLATFORM_FUCHSIA |
| { "VK_KHR_external_memory_capabilities", 1}, |
| { "VK_KHR_external_semaphore_capabilities", 1}, |
| #endif |
| }; |
| |
| for (auto& anbExtProp: anbExtProps) { |
| filteredExts.push_back(anbExtProp); |
| } |
| |
| // Spec: |
| // |
| // https://www.khronos.org/registry/vulkan/specs/1.1-extensions/man/html/vkEnumerateInstanceExtensionProperties.html |
| // |
| // If pProperties is NULL, then the number of extensions properties |
| // available is returned in pPropertyCount. Otherwise, pPropertyCount |
| // must point to a variable set by the user to the number of elements |
| // in the pProperties array, and on return the variable is overwritten |
| // with the number of structures actually written to pProperties. If |
| // pPropertyCount is less than the number of extension properties |
| // available, at most pPropertyCount structures will be written. If |
| // pPropertyCount is smaller than the number of extensions available, |
| // VK_INCOMPLETE will be returned instead of VK_SUCCESS, to indicate |
| // that not all the available properties were returned. |
| // |
| // pPropertyCount must be a valid pointer to a uint32_t value |
| if (!pPropertyCount) return VK_ERROR_INITIALIZATION_FAILED; |
| |
| if (!pProperties) { |
| *pPropertyCount = (uint32_t)filteredExts.size(); |
| return VK_SUCCESS; |
| } else { |
| auto actualExtensionCount = (uint32_t)filteredExts.size(); |
| if (*pPropertyCount > actualExtensionCount) { |
| *pPropertyCount = actualExtensionCount; |
| } |
| |
| for (uint32_t i = 0; i < *pPropertyCount; ++i) { |
| pProperties[i] = filteredExts[i]; |
| } |
| |
| if (actualExtensionCount > *pPropertyCount) { |
| return VK_INCOMPLETE; |
| } |
| |
| return VK_SUCCESS; |
| } |
| } |
| |
| VkResult on_vkEnumerateDeviceExtensionProperties( |
| void* context, |
| VkResult, |
| VkPhysicalDevice physdev, |
| const char*, |
| uint32_t* pPropertyCount, |
| VkExtensionProperties* pProperties) { |
| |
| std::vector<const char*> allowedExtensionNames = { |
| "VK_KHR_maintenance1", |
| "VK_KHR_maintenance2", |
| "VK_KHR_maintenance3", |
| "VK_KHR_get_memory_requirements2", |
| "VK_KHR_dedicated_allocation", |
| "VK_KHR_bind_memory2", |
| "VK_KHR_sampler_ycbcr_conversion", |
| "VK_KHR_shader_float16_int8", |
| "VK_AMD_gpu_shader_half_float", |
| "VK_NV_shader_subgroup_partitioned", |
| #ifdef VK_USE_PLATFORM_ANDROID_KHR |
| "VK_KHR_external_semaphore", |
| "VK_KHR_external_semaphore_fd", |
| // "VK_KHR_external_semaphore_win32", not exposed because it's translated to fd |
| "VK_KHR_external_memory", |
| "VK_KHR_external_fence", |
| "VK_KHR_external_fence_fd", |
| #endif |
| // TODO: |
| // VK_KHR_external_memory_capabilities |
| }; |
| |
| VkEncoder* enc = (VkEncoder*)context; |
| |
| if (mHostDeviceExtensions.empty()) { |
| uint32_t hostPropCount = 0; |
| enc->vkEnumerateDeviceExtensionProperties(physdev, nullptr, &hostPropCount, nullptr); |
| mHostDeviceExtensions.resize(hostPropCount); |
| |
| VkResult hostRes = |
| enc->vkEnumerateDeviceExtensionProperties( |
| physdev, nullptr, &hostPropCount, mHostDeviceExtensions.data()); |
| |
| if (hostRes != VK_SUCCESS) { |
| return hostRes; |
| } |
| } |
| |
| bool hostHasWin32ExternalSemaphore = |
| getHostDeviceExtensionIndex( |
| "VK_KHR_external_semaphore_win32") != -1; |
| |
| bool hostHasPosixExternalSemaphore = |
| getHostDeviceExtensionIndex( |
| "VK_KHR_external_semaphore_fd") != -1; |
| |
| ALOGD("%s: host has ext semaphore? win32 %d posix %d\n", __func__, |
| hostHasWin32ExternalSemaphore, |
| hostHasPosixExternalSemaphore); |
| |
| bool hostSupportsExternalSemaphore = |
| hostHasWin32ExternalSemaphore || |
| hostHasPosixExternalSemaphore; |
| |
| std::vector<VkExtensionProperties> filteredExts; |
| |
| for (size_t i = 0; i < allowedExtensionNames.size(); ++i) { |
| auto extIndex = getHostDeviceExtensionIndex(allowedExtensionNames[i]); |
| if (extIndex != -1) { |
| filteredExts.push_back(mHostDeviceExtensions[extIndex]); |
| } |
| } |
| |
| VkExtensionProperties anbExtProps[] = { |
| #ifdef VK_USE_PLATFORM_ANDROID_KHR |
| { "VK_ANDROID_native_buffer", 7 }, |
| #endif |
| #ifdef VK_USE_PLATFORM_FUCHSIA |
| { "VK_KHR_external_memory", 1 }, |
| { "VK_KHR_external_semaphore", 1 }, |
| { "VK_FUCHSIA_external_semaphore", 1 }, |
| #endif |
| }; |
| |
| for (auto& anbExtProp: anbExtProps) { |
| filteredExts.push_back(anbExtProp); |
| } |
| |
| #ifndef VK_USE_PLATFORM_FUCHSIA |
| if (hostSupportsExternalSemaphore && |
| !hostHasPosixExternalSemaphore) { |
| filteredExts.push_back( |
| { "VK_KHR_external_semaphore_fd", 1}); |
| } |
| #endif |
| |
| bool win32ExtMemAvailable = |
| getHostDeviceExtensionIndex( |
| "VK_KHR_external_memory_win32") != -1; |
| bool posixExtMemAvailable = |
| getHostDeviceExtensionIndex( |
| "VK_KHR_external_memory_fd") != -1; |
| bool moltenVkExtAvailable = |
| getHostInstanceExtensionIndex( |
| "VK_MVK_moltenvk") != -1; |
| |
| bool hostHasExternalMemorySupport = |
| win32ExtMemAvailable || posixExtMemAvailable || moltenVkExtAvailable; |
| |
| if (hostHasExternalMemorySupport) { |
| #ifdef VK_USE_PLATFORM_ANDROID_KHR |
| filteredExts.push_back({ |
| "VK_ANDROID_external_memory_android_hardware_buffer", 7 |
| }); |
| filteredExts.push_back({ |
| "VK_EXT_queue_family_foreign", 1 |
| }); |
| #endif |
| #ifdef VK_USE_PLATFORM_FUCHSIA |
| filteredExts.push_back({ |
| "VK_FUCHSIA_external_memory", 1 |
| }); |
| filteredExts.push_back({ |
| "VK_FUCHSIA_buffer_collection", 1 |
| }); |
| #endif |
| } |
| |
| // Spec: |
| // |
| // https://www.khronos.org/registry/vulkan/specs/1.1-extensions/man/html/vkEnumerateDeviceExtensionProperties.html |
| // |
| // pPropertyCount is a pointer to an integer related to the number of |
| // extension properties available or queried, and is treated in the |
| // same fashion as the |
| // vkEnumerateInstanceExtensionProperties::pPropertyCount parameter. |
| // |
| // https://www.khronos.org/registry/vulkan/specs/1.1-extensions/man/html/vkEnumerateInstanceExtensionProperties.html |
| // |
| // If pProperties is NULL, then the number of extensions properties |
| // available is returned in pPropertyCount. Otherwise, pPropertyCount |
| // must point to a variable set by the user to the number of elements |
| // in the pProperties array, and on return the variable is overwritten |
| // with the number of structures actually written to pProperties. If |
| // pPropertyCount is less than the number of extension properties |
| // available, at most pPropertyCount structures will be written. If |
| // pPropertyCount is smaller than the number of extensions available, |
| // VK_INCOMPLETE will be returned instead of VK_SUCCESS, to indicate |
| // that not all the available properties were returned. |
| // |
| // pPropertyCount must be a valid pointer to a uint32_t value |
| |
| if (!pPropertyCount) return VK_ERROR_INITIALIZATION_FAILED; |
| |
| if (!pProperties) { |
| *pPropertyCount = (uint32_t)filteredExts.size(); |
| return VK_SUCCESS; |
| } else { |
| auto actualExtensionCount = (uint32_t)filteredExts.size(); |
| if (*pPropertyCount > actualExtensionCount) { |
| *pPropertyCount = actualExtensionCount; |
| } |
| |
| for (uint32_t i = 0; i < *pPropertyCount; ++i) { |
| pProperties[i] = filteredExts[i]; |
| } |
| |
| if (actualExtensionCount > *pPropertyCount) { |
| return VK_INCOMPLETE; |
| } |
| |
| return VK_SUCCESS; |
| } |
| } |
| |
| VkResult on_vkEnumeratePhysicalDevices( |
| void* context, VkResult, |
| VkInstance instance, uint32_t* pPhysicalDeviceCount, |
| VkPhysicalDevice* pPhysicalDevices) { |
| |
| VkEncoder* enc = (VkEncoder*)context; |
| |
| if (!instance) return VK_ERROR_INITIALIZATION_FAILED; |
| |
| if (!pPhysicalDeviceCount) return VK_ERROR_INITIALIZATION_FAILED; |
| |
| AutoLock lock(mLock); |
| |
| // When this function is called, we actually need to do two things: |
| // - Get full information about physical devices from the host, |
| // even if the guest did not ask for it |
| // - Serve the guest query according to the spec: |
| // |
| // https://www.khronos.org/registry/vulkan/specs/1.1-extensions/man/html/vkEnumeratePhysicalDevices.html |
| |
| auto it = info_VkInstance.find(instance); |
| |
| if (it == info_VkInstance.end()) return VK_ERROR_INITIALIZATION_FAILED; |
| |
| auto& info = it->second; |
| |
| // Get the full host information here if it doesn't exist already. |
| if (info.physicalDevices.empty()) { |
| uint32_t hostPhysicalDeviceCount = 0; |
| |
| lock.unlock(); |
| VkResult countRes = enc->vkEnumeratePhysicalDevices( |
| instance, &hostPhysicalDeviceCount, nullptr); |
| lock.lock(); |
| |
| if (countRes != VK_SUCCESS) { |
| ALOGE("%s: failed: could not count host physical devices. " |
| "Error %d\n", __func__, countRes); |
| return countRes; |
| } |
| |
| info.physicalDevices.resize(hostPhysicalDeviceCount); |
| |
| lock.unlock(); |
| VkResult enumRes = enc->vkEnumeratePhysicalDevices( |
| instance, &hostPhysicalDeviceCount, info.physicalDevices.data()); |
| lock.lock(); |
| |
| if (enumRes != VK_SUCCESS) { |
| ALOGE("%s: failed: could not retrieve host physical devices. " |
| "Error %d\n", __func__, enumRes); |
| return enumRes; |
| } |
| } |
| |
| // Serve the guest query according to the spec. |
| // |
| // https://www.khronos.org/registry/vulkan/specs/1.1-extensions/man/html/vkEnumeratePhysicalDevices.html |
| // |
| // If pPhysicalDevices is NULL, then the number of physical devices |
| // available is returned in pPhysicalDeviceCount. Otherwise, |
| // pPhysicalDeviceCount must point to a variable set by the user to the |
| // number of elements in the pPhysicalDevices array, and on return the |
| // variable is overwritten with the number of handles actually written |
| // to pPhysicalDevices. If pPhysicalDeviceCount is less than the number |
| // of physical devices available, at most pPhysicalDeviceCount |
| // structures will be written. If pPhysicalDeviceCount is smaller than |
| // the number of physical devices available, VK_INCOMPLETE will be |
| // returned instead of VK_SUCCESS, to indicate that not all the |
| // available physical devices were returned. |
| |
| if (!pPhysicalDevices) { |
| *pPhysicalDeviceCount = (uint32_t)info.physicalDevices.size(); |
| return VK_SUCCESS; |
| } else { |
| uint32_t actualDeviceCount = (uint32_t)info.physicalDevices.size(); |
| uint32_t toWrite = actualDeviceCount < *pPhysicalDeviceCount ? actualDeviceCount : *pPhysicalDeviceCount; |
| |
| for (uint32_t i = 0; i < toWrite; ++i) { |
| pPhysicalDevices[i] = info.physicalDevices[i]; |
| } |
| |
| *pPhysicalDeviceCount = toWrite; |
| |
| if (actualDeviceCount > *pPhysicalDeviceCount) { |
| return VK_INCOMPLETE; |
| } |
| |
| return VK_SUCCESS; |
| } |
| } |
| |
| void on_vkGetPhysicalDeviceProperties( |
| void*, |
| VkPhysicalDevice, |
| VkPhysicalDeviceProperties* pProperties) { |
| if (pProperties) { |
| pProperties->deviceType = VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU; |
| } |
| } |
| |
| void on_vkGetPhysicalDeviceProperties2( |
| void*, |
| VkPhysicalDevice, |
| VkPhysicalDeviceProperties2* pProperties) { |
| if (pProperties) { |
| pProperties->properties.deviceType = |
| VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU; |
| } |
| } |
| |
| void on_vkGetPhysicalDeviceMemoryProperties( |
| void*, |
| VkPhysicalDevice physdev, |
| VkPhysicalDeviceMemoryProperties* out) { |
| |
| initHostVisibleMemoryVirtualizationInfo( |
| physdev, |
| out, |
| mFeatureInfo.get(), |
| &mHostVisibleMemoryVirtInfo); |
| |
| if (mHostVisibleMemoryVirtInfo.virtualizationSupported) { |
| *out = mHostVisibleMemoryVirtInfo.guestMemoryProperties; |
| } |
| } |
| |
| void on_vkGetPhysicalDeviceMemoryProperties2( |
| void*, |
| VkPhysicalDevice physdev, |
| VkPhysicalDeviceMemoryProperties2* out) { |
| |
| initHostVisibleMemoryVirtualizationInfo( |
| physdev, |
| &out->memoryProperties, |
| mFeatureInfo.get(), |
| &mHostVisibleMemoryVirtInfo); |
| |
| if (mHostVisibleMemoryVirtInfo.virtualizationSupported) { |
| out->memoryProperties = mHostVisibleMemoryVirtInfo.guestMemoryProperties; |
| } |
| } |
| |
| VkResult on_vkCreateInstance( |
| void* context, |
| VkResult input_result, |
| const VkInstanceCreateInfo* createInfo, |
| const VkAllocationCallbacks*, |
| VkInstance* pInstance) { |
| |
| if (input_result != VK_SUCCESS) return input_result; |
| |
| VkEncoder* enc = (VkEncoder*)context; |
| |
| uint32_t apiVersion; |
| VkResult enumInstanceVersionRes = |
| enc->vkEnumerateInstanceVersion(&apiVersion); |
| |
| setInstanceInfo( |
| *pInstance, |
| createInfo->enabledExtensionCount, |
| createInfo->ppEnabledExtensionNames, |
| apiVersion); |
| |
| return input_result; |
| } |
| |
| VkResult on_vkCreateDevice( |
| void* context, |
| VkResult input_result, |
| VkPhysicalDevice physicalDevice, |
| const VkDeviceCreateInfo* pCreateInfo, |
| const VkAllocationCallbacks*, |
| VkDevice* pDevice) { |
| |
| if (input_result != VK_SUCCESS) return input_result; |
| |
| VkEncoder* enc = (VkEncoder*)context; |
| |
| VkPhysicalDeviceProperties props; |
| VkPhysicalDeviceMemoryProperties memProps; |
| enc->vkGetPhysicalDeviceProperties(physicalDevice, &props); |
| enc->vkGetPhysicalDeviceMemoryProperties(physicalDevice, &memProps); |
| |
| setDeviceInfo( |
| *pDevice, physicalDevice, props, memProps, |
| pCreateInfo->enabledExtensionCount, pCreateInfo->ppEnabledExtensionNames); |
| |
| return input_result; |
| } |
| |
| void on_vkDestroyDevice_pre( |
| void* context, |
| VkDevice device, |
| const VkAllocationCallbacks*) { |
| |
| AutoLock lock(mLock); |
| |
| auto it = info_VkDevice.find(device); |
| if (it == info_VkDevice.end()) return; |
| auto info = it->second; |
| |
| lock.unlock(); |
| |
| VkEncoder* enc = (VkEncoder*)context; |
| |
| bool freeMemorySyncSupported = |
| mFeatureInfo->hasVulkanFreeMemorySync; |
| for (uint32_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i) { |
| for (auto& block : info.hostMemBlocks[i]) { |
| destroyHostMemAlloc( |
| freeMemorySyncSupported, |
| enc, device, &block); |
| } |
| } |
| } |
| |
| VkResult on_vkGetAndroidHardwareBufferPropertiesANDROID( |
| void*, VkResult, |
| VkDevice device, |
| const AHardwareBuffer* buffer, |
| VkAndroidHardwareBufferPropertiesANDROID* pProperties) { |
| auto grallocHelper = |
| mThreadingCallbacks.hostConnectionGetFunc()->grallocHelper(); |
| return getAndroidHardwareBufferPropertiesANDROID( |
| grallocHelper, |
| &mHostVisibleMemoryVirtInfo, |
| device, buffer, pProperties); |
| } |
| |
| VkResult on_vkGetMemoryAndroidHardwareBufferANDROID( |
| void*, VkResult, |
| VkDevice device, |
| const VkMemoryGetAndroidHardwareBufferInfoANDROID *pInfo, |
| struct AHardwareBuffer** pBuffer) { |
| |
| if (!pInfo) return VK_ERROR_INITIALIZATION_FAILED; |
| if (!pInfo->memory) return VK_ERROR_INITIALIZATION_FAILED; |
| |
| AutoLock lock(mLock); |
| |
| auto deviceIt = info_VkDevice.find(device); |
| |
| if (deviceIt == info_VkDevice.end()) { |
| return VK_ERROR_INITIALIZATION_FAILED; |
| } |
| |
| auto memoryIt = info_VkDeviceMemory.find(pInfo->memory); |
| |
| if (memoryIt == info_VkDeviceMemory.end()) { |
| return VK_ERROR_INITIALIZATION_FAILED; |
| } |
| |
| auto& info = memoryIt->second; |
| |
| VkResult queryRes = |
| getMemoryAndroidHardwareBufferANDROID(&info.ahw); |
| |
| if (queryRes != VK_SUCCESS) return queryRes; |
| |
| *pBuffer = info.ahw; |
| |
| return queryRes; |
| } |
| |
| #ifdef VK_USE_PLATFORM_FUCHSIA |
| VkResult on_vkGetMemoryZirconHandleFUCHSIA( |
| void*, VkResult, |
| VkDevice device, |
| const VkMemoryGetZirconHandleInfoFUCHSIA* pInfo, |
| uint32_t* pHandle) { |
| |
| if (!pInfo) return VK_ERROR_INITIALIZATION_FAILED; |
| if (!pInfo->memory) return VK_ERROR_INITIALIZATION_FAILED; |
| |
| AutoLock lock(mLock); |
| |
| auto deviceIt = info_VkDevice.find(device); |
| |
| if (deviceIt == info_VkDevice.end()) { |
| return VK_ERROR_INITIALIZATION_FAILED; |
| } |
| |
| auto memoryIt = info_VkDeviceMemory.find(pInfo->memory); |
| |
| if (memoryIt == info_VkDeviceMemory.end()) { |
| return VK_ERROR_INITIALIZATION_FAILED; |
| } |
| |
| auto& info = memoryIt->second; |
| |
| if (info.vmoHandle == ZX_HANDLE_INVALID) { |
| ALOGE("%s: memory cannot be exported", __func__); |
| return VK_ERROR_INITIALIZATION_FAILED; |
| } |
| |
| *pHandle = ZX_HANDLE_INVALID; |
| zx_handle_duplicate(info.vmoHandle, ZX_RIGHT_SAME_RIGHTS, pHandle); |
| return VK_SUCCESS; |
| } |
| |
| VkResult on_vkGetMemoryZirconHandlePropertiesFUCHSIA( |
| void*, VkResult, |
| VkDevice device, |
| VkExternalMemoryHandleTypeFlagBits handleType, |
| uint32_t handle, |
| VkMemoryZirconHandlePropertiesFUCHSIA* pProperties) { |
| if (handleType != VK_EXTERNAL_MEMORY_HANDLE_TYPE_TEMP_ZIRCON_VMO_BIT_FUCHSIA) { |
| return VK_ERROR_INITIALIZATION_FAILED; |
| } |
| |
| AutoLock lock(mLock); |
| |
| auto deviceIt = info_VkDevice.find(device); |
| |
| if (deviceIt == info_VkDevice.end()) { |
| return VK_ERROR_INITIALIZATION_FAILED; |
| } |
| |
| auto& info = deviceIt->second; |
| |
| // Device local memory type supported. |
| pProperties->memoryTypeBits = 0; |
| for (uint32_t i = 0; i < info.memProps.memoryTypeCount; ++i) { |
| if (info.memProps.memoryTypes[i].propertyFlags & |
| VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) { |
| pProperties->memoryTypeBits |= 1ull << i; |
| } |
| } |
| return VK_SUCCESS; |
| } |
| |
| VkResult on_vkImportSemaphoreZirconHandleFUCHSIA( |
| void*, VkResult, |
| VkDevice device, |
| const VkImportSemaphoreZirconHandleInfoFUCHSIA* pInfo) { |
| |
| if (!pInfo) return VK_ERROR_INITIALIZATION_FAILED; |
| if (!pInfo->semaphore) return VK_ERROR_INITIALIZATION_FAILED; |
| |
| AutoLock lock(mLock); |
| |
| auto deviceIt = info_VkDevice.find(device); |
| |
| if (deviceIt == info_VkDevice.end()) { |
| return VK_ERROR_INITIALIZATION_FAILED; |
| } |
| |
| auto semaphoreIt = info_VkSemaphore.find(pInfo->semaphore); |
| |
| if (semaphoreIt == info_VkSemaphore.end()) { |
| return VK_ERROR_INITIALIZATION_FAILED; |
| } |
| |
| auto& info = semaphoreIt->second; |
| |
| if (info.eventHandle != ZX_HANDLE_INVALID) { |
| zx_handle_close(info.eventHandle); |
| } |
| info.eventHandle = pInfo->handle; |
| |
| return VK_SUCCESS; |
| } |
| |
| VkResult on_vkGetSemaphoreZirconHandleFUCHSIA( |
| void*, VkResult, |
| VkDevice device, |
| const VkSemaphoreGetZirconHandleInfoFUCHSIA* pInfo, |
| uint32_t* pHandle) { |
| |
| if (!pInfo) return VK_ERROR_INITIALIZATION_FAILED; |
| if (!pInfo->semaphore) return VK_ERROR_INITIALIZATION_FAILED; |
| |
| AutoLock lock(mLock); |
| |
| auto deviceIt = info_VkDevice.find(device); |
| |
| if (deviceIt == info_VkDevice.end()) { |
| return VK_ERROR_INITIALIZATION_FAILED; |
| } |
| |
| auto semaphoreIt = info_VkSemaphore.find(pInfo->semaphore); |
| |
| if (semaphoreIt == info_VkSemaphore.end()) { |
| return VK_ERROR_INITIALIZATION_FAILED; |
| } |
| |
| auto& info = semaphoreIt->second; |
| |
| if (info.eventHandle == ZX_HANDLE_INVALID) { |
| return VK_ERROR_INITIALIZATION_FAILED; |
| } |
| |
| *pHandle = ZX_HANDLE_INVALID; |
| zx_handle_duplicate(info.eventHandle, ZX_RIGHT_SAME_RIGHTS, pHandle); |
| return VK_SUCCESS; |
| } |
| |
| VkResult on_vkCreateBufferCollectionFUCHSIA( |
| void*, VkResult, VkDevice, |
| const VkBufferCollectionCreateInfoFUCHSIA* pInfo, |
| const VkAllocationCallbacks*, |
| VkBufferCollectionFUCHSIA* pCollection) { |
| fuchsia::sysmem::BufferCollectionTokenSyncPtr token; |
| if (pInfo->collectionToken) { |
| token.Bind(zx::channel(pInfo->collectionToken)); |
| } else { |
| zx_status_t status = mSysmemAllocator->AllocateSharedCollection(token.NewRequest()); |
| if (status != ZX_OK) { |
| ALOGE("AllocateSharedCollection failed: %d", status); |
| return VK_ERROR_INITIALIZATION_FAILED; |
| } |
| } |
| auto sysmem_collection = new fuchsia::sysmem::BufferCollectionSyncPtr; |
| zx_status_t status = mSysmemAllocator->BindSharedCollection( |
| std::move(token), sysmem_collection->NewRequest()); |
| if (status != ZX_OK) { |
| ALOGE("BindSharedCollection failed: %d", status); |
| return VK_ERROR_INITIALIZATION_FAILED; |
| } |
| *pCollection = reinterpret_cast<VkBufferCollectionFUCHSIA>(sysmem_collection); |
| return VK_SUCCESS; |
| } |
| |
| void on_vkDestroyBufferCollectionFUCHSIA( |
| void*, VkResult, VkDevice, |
| VkBufferCollectionFUCHSIA collection, |
| const VkAllocationCallbacks*) { |
| auto sysmem_collection = reinterpret_cast<fuchsia::sysmem::BufferCollectionSyncPtr*>(collection); |
| if (sysmem_collection->is_bound()) { |
| (*sysmem_collection)->Close(); |
| } |
| delete sysmem_collection; |
| } |
| |
| VkResult setBufferCollectionConstraints(fuchsia::sysmem::BufferCollectionSyncPtr* collection, |
| const VkImageCreateInfo* pImageInfo, |
| size_t min_size_bytes) { |
| fuchsia::sysmem::BufferCollectionConstraints constraints = {}; |
| constraints.usage.vulkan = fuchsia::sysmem::vulkanUsageColorAttachment | |
| fuchsia::sysmem::vulkanUsageTransferSrc | |
| fuchsia::sysmem::vulkanUsageTransferDst | |
| fuchsia::sysmem::vulkanUsageSampled; |
| constraints.min_buffer_count = 1; |
| constraints.has_buffer_memory_constraints = true; |
| fuchsia::sysmem::BufferMemoryConstraints& buffer_constraints = |
| constraints.buffer_memory_constraints; |
| buffer_constraints.min_size_bytes = min_size_bytes; |
| buffer_constraints.max_size_bytes = 0xffffffff; |
| buffer_constraints.physically_contiguous_required = false; |
| buffer_constraints.secure_required = false; |
| buffer_constraints.ram_domain_supported = false; |
| buffer_constraints.cpu_domain_supported = false; |
| buffer_constraints.inaccessible_domain_supported = true; |
| buffer_constraints.heap_permitted_count = 1; |
| buffer_constraints.heap_permitted[0] = |
| fuchsia::sysmem::HeapType::GOLDFISH_DEVICE_LOCAL; |
| |
| // Set image format constraints for VkImage allocation. |
| if (pImageInfo) { |
| std::vector<VkFormat> formats{pImageInfo->format}; |
| if (pImageInfo->format == VK_FORMAT_UNDEFINED) { |
| // This is a hack to allow the client to say it supports every |
| // vulkan format the driver does. TODO(fxb/13247): Modify this |
| // function to take a list of vulkan formats to use. |
| formats = std::vector<VkFormat>{ |
| VK_FORMAT_B8G8R8A8_UNORM, |
| VK_FORMAT_R8G8B8A8_UNORM, |
| }; |
| } |
| constraints.image_format_constraints_count = formats.size(); |
| uint32_t format_index = 0; |
| for (VkFormat format : formats) { |
| fuchsia::sysmem::ImageFormatConstraints& image_constraints = |
| constraints.image_format_constraints[format_index++]; |
| switch (format) { |
| case VK_FORMAT_B8G8R8A8_SINT: |
| case VK_FORMAT_B8G8R8A8_UNORM: |
| case VK_FORMAT_B8G8R8A8_SRGB: |
| case VK_FORMAT_B8G8R8A8_SNORM: |
| case VK_FORMAT_B8G8R8A8_SSCALED: |
| case VK_FORMAT_B8G8R8A8_USCALED: |
| image_constraints.pixel_format.type = |
| fuchsia::sysmem::PixelFormatType::BGRA32; |
| break; |
| case VK_FORMAT_R8G8B8A8_SINT: |
| case VK_FORMAT_R8G8B8A8_UNORM: |
| case VK_FORMAT_R8G8B8A8_SRGB: |
| case VK_FORMAT_R8G8B8A8_SNORM: |
| case VK_FORMAT_R8G8B8A8_SSCALED: |
| case VK_FORMAT_R8G8B8A8_USCALED: |
| image_constraints.pixel_format.type = |
| fuchsia::sysmem::PixelFormatType::R8G8B8A8; |
| break; |
| default: |
| return VK_ERROR_FORMAT_NOT_SUPPORTED; |
| } |
| image_constraints.color_spaces_count = 1; |
| image_constraints.color_space[0].type = |
| fuchsia::sysmem::ColorSpaceType::SRGB; |
| image_constraints.min_coded_width = pImageInfo->extent.width; |
| image_constraints.max_coded_width = 0xfffffff; |
| image_constraints.min_coded_height = pImageInfo->extent.height; |
| image_constraints.max_coded_height = 0xffffffff; |
| image_constraints.min_bytes_per_row = |
| pImageInfo->extent.width * 4; |
| image_constraints.max_bytes_per_row = 0xffffffff; |
| image_constraints.max_coded_width_times_coded_height = |
| 0xffffffff; |
| image_constraints.layers = 1; |
| image_constraints.coded_width_divisor = 1; |
| image_constraints.coded_height_divisor = 1; |
| image_constraints.bytes_per_row_divisor = 1; |
| image_constraints.start_offset_divisor = 1; |
| image_constraints.display_width_divisor = 1; |
| image_constraints.display_height_divisor = 1; |
| } |
| } |
| |
| (*collection)->SetConstraints(true, constraints); |
| return VK_SUCCESS; |
| } |
| |
| VkResult on_vkSetBufferCollectionConstraintsFUCHSIA( |
| void*, VkResult, VkDevice, |
| VkBufferCollectionFUCHSIA collection, |
| const VkImageCreateInfo* pImageInfo) { |
| auto sysmem_collection = |
| reinterpret_cast<fuchsia::sysmem::BufferCollectionSyncPtr*>(collection); |
| size_t minSizeBytes = pImageInfo ? pImageInfo->extent.width * |
| pImageInfo->extent.height * 4 |
| : 0u; |
| return setBufferCollectionConstraints(sysmem_collection, pImageInfo, |
| minSizeBytes); |
| } |
| |
| VkResult on_vkGetBufferCollectionPropertiesFUCHSIA( |
| void*, VkResult, |
| VkDevice device, |
| VkBufferCollectionFUCHSIA collection, |
| VkBufferCollectionPropertiesFUCHSIA* pProperties) { |
| auto sysmem_collection = reinterpret_cast<fuchsia::sysmem::BufferCollectionSyncPtr*>(collection); |
| fuchsia::sysmem::BufferCollectionInfo_2 info; |
| zx_status_t status2; |
| zx_status_t status = (*sysmem_collection)->WaitForBuffersAllocated(&status2, &info); |
| if (status != ZX_OK || status2 != ZX_OK) { |
| ALOGE("Failed wait for allocation: %d %d", status, status2); |
| return VK_ERROR_INITIALIZATION_FAILED; |
| } |
| if (!info.settings.has_image_format_constraints) { |
| return VK_ERROR_INITIALIZATION_FAILED; |
| } |
| pProperties->count = info.buffer_count; |
| |
| AutoLock lock(mLock); |
| |
| auto deviceIt = info_VkDevice.find(device); |
| |
| if (deviceIt == info_VkDevice.end()) { |
| return VK_ERROR_INITIALIZATION_FAILED; |
| } |
| |
| auto& deviceInfo = deviceIt->second; |
| |
| // Device local memory type supported. |
| pProperties->memoryTypeBits = 0; |
| for (uint32_t i = 0; i < deviceInfo.memProps.memoryTypeCount; ++i) { |
| if (deviceInfo.memProps.memoryTypes[i].propertyFlags & |
| VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) { |
| pProperties->memoryTypeBits |= 1ull << i; |
| } |
| } |
| return VK_SUCCESS; |
| } |
| #endif |
| |
| HostMemBlockIndex getOrAllocateHostMemBlockLocked( |
| HostMemBlocks& blocks, |
| const VkMemoryAllocateInfo* pAllocateInfo, |
| VkEncoder* enc, |
| VkDevice device, |
| const VkDevice_Info& deviceInfo) { |
| |
| HostMemBlockIndex res = 0; |
| bool found = false; |
| |
| while (!found) { |
| for (HostMemBlockIndex i = 0; i < blocks.size(); ++i) { |
| if (blocks[i].initialized && |
| blocks[i].initResult == VK_SUCCESS && |
| canSubAlloc( |
| blocks[i].subAlloc, |
| pAllocateInfo->allocationSize)) { |
| res = i; |
| found = true; |
| return res; |
| } |
| } |
| |
| blocks.push_back({}); |
| |
| auto& hostMemAlloc = blocks.back(); |
| |
| // Uninitialized block; allocate on host. |
| static constexpr VkDeviceSize oneMb = 1048576; |
| static constexpr VkDeviceSize kDefaultHostMemBlockSize = |
| 16 * oneMb; // 16 mb |
| VkDeviceSize roundedUpAllocSize = |
| oneMb * ((pAllocateInfo->allocationSize + oneMb - 1) / oneMb); |
| |
| VkDeviceSize virtualHeapSize = VIRTUAL_HOST_VISIBLE_HEAP_SIZE; |
| |
| VkDeviceSize blockSizeNeeded = |
| std::max(roundedUpAllocSize, |
| std::min(virtualHeapSize, |
| kDefaultHostMemBlockSize)); |
| |
| VkMemoryAllocateInfo allocInfoForHost = *pAllocateInfo; |
| |
| allocInfoForHost.allocationSize = blockSizeNeeded; |
| |
| // TODO: Support dedicated/external host visible allocation |
| allocInfoForHost.pNext = nullptr; |
| |
| mLock.unlock(); |
| VkResult host_res = |
| enc->vkAllocateMemory( |
| device, |
| &allocInfoForHost, |
| nullptr, |
| &hostMemAlloc.memory); |
| mLock.lock(); |
| |
| if (host_res != VK_SUCCESS) { |
| ALOGE("Could not allocate backing for virtual host visible memory: %d", |
| host_res); |
| hostMemAlloc.initialized = true; |
| hostMemAlloc.initResult = host_res; |
| return INVALID_HOST_MEM_BLOCK; |
| } |
| |
| auto& hostMemInfo = info_VkDeviceMemory[hostMemAlloc.memory]; |
| hostMemInfo.allocationSize = allocInfoForHost.allocationSize; |
| VkDeviceSize nonCoherentAtomSize = |
| deviceInfo.props.limits.nonCoherentAtomSize; |
| hostMemInfo.mappedSize = hostMemInfo.allocationSize; |
| hostMemInfo.memoryTypeIndex = |
| pAllocateInfo->memoryTypeIndex; |
| hostMemAlloc.nonCoherentAtomSize = nonCoherentAtomSize; |
| |
| uint64_t directMappedAddr = 0; |
| |
| |
| VkResult directMapResult = VK_SUCCESS; |
| if (mFeatureInfo->hasDirectMem) { |
| mLock.unlock(); |
| directMapResult = |
| enc->vkMapMemoryIntoAddressSpaceGOOGLE( |
| device, hostMemAlloc.memory, &directMappedAddr); |
| mLock.lock(); |
| } else if (mFeatureInfo->hasVirtioGpuNext) { |
| #if !defined(HOST_BUILD) && defined(VK_USE_PLATFORM_ANDROID_KHR) |
| uint64_t hvaSizeId[3]; |
| |
| mLock.unlock(); |
| enc->vkGetMemoryHostAddressInfoGOOGLE( |
| device, hostMemAlloc.memory, |
| &hvaSizeId[0], &hvaSizeId[1], &hvaSizeId[2]); |
| ALOGD("%s: hvaOff, size: 0x%llx 0x%llx id: 0x%llx\n", __func__, |
| (unsigned long long)hvaSizeId[0], |
| (unsigned long long)hvaSizeId[1], |
| (unsigned long long)hvaSizeId[2]); |
| mLock.lock(); |
| |
| struct drm_virtgpu_resource_create_blob drm_rc_blob = { 0 }; |
| drm_rc_blob.blob_mem = VIRTGPU_BLOB_MEM_HOST; |
| drm_rc_blob.blob_flags = VIRTGPU_BLOB_FLAG_MAPPABLE; |
| drm_rc_blob.blob_id = hvaSizeId[2]; |
| drm_rc_blob.size = hvaSizeId[1]; |
| |
| int res = drmIoctl( |
| mRendernodeFd, DRM_IOCTL_VIRTGPU_RESOURCE_CREATE_BLOB, &drm_rc_blob); |
| |
| if (res) { |
| ALOGE("%s: Failed to resource create v2: sterror: %s errno: %d\n", __func__, |
| strerror(errno), errno); |
| abort(); |
| } |
| |
| struct drm_virtgpu_map map_info = { |
| .handle = drm_rc_blob.bo_handle, |
| }; |
| |
| res = drmIoctl(mRendernodeFd, DRM_IOCTL_VIRTGPU_MAP, &map_info); |
| if (res) { |
| ALOGE("%s: Failed to virtgpu map: sterror: %s errno: %d\n", __func__, |
| strerror(errno), errno); |
| abort(); |
| } |
| |
| directMappedAddr = (uint64_t)(uintptr_t) |
| mmap64(0, hvaSizeId[1], PROT_WRITE, MAP_SHARED, mRendernodeFd, map_info.offset); |
| |
| if (!directMappedAddr) { |
| ALOGE("%s: mmap of virtio gpu resource failed\n", __func__); |
| abort(); |
| } |
| |
| // add the host's page offset |
| directMappedAddr += (uint64_t)(uintptr_t)(hvaSizeId[0]) & (PAGE_SIZE - 1); |
| directMapResult = VK_SUCCESS; |
| #endif // VK_USE_PLATFORM_ANDROID_KHR |
| } |
| |
| if (directMapResult != VK_SUCCESS) { |
| hostMemAlloc.initialized = true; |
| hostMemAlloc.initResult = directMapResult; |
| mLock.unlock(); |
| enc->vkFreeMemory(device, hostMemAlloc.memory, nullptr); |
| mLock.lock(); |
| return INVALID_HOST_MEM_BLOCK; |
| } |
| |
| hostMemInfo.mappedPtr = |
| (uint8_t*)(uintptr_t)directMappedAddr; |
| hostMemInfo.virtualHostVisibleBacking = true; |
| |
| VkResult hostMemAllocRes = |
| finishHostMemAllocInit( |
| enc, |
| device, |
| pAllocateInfo->memoryTypeIndex, |
| nonCoherentAtomSize, |
| hostMemInfo.allocationSize, |
| hostMemInfo.mappedSize, |
| hostMemInfo.mappedPtr, |
| &hostMemAlloc); |
| |
| if (hostMemAllocRes != VK_SUCCESS) { |
| return INVALID_HOST_MEM_BLOCK; |
| } |
| } |
| |
| // unreacheable, but we need to make Werror happy |
| return INVALID_HOST_MEM_BLOCK; |
| } |
| |
| VkResult on_vkAllocateMemory( |
| void* context, |
| VkResult input_result, |
| VkDevice device, |
| const VkMemoryAllocateInfo* pAllocateInfo, |
| const VkAllocationCallbacks* pAllocator, |
| VkDeviceMemory* pMemory) { |
| |
| if (input_result != VK_SUCCESS) return input_result; |
| |
| VkEncoder* enc = (VkEncoder*)context; |
| |
| VkMemoryAllocateInfo finalAllocInfo = vk_make_orphan_copy(*pAllocateInfo); |
| vk_struct_chain_iterator structChainIter = vk_make_chain_iterator(&finalAllocInfo); |
| |
| VkMemoryDedicatedAllocateInfo dedicatedAllocInfo; |
| VkImportColorBufferGOOGLE importCbInfo = { |
| VK_STRUCTURE_TYPE_IMPORT_COLOR_BUFFER_GOOGLE, 0, |
| }; |
| VkImportBufferGOOGLE importBufferInfo = { |
| VK_STRUCTURE_TYPE_IMPORT_BUFFER_GOOGLE, |
| 0, |
| }; |
| // VkImportPhysicalAddressGOOGLE importPhysAddrInfo = { |
| // VK_STRUCTURE_TYPE_IMPORT_PHYSICAL_ADDRESS_GOOGLE, 0, |
| // }; |
| |
| const VkExportMemoryAllocateInfo* exportAllocateInfoPtr = |
| vk_find_struct<VkExportMemoryAllocateInfo>(pAllocateInfo); |
| |
| const VkImportAndroidHardwareBufferInfoANDROID* importAhbInfoPtr = |
| vk_find_struct<VkImportAndroidHardwareBufferInfoANDROID>(pAllocateInfo); |
| |
| const VkImportMemoryBufferCollectionFUCHSIA* importBufferCollectionInfoPtr = |
| vk_find_struct<VkImportMemoryBufferCollectionFUCHSIA>(pAllocateInfo); |
| |
| const VkImportMemoryZirconHandleInfoFUCHSIA* importVmoInfoPtr = |
| vk_find_struct<VkImportMemoryZirconHandleInfoFUCHSIA>(pAllocateInfo); |
| |
| const VkMemoryDedicatedAllocateInfo* dedicatedAllocInfoPtr = |
| vk_find_struct<VkMemoryDedicatedAllocateInfo>(pAllocateInfo); |
| |
| bool shouldPassThroughDedicatedAllocInfo = |
| !exportAllocateInfoPtr && |
| !importAhbInfoPtr && |
| !importBufferCollectionInfoPtr && |
| !importVmoInfoPtr && |
| !isHostVisibleMemoryTypeIndexForGuest( |
| &mHostVisibleMemoryVirtInfo, |
| pAllocateInfo->memoryTypeIndex); |
| |
| if (!exportAllocateInfoPtr && |
| (importAhbInfoPtr || importBufferCollectionInfoPtr || importVmoInfoPtr) && |
| dedicatedAllocInfoPtr && |
| isHostVisibleMemoryTypeIndexForGuest( |
| &mHostVisibleMemoryVirtInfo, |
| pAllocateInfo->memoryTypeIndex)) { |
| ALOGE("FATAL: It is not yet supported to import-allocate " |
| "external memory that is both host visible and dedicated."); |
| abort(); |
| } |
| |
| if (shouldPassThroughDedicatedAllocInfo && |
| dedicatedAllocInfoPtr) { |
| dedicatedAllocInfo = vk_make_orphan_copy(*dedicatedAllocInfoPtr); |
| vk_append_struct(&structChainIter, &dedicatedAllocInfo); |
| } |
| |
| // State needed for import/export. |
| bool exportAhb = false; |
| bool exportVmo = false; |
| bool importAhb = false; |
| bool importBufferCollection = false; |
| bool importVmo = false; |
| (void)exportVmo; |
| |
| // Even if we export allocate, the underlying operation |
| // for the host is always going to be an import operation. |
| // This is also how Intel's implementation works, |
| // and is generally simpler; |
| // even in an export allocation, |
| // we perform AHardwareBuffer allocation |
| // on the guest side, at this layer, |
| // and then we attach a new VkDeviceMemory |
| // to the AHardwareBuffer on the host via an "import" operation. |
| AHardwareBuffer* ahw = nullptr; |
| |
| if (exportAllocateInfoPtr) { |
| exportAhb = |
| exportAllocateInfoPtr->handleTypes & |
| VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID; |
| exportVmo = |
| exportAllocateInfoPtr->handleTypes & |
| VK_EXTERNAL_MEMORY_HANDLE_TYPE_TEMP_ZIRCON_VMO_BIT_FUCHSIA; |
| } else if (importAhbInfoPtr) { |
| importAhb = true; |
| } else if (importBufferCollectionInfoPtr) { |
| importBufferCollection = true; |
| } else if (importVmoInfoPtr) { |
| importVmo = true; |
| } |
| |
| if (exportAhb) { |
| bool hasDedicatedImage = dedicatedAllocInfoPtr && |
| (dedicatedAllocInfoPtr->image != VK_NULL_HANDLE); |
| bool hasDedicatedBuffer = dedicatedAllocInfoPtr && |
| (dedicatedAllocInfoPtr->buffer != VK_NULL_HANDLE); |
| VkExtent3D imageExtent = { 0, 0, 0 }; |
| uint32_t imageLayers = 0; |
| VkFormat imageFormat = VK_FORMAT_UNDEFINED; |
| VkImageUsageFlags imageUsage = 0; |
| VkImageCreateFlags imageCreateFlags = 0; |
| VkDeviceSize bufferSize = 0; |
| VkDeviceSize allocationInfoAllocSize = |
| finalAllocInfo.allocationSize; |
| |
| if (hasDedicatedImage) { |
| AutoLock lock(mLock); |
| |
| auto it = info_VkImage.find( |
| dedicatedAllocInfoPtr->image); |
| if (it == info_VkImage.end()) return VK_ERROR_INITIALIZATION_FAILED; |
| const auto& info = it->second; |
| const auto& imgCi = info.createInfo; |
| |
| imageExtent = imgCi.extent; |
| imageLayers = imgCi.arrayLayers; |
| imageFormat = imgCi.format; |
| imageUsage = imgCi.usage; |
| imageCreateFlags = imgCi.flags; |
| } |
| |
| if (hasDedicatedBuffer) { |
| AutoLock lock(mLock); |
| |
| auto it = info_VkBuffer.find( |
| dedicatedAllocInfoPtr->buffer); |
| if (it == info_VkBuffer.end()) return VK_ERROR_INITIALIZATION_FAILED; |
| const auto& info = it->second; |
| const auto& bufCi = info.createInfo; |
| |
| bufferSize = bufCi.size; |
| } |
| |
| VkResult ahbCreateRes = |
| createAndroidHardwareBuffer( |
| hasDedicatedImage, |
| hasDedicatedBuffer, |
| imageExtent, |
| imageLayers, |
| imageFormat, |
| imageUsage, |
| imageCreateFlags, |
| bufferSize, |
| allocationInfoAllocSize, |
| &ahw); |
| |
| if (ahbCreateRes != VK_SUCCESS) { |
| return ahbCreateRes; |
| } |
| } |
| |
| if (importAhb) { |
| ahw = importAhbInfoPtr->buffer; |
| // We still need to acquire the AHardwareBuffer. |
| importAndroidHardwareBuffer( |
| mThreadingCallbacks.hostConnectionGetFunc()->grallocHelper(), |
| importAhbInfoPtr, nullptr); |
| } |
| |
| if (ahw) { |
| ALOGD("%s: Import AHardwareBuffer", __func__); |
| importCbInfo.colorBuffer = |
| mThreadingCallbacks.hostConnectionGetFunc()->grallocHelper()-> |
| getHostHandle(AHardwareBuffer_getNativeHandle(ahw)); |
| vk_append_struct(&structChainIter, &importCbInfo); |
| } |
| |
| zx_handle_t vmo_handle = ZX_HANDLE_INVALID; |
| |
| if (importBufferCollection) { |
| |
| #ifdef VK_USE_PLATFORM_FUCHSIA |
| auto collection = reinterpret_cast<fuchsia::sysmem::BufferCollectionSyncPtr*>( |
| importBufferCollectionInfoPtr->collection); |
| fuchsia::sysmem::BufferCollectionInfo_2 info; |
| zx_status_t status2; |
| zx_status_t status = (*collection)->WaitForBuffersAllocated(&status2, &info); |
| if (status != ZX_OK || status2 != ZX_OK) { |
| ALOGE("WaitForBuffersAllocated failed: %d %d", status); |
| return VK_ERROR_INITIALIZATION_FAILED; |
| } |
| uint32_t index = importBufferCollectionInfoPtr->index; |
| if (info.buffer_count < index) { |
| ALOGE("Invalid buffer index: %d %d", index); |
| return VK_ERROR_INITIALIZATION_FAILED; |
| } |
| vmo_handle = info.buffers[index].vmo.release(); |
| #endif |
| |
| } |
| |
| if (importVmo) { |
| vmo_handle = importVmoInfoPtr->handle; |
| } |
| |
| #ifdef VK_USE_PLATFORM_FUCHSIA |
| if (exportVmo) { |
| bool hasDedicatedImage = dedicatedAllocInfoPtr && |
| (dedicatedAllocInfoPtr->image != VK_NULL_HANDLE); |
| VkImageCreateInfo imageCreateInfo = {}; |
| |
| // TODO(liyl): Handle dedicated buffer allocation as well. |
| if (hasDedicatedImage) { |
| AutoLock lock(mLock); |
| |
| auto it = info_VkImage.find(dedicatedAllocInfoPtr->image); |
| if (it == info_VkImage.end()) return VK_ERROR_INITIALIZATION_FAILED; |
| const auto& imageInfo = it->second; |
| |
| imageCreateInfo = imageInfo.createInfo; |
| } |
| |
| if (imageCreateInfo.usage & (VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | |
| VK_IMAGE_USAGE_TRANSFER_DST_BIT | |
| VK_IMAGE_USAGE_TRANSFER_SRC_BIT | |
| VK_IMAGE_USAGE_SAMPLED_BIT)) { |
| fuchsia::sysmem::BufferCollectionTokenSyncPtr token; |
| zx_status_t status = mSysmemAllocator->AllocateSharedCollection( |
| token.NewRequest()); |
| if (status != ZX_OK) { |
| ALOGE("AllocateSharedCollection failed: %d", status); |
| abort(); |
| } |
| |
| fuchsia::sysmem::BufferCollectionSyncPtr collection; |
| status = mSysmemAllocator->BindSharedCollection( |
| std::move(token), collection.NewRequest()); |
| if (status != ZX_OK) { |
| ALOGE("BindSharedCollection failed: %d", status); |
| abort(); |
| } |
| VkResult res = setBufferCollectionConstraints(&collection, |
| &imageCreateInfo, |
| finalAllocInfo.allocationSize); |
| if (res != VK_SUCCESS) { |
| ALOGE("setBufferCollectionConstraints failed: %d", res); |
| abort(); |
| } |
| |
| fuchsia::sysmem::BufferCollectionInfo_2 info; |
| zx_status_t status2; |
| status = collection->WaitForBuffersAllocated(&status2, &info); |
| if (status == ZX_OK && status2 == ZX_OK) { |
| if (!info.buffer_count) { |
| ALOGE("WaitForBuffersAllocated returned invalid count: %d", status); |
| abort(); |
| } |
| vmo_handle = info.buffers[0].vmo.release(); |
| } else { |
| ALOGE("WaitForBuffersAllocated failed: %d %d", status, status2); |
| abort(); |
| } |
| |
| collection->Close(); |
| |
| zx::vmo vmo_copy; |
| status = zx_handle_duplicate(vmo_handle, |
| ZX_RIGHT_SAME_RIGHTS, |
| vmo_copy.reset_and_get_address()); |
| if (status != ZX_OK) { |
| ALOGE("Failed to duplicate VMO: %d", status); |
| abort(); |
| } |
| |
| fuchsia::hardware::goldfish::ColorBufferFormatType format; |
| switch (imageCreateInfo.format) { |
| case VK_FORMAT_B8G8R8A8_SINT: |
| case VK_FORMAT_B8G8R8A8_UNORM: |
| case VK_FORMAT_B8G8R8A8_SRGB: |
| case VK_FORMAT_B8G8R8A8_SNORM: |
| case VK_FORMAT_B8G8R8A8_SSCALED: |
| case VK_FORMAT_B8G8R8A8_USCALED: |
| format = fuchsia::hardware::goldfish::ColorBufferFormatType::BGRA; |
| break; |
| case VK_FORMAT_R8G8B8A8_SINT: |
| case VK_FORMAT_R8G8B8A8_UNORM: |
| case VK_FORMAT_R8G8B8A8_SRGB: |
| case VK_FORMAT_R8G8B8A8_SNORM: |
| case VK_FORMAT_R8G8B8A8_SSCALED: |
| case VK_FORMAT_R8G8B8A8_USCALED: |
| format = fuchsia::hardware::goldfish::ColorBufferFormatType::RGBA; |
| break; |
| default: |
| ALOGE("Unsupported format: %d", imageCreateInfo.format); |
| abort(); |
| } |
| |
| status = mControlDevice->CreateColorBuffer( |
| std::move(vmo_copy), |
| imageCreateInfo.extent.width, |
| imageCreateInfo.extent.height, |
| format, |
| &status2); |
| if (status != ZX_OK || status2 != ZX_OK) { |
| ALOGE("CreateColorBuffer failed: %d:%d", status, status2); |
| abort(); |
| } |
| } |
| } |
| |
| if (vmo_handle != ZX_HANDLE_INVALID) { |
| zx::vmo vmo_copy; |
| zx_status_t status = zx_handle_duplicate(vmo_handle, |
| ZX_RIGHT_SAME_RIGHTS, |
| vmo_copy.reset_and_get_address()); |
| if (status != ZX_OK) { |
| ALOGE("Failed to duplicate VMO: %d", status); |
| abort(); |
| } |
| zx_status_t status2 = ZX_OK; |
| |
| fuchsia::hardware::goldfish::BufferHandleType handle_type; |
| uint32_t buffer_handle; |
| |
| status = mControlDevice->GetBufferHandle(std::move(vmo_copy), |
| &status2, &buffer_handle, |
| &handle_type); |
| if (status != ZX_OK || status2 != ZX_OK) { |
| ALOGE("GetBufferHandle failed: %d:%d", status, status2); |
| } |
| |
| if (handle_type == |
| fuchsia::hardware::goldfish::BufferHandleType::BUFFER) { |
| importBufferInfo.buffer = buffer_handle; |
| vk_append_struct(&structChainIter, &importBufferInfo); |
| } else { |
| importCbInfo.colorBuffer = buffer_handle; |
| vk_append_struct(&structChainIter, &importCbInfo); |
| } |
| } |
| #endif |
| |
| if (!isHostVisibleMemoryTypeIndexForGuest( |
| &mHostVisibleMemoryVirtInfo, |
| finalAllocInfo.memoryTypeIndex)) { |
| input_result = |
| enc->vkAllocateMemory( |
| device, &finalAllocInfo, pAllocator, pMemory); |
| |
| if (input_result != VK_SUCCESS) return input_result; |
| |
| VkDeviceSize allocationSize = finalAllocInfo.allocationSize; |
| setDeviceMemoryInfo( |
| device, *pMemory, |
| finalAllocInfo.allocationSize, |
| 0, nullptr, |
| finalAllocInfo.memoryTypeIndex, |
| ahw, |
| vmo_handle); |
| |
| return VK_SUCCESS; |
| } |
| |
| // Device-local memory dealing is over. What follows: |
| // host-visible memory. |
| |
| if (ahw) { |
| ALOGE("%s: Host visible export/import allocation " |
| "of Android hardware buffers is not supported.", |
| __func__); |
| abort(); |
| } |
| |
| if (vmo_handle != ZX_HANDLE_INVALID) { |
| ALOGE("%s: Host visible export/import allocation " |
| "of VMO is not supported yet.", |
| __func__); |
| abort(); |
| } |
| |
| // Host visible memory, non external |
| bool directMappingSupported = usingDirectMapping(); |
| if (!directMappingSupported) { |
| input_result = |
| enc->vkAllocateMemory( |
| device, &finalAllocInfo, pAllocator, pMemory); |
| |
| if (input_result != VK_SUCCESS) return input_result; |
| |
| VkDeviceSize mappedSize = |
| getNonCoherentExtendedSize(device, |
| finalAllocInfo.allocationSize); |
| uint8_t* mappedPtr = (uint8_t*)aligned_buf_alloc(4096, mappedSize); |
| D("host visible alloc (non-direct): " |
| "size 0x%llx host ptr %p mapped size 0x%llx", |
| (unsigned long long)finalAllocInfo.allocationSize, mappedPtr, |
| (unsigned long long)mappedSize); |
| setDeviceMemoryInfo( |
| device, *pMemory, |
| finalAllocInfo.allocationSize, |
| mappedSize, mappedPtr, |
| finalAllocInfo.memoryTypeIndex); |
| return VK_SUCCESS; |
| } |
| |
| // Host visible memory with direct mapping via |
| // VkImportPhysicalAddressGOOGLE |
| // if (importPhysAddr) { |
| // vkAllocateMemory(device, &finalAllocInfo, pAllocator, pMemory); |
| // host maps the host pointer to the guest physical address |
| // TODO: the host side page offset of the |
| // host pointer needs to be returned somehow. |
| // } |
| |
| // Host visible memory with direct mapping |
| AutoLock lock(mLock); |
| |
| auto it = info_VkDevice.find(device); |
| if (it == info_VkDevice.end()) return VK_ERROR_DEVICE_LOST; |
| auto& deviceInfo = it->second; |
| |
| auto& hostMemBlocksForTypeIndex = |
| deviceInfo.hostMemBlocks[finalAllocInfo.memoryTypeIndex]; |
| |
| HostMemBlockIndex blockIndex = |
| getOrAllocateHostMemBlockLocked( |
| hostMemBlocksForTypeIndex, |
| &finalAllocInfo, |
| enc, |
| device, |
| deviceInfo); |
| |
| if (blockIndex == (HostMemBlockIndex) INVALID_HOST_MEM_BLOCK) { |
| return VK_ERROR_OUT_OF_HOST_MEMORY; |
| } |
| |
| VkDeviceMemory_Info virtualMemInfo; |
| |
| subAllocHostMemory( |
| &hostMemBlocksForTypeIndex[blockIndex], |
| &finalAllocInfo, |
| &virtualMemInfo.subAlloc); |
| |
| virtualMemInfo.allocationSize = virtualMemInfo.subAlloc.subAllocSize; |
| virtualMemInfo.mappedSize = virtualMemInfo.subAlloc.subMappedSize; |
| virtualMemInfo.mappedPtr = virtualMemInfo.subAlloc.mappedPtr; |
| virtualMemInfo.memoryTypeIndex = finalAllocInfo.memoryTypeIndex; |
| virtualMemInfo.directMapped = true; |
| |
| D("host visible alloc (direct, suballoc): " |
| "size 0x%llx ptr %p mapped size 0x%llx", |
| (unsigned long long)virtualMemInfo.allocationSize, virtualMemInfo.mappedPtr, |
| (unsigned long long)virtualMemInfo.mappedSize); |
| |
| info_VkDeviceMemory[ |
| virtualMemInfo.subAlloc.subMemory] = virtualMemInfo; |
| |
| *pMemory = virtualMemInfo.subAlloc.subMemory; |
| |
| return VK_SUCCESS; |
| } |
| |
| void on_vkFreeMemory( |
| void* context, |
| VkDevice device, |
| VkDeviceMemory memory, |
| const VkAllocationCallbacks* pAllocateInfo) { |
| |
| AutoLock lock(mLock); |
| |
| auto it = info_VkDeviceMemory.find(memory); |
| if (it == info_VkDeviceMemory.end()) return; |
| auto& info = it->second; |
| |
| if (!info.directMapped) { |
| lock.unlock(); |
| VkEncoder* enc = (VkEncoder*)context; |
| enc->vkFreeMemory(device, memory, pAllocateInfo); |
| return; |
| } |
| |
| subFreeHostMemory(&info.subAlloc); |
| } |
| |
| VkResult on_vkMapMemory( |
| void*, |
| VkResult host_result, |
| VkDevice, |
| VkDeviceMemory memory, |
| VkDeviceSize offset, |
| VkDeviceSize size, |
| VkMemoryMapFlags, |
| void** ppData) { |
| |
| if (host_result != VK_SUCCESS) return host_result; |
| |
| AutoLock lock(mLock); |
| |
| auto it = info_VkDeviceMemory.find(memory); |
| if (it == info_VkDeviceMemory.end()) return VK_ERROR_MEMORY_MAP_FAILED; |
| |
| auto& info = it->second; |
| |
| if (!info.mappedPtr) return VK_ERROR_MEMORY_MAP_FAILED; |
| |
| if (size != VK_WHOLE_SIZE && |
| (info.mappedPtr + offset + size > info.mappedPtr + info.allocationSize)) { |
| return VK_ERROR_MEMORY_MAP_FAILED; |
| } |
| |
| *ppData = info.mappedPtr + offset; |
| |
| return host_result; |
| } |
| |
| void on_vkUnmapMemory( |
| void*, |
| VkDevice, |
| VkDeviceMemory) { |
| // no-op |
| } |
| |
| uint32_t transformNonExternalResourceMemoryTypeBitsForGuest( |
| uint32_t hostBits) { |
| uint32_t res = 0; |
| for (uint32_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i) { |
| if (hostBits & (1 << i)) { |
| res |= (1 << i); |
| } |
| } |
| return res; |
| } |
| |
| uint32_t transformExternalResourceMemoryTypeBitsForGuest( |
| uint32_t normalBits) { |
| uint32_t res = 0; |
| for (uint32_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i) { |
| if (normalBits & (1 << i) && |
| !isHostVisibleMemoryTypeIndexForGuest( |
| &mHostVisibleMemoryVirtInfo, i)) { |
| res |= (1 << i); |
| } |
| } |
| return res; |
| } |
| |
| void transformNonExternalResourceMemoryRequirementsForGuest( |
| VkMemoryRequirements* reqs) { |
| reqs->memoryTypeBits = |
| transformNonExternalResourceMemoryTypeBitsForGuest( |
| reqs->memoryTypeBits); |
| } |
| |
| void transformExternalResourceMemoryRequirementsForGuest( |
| VkMemoryRequirements* reqs) { |
| reqs->memoryTypeBits = |
| transformExternalResourceMemoryTypeBitsForGuest( |
| reqs->memoryTypeBits); |
| } |
| |
| void transformExternalResourceMemoryDedicatedRequirementsForGuest( |
| VkMemoryDedicatedRequirements* dedicatedReqs) { |
| dedicatedReqs->prefersDedicatedAllocation = VK_TRUE; |
| dedicatedReqs->requiresDedicatedAllocation = VK_TRUE; |
| } |
| |
| void transformImageMemoryRequirementsForGuestLocked( |
| VkImage image, |
| VkMemoryRequirements* reqs) { |
| |
| auto it = info_VkImage.find(image); |
| if (it == info_VkImage.end()) return; |
| |
| auto& info = it->second; |
| |
| if (!info.external || |
| !info.externalCreateInfo.handleTypes) { |
| transformNonExternalResourceMemoryRequirementsForGuest(reqs); |
| } else { |
| transformExternalResourceMemoryRequirementsForGuest(reqs); |
| } |
| setMemoryRequirementsForSysmemBackedImage(image, reqs); |
| } |
| |
| void transformBufferMemoryRequirementsForGuestLocked( |
| VkBuffer buffer, |
| VkMemoryRequirements* reqs) { |
| |
| auto it = info_VkBuffer.find(buffer); |
| if (it == info_VkBuffer.end()) return; |
| |
| auto& info = it->second; |
| |
| if (!info.external || |
| !info.externalCreateInfo.handleTypes) { |
| transformNonExternalResourceMemoryRequirementsForGuest(reqs); |
| return; |
| } |
| |
| transformExternalResourceMemoryRequirementsForGuest(reqs); |
| } |
| |
| void transformImageMemoryRequirements2ForGuest( |
| VkImage image, |
| VkMemoryRequirements2* reqs2) { |
| |
| AutoLock lock(mLock); |
| |
| auto it = info_VkImage.find(image); |
| if (it == info_VkImage.end()) return; |
| |
| auto& info = it->second; |
| |
| if (!info.external || |
| !info.externalCreateInfo.handleTypes) { |
| transformNonExternalResourceMemoryRequirementsForGuest( |
| &reqs2->memoryRequirements); |
| setMemoryRequirementsForSysmemBackedImage(image, &reqs2->memoryRequirements); |
| return; |
| } |
| |
| transformExternalResourceMemoryRequirementsForGuest(&reqs2->memoryRequirements); |
| |
| setMemoryRequirementsForSysmemBackedImage(image, &reqs2->memoryRequirements); |
| |
| VkMemoryDedicatedRequirements* dedicatedReqs = |
| vk_find_struct<VkMemoryDedicatedRequirements>(reqs2); |
| |
| if (!dedicatedReqs) return; |
| |
| transformExternalResourceMemoryDedicatedRequirementsForGuest( |
| dedicatedReqs); |
| } |
| |
| void transformBufferMemoryRequirements2ForGuest( |
| VkBuffer buffer, |
| VkMemoryRequirements2* reqs2) { |
| |
| AutoLock lock(mLock); |
| |
| auto it = info_VkBuffer.find(buffer); |
| if (it == info_VkBuffer.end()) return; |
| |
| auto& info = it->second; |
| |
| if (!info.external || |
| !info.externalCreateInfo.handleTypes) { |
| transformNonExternalResourceMemoryRequirementsForGuest( |
| &reqs2->memoryRequirements); |
| return; |
| } |
| |
| transformExternalResourceMemoryRequirementsForGuest(&reqs2->memoryRequirements); |
| |
| VkMemoryDedicatedRequirements* dedicatedReqs = |
| vk_find_struct<VkMemoryDedicatedRequirements>(reqs2); |
| |
| if (!dedicatedReqs) return; |
| |
| transformExternalResourceMemoryDedicatedRequirementsForGuest( |
| dedicatedReqs); |
| } |
| |
| VkResult on_vkCreateImage( |
| void* context, VkResult, |
| VkDevice device, const VkImageCreateInfo *pCreateInfo, |
| const VkAllocationCallbacks *pAllocator, |
| VkImage *pImage) { |
| VkEncoder* enc = (VkEncoder*)context; |
| |
| VkImageCreateInfo localCreateInfo = vk_make_orphan_copy(*pCreateInfo); |
| vk_struct_chain_iterator structChainIter = vk_make_chain_iterator(&localCreateInfo); |
| VkExternalMemoryImageCreateInfo localExtImgCi; |
| |
| const VkExternalMemoryImageCreateInfo* extImgCiPtr = |
| vk_find_struct<VkExternalMemoryImageCreateInfo>(pCreateInfo); |
| if (extImgCiPtr) { |
| localExtImgCi = vk_make_orphan_copy(*extImgCiPtr); |
| vk_append_struct(&structChainIter, &localExtImgCi); |
| } |
| |
| #ifdef VK_USE_PLATFORM_ANDROID_KHR |
| VkNativeBufferANDROID localAnb; |
| const VkNativeBufferANDROID* anbInfoPtr = |
| vk_find_struct<VkNativeBufferANDROID>(pCreateInfo); |
| if (anbInfoPtr) { |
| localAnb = vk_make_orphan_copy(*anbInfoPtr); |
| vk_append_struct(&structChainIter, &localAnb); |
| } |
| |
| VkExternalFormatANDROID localExtFormatAndroid; |
| const VkExternalFormatANDROID* extFormatAndroidPtr = |
| vk_find_struct<VkExternalFormatANDROID>(pCreateInfo); |
| if (extFormatAndroidPtr) { |
| localExtFormatAndroid = vk_make_orphan_copy(*extFormatAndroidPtr); |
| |
| // Do not append external format android; |
| // instead, replace the local image localCreateInfo format |
| // with the corresponding Vulkan format |
| if (extFormatAndroidPtr->externalFormat) { |
| localCreateInfo.format = |
| vk_format_from_android(extFormatAndroidPtr->externalFormat); |
| if (localCreateInfo.format == VK_FORMAT_UNDEFINED) |
| return VK_ERROR_VALIDATION_FAILED_EXT; |
| } |
| } |
| #endif |
| |
| #ifdef VK_USE_PLATFORM_FUCHSIA |
| const VkBufferCollectionImageCreateInfoFUCHSIA* extBufferCollectionPtr = |
| vk_find_struct<VkBufferCollectionImageCreateInfoFUCHSIA>(pCreateInfo); |
| bool isSysmemBackedMemory = false; |
| if (extBufferCollectionPtr) { |
| auto collection = reinterpret_cast<fuchsia::sysmem::BufferCollectionSyncPtr*>( |
| extBufferCollectionPtr->collection); |
| uint32_t index = extBufferCollectionPtr->index; |
| zx::vmo vmo; |
| |
| fuchsia::sysmem::BufferCollectionInfo_2 info; |
| zx_status_t status2; |
| zx_status_t status = (*collection)->WaitForBuffersAllocated(&status2, &info); |
| if (status == ZX_OK && status2 == ZX_OK) { |
| if (index < |