blob: 33972b884005667769303495bb98b54983908e43 [file] [log] [blame]
/*
* Copyright (C) 2016 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <android-base/logging.h>
#include <asm-generic/mman.h>
#include <fmq/AidlMessageQueue.h>
#include <fmq/ConvertMQDescriptors.h>
#include <fmq/EventFlag.h>
#include <fmq/MessageQueue.h>
#include <gtest/gtest.h>
#include <sys/resource.h>
#include <atomic>
#include <cstdlib>
#include <sstream>
#include <thread>
#if defined(__Fuchsia__)
#include "vendor/google/starnix/android/remote_binder/lutex.h"
#endif
using aidl::android::hardware::common::fmq::SynchronizedReadWrite;
using aidl::android::hardware::common::fmq::UnsynchronizedWrite;
using android::hardware::kSynchronizedReadWrite;
using android::hardware::kUnsynchronizedWrite;
enum EventFlagBits : uint32_t {
kFmqNotEmpty = 1 << 0,
kFmqNotFull = 1 << 1,
};
typedef android::AidlMessageQueue<uint8_t, SynchronizedReadWrite> AidlMessageQueueSync;
typedef android::AidlMessageQueue<uint8_t, UnsynchronizedWrite> AidlMessageQueueUnsync;
typedef android::hardware::MessageQueue<uint8_t, kSynchronizedReadWrite> MessageQueueSync;
typedef android::hardware::MessageQueue<uint8_t, kUnsynchronizedWrite> MessageQueueUnsync;
typedef android::AidlMessageQueue<uint16_t, SynchronizedReadWrite> AidlMessageQueueSync16;
typedef android::hardware::MessageQueue<uint16_t, kSynchronizedReadWrite> MessageQueueSync16;
typedef android::hardware::MessageQueue<uint8_t, kSynchronizedReadWrite> MessageQueueSync8;
typedef android::hardware::MQDescriptor<uint8_t, kSynchronizedReadWrite> HidlMQDescSync8;
typedef android::AidlMessageQueue<int8_t, SynchronizedReadWrite> AidlMessageQueueSync8;
typedef aidl::android::hardware::common::fmq::MQDescriptor<int8_t, SynchronizedReadWrite>
AidlMQDescSync8;
typedef android::hardware::MessageQueue<uint8_t, kUnsynchronizedWrite> MessageQueueUnsync8;
typedef android::hardware::MQDescriptor<uint8_t, kUnsynchronizedWrite> HidlMQDescUnsync8;
typedef android::AidlMessageQueue<int8_t, UnsynchronizedWrite> AidlMessageQueueUnsync8;
typedef aidl::android::hardware::common::fmq::MQDescriptor<int8_t, UnsynchronizedWrite>
AidlMQDescUnsync8;
enum class SetupType {
SINGLE_FD,
DOUBLE_FD,
};
template <typename T, SetupType setupType>
class TestParamTypes {
public:
typedef T MQType;
static constexpr SetupType Setup = setupType;
};
// Run everything on both the AIDL and HIDL versions with one and two FDs
typedef ::testing::Types<TestParamTypes<AidlMessageQueueSync, SetupType::SINGLE_FD>,
TestParamTypes<MessageQueueSync, SetupType::SINGLE_FD>,
TestParamTypes<AidlMessageQueueSync, SetupType::DOUBLE_FD>,
TestParamTypes<MessageQueueSync, SetupType::DOUBLE_FD>>
SyncTypes;
typedef ::testing::Types<TestParamTypes<AidlMessageQueueUnsync, SetupType::SINGLE_FD>,
TestParamTypes<MessageQueueUnsync, SetupType::SINGLE_FD>,
TestParamTypes<AidlMessageQueueUnsync, SetupType::DOUBLE_FD>,
TestParamTypes<MessageQueueUnsync, SetupType::DOUBLE_FD>>
UnsyncTypes;
typedef ::testing::Types<TestParamTypes<AidlMessageQueueSync16, SetupType::SINGLE_FD>,
TestParamTypes<MessageQueueSync16, SetupType::SINGLE_FD>,
TestParamTypes<AidlMessageQueueSync16, SetupType::DOUBLE_FD>,
TestParamTypes<MessageQueueSync16, SetupType::DOUBLE_FD>>
BadConfigTypes;
template <typename T>
class TestBase : public ::testing::Test {
public:
static void ReaderThreadBlocking(typename T::MQType* fmq, std::atomic<uint32_t>* fwAddr);
static void ReaderThreadBlocking2(typename T::MQType* fmq, std::atomic<uint32_t>* fwAddr);
};
TYPED_TEST_CASE(SynchronizedReadWrites, SyncTypes);
template <typename T>
class SynchronizedReadWrites : public TestBase<T> {
protected:
virtual void TearDown() {
delete mQueue;
}
virtual void SetUp() {
static constexpr size_t kNumElementsInQueue = 2048;
static constexpr size_t kPayloadSizeBytes = 1;
if (T::Setup == SetupType::SINGLE_FD) {
mQueue = new (std::nothrow) typename T::MQType(kNumElementsInQueue);
} else {
android::base::unique_fd ringbufferFd(::ashmem_create_region(
"SyncReadWrite", kNumElementsInQueue * kPayloadSizeBytes));
mQueue = new (std::nothrow)
typename T::MQType(kNumElementsInQueue, false, std::move(ringbufferFd),
kNumElementsInQueue * kPayloadSizeBytes);
}
ASSERT_NE(nullptr, mQueue);
ASSERT_TRUE(mQueue->isValid());
mNumMessagesMax = mQueue->getQuantumCount();
ASSERT_EQ(kNumElementsInQueue, mNumMessagesMax);
}
typename T::MQType* mQueue = nullptr;
size_t mNumMessagesMax = 0;
};
TYPED_TEST_CASE(UnsynchronizedWriteTest, UnsyncTypes);
template <typename T>
class UnsynchronizedWriteTest : public TestBase<T> {
protected:
virtual void TearDown() {
delete mQueue;
}
virtual void SetUp() {
static constexpr size_t kNumElementsInQueue = 2048;
static constexpr size_t kPayloadSizeBytes = 1;
if (T::Setup == SetupType::SINGLE_FD) {
mQueue = new (std::nothrow) typename T::MQType(kNumElementsInQueue);
} else {
android::base::unique_fd ringbufferFd(
::ashmem_create_region("UnsyncWrite", kNumElementsInQueue * kPayloadSizeBytes));
mQueue = new (std::nothrow)
typename T::MQType(kNumElementsInQueue, false, std::move(ringbufferFd),
kNumElementsInQueue * kPayloadSizeBytes);
}
ASSERT_NE(nullptr, mQueue);
ASSERT_TRUE(mQueue->isValid());
mNumMessagesMax = mQueue->getQuantumCount();
ASSERT_EQ(kNumElementsInQueue, mNumMessagesMax);
}
typename T::MQType* mQueue = nullptr;
size_t mNumMessagesMax = 0;
};
TYPED_TEST_CASE(BlockingReadWrites, SyncTypes);
class RegisteredFutex {
public:
#if defined(__Fuchsia__)
RegisteredFutex() {
android::base::unique_fd fd(::ashmem_create_region(
"RegisteredFutex", PAGE_SIZE));
mapping = mmap(0, PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd.get(), 0);
if (mapping != MAP_FAILED) {
starnix::register_lutex(fd.get(), 0, mapping);
}
}
~RegisteredFutex() {
starnix::unregister_lutex(mapping);
munmap(mapping, PAGE_SIZE);
}
#else
RegisteredFutex() {
mapping = &value;
}
#endif
std::atomic<uint32_t>* GetAtomic() {
return static_cast<std::atomic<uint32_t>*>(mapping);
}
private:
#if !defined(__Fuchsia__)
std::atomic<uint32_t> value;
#endif
void* mapping = nullptr;
};
template <typename T>
class BlockingReadWrites : public TestBase<T> {
protected:
virtual void TearDown() {
delete mQueue;
}
virtual void SetUp() {
static constexpr size_t kNumElementsInQueue = 2048;
static constexpr size_t kPayloadSizeBytes = 1;
if (T::Setup == SetupType::SINGLE_FD) {
mQueue = new (std::nothrow) typename T::MQType(kNumElementsInQueue);
} else {
android::base::unique_fd ringbufferFd(::ashmem_create_region(
"SyncBlockingReadWrite", kNumElementsInQueue * kPayloadSizeBytes));
mQueue = new (std::nothrow)
typename T::MQType(kNumElementsInQueue, false, std::move(ringbufferFd),
kNumElementsInQueue * kPayloadSizeBytes);
}
ASSERT_NE(nullptr, mQueue);
ASSERT_TRUE(mQueue->isValid());
mNumMessagesMax = mQueue->getQuantumCount();
ASSERT_EQ(kNumElementsInQueue, mNumMessagesMax);
mFw = mRegisteredFutex.GetAtomic();
/*
* Initialize the EventFlag word to indicate Queue is not full.
*/
std::atomic_init(mFw, static_cast<uint32_t>(kFmqNotFull));
}
typename T::MQType* mQueue;
RegisteredFutex mRegisteredFutex;
std::atomic<uint32_t>* mFw;
size_t mNumMessagesMax = 0;
};
TYPED_TEST_CASE(QueueSizeOdd, SyncTypes);
template <typename T>
class QueueSizeOdd : public TestBase<T> {
protected:
virtual void TearDown() { delete mQueue; }
virtual void SetUp() {
static constexpr size_t kNumElementsInQueue = 2049;
static constexpr size_t kPayloadSizeBytes = 1;
if (T::Setup == SetupType::SINGLE_FD) {
mQueue = new (std::nothrow)
typename T::MQType(kNumElementsInQueue, true /* configureEventFlagWord */);
} else {
android::base::unique_fd ringbufferFd(
::ashmem_create_region("SyncSizeOdd", kNumElementsInQueue * kPayloadSizeBytes));
mQueue = new (std::nothrow) typename T::MQType(
kNumElementsInQueue, true /* configureEventFlagWord */, std::move(ringbufferFd),
kNumElementsInQueue * kPayloadSizeBytes);
}
ASSERT_NE(nullptr, mQueue);
ASSERT_TRUE(mQueue->isValid());
mNumMessagesMax = mQueue->getQuantumCount();
ASSERT_EQ(kNumElementsInQueue, mNumMessagesMax);
auto evFlagWordPtr = mQueue->getEventFlagWord();
ASSERT_NE(nullptr, evFlagWordPtr);
/*
* Initialize the EventFlag word to indicate Queue is not full.
*/
std::atomic_init(evFlagWordPtr, static_cast<uint32_t>(kFmqNotFull));
}
typename T::MQType* mQueue;
size_t mNumMessagesMax = 0;
};
TYPED_TEST_CASE(BadQueueConfig, BadConfigTypes);
template <typename T>
class BadQueueConfig : public TestBase<T> {};
class AidlOnlyBadQueueConfig : public ::testing::Test {};
class HidlOnlyBadQueueConfig : public ::testing::Test {};
class Hidl2AidlOperation : public ::testing::Test {};
class DoubleFdFailures : public ::testing::Test {};
/*
* Utility function to initialize data to be written to the FMQ
*/
inline void initData(uint8_t* data, size_t count) {
for (size_t i = 0; i < count; i++) {
data[i] = i & 0xFF;
}
}
/*
* This thread will attempt to read and block. When wait returns
* it checks if the kFmqNotEmpty bit is actually set.
* If the read is succesful, it signals Wake to kFmqNotFull.
*/
template <typename T>
void TestBase<T>::ReaderThreadBlocking(typename T::MQType* fmq, std::atomic<uint32_t>* fwAddr) {
const size_t dataLen = 64;
uint8_t data[dataLen];
android::hardware::EventFlag* efGroup = nullptr;
android::status_t status = android::hardware::EventFlag::createEventFlag(fwAddr, &efGroup);
ASSERT_EQ(android::NO_ERROR, status);
ASSERT_NE(nullptr, efGroup);
while (true) {
uint32_t efState = 0;
android::status_t ret = efGroup->wait(kFmqNotEmpty,
&efState,
5000000000 /* timeoutNanoSeconds */);
/*
* Wait should not time out here after 5s
*/
ASSERT_NE(android::TIMED_OUT, ret);
if ((efState & kFmqNotEmpty) && fmq->read(data, dataLen)) {
efGroup->wake(kFmqNotFull);
break;
}
}
status = android::hardware::EventFlag::deleteEventFlag(&efGroup);
ASSERT_EQ(android::NO_ERROR, status);
}
/*
* This thread will attempt to read and block using the readBlocking() API and
* passes in a pointer to an EventFlag object.
*/
template <typename T>
void TestBase<T>::ReaderThreadBlocking2(typename T::MQType* fmq, std::atomic<uint32_t>* fwAddr) {
const size_t dataLen = 64;
uint8_t data[dataLen];
android::hardware::EventFlag* efGroup = nullptr;
android::status_t status = android::hardware::EventFlag::createEventFlag(fwAddr, &efGroup);
ASSERT_EQ(android::NO_ERROR, status);
ASSERT_NE(nullptr, efGroup);
bool ret = fmq->readBlocking(data,
dataLen,
static_cast<uint32_t>(kFmqNotFull),
static_cast<uint32_t>(kFmqNotEmpty),
5000000000 /* timeOutNanos */,
efGroup);
ASSERT_TRUE(ret);
status = android::hardware::EventFlag::deleteEventFlag(&efGroup);
ASSERT_EQ(android::NO_ERROR, status);
}
TYPED_TEST(BadQueueConfig, QueueSizeTooLarge) {
size_t numElementsInQueue = SIZE_MAX / sizeof(uint16_t) + 1;
typename TypeParam::MQType fmq(numElementsInQueue);
/*
* Should fail due to size being too large to fit into size_t.
*/
ASSERT_FALSE(fmq.isValid());
}
// {flags, fdIndex, offset, extent}
static const std::vector<android::hardware::GrantorDescriptor> kGrantors = {
{0, 0, 0, 4096},
{0, 0, 0, 4096},
{0, 0, 0, 4096},
};
// Make sure this passes without invalid index/extent for the next two test
// cases
TEST_F(HidlOnlyBadQueueConfig, SanityCheck) {
std::vector<android::hardware::GrantorDescriptor> grantors = kGrantors;
native_handle_t* handle = native_handle_create(1, 0);
int ashmemFd = ashmem_create_region("QueueHidlOnlyBad", 4096);
ashmem_set_prot_region(ashmemFd, PROT_READ | PROT_WRITE);
handle->data[0] = ashmemFd;
android::hardware::MQDescriptor<uint16_t, kSynchronizedReadWrite> desc(grantors, handle,
sizeof(uint16_t));
android::hardware::MessageQueue<uint16_t, kSynchronizedReadWrite> fmq(desc);
EXPECT_TRUE(fmq.isValid());
close(ashmemFd);
}
TEST_F(HidlOnlyBadQueueConfig, BadFdIndex) {
std::vector<android::hardware::GrantorDescriptor> grantors = kGrantors;
grantors[0].fdIndex = 5;
native_handle_t* handle = native_handle_create(1, 0);
int ashmemFd = ashmem_create_region("QueueHidlOnlyBad", 4096);
ashmem_set_prot_region(ashmemFd, PROT_READ | PROT_WRITE);
handle->data[0] = ashmemFd;
android::hardware::MQDescriptor<uint16_t, kSynchronizedReadWrite> desc(grantors, handle,
sizeof(uint16_t));
android::hardware::MessageQueue<uint16_t, kSynchronizedReadWrite> fmq(desc);
/*
* Should fail due fdIndex being out of range of the native_handle.
*/
EXPECT_FALSE(fmq.isValid());
close(ashmemFd);
}
TEST_F(HidlOnlyBadQueueConfig, ExtentTooLarge) {
std::vector<android::hardware::GrantorDescriptor> grantors = kGrantors;
grantors[0].extent = 0xfffff041;
native_handle_t* handle = native_handle_create(1, 0);
int ashmemFd = ashmem_create_region("QueueHidlOnlyBad", 4096);
ashmem_set_prot_region(ashmemFd, PROT_READ | PROT_WRITE);
handle->data[0] = ashmemFd;
android::hardware::MQDescriptor<uint16_t, kSynchronizedReadWrite> desc(grantors, handle,
sizeof(uint16_t));
android::hardware::MessageQueue<uint16_t, kSynchronizedReadWrite> fmq(desc);
/*
* Should fail due to extent being too large.
*/
EXPECT_FALSE(fmq.isValid());
close(ashmemFd);
}
// If this test fails and we do leak FDs, the next test will cause a crash
TEST_F(AidlOnlyBadQueueConfig, LookForLeakedFds) {
size_t numElementsInQueue = SIZE_MAX / sizeof(uint32_t) - PAGE_SIZE - 1;
struct rlimit rlim;
ASSERT_EQ(getrlimit(RLIMIT_NOFILE, &rlim), 0);
for (int i = 0; i <= rlim.rlim_cur + 1; i++) {
android::AidlMessageQueue<uint32_t, SynchronizedReadWrite> fmq(numElementsInQueue);
ASSERT_FALSE(fmq.isValid());
}
// try to get another FD
int fd = ashmem_create_region("test", 100);
ASSERT_NE(fd, -1);
close(fd);
}
TEST_F(Hidl2AidlOperation, ConvertDescriptorsSync) {
size_t numElementsInQueue = 64;
// Create HIDL side and get MQDescriptor
MessageQueueSync8 fmq(numElementsInQueue);
ASSERT_TRUE(fmq.isValid());
const HidlMQDescSync8* hidlDesc = fmq.getDesc();
ASSERT_NE(nullptr, hidlDesc);
// Create AIDL MQDescriptor to send to another process based off the HIDL MQDescriptor
AidlMQDescSync8 aidlDesc;
android::unsafeHidlToAidlMQDescriptor<uint8_t, int8_t, SynchronizedReadWrite>(*hidlDesc,
&aidlDesc);
// Other process will create the other side of the queue using the AIDL MQDescriptor
AidlMessageQueueSync8 aidlFmq(aidlDesc);
ASSERT_TRUE(aidlFmq.isValid());
// Make sure a write to the HIDL side, will show up for the AIDL side
constexpr size_t dataLen = 4;
uint8_t data[dataLen] = {12, 11, 10, 9};
fmq.write(data, dataLen);
int8_t readData[dataLen];
ASSERT_TRUE(aidlFmq.read(readData, dataLen));
ASSERT_EQ(data[0], readData[0]);
ASSERT_EQ(data[1], readData[1]);
ASSERT_EQ(data[2], readData[2]);
ASSERT_EQ(data[3], readData[3]);
}
TEST_F(Hidl2AidlOperation, ConvertDescriptorsUnsync) {
size_t numElementsInQueue = 64;
// Create HIDL side and get MQDescriptor
MessageQueueUnsync8 fmq(numElementsInQueue);
ASSERT_TRUE(fmq.isValid());
const HidlMQDescUnsync8* hidlDesc = fmq.getDesc();
ASSERT_NE(nullptr, hidlDesc);
// Create AIDL MQDescriptor to send to another process based off the HIDL MQDescriptor
AidlMQDescUnsync8 aidlDesc;
android::unsafeHidlToAidlMQDescriptor<uint8_t, int8_t, UnsynchronizedWrite>(*hidlDesc,
&aidlDesc);
// Other process will create the other side of the queue using the AIDL MQDescriptor
AidlMessageQueueUnsync8 aidlFmq(aidlDesc);
ASSERT_TRUE(aidlFmq.isValid());
// Can have multiple readers with unsync flavor
AidlMessageQueueUnsync8 aidlFmq2(aidlDesc);
ASSERT_TRUE(aidlFmq2.isValid());
// Make sure a write to the HIDL side, will show up for the AIDL side
constexpr size_t dataLen = 4;
uint8_t data[dataLen] = {12, 11, 10, 9};
fmq.write(data, dataLen);
int8_t readData[dataLen];
ASSERT_TRUE(aidlFmq.read(readData, dataLen));
int8_t readData2[dataLen];
ASSERT_TRUE(aidlFmq2.read(readData2, dataLen));
ASSERT_EQ(data[0], readData[0]);
ASSERT_EQ(data[1], readData[1]);
ASSERT_EQ(data[2], readData[2]);
ASSERT_EQ(data[3], readData[3]);
ASSERT_EQ(data[0], readData2[0]);
ASSERT_EQ(data[1], readData2[1]);
ASSERT_EQ(data[2], readData2[2]);
ASSERT_EQ(data[3], readData2[3]);
}
TEST_F(Hidl2AidlOperation, ConvertFdIndex1) {
native_handle_t* mqHandle = native_handle_create(2 /* numFds */, 0 /* numInts */);
if (mqHandle == nullptr) {
return;
}
mqHandle->data[0] = 12;
mqHandle->data[1] = 5;
::android::hardware::hidl_vec<android::hardware::GrantorDescriptor> grantors;
grantors.resize(3);
grantors[0] = {0, 1 /* fdIndex */, 16, 16};
grantors[1] = {0, 1 /* fdIndex */, 16, 16};
grantors[2] = {0, 1 /* fdIndex */, 16, 16};
HidlMQDescUnsync8 hidlDesc(grantors, mqHandle, 10);
ASSERT_TRUE(hidlDesc.isHandleValid());
AidlMQDescUnsync8 aidlDesc;
bool ret = android::unsafeHidlToAidlMQDescriptor<uint8_t, int8_t, UnsynchronizedWrite>(
hidlDesc, &aidlDesc);
ASSERT_TRUE(ret);
}
TEST_F(Hidl2AidlOperation, ConvertMultipleFds) {
native_handle_t* mqHandle = native_handle_create(2 /* numFds */, 0 /* numInts */);
if (mqHandle == nullptr) {
return;
}
mqHandle->data[0] = ::ashmem_create_region("ConvertMultipleFds", 8);
mqHandle->data[1] = ::ashmem_create_region("ConvertMultipleFds2", 8);
::android::hardware::hidl_vec<android::hardware::GrantorDescriptor> grantors;
grantors.resize(3);
grantors[0] = {0, 1 /* fdIndex */, 16, 16};
grantors[1] = {0, 1 /* fdIndex */, 16, 16};
grantors[2] = {0, 0 /* fdIndex */, 16, 16};
HidlMQDescUnsync8 hidlDesc(grantors, mqHandle, 10);
ASSERT_TRUE(hidlDesc.isHandleValid());
AidlMQDescUnsync8 aidlDesc;
bool ret = android::unsafeHidlToAidlMQDescriptor<uint8_t, int8_t, UnsynchronizedWrite>(
hidlDesc, &aidlDesc);
ASSERT_TRUE(ret);
EXPECT_EQ(aidlDesc.handle.fds.size(), 2);
}
// TODO(b/165674950) Since AIDL does not support unsigned integers, it can only support
// 1/2 the queue size of HIDL. Once support is added to AIDL, this restriction can be
// lifted. Until then, check against SSIZE_MAX instead of SIZE_MAX.
TEST_F(AidlOnlyBadQueueConfig, QueueSizeTooLargeForAidl) {
size_t numElementsInQueue = SSIZE_MAX / sizeof(uint16_t) + 1;
AidlMessageQueueSync16 fmq(numElementsInQueue);
/*
* Should fail due to size being too large to fit into size_t.
*/
ASSERT_FALSE(fmq.isValid());
}
TEST_F(AidlOnlyBadQueueConfig, NegativeAidlDescriptor) {
aidl::android::hardware::common::fmq::MQDescriptor<uint16_t, SynchronizedReadWrite> desc;
desc.quantum = -10;
AidlMessageQueueSync16 fmq(desc);
/*
* Should fail due to quantum being negative.
*/
ASSERT_FALSE(fmq.isValid());
}
TEST_F(AidlOnlyBadQueueConfig, NegativeAidlDescriptorGrantor) {
aidl::android::hardware::common::fmq::MQDescriptor<uint16_t, SynchronizedReadWrite> desc;
desc.quantum = 2;
desc.flags = 0;
desc.grantors.push_back(
aidl::android::hardware::common::fmq::GrantorDescriptor{.offset = 12, .extent = -10});
AidlMessageQueueSync16 fmq(desc);
/*
* Should fail due to grantor having negative extent.
*/
ASSERT_FALSE(fmq.isValid());
}
/*
* Test creating a new queue from a modified MQDescriptor of another queue.
* If MQDescriptor.quantum doesn't match the size of the payload(T), the queue
* should be invalid.
*/
TEST_F(AidlOnlyBadQueueConfig, MismatchedPayloadSize) {
AidlMessageQueueSync16 fmq = AidlMessageQueueSync16(64);
aidl::android::hardware::common::fmq::MQDescriptor<uint16_t, SynchronizedReadWrite> desc =
fmq.dupeDesc();
// This should work fine with the unmodified MQDescriptor
AidlMessageQueueSync16 fmq2 = AidlMessageQueueSync16(desc);
ASSERT_TRUE(fmq2.isValid());
// Simulate a difference in payload size between processes handling the queue
desc.quantum = 8;
AidlMessageQueueSync16 fmq3 = AidlMessageQueueSync16(desc);
// Should fail due to the quantum not matching the sizeof(uint16_t)
ASSERT_FALSE(fmq3.isValid());
}
/*
* Test creating a new queue with an invalid fd. This should assert with message
* "mRing is null".
*/
TEST_F(DoubleFdFailures, InvalidFd) {
android::base::SetLogger(android::base::StdioLogger);
auto queue = AidlMessageQueueSync(64, false, android::base::unique_fd(3000), 64);
EXPECT_FALSE(queue.isValid());
}
/*
* Test creating a new queue with a buffer fd and bufferSize smaller than the
* requested queue. This should fail to create a valid message queue.
*/
TEST_F(DoubleFdFailures, InvalidFdSize) {
constexpr size_t kNumElementsInQueue = 1024;
constexpr size_t kRequiredDataBufferSize = kNumElementsInQueue * sizeof(uint16_t);
android::base::unique_fd ringbufferFd(
::ashmem_create_region("SyncReadWrite", kRequiredDataBufferSize - 8));
AidlMessageQueueSync16 fmq = AidlMessageQueueSync16(
kNumElementsInQueue, false, std::move(ringbufferFd), kRequiredDataBufferSize - 8);
EXPECT_FALSE(fmq.isValid());
}
/*
* Test creating a new queue with a buffer fd and bufferSize larger than the
* requested queue. The message queue should be valid.
*/
TEST_F(DoubleFdFailures, LargerFdSize) {
constexpr size_t kNumElementsInQueue = 1024;
constexpr size_t kRequiredDataBufferSize = kNumElementsInQueue * sizeof(uint16_t);
android::base::unique_fd ringbufferFd(
::ashmem_create_region("SyncReadWrite", kRequiredDataBufferSize + 8));
AidlMessageQueueSync16 fmq = AidlMessageQueueSync16(
kNumElementsInQueue, false, std::move(ringbufferFd), kRequiredDataBufferSize + 8);
EXPECT_TRUE(fmq.isValid());
}
/*
* Test that basic blocking works. This test uses the non-blocking read()/write()
* APIs.
*/
TYPED_TEST(BlockingReadWrites, SmallInputTest1) {
const size_t dataLen = 64;
uint8_t data[dataLen] = {0};
android::hardware::EventFlag* efGroup = nullptr;
android::status_t status = android::hardware::EventFlag::createEventFlag(this->mFw, &efGroup);
ASSERT_EQ(android::NO_ERROR, status);
ASSERT_NE(nullptr, efGroup);
/*
* Start a thread that will try to read and block on kFmqNotEmpty.
*/
std::thread Reader(BlockingReadWrites<TypeParam>::ReaderThreadBlocking, this->mQueue,
this->mFw);
struct timespec waitTime = {0, 100 * 1000000};
ASSERT_EQ(0, nanosleep(&waitTime, NULL));
/*
* After waiting for some time write into the FMQ
* and call Wake on kFmqNotEmpty.
*/
ASSERT_TRUE(this->mQueue->write(data, dataLen));
status = efGroup->wake(kFmqNotEmpty);
ASSERT_EQ(android::NO_ERROR, status);
ASSERT_EQ(0, nanosleep(&waitTime, NULL));
Reader.join();
status = android::hardware::EventFlag::deleteEventFlag(&efGroup);
ASSERT_EQ(android::NO_ERROR, status);
}
/*
* Test that basic blocking works. This test uses the
* writeBlocking()/readBlocking() APIs.
*/
TYPED_TEST(BlockingReadWrites, SmallInputTest2) {
const size_t dataLen = 64;
uint8_t data[dataLen] = {0};
android::hardware::EventFlag* efGroup = nullptr;
android::status_t status = android::hardware::EventFlag::createEventFlag(this->mFw, &efGroup);
ASSERT_EQ(android::NO_ERROR, status);
ASSERT_NE(nullptr, efGroup);
/*
* Start a thread that will try to read and block on kFmqNotEmpty. It will
* call wake() on kFmqNotFull when the read is successful.
*/
std::thread Reader(BlockingReadWrites<TypeParam>::ReaderThreadBlocking2, this->mQueue,
this->mFw);
bool ret = this->mQueue->writeBlocking(data, dataLen, static_cast<uint32_t>(kFmqNotFull),
static_cast<uint32_t>(kFmqNotEmpty),
5000000000 /* timeOutNanos */, efGroup);
ASSERT_TRUE(ret);
Reader.join();
status = android::hardware::EventFlag::deleteEventFlag(&efGroup);
ASSERT_EQ(android::NO_ERROR, status);
}
/*
* Test that basic blocking times out as intended.
*/
TYPED_TEST(BlockingReadWrites, BlockingTimeOutTest) {
android::hardware::EventFlag* efGroup = nullptr;
android::status_t status = android::hardware::EventFlag::createEventFlag(this->mFw, &efGroup);
ASSERT_EQ(android::NO_ERROR, status);
ASSERT_NE(nullptr, efGroup);
/* Block on an EventFlag bit that no one will wake and time out in 1s */
uint32_t efState = 0;
android::status_t ret = efGroup->wait(kFmqNotEmpty,
&efState,
1000000000 /* timeoutNanoSeconds */);
/*
* Wait should time out in a second.
*/
EXPECT_EQ(android::TIMED_OUT, ret);
status = android::hardware::EventFlag::deleteEventFlag(&efGroup);
ASSERT_EQ(android::NO_ERROR, status);
}
/*
* Test that odd queue sizes do not cause unaligned error
* on access to EventFlag object.
*/
TYPED_TEST(QueueSizeOdd, EventFlagTest) {
const size_t dataLen = 64;
uint8_t data[dataLen] = {0};
bool ret = this->mQueue->writeBlocking(data, dataLen, static_cast<uint32_t>(kFmqNotFull),
static_cast<uint32_t>(kFmqNotEmpty),
5000000000 /* timeOutNanos */);
ASSERT_TRUE(ret);
}
/*
* Verify that a few bytes of data can be successfully written and read.
*/
TYPED_TEST(SynchronizedReadWrites, SmallInputTest1) {
const size_t dataLen = 16;
ASSERT_LE(dataLen, this->mNumMessagesMax);
uint8_t data[dataLen];
initData(data, dataLen);
ASSERT_TRUE(this->mQueue->write(data, dataLen));
uint8_t readData[dataLen] = {};
ASSERT_TRUE(this->mQueue->read(readData, dataLen));
ASSERT_EQ(0, memcmp(data, readData, dataLen));
}
/*
* Verify that a few bytes of data can be successfully written and read using
* beginRead/beginWrite/CommitRead/CommitWrite
*/
TYPED_TEST(SynchronizedReadWrites, SmallInputTest2) {
const size_t dataLen = 16;
ASSERT_LE(dataLen, this->mNumMessagesMax);
uint8_t data[dataLen];
initData(data, dataLen);
typename TypeParam::MQType::MemTransaction tx;
ASSERT_TRUE(this->mQueue->beginWrite(dataLen, &tx));
ASSERT_TRUE(tx.copyTo(data, 0 /* startIdx */, dataLen));
ASSERT_TRUE(this->mQueue->commitWrite(dataLen));
uint8_t readData[dataLen] = {};
ASSERT_TRUE(this->mQueue->beginRead(dataLen, &tx));
ASSERT_TRUE(tx.copyFrom(readData, 0 /* startIdx */, dataLen));
ASSERT_TRUE(this->mQueue->commitRead(dataLen));
ASSERT_EQ(0, memcmp(data, readData, dataLen));
}
/*
* Verify that a few bytes of data can be successfully written and read using
* beginRead/beginWrite/CommitRead/CommitWrite as well as getSlot().
*/
TYPED_TEST(SynchronizedReadWrites, SmallInputTest3) {
const size_t dataLen = 16;
ASSERT_LE(dataLen, this->mNumMessagesMax);
uint8_t data[dataLen];
initData(data, dataLen);
typename TypeParam::MQType::MemTransaction tx;
ASSERT_TRUE(this->mQueue->beginWrite(dataLen, &tx));
auto first = tx.getFirstRegion();
auto second = tx.getSecondRegion();
ASSERT_EQ(first.getLength() + second.getLength(), dataLen);
for (size_t i = 0; i < dataLen; i++) {
uint8_t* ptr = tx.getSlot(i);
*ptr = data[i];
}
ASSERT_TRUE(this->mQueue->commitWrite(dataLen));
uint8_t readData[dataLen] = {};
ASSERT_TRUE(this->mQueue->beginRead(dataLen, &tx));
first = tx.getFirstRegion();
second = tx.getSecondRegion();
ASSERT_EQ(first.getLength() + second.getLength(), dataLen);
for (size_t i = 0; i < dataLen; i++) {
uint8_t* ptr = tx.getSlot(i);
readData[i] = *ptr;
}
ASSERT_TRUE(this->mQueue->commitRead(dataLen));
ASSERT_EQ(0, memcmp(data, readData, dataLen));
}
/*
* Verify that read() returns false when trying to read from an empty queue.
*/
TYPED_TEST(SynchronizedReadWrites, ReadWhenEmpty1) {
ASSERT_EQ(0UL, this->mQueue->availableToRead());
const size_t dataLen = 2;
ASSERT_LE(dataLen, this->mNumMessagesMax);
uint8_t readData[dataLen];
ASSERT_FALSE(this->mQueue->read(readData, dataLen));
}
/*
* Verify that beginRead() returns a MemTransaction object with null pointers when trying
* to read from an empty queue.
*/
TYPED_TEST(SynchronizedReadWrites, ReadWhenEmpty2) {
ASSERT_EQ(0UL, this->mQueue->availableToRead());
const size_t dataLen = 2;
ASSERT_LE(dataLen, this->mNumMessagesMax);
typename TypeParam::MQType::MemTransaction tx;
ASSERT_FALSE(this->mQueue->beginRead(dataLen, &tx));
auto first = tx.getFirstRegion();
auto second = tx.getSecondRegion();
ASSERT_EQ(nullptr, first.getAddress());
ASSERT_EQ(nullptr, second.getAddress());
}
/*
* Write the queue until full. Verify that another write is unsuccessful.
* Verify that availableToWrite() returns 0 as expected.
*/
TYPED_TEST(SynchronizedReadWrites, WriteWhenFull1) {
ASSERT_EQ(0UL, this->mQueue->availableToRead());
std::vector<uint8_t> data(this->mNumMessagesMax);
initData(&data[0], this->mNumMessagesMax);
ASSERT_TRUE(this->mQueue->write(&data[0], this->mNumMessagesMax));
ASSERT_EQ(0UL, this->mQueue->availableToWrite());
ASSERT_FALSE(this->mQueue->write(&data[0], 1));
std::vector<uint8_t> readData(this->mNumMessagesMax);
ASSERT_TRUE(this->mQueue->read(&readData[0], this->mNumMessagesMax));
ASSERT_EQ(data, readData);
}
/*
* Write the queue until full. Verify that beginWrite() returns
* a MemTransaction object with null base pointers.
*/
TYPED_TEST(SynchronizedReadWrites, WriteWhenFull2) {
ASSERT_EQ(0UL, this->mQueue->availableToRead());
std::vector<uint8_t> data(this->mNumMessagesMax);
initData(&data[0], this->mNumMessagesMax);
ASSERT_TRUE(this->mQueue->write(&data[0], this->mNumMessagesMax));
ASSERT_EQ(0UL, this->mQueue->availableToWrite());
typename TypeParam::MQType::MemTransaction tx;
ASSERT_FALSE(this->mQueue->beginWrite(1, &tx));
auto first = tx.getFirstRegion();
auto second = tx.getSecondRegion();
ASSERT_EQ(nullptr, first.getAddress());
ASSERT_EQ(nullptr, second.getAddress());
}
/*
* Write a chunk of data equal to the queue size.
* Verify that the write is successful and the subsequent read
* returns the expected data.
*/
TYPED_TEST(SynchronizedReadWrites, LargeInputTest1) {
std::vector<uint8_t> data(this->mNumMessagesMax);
initData(&data[0], this->mNumMessagesMax);
ASSERT_TRUE(this->mQueue->write(&data[0], this->mNumMessagesMax));
std::vector<uint8_t> readData(this->mNumMessagesMax);
ASSERT_TRUE(this->mQueue->read(&readData[0], this->mNumMessagesMax));
ASSERT_EQ(data, readData);
}
/*
* Attempt to write a chunk of data larger than the queue size.
* Verify that it fails. Verify that a subsequent read fails and
* the queue is still empty.
*/
TYPED_TEST(SynchronizedReadWrites, LargeInputTest2) {
ASSERT_EQ(0UL, this->mQueue->availableToRead());
const size_t dataLen = 4096;
ASSERT_GT(dataLen, this->mNumMessagesMax);
std::vector<uint8_t> data(dataLen);
initData(&data[0], dataLen);
ASSERT_FALSE(this->mQueue->write(&data[0], dataLen));
std::vector<uint8_t> readData(this->mNumMessagesMax);
ASSERT_FALSE(this->mQueue->read(&readData[0], this->mNumMessagesMax));
ASSERT_NE(data, readData);
ASSERT_EQ(0UL, this->mQueue->availableToRead());
}
/*
* After the queue is full, try to write more data. Verify that
* the attempt returns false. Verify that the attempt did not
* affect the pre-existing data in the queue.
*/
TYPED_TEST(SynchronizedReadWrites, LargeInputTest3) {
std::vector<uint8_t> data(this->mNumMessagesMax);
initData(&data[0], this->mNumMessagesMax);
ASSERT_TRUE(this->mQueue->write(&data[0], this->mNumMessagesMax));
ASSERT_FALSE(this->mQueue->write(&data[0], 1));
std::vector<uint8_t> readData(this->mNumMessagesMax);
ASSERT_TRUE(this->mQueue->read(&readData[0], this->mNumMessagesMax));
ASSERT_EQ(data, readData);
}
/*
* Verify that beginWrite() returns a MemTransaction with
* null base pointers when attempting to write data larger
* than the queue size.
*/
TYPED_TEST(SynchronizedReadWrites, LargeInputTest4) {
ASSERT_EQ(0UL, this->mQueue->availableToRead());
const size_t dataLen = 4096;
ASSERT_GT(dataLen, this->mNumMessagesMax);
typename TypeParam::MQType::MemTransaction tx;
ASSERT_FALSE(this->mQueue->beginWrite(dataLen, &tx));
auto first = tx.getFirstRegion();
auto second = tx.getSecondRegion();
ASSERT_EQ(nullptr, first.getAddress());
ASSERT_EQ(nullptr, second.getAddress());
}
/*
* Verify that multiple reads one after the other return expected data.
*/
TYPED_TEST(SynchronizedReadWrites, MultipleRead) {
const size_t chunkSize = 100;
const size_t chunkNum = 5;
const size_t dataLen = chunkSize * chunkNum;
ASSERT_LE(dataLen, this->mNumMessagesMax);
uint8_t data[dataLen];
initData(data, dataLen);
ASSERT_TRUE(this->mQueue->write(data, dataLen));
uint8_t readData[dataLen] = {};
for (size_t i = 0; i < chunkNum; i++) {
ASSERT_TRUE(this->mQueue->read(readData + i * chunkSize, chunkSize));
}
ASSERT_EQ(0, memcmp(readData, data, dataLen));
}
/*
* Verify that multiple writes one after the other happens correctly.
*/
TYPED_TEST(SynchronizedReadWrites, MultipleWrite) {
const int chunkSize = 100;
const int chunkNum = 5;
const size_t dataLen = chunkSize * chunkNum;
ASSERT_LE(dataLen, this->mNumMessagesMax);
uint8_t data[dataLen];
initData(data, dataLen);
for (unsigned int i = 0; i < chunkNum; i++) {
ASSERT_TRUE(this->mQueue->write(data + i * chunkSize, chunkSize));
}
uint8_t readData[dataLen] = {};
ASSERT_TRUE(this->mQueue->read(readData, dataLen));
ASSERT_EQ(0, memcmp(readData, data, dataLen));
}
/*
* Write enough messages into the FMQ to fill half of it
* and read back the same.
* Write this->mNumMessagesMax messages into the queue. This will cause a
* wrap around. Read and verify the data.
*/
TYPED_TEST(SynchronizedReadWrites, ReadWriteWrapAround1) {
size_t numMessages = this->mNumMessagesMax - 1;
std::vector<uint8_t> data(this->mNumMessagesMax);
std::vector<uint8_t> readData(this->mNumMessagesMax);
initData(&data[0], this->mNumMessagesMax);
ASSERT_TRUE(this->mQueue->write(&data[0], numMessages));
ASSERT_TRUE(this->mQueue->read(&readData[0], numMessages));
ASSERT_TRUE(this->mQueue->write(&data[0], this->mNumMessagesMax));
ASSERT_TRUE(this->mQueue->read(&readData[0], this->mNumMessagesMax));
ASSERT_EQ(data, readData);
}
/*
* Use beginRead/CommitRead/beginWrite/commitWrite APIs
* to test wrap arounds are handled correctly.
* Write enough messages into the FMQ to fill half of it
* and read back the same.
* Write mNumMessagesMax messages into the queue. This will cause a
* wrap around. Read and verify the data.
*/
TYPED_TEST(SynchronizedReadWrites, ReadWriteWrapAround2) {
size_t dataLen = this->mNumMessagesMax - 1;
std::vector<uint8_t> data(this->mNumMessagesMax);
std::vector<uint8_t> readData(this->mNumMessagesMax);
initData(&data[0], this->mNumMessagesMax);
ASSERT_TRUE(this->mQueue->write(&data[0], dataLen));
ASSERT_TRUE(this->mQueue->read(&readData[0], dataLen));
/*
* The next write and read will have to deal with with wrap arounds.
*/
typename TypeParam::MQType::MemTransaction tx;
ASSERT_TRUE(this->mQueue->beginWrite(this->mNumMessagesMax, &tx));
auto first = tx.getFirstRegion();
auto second = tx.getSecondRegion();
ASSERT_EQ(first.getLength() + second.getLength(), this->mNumMessagesMax);
ASSERT_TRUE(tx.copyTo(&data[0], 0 /* startIdx */, this->mNumMessagesMax));
ASSERT_TRUE(this->mQueue->commitWrite(this->mNumMessagesMax));
ASSERT_TRUE(this->mQueue->beginRead(this->mNumMessagesMax, &tx));
first = tx.getFirstRegion();
second = tx.getSecondRegion();
ASSERT_EQ(first.getLength() + second.getLength(), this->mNumMessagesMax);
ASSERT_TRUE(tx.copyFrom(&readData[0], 0 /* startIdx */, this->mNumMessagesMax));
ASSERT_TRUE(this->mQueue->commitRead(this->mNumMessagesMax));
ASSERT_EQ(data, readData);
}
/*
* Verify that a few bytes of data can be successfully written and read.
*/
TYPED_TEST(UnsynchronizedWriteTest, SmallInputTest1) {
const size_t dataLen = 16;
ASSERT_LE(dataLen, this->mNumMessagesMax);
uint8_t data[dataLen];
initData(data, dataLen);
ASSERT_TRUE(this->mQueue->write(data, dataLen));
uint8_t readData[dataLen] = {};
ASSERT_TRUE(this->mQueue->read(readData, dataLen));
ASSERT_EQ(0, memcmp(data, readData, dataLen));
}
/*
* Verify that read() returns false when trying to read from an empty queue.
*/
TYPED_TEST(UnsynchronizedWriteTest, ReadWhenEmpty) {
ASSERT_EQ(0UL, this->mQueue->availableToRead());
const size_t dataLen = 2;
ASSERT_TRUE(dataLen < this->mNumMessagesMax);
uint8_t readData[dataLen];
ASSERT_FALSE(this->mQueue->read(readData, dataLen));
}
/*
* Write the queue when full. Verify that a subsequent writes is succesful.
* Verify that availableToWrite() returns 0 as expected.
*/
TYPED_TEST(UnsynchronizedWriteTest, WriteWhenFull1) {
ASSERT_EQ(0UL, this->mQueue->availableToRead());
std::vector<uint8_t> data(this->mNumMessagesMax);
initData(&data[0], this->mNumMessagesMax);
ASSERT_TRUE(this->mQueue->write(&data[0], this->mNumMessagesMax));
ASSERT_EQ(0UL, this->mQueue->availableToWrite());
ASSERT_TRUE(this->mQueue->write(&data[0], 1));
std::vector<uint8_t> readData(this->mNumMessagesMax);
ASSERT_FALSE(this->mQueue->read(&readData[0], this->mNumMessagesMax));
}
/*
* Write the queue when full. Verify that a subsequent writes
* using beginRead()/commitRead() is succesful.
* Verify that the next read fails as expected for unsynchronized flavor.
*/
TYPED_TEST(UnsynchronizedWriteTest, WriteWhenFull2) {
ASSERT_EQ(0UL, this->mQueue->availableToRead());
std::vector<uint8_t> data(this->mNumMessagesMax);
ASSERT_TRUE(this->mQueue->write(&data[0], this->mNumMessagesMax));
typename TypeParam::MQType::MemTransaction tx;
ASSERT_TRUE(this->mQueue->beginWrite(1, &tx));
ASSERT_EQ(tx.getFirstRegion().getLength(), 1U);
ASSERT_TRUE(tx.copyTo(&data[0], 0 /* startIdx */));
ASSERT_TRUE(this->mQueue->commitWrite(1));
std::vector<uint8_t> readData(this->mNumMessagesMax);
ASSERT_FALSE(this->mQueue->read(&readData[0], this->mNumMessagesMax));
}
/*
* Write a chunk of data equal to the queue size.
* Verify that the write is successful and the subsequent read
* returns the expected data.
*/
TYPED_TEST(UnsynchronizedWriteTest, LargeInputTest1) {
std::vector<uint8_t> data(this->mNumMessagesMax);
initData(&data[0], this->mNumMessagesMax);
ASSERT_TRUE(this->mQueue->write(&data[0], this->mNumMessagesMax));
std::vector<uint8_t> readData(this->mNumMessagesMax);
ASSERT_TRUE(this->mQueue->read(&readData[0], this->mNumMessagesMax));
ASSERT_EQ(data, readData);
}
/*
* Attempt to write a chunk of data larger than the queue size.
* Verify that it fails. Verify that a subsequent read fails and
* the queue is still empty.
*/
TYPED_TEST(UnsynchronizedWriteTest, LargeInputTest2) {
ASSERT_EQ(0UL, this->mQueue->availableToRead());
const size_t dataLen = 4096;
ASSERT_GT(dataLen, this->mNumMessagesMax);
std::vector<uint8_t> data(dataLen);
initData(&data[0], dataLen);
ASSERT_FALSE(this->mQueue->write(&data[0], dataLen));
std::vector<uint8_t> readData(this->mNumMessagesMax);
ASSERT_FALSE(this->mQueue->read(&readData[0], this->mNumMessagesMax));
ASSERT_NE(data, readData);
ASSERT_EQ(0UL, this->mQueue->availableToRead());
}
/*
* After the queue is full, try to write more data. Verify that
* the attempt is succesful. Verify that the read fails
* as expected.
*/
TYPED_TEST(UnsynchronizedWriteTest, LargeInputTest3) {
std::vector<uint8_t> data(this->mNumMessagesMax);
initData(&data[0], this->mNumMessagesMax);
ASSERT_TRUE(this->mQueue->write(&data[0], this->mNumMessagesMax));
ASSERT_TRUE(this->mQueue->write(&data[0], 1));
std::vector<uint8_t> readData(this->mNumMessagesMax);
ASSERT_FALSE(this->mQueue->read(&readData[0], this->mNumMessagesMax));
}
/*
* Verify that multiple reads one after the other return expected data.
*/
TYPED_TEST(UnsynchronizedWriteTest, MultipleRead) {
const size_t chunkSize = 100;
const size_t chunkNum = 5;
const size_t dataLen = chunkSize * chunkNum;
ASSERT_LE(dataLen, this->mNumMessagesMax);
uint8_t data[dataLen];
initData(data, dataLen);
ASSERT_TRUE(this->mQueue->write(data, dataLen));
uint8_t readData[dataLen] = {};
for (size_t i = 0; i < chunkNum; i++) {
ASSERT_TRUE(this->mQueue->read(readData + i * chunkSize, chunkSize));
}
ASSERT_EQ(0, memcmp(readData, data, dataLen));
}
/*
* Verify that multiple writes one after the other happens correctly.
*/
TYPED_TEST(UnsynchronizedWriteTest, MultipleWrite) {
const size_t chunkSize = 100;
const size_t chunkNum = 5;
const size_t dataLen = chunkSize * chunkNum;
ASSERT_LE(dataLen, this->mNumMessagesMax);
uint8_t data[dataLen];
initData(data, dataLen);
for (size_t i = 0; i < chunkNum; i++) {
ASSERT_TRUE(this->mQueue->write(data + i * chunkSize, chunkSize));
}
uint8_t readData[dataLen] = {};
ASSERT_TRUE(this->mQueue->read(readData, dataLen));
ASSERT_EQ(0, memcmp(readData, data, dataLen));
}
/*
* Write enough messages into the FMQ to fill half of it
* and read back the same.
* Write mNumMessagesMax messages into the queue. This will cause a
* wrap around. Read and verify the data.
*/
TYPED_TEST(UnsynchronizedWriteTest, ReadWriteWrapAround) {
size_t numMessages = this->mNumMessagesMax - 1;
std::vector<uint8_t> data(this->mNumMessagesMax);
std::vector<uint8_t> readData(this->mNumMessagesMax);
initData(&data[0], this->mNumMessagesMax);
ASSERT_TRUE(this->mQueue->write(&data[0], numMessages));
ASSERT_TRUE(this->mQueue->read(&readData[0], numMessages));
ASSERT_TRUE(this->mQueue->write(&data[0], this->mNumMessagesMax));
ASSERT_TRUE(this->mQueue->read(&readData[0], this->mNumMessagesMax));
ASSERT_EQ(data, readData);
}