|  | /* | 
|  | * Copyright (C) 2016 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  |  | 
|  | #include "ConstantExpression.h" | 
|  |  | 
|  | #include <android-base/logging.h> | 
|  | #include <android-base/parseint.h> | 
|  | #include <stdio.h> | 
|  | #include <algorithm> | 
|  | #include <iostream> | 
|  | #include <sstream> | 
|  | #include <string> | 
|  |  | 
|  | #include "EnumType.h" | 
|  | #include "Scope.h"  // LocalIdentifier | 
|  |  | 
|  | // The macros are really nasty here. Consider removing | 
|  | // as many macros as possible. | 
|  |  | 
|  | #define OPEQ(__y__) (std::string(mOp) == std::string(__y__)) | 
|  | #define COMPUTE_UNARY(__op__)  if (op == std::string(#__op__)) return __op__ val; | 
|  | #define COMPUTE_BINARY(__op__) if (op == std::string(#__op__)) return lval __op__ rval; | 
|  | #define OP_IS_BIN_ARITHMETIC  (OPEQ("+") || OPEQ("-") || OPEQ("*") || OPEQ("/") || OPEQ("%")) | 
|  | #define OP_IS_BIN_BITFLIP     (OPEQ("|") || OPEQ("^") || OPEQ("&")) | 
|  | #define OP_IS_BIN_COMP        (OPEQ("<") || OPEQ(">") || OPEQ("<=") || OPEQ(">=") || OPEQ("==") || OPEQ("!=")) | 
|  | #define OP_IS_BIN_SHIFT       (OPEQ(">>") || OPEQ("<<")) | 
|  | #define OP_IS_BIN_LOGICAL     (OPEQ("||") || OPEQ("&&")) | 
|  | #define SK(__x__) ScalarType::Kind::KIND_##__x__ | 
|  | #define SHOULD_NOT_REACH() CHECK(false) << __LINE__ << ": should not reach here: " | 
|  |  | 
|  | // NOLINT to suppress missing parentheses warnings about __def__. | 
|  | #define SWITCH_KIND(__cond__, __action__, __def__)           \ | 
|  | switch(__cond__) {                                        \ | 
|  | case SK(BOOL): __action__(bool)                         \ | 
|  | case SK(UINT8): __action__(uint8_t)                     \ | 
|  | case SK(INT8): __action__(int8_t)                       \ | 
|  | case SK(UINT16): __action__(uint16_t)                   \ | 
|  | case SK(INT16): __action__(int16_t)                     \ | 
|  | case SK(UINT32): __action__(uint32_t)                   \ | 
|  | case SK(INT32): __action__(int32_t)                     \ | 
|  | case SK(UINT64): __action__(uint64_t)                   \ | 
|  | case SK(INT64): __action__(int64_t)                     \ | 
|  | default: __def__                        /* NOLINT */    \ | 
|  | } | 
|  |  | 
|  | namespace android { | 
|  |  | 
|  | static inline bool isSupported(ScalarType::Kind kind) { | 
|  | return SK(BOOL) == kind || ScalarType(kind, nullptr /* parent */).isValidEnumStorageType(); | 
|  | } | 
|  |  | 
|  | /* See docs at the end for details on integral promotion. */ | 
|  | ScalarType::Kind integralPromotion(ScalarType::Kind in) { | 
|  | return SK(INT32) < in ? in : SK(INT32); // note that KIND_INT32 < KIND_UINT32 | 
|  | } | 
|  |  | 
|  | /* See docs at the end for details on usual arithmetic conversion. */ | 
|  | ScalarType::Kind usualArithmeticConversion(ScalarType::Kind lft, | 
|  | ScalarType::Kind rgt) { | 
|  | CHECK(isSupported(lft) && isSupported(rgt)); | 
|  | // Kinds in concern: bool, (u)int[8|16|32|64] | 
|  | if(lft == rgt) return lft; // easy case | 
|  | if(lft == SK(BOOL)) return rgt; | 
|  | if(rgt == SK(BOOL)) return lft; | 
|  | bool isLftSigned = (lft == SK(INT8))  || (lft == SK(INT16)) | 
|  | || (lft == SK(INT32)) || (lft == SK(INT64)); | 
|  | bool isRgtSigned = (rgt == SK(INT8))  || (rgt == SK(INT16)) | 
|  | || (rgt == SK(INT32)) || (rgt == SK(INT64)); | 
|  | if(isLftSigned == isRgtSigned) return lft < rgt ? rgt : lft; | 
|  | ScalarType::Kind unsignedRank = isLftSigned ? rgt : lft; | 
|  | ScalarType::Kind signedRank   = isLftSigned ? lft : rgt; | 
|  | if(unsignedRank >= signedRank) return unsignedRank; | 
|  | if(signedRank > unsignedRank)  return signedRank; | 
|  |  | 
|  | // Although there is such rule to return "the unsigned counterpart of | 
|  | // the signed operand", it should not reach here in our HIDL grammar. | 
|  | CHECK(false) << "Could not do usual arithmetic conversion for type " << lft << "and" << rgt; | 
|  | switch(signedRank) { | 
|  | case SK(INT8):  return SK(UINT8); | 
|  | case SK(INT16): return SK(UINT16); | 
|  | case SK(INT32): return SK(UINT32); | 
|  | case SK(INT64): return SK(UINT64); | 
|  | default: return SK(UINT64); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | T handleUnary(const std::string& op, T val) { | 
|  | COMPUTE_UNARY(+) | 
|  | COMPUTE_UNARY(-) | 
|  | COMPUTE_UNARY(!) | 
|  |  | 
|  | // bitwise negation of a boolean expression always evaluates to 'true' | 
|  | #pragma clang diagnostic push | 
|  | #pragma clang diagnostic ignored "-Wbool-operation" | 
|  | COMPUTE_UNARY(~) | 
|  | #pragma clang diagnostic pop | 
|  |  | 
|  | // Should not reach here. | 
|  | SHOULD_NOT_REACH() << "Could not handleUnary for " << op << " " << val; | 
|  | return static_cast<T>(0xdeadbeef); | 
|  | } | 
|  |  | 
|  | template <class T> | 
|  | T handleBinaryCommon(T lval, const std::string& op, T rval) { | 
|  | COMPUTE_BINARY(+) | 
|  | COMPUTE_BINARY(-) | 
|  | COMPUTE_BINARY(*) | 
|  | COMPUTE_BINARY(/) | 
|  | COMPUTE_BINARY(%) | 
|  | COMPUTE_BINARY(|) | 
|  | COMPUTE_BINARY(^) | 
|  | COMPUTE_BINARY(&) | 
|  | // comparison operators: return 0 or 1 by nature. | 
|  | COMPUTE_BINARY(==) | 
|  | COMPUTE_BINARY(!=) | 
|  | COMPUTE_BINARY(<) | 
|  | COMPUTE_BINARY(>) | 
|  | COMPUTE_BINARY(<=) | 
|  | COMPUTE_BINARY(>=) | 
|  | // Should not reach here. | 
|  | SHOULD_NOT_REACH() << "Could not handleBinaryCommon for " | 
|  | << lval << " " << op << " " << rval; | 
|  | return static_cast<T>(0xdeadbeef); | 
|  | } | 
|  |  | 
|  | // The compiler doesn't know T is at least KIND_INT32, and will instantiate bool | 
|  | // version of this function, and will warn about converting the result of '<<' | 
|  | // to a boolean. | 
|  | #pragma GCC diagnostic push | 
|  | #pragma GCC diagnostic ignored "-Wint-in-bool-context" | 
|  | template <class T> | 
|  | T handleShift(T lval, const std::string& op, int64_t rval) { | 
|  | // just cast rval to int64_t and it should fit. | 
|  | COMPUTE_BINARY(>>) | 
|  | COMPUTE_BINARY(<<) | 
|  | // Should not reach here. | 
|  | SHOULD_NOT_REACH() << "Could not handleShift for " | 
|  | << lval << " " << op << " " << rval; | 
|  | return static_cast<T>(0xdeadbeef); | 
|  | } | 
|  | #pragma GCC diagnostic pop | 
|  |  | 
|  | bool handleLogical(bool lval, const std::string& op, bool rval) { | 
|  | COMPUTE_BINARY(||); | 
|  | COMPUTE_BINARY(&&); | 
|  | // Should not reach here. | 
|  | SHOULD_NOT_REACH() << "Could not handleLogical for " | 
|  | << lval << " " << op << " " << rval; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | std::unique_ptr<ConstantExpression> ConstantExpression::Zero(ScalarType::Kind kind) { | 
|  | return ValueOf(kind, 0); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<ConstantExpression> ConstantExpression::One(ScalarType::Kind kind) { | 
|  | return ValueOf(kind, 1); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<ConstantExpression> ConstantExpression::ValueOf(ScalarType::Kind kind, | 
|  | uint64_t value) { | 
|  | return std::make_unique<LiteralConstantExpression>(kind, value); | 
|  | } | 
|  |  | 
|  | ConstantExpression::ConstantExpression(const std::string& expr) : mExpr(expr) {} | 
|  |  | 
|  | bool ConstantExpression::isEvaluated() const { | 
|  | return mIsEvaluated; | 
|  | } | 
|  |  | 
|  | LiteralConstantExpression::LiteralConstantExpression(ScalarType::Kind kind, uint64_t value, | 
|  | const std::string& expr) | 
|  | : ConstantExpression(expr) { | 
|  | CHECK(!expr.empty()); | 
|  | CHECK(isSupported(kind)); | 
|  |  | 
|  | mTrivialDescription = std::to_string(value) == expr; | 
|  | mValueKind = kind; | 
|  | mValue = value; | 
|  | mIsEvaluated = true; | 
|  | } | 
|  |  | 
|  | LiteralConstantExpression::LiteralConstantExpression(ScalarType::Kind kind, uint64_t value) | 
|  | : LiteralConstantExpression(kind, value, std::to_string(value)) {} | 
|  |  | 
|  | LiteralConstantExpression* LiteralConstantExpression::tryParse(const std::string& value) { | 
|  | CHECK(!value.empty()); | 
|  |  | 
|  | bool isLong = false, isUnsigned = false; | 
|  | bool isHex = (value[0] == '0' && value.length() > 1 && (value[1] == 'x' || value[1] == 'X')); | 
|  |  | 
|  | auto rbegin = value.rbegin(); | 
|  | auto rend = value.rend(); | 
|  | for (; rbegin != rend && (*rbegin == 'u' || *rbegin == 'U' || *rbegin == 'l' || *rbegin == 'L'); | 
|  | ++rbegin) { | 
|  | isUnsigned |= (*rbegin == 'u' || *rbegin == 'U'); | 
|  | isLong |= (*rbegin == 'l' || *rbegin == 'L'); | 
|  | } | 
|  | std::string newVal(value.begin(), rbegin.base()); | 
|  | CHECK(!newVal.empty()); | 
|  |  | 
|  | uint64_t rawValue = 0; | 
|  |  | 
|  | bool parseOK = base::ParseUint(newVal, &rawValue); | 
|  | if (!parseOK) { | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | ScalarType::Kind kind; | 
|  |  | 
|  | // guess literal type. | 
|  | if(isLong) { | 
|  | if(isUnsigned) // ul | 
|  | kind = SK(UINT64); | 
|  | else // l | 
|  | kind = SK(INT64); | 
|  | } else { // no l suffix | 
|  | if(isUnsigned) { // u | 
|  | if(rawValue <= UINT32_MAX) | 
|  | kind = SK(UINT32); | 
|  | else | 
|  | kind = SK(UINT64); | 
|  | } else { // no suffix | 
|  | if(isHex) { | 
|  | if(rawValue <= INT32_MAX) // rawValue always >= 0 | 
|  | kind = SK(INT32); | 
|  | else if(rawValue <= UINT32_MAX) | 
|  | kind = SK(UINT32); | 
|  | else if(rawValue <= INT64_MAX) // rawValue always >= 0 | 
|  | kind = SK(INT64); | 
|  | else if(rawValue <= UINT64_MAX) | 
|  | kind = SK(UINT64); | 
|  | else | 
|  | return nullptr; | 
|  | } else { | 
|  | if(rawValue <= INT32_MAX) // rawValue always >= 0 | 
|  | kind = SK(INT32); | 
|  | else | 
|  | kind = SK(INT64); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return new LiteralConstantExpression(kind, rawValue, value); | 
|  | } | 
|  |  | 
|  | void LiteralConstantExpression::evaluate() { | 
|  | // Evaluated in constructor | 
|  | CHECK(isEvaluated()); | 
|  | } | 
|  |  | 
|  | void UnaryConstantExpression::evaluate() { | 
|  | if (isEvaluated()) return; | 
|  | CHECK(mUnary->isEvaluated()); | 
|  | mIsEvaluated = true; | 
|  |  | 
|  | mValueKind = mUnary->mValueKind; | 
|  |  | 
|  | #define CASE_UNARY(__type__)                                          \ | 
|  | mValue = handleUnary(mOp, static_cast<__type__>(mUnary->mValue)); \ | 
|  | return; | 
|  |  | 
|  | SWITCH_KIND(mValueKind, CASE_UNARY, SHOULD_NOT_REACH(); return;) | 
|  | } | 
|  |  | 
|  | void BinaryConstantExpression::evaluate() { | 
|  | if (isEvaluated()) return; | 
|  | CHECK(mLval->isEvaluated()); | 
|  | CHECK(mRval->isEvaluated()); | 
|  | mIsEvaluated = true; | 
|  |  | 
|  | bool isArithmeticOrBitflip = OP_IS_BIN_ARITHMETIC || OP_IS_BIN_BITFLIP; | 
|  |  | 
|  | // CASE 1: + - *  / % | ^ & < > <= >= == != | 
|  | if(isArithmeticOrBitflip || OP_IS_BIN_COMP) { | 
|  | // promoted kind for both operands. | 
|  | ScalarType::Kind promoted = usualArithmeticConversion(integralPromotion(mLval->mValueKind), | 
|  | integralPromotion(mRval->mValueKind)); | 
|  | // result kind. | 
|  | mValueKind = isArithmeticOrBitflip | 
|  | ? promoted // arithmetic or bitflip operators generates promoted type | 
|  | : SK(BOOL); // comparison operators generates bool | 
|  |  | 
|  | #define CASE_BINARY_COMMON(__type__)                                       \ | 
|  | mValue = handleBinaryCommon(static_cast<__type__>(mLval->mValue), mOp, \ | 
|  | static_cast<__type__>(mRval->mValue));     \ | 
|  | return; | 
|  |  | 
|  | SWITCH_KIND(promoted, CASE_BINARY_COMMON, SHOULD_NOT_REACH(); return;) | 
|  | } | 
|  |  | 
|  | // CASE 2: << >> | 
|  | std::string newOp = mOp; | 
|  | if(OP_IS_BIN_SHIFT) { | 
|  | mValueKind = integralPromotion(mLval->mValueKind); | 
|  | // instead of promoting rval, simply casting it to int64 should also be good. | 
|  | int64_t numBits = mRval->cast<int64_t>(); | 
|  | if(numBits < 0) { | 
|  | // shifting with negative number of bits is undefined in C. In HIDL it | 
|  | // is defined as shifting into the other direction. | 
|  | newOp = OPEQ("<<") ? std::string(">>") : std::string("<<"); | 
|  | numBits = -numBits; | 
|  | } | 
|  |  | 
|  | #define CASE_SHIFT(__type__)                                                    \ | 
|  | mValue = handleShift(static_cast<__type__>(mLval->mValue), newOp, numBits); \ | 
|  | return; | 
|  |  | 
|  | SWITCH_KIND(mValueKind, CASE_SHIFT, SHOULD_NOT_REACH(); return;) | 
|  | } | 
|  |  | 
|  | // CASE 3: && || | 
|  | if(OP_IS_BIN_LOGICAL) { | 
|  | mValueKind = SK(BOOL); | 
|  | // easy; everything is bool. | 
|  | mValue = handleLogical(mLval->mValue, mOp, mRval->mValue); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SHOULD_NOT_REACH(); | 
|  | } | 
|  |  | 
|  | void TernaryConstantExpression::evaluate() { | 
|  | if (isEvaluated()) return; | 
|  | CHECK(mCond->isEvaluated()); | 
|  | CHECK(mTrueVal->isEvaluated()); | 
|  | CHECK(mFalseVal->isEvaluated()); | 
|  | mIsEvaluated = true; | 
|  |  | 
|  | // note: for ?:, unlike arithmetic ops, integral promotion is not processed. | 
|  | mValueKind = usualArithmeticConversion(mTrueVal->mValueKind, mFalseVal->mValueKind); | 
|  |  | 
|  | #define CASE_TERNARY(__type__)                                           \ | 
|  | mValue = mCond->mValue ? (static_cast<__type__>(mTrueVal->mValue))   \ | 
|  | : (static_cast<__type__>(mFalseVal->mValue)); \ | 
|  | return; | 
|  |  | 
|  | SWITCH_KIND(mValueKind, CASE_TERNARY, SHOULD_NOT_REACH(); return;) | 
|  | } | 
|  |  | 
|  | void ReferenceConstantExpression::evaluate() { | 
|  | if (isEvaluated()) return; | 
|  | CHECK(mReference->constExpr() != nullptr); | 
|  |  | 
|  | ConstantExpression* expr = mReference->constExpr(); | 
|  | CHECK(expr->isEvaluated()); | 
|  |  | 
|  | mValueKind = expr->mValueKind; | 
|  | mValue = expr->mValue; | 
|  | mIsEvaluated = true; | 
|  | } | 
|  |  | 
|  | status_t AttributeConstantExpression::validate() const { | 
|  | if (mTag == "len") { | 
|  | if (!mReference->isEnum()) { | 
|  | std::cerr << "ERROR: " << mExpr << " refers to " << mReference->typeName() | 
|  | << " but should refer to an enum." << std::endl; | 
|  | return UNKNOWN_ERROR; | 
|  | } | 
|  | } else { | 
|  | std::cerr << "ERROR: " << mExpr << " is not a supported tag" << std::endl; | 
|  | return UNKNOWN_ERROR; | 
|  | } | 
|  |  | 
|  | return OK; | 
|  | } | 
|  |  | 
|  | void AttributeConstantExpression::evaluate() { | 
|  | if (isEvaluated()) return; | 
|  |  | 
|  | CHECK(mTag == "len"); | 
|  | CHECK(mReference->isEnum()); | 
|  |  | 
|  | EnumType* enumType = static_cast<EnumType*>(mReference.get()); | 
|  | mValue = enumType->numValueNames(); | 
|  |  | 
|  | if (mValue <= INT32_MAX) | 
|  | mValueKind = SK(INT32); | 
|  | else | 
|  | mValueKind = SK(INT64); | 
|  |  | 
|  | mIsEvaluated = true; | 
|  | } | 
|  |  | 
|  | std::unique_ptr<ConstantExpression> ConstantExpression::addOne(ScalarType::Kind baseKind) { | 
|  | auto ret = std::make_unique<BinaryConstantExpression>( | 
|  | this, "+", ConstantExpression::One(baseKind).release()); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | std::string ConstantExpression::value() const { | 
|  | return value(mValueKind); | 
|  | } | 
|  |  | 
|  | std::string ConstantExpression::value(ScalarType::Kind castKind) const { | 
|  | CHECK(isEvaluated()); | 
|  | return rawValue(castKind) + descriptionSuffix(); | 
|  | } | 
|  |  | 
|  | std::string ConstantExpression::cppValue() const { | 
|  | return cppValue(mValueKind); | 
|  | } | 
|  |  | 
|  | std::string ConstantExpression::cppValue(ScalarType::Kind castKind) const { | 
|  | CHECK(isEvaluated()); | 
|  | std::string literal(rawValue(castKind)); | 
|  | // this is a hack to translate | 
|  | //       enum x : int64_t {  y = 1l << 63 }; | 
|  | // into | 
|  | //       enum class x : int64_t { y = (int64_t)-9223372036854775808ull }; | 
|  | // by adding the explicit cast. | 
|  | // Because 9223372036854775808 is uint64_t, and | 
|  | // -(uint64_t)9223372036854775808 == 9223372036854775808 could not | 
|  | // be narrowed to int64_t. | 
|  | if(castKind == SK(INT64) && (int64_t)mValue == INT64_MIN) { | 
|  | literal = "static_cast<" + | 
|  | ScalarType(SK(INT64), nullptr /* parent */).getCppStackType()  // "int64_t" | 
|  | + ">(" + literal + "ull)"; | 
|  | } else { | 
|  | // add suffix if necessary. | 
|  | if (castKind == SK(UINT32) || castKind == SK(UINT64)) literal += "u"; | 
|  | if (castKind == SK(UINT64) || castKind == SK(INT64)) literal += "ll"; | 
|  | } | 
|  |  | 
|  | return literal + descriptionSuffix(); | 
|  | } | 
|  |  | 
|  | std::string ConstantExpression::javaValue() const { | 
|  | return javaValue(mValueKind); | 
|  | } | 
|  |  | 
|  | std::string ConstantExpression::javaValue(ScalarType::Kind castKind) const { | 
|  | CHECK(isEvaluated()); | 
|  | std::string literal; | 
|  |  | 
|  | switch(castKind) { | 
|  | case SK(UINT64): | 
|  | literal = rawValue(SK(INT64)) + "L"; | 
|  | break; | 
|  | case SK(INT64): | 
|  | literal = rawValue(SK(INT64)) + "L"; | 
|  | break; | 
|  | case SK(UINT32): | 
|  | literal = rawValue(SK(INT32)); | 
|  | break; | 
|  | case SK(UINT16): | 
|  | literal = rawValue(SK(INT16)); | 
|  | break; | 
|  | case SK(UINT8): | 
|  | literal = rawValue(SK(INT8)); | 
|  | break; | 
|  | case SK(BOOL)  : | 
|  | literal = this->cast<bool>() ? "true" : "false"; | 
|  | break; | 
|  | default: | 
|  | literal = rawValue(castKind); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return literal + descriptionSuffix(); | 
|  | } | 
|  |  | 
|  | const std::string& ConstantExpression::expression() const { | 
|  | return mExpr; | 
|  | } | 
|  |  | 
|  | std::string ConstantExpression::rawValue() const { | 
|  | return rawValue(mValueKind); | 
|  | } | 
|  |  | 
|  | std::string ConstantExpression::rawValue(ScalarType::Kind castKind) const { | 
|  | CHECK(isEvaluated()); | 
|  |  | 
|  | #define CASE_STR(__type__) return std::to_string(this->cast<__type__>()); | 
|  |  | 
|  | SWITCH_KIND(castKind, CASE_STR, SHOULD_NOT_REACH(); return nullptr; ); | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | T ConstantExpression::cast() const { | 
|  | CHECK(isEvaluated()); | 
|  |  | 
|  | #define CASE_CAST_T(__type__) return static_cast<T>(static_cast<__type__>(mValue)); | 
|  |  | 
|  | SWITCH_KIND(mValueKind, CASE_CAST_T, SHOULD_NOT_REACH(); return 0; ); | 
|  | } | 
|  |  | 
|  | std::string ConstantExpression::descriptionSuffix() const { | 
|  | CHECK(isEvaluated()); | 
|  |  | 
|  | if (!mTrivialDescription) { | 
|  | CHECK(!mExpr.empty()); | 
|  |  | 
|  | return " /* " + mExpr + " */"; | 
|  | } | 
|  | return ""; | 
|  | } | 
|  |  | 
|  | size_t ConstantExpression::castSizeT() const { | 
|  | CHECK(isEvaluated()); | 
|  | return this->cast<size_t>(); | 
|  | } | 
|  |  | 
|  | bool ConstantExpression::isReferenceConstantExpression() const { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | status_t ConstantExpression::validate() const { | 
|  | return OK; | 
|  | } | 
|  |  | 
|  | std::vector<ConstantExpression*> ConstantExpression::getConstantExpressions() { | 
|  | const auto& constRet = static_cast<const ConstantExpression*>(this)->getConstantExpressions(); | 
|  | std::vector<ConstantExpression*> ret(constRet.size()); | 
|  | std::transform(constRet.begin(), constRet.end(), ret.begin(), | 
|  | [](const auto* ce) { return const_cast<ConstantExpression*>(ce); }); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | std::vector<Reference<LocalIdentifier>*> ConstantExpression::getReferences() { | 
|  | const auto& constRet = static_cast<const ConstantExpression*>(this)->getReferences(); | 
|  | std::vector<Reference<LocalIdentifier>*> ret(constRet.size()); | 
|  | std::transform(constRet.begin(), constRet.end(), ret.begin(), | 
|  | [](const auto* ce) { return const_cast<Reference<LocalIdentifier>*>(ce); }); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | std::vector<const Reference<LocalIdentifier>*> ConstantExpression::getReferences() const { | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | std::vector<Reference<Type>*> ConstantExpression::getTypeReferences() { | 
|  | const auto& constRet = static_cast<const ConstantExpression*>(this)->getTypeReferences(); | 
|  | std::vector<Reference<Type>*> ret(constRet.size()); | 
|  | std::transform(constRet.begin(), constRet.end(), ret.begin(), | 
|  | [](const auto* ce) { return const_cast<Reference<Type>*>(ce); }); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | std::vector<const Reference<Type>*> ConstantExpression::getTypeReferences() const { | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | status_t ConstantExpression::recursivePass(const std::function<status_t(ConstantExpression*)>& func, | 
|  | std::unordered_set<const ConstantExpression*>* visited, | 
|  | bool processBeforeDependencies) { | 
|  | if (mIsPostParseCompleted) return OK; | 
|  |  | 
|  | if (visited->find(this) != visited->end()) return OK; | 
|  | visited->insert(this); | 
|  |  | 
|  | if (processBeforeDependencies) { | 
|  | status_t err = func(this); | 
|  | if (err != OK) return err; | 
|  | } | 
|  |  | 
|  | for (auto* nextCE : getConstantExpressions()) { | 
|  | status_t err = nextCE->recursivePass(func, visited, processBeforeDependencies); | 
|  | if (err != OK) return err; | 
|  | } | 
|  |  | 
|  | for (auto* nextRef : getReferences()) { | 
|  | auto* nextCE = nextRef->shallowGet()->constExpr(); | 
|  | CHECK(nextCE != nullptr) << "Local identifier is not a constant expression"; | 
|  | status_t err = nextCE->recursivePass(func, visited, processBeforeDependencies); | 
|  | if (err != OK) return err; | 
|  | } | 
|  |  | 
|  | if (!processBeforeDependencies) { | 
|  | status_t err = func(this); | 
|  | if (err != OK) return err; | 
|  | } | 
|  |  | 
|  | return OK; | 
|  | } | 
|  |  | 
|  | status_t ConstantExpression::recursivePass( | 
|  | const std::function<status_t(const ConstantExpression*)>& func, | 
|  | std::unordered_set<const ConstantExpression*>* visited, bool processBeforeDependencies) const { | 
|  | if (mIsPostParseCompleted) return OK; | 
|  |  | 
|  | if (visited->find(this) != visited->end()) return OK; | 
|  | visited->insert(this); | 
|  |  | 
|  | if (processBeforeDependencies) { | 
|  | status_t err = func(this); | 
|  | if (err != OK) return err; | 
|  | } | 
|  |  | 
|  | for (const auto* nextCE : getConstantExpressions()) { | 
|  | status_t err = nextCE->recursivePass(func, visited, processBeforeDependencies); | 
|  | if (err != OK) return err; | 
|  | } | 
|  |  | 
|  | for (const auto* nextRef : getReferences()) { | 
|  | const auto* nextCE = nextRef->shallowGet()->constExpr(); | 
|  | CHECK(nextCE != nullptr) << "Local identifier is not a constant expression"; | 
|  | status_t err = nextCE->recursivePass(func, visited, processBeforeDependencies); | 
|  | if (err != OK) return err; | 
|  | } | 
|  |  | 
|  | if (!processBeforeDependencies) { | 
|  | status_t err = func(this); | 
|  | if (err != OK) return err; | 
|  | } | 
|  |  | 
|  | return OK; | 
|  | } | 
|  |  | 
|  | ConstantExpression::CheckAcyclicStatus::CheckAcyclicStatus( | 
|  | status_t status, const ConstantExpression* cycleEnd, | 
|  | const ReferenceConstantExpression* lastReference) | 
|  | : status(status), cycleEnd(cycleEnd), lastReference(lastReference) { | 
|  | CHECK(cycleEnd == nullptr || status != OK); | 
|  | CHECK((cycleEnd == nullptr) == (lastReference == nullptr)); | 
|  | } | 
|  |  | 
|  | ConstantExpression::CheckAcyclicStatus ConstantExpression::checkAcyclic( | 
|  | std::unordered_set<const ConstantExpression*>* visited, | 
|  | std::unordered_set<const ConstantExpression*>* stack) const { | 
|  | if (stack->find(this) != stack->end()) { | 
|  | CHECK(isReferenceConstantExpression()) | 
|  | << "Only reference constant expression could be the cycle end"; | 
|  |  | 
|  | std::cerr << "ERROR: Cyclic declaration:\n"; | 
|  | return CheckAcyclicStatus(UNKNOWN_ERROR, this, | 
|  | static_cast<const ReferenceConstantExpression*>(this)); | 
|  | } | 
|  |  | 
|  | if (visited->find(this) != visited->end()) return CheckAcyclicStatus(OK); | 
|  | visited->insert(this); | 
|  | stack->insert(this); | 
|  |  | 
|  | for (const auto* nextCE : getConstantExpressions()) { | 
|  | auto err = nextCE->checkAcyclic(visited, stack); | 
|  | if (err.status != OK) { | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (const auto* nextRef : getReferences()) { | 
|  | const auto* nextCE = nextRef->shallowGet()->constExpr(); | 
|  | CHECK(nextCE != nullptr) << "Local identifier is not a constant expression"; | 
|  | auto err = nextCE->checkAcyclic(visited, stack); | 
|  |  | 
|  | if (err.status != OK) { | 
|  | if (err.cycleEnd == nullptr) return err; | 
|  |  | 
|  | // Only ReferenceConstantExpression has references, | 
|  | CHECK(isReferenceConstantExpression()) | 
|  | << "Only reference constant expression could have refereneces"; | 
|  |  | 
|  | // mExpr is defined explicitly before evaluation | 
|  | std::cerr << "  '" << err.lastReference->mExpr << "' in '" << mExpr << "' at " | 
|  | << nextRef->location() << "\n"; | 
|  |  | 
|  | if (err.cycleEnd == this) { | 
|  | return CheckAcyclicStatus(err.status); | 
|  | } | 
|  | return CheckAcyclicStatus(err.status, err.cycleEnd, | 
|  | static_cast<const ReferenceConstantExpression*>(this)); | 
|  | } | 
|  | } | 
|  |  | 
|  | CHECK(stack->find(this) != stack->end()); | 
|  | stack->erase(this); | 
|  | return CheckAcyclicStatus(OK); | 
|  | } | 
|  |  | 
|  | void ConstantExpression::setPostParseCompleted() { | 
|  | CHECK(!mIsPostParseCompleted); | 
|  | mIsPostParseCompleted = true; | 
|  | } | 
|  |  | 
|  | void ConstantExpression::surroundWithParens() { | 
|  | mExpr = "(" + mExpr + ")"; | 
|  | } | 
|  |  | 
|  | std::vector<const ConstantExpression*> LiteralConstantExpression::getConstantExpressions() const { | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | UnaryConstantExpression::UnaryConstantExpression(const std::string& op, ConstantExpression* value) | 
|  | : ConstantExpression(op + value->mExpr), mUnary(value), mOp(op) {} | 
|  |  | 
|  | std::vector<const ConstantExpression*> UnaryConstantExpression::getConstantExpressions() const { | 
|  | return {mUnary}; | 
|  | } | 
|  |  | 
|  | BinaryConstantExpression::BinaryConstantExpression(ConstantExpression* lval, const std::string& op, | 
|  | ConstantExpression* rval) | 
|  | : ConstantExpression(lval->mExpr + " " + op + " " + rval->mExpr), | 
|  | mLval(lval), | 
|  | mRval(rval), | 
|  | mOp(op) {} | 
|  |  | 
|  | std::vector<const ConstantExpression*> BinaryConstantExpression::getConstantExpressions() const { | 
|  | return {mLval, mRval}; | 
|  | } | 
|  |  | 
|  | TernaryConstantExpression::TernaryConstantExpression(ConstantExpression* cond, | 
|  | ConstantExpression* trueVal, | 
|  | ConstantExpression* falseVal) | 
|  | : ConstantExpression(cond->mExpr + "?" + trueVal->mExpr + ":" + falseVal->mExpr), | 
|  | mCond(cond), | 
|  | mTrueVal(trueVal), | 
|  | mFalseVal(falseVal) {} | 
|  |  | 
|  | std::vector<const ConstantExpression*> TernaryConstantExpression::getConstantExpressions() const { | 
|  | return {mCond, mTrueVal, mFalseVal}; | 
|  | } | 
|  |  | 
|  | ReferenceConstantExpression::ReferenceConstantExpression(const Reference<LocalIdentifier>& value, | 
|  | const std::string& expr) | 
|  | : ConstantExpression(expr), mReference(value) { | 
|  | mTrivialDescription = mExpr.empty(); | 
|  | } | 
|  |  | 
|  | bool ReferenceConstantExpression::isReferenceConstantExpression() const { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | std::vector<const ConstantExpression*> ReferenceConstantExpression::getConstantExpressions() const { | 
|  | // Returns reference instead | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | std::vector<const Reference<LocalIdentifier>*> ReferenceConstantExpression::getReferences() const { | 
|  | return {&mReference}; | 
|  | } | 
|  |  | 
|  | AttributeConstantExpression::AttributeConstantExpression(const Reference<Type>& value, | 
|  | const std::string& fqname, | 
|  | const std::string& tag) | 
|  | : ConstantExpression(fqname + "#" + tag), mReference(value), mTag(tag) {} | 
|  |  | 
|  | std::vector<const ConstantExpression*> AttributeConstantExpression::getConstantExpressions() const { | 
|  | // Returns reference instead | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | std::vector<const Reference<Type>*> AttributeConstantExpression::getTypeReferences() const { | 
|  | return {&mReference}; | 
|  | } | 
|  |  | 
|  | /* | 
|  |  | 
|  | Evaluating expressions in HIDL language | 
|  |  | 
|  | The following rules are mostly like that in: | 
|  | http://en.cppreference.com/w/cpp/language/operator_arithmetic | 
|  | http://en.cppreference.com/w/cpp/language/operator_logical | 
|  | http://en.cppreference.com/w/cpp/language/operator_comparison | 
|  | http://en.cppreference.com/w/cpp/language/operator_other | 
|  |  | 
|  | The type of literal is the first type which the value | 
|  | can fit from the list of types depending on the suffix and bases. | 
|  |  | 
|  | suffix              decimal bases           hexadecimal bases | 
|  | no suffix           int32_t                 int32_t | 
|  | int64_t                 uint32_t | 
|  | int64_t | 
|  | uint64_t | 
|  |  | 
|  | u/U                 uint32_t                (same as left) | 
|  | uint64_t | 
|  |  | 
|  | l/L                 int64_t                 int64_t | 
|  |  | 
|  | ul/UL/uL/Ul         uint64_t                uint64_t | 
|  |  | 
|  |  | 
|  | Note: There are no negative integer literals. | 
|  | -1 is the unary minus applied to 1. | 
|  |  | 
|  | Unary arithmetic and bitwise operators (~ + -): | 
|  | don't change the type of the argument. | 
|  | (so -1u = -(1u) has type uint32_t) | 
|  |  | 
|  | Binary arithmetic and bitwise operators (except shifts) (+ - * / % & | ^): | 
|  | 1. Integral promotion is first applied on both sides. | 
|  | 2. If both operands have the same type, no promotion is necessary. | 
|  | 3. Usual arithmetic conversions. | 
|  |  | 
|  | Integral promotion: if an operand is of a type with less than 32 bits, | 
|  | (including bool), it is promoted to int32_t. | 
|  |  | 
|  | Usual arithmetic conversions: | 
|  | 1. If operands are both signed or both unsigned, lesser conversion rank is | 
|  | converted to greater conversion rank. | 
|  | 2. Otherwise, if unsigned's rank >= signed's rank, -> unsigned's type | 
|  | 3. Otherwise, if signed's type can hold all values in unsigned's type, | 
|  | -> signed's type | 
|  | 4. Otherwise, both converted to the unsigned counterpart of the signed operand's | 
|  | type. | 
|  | rank: bool < int8_t < int16_t < int32_t < int64_t | 
|  |  | 
|  |  | 
|  | Shift operators (<< >>): | 
|  | 1. Integral promotion is applied on both sides. | 
|  | 2. For unsigned a, a << b discards bits that shifts out. | 
|  | For signed non-negative a, a << b is legal if no bits shifts out, otherwise error. | 
|  | For signed negative a, a << b gives error. | 
|  | 3. For unsigned and signed non-negative a, a >> b discards bits that shifts out. | 
|  | For signed negative a, a >> b discards bits that shifts out, and the signed | 
|  | bit gets extended. ("arithmetic right shift") | 
|  | 4. Shifting with negative number of bits is undefined. (Currently, the | 
|  | parser will shift into the other direction. This behavior may change.) | 
|  | 5. Shifting with number of bits exceeding the width of the type is undefined. | 
|  | (Currently, 1 << 32 == 1. This behavior may change.) | 
|  |  | 
|  | Logical operators (!, &&, ||): | 
|  | 1. Convert first operand to bool. (true if non-zero, false otherwise) | 
|  | 2. If short-circuited, return the result as type bool, value 1 or 0. | 
|  | 3. Otherwise, convert second operand to bool, evaluate the result, and return | 
|  | the result in the same fashion. | 
|  |  | 
|  | Arithmetic comparison operators (< > <= >= == !=): | 
|  | 1. Promote operands in the same way as binary arithmetic and bitwise operators. | 
|  | (Integral promotion + Usual arithmetic conversions) | 
|  | 2. Return type bool, value 0 or 1 the same way as logical operators. | 
|  |  | 
|  | Ternary conditional operator (?:): | 
|  | 1. Evaluate the conditional and evaluate the operands. | 
|  | 2. Return type of expression is the type under usual arithmetic conversions on | 
|  | the second and third operand. (No integral promotions necessary.) | 
|  |  | 
|  | */ | 
|  |  | 
|  | }  // namespace android | 
|  |  |