blob: 92679e48bfcd28e17c18568d83d7f6d09e50b183 [file] [log] [blame]
/*
* Copyright (C) 2018 The Android Open Source Project
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <errno.h>
#include <fcntl.h>
#include <poll.h>
#include <setjmp.h>
#include <signal.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <time.h>
#include <unistd.h>
#include <android-base/file.h>
#include <android-base/stringprintf.h>
#include <android-base/test_utils.h>
#include <gtest/gtest.h>
#include <log/log_read.h>
#include <atomic>
#include <mutex>
#include <random>
#include <string>
#include <thread>
#include <vector>
#include <backtrace/Backtrace.h>
#include <backtrace/BacktraceMap.h>
#include <bionic/malloc.h>
#include <tests/utils.h>
// All DISABLED_ tests are designed to be executed after malloc debug
// is enabled. These tests don't run be default, and are executed
// by wrappers that will enable various malloc debug features.
extern "C" bool GetInitialArgs(const char*** args, size_t* num_args) {
static const char* initial_args[] = {"--slow_threshold_ms=30000",
"--deadline_threshold_ms=1200000"};
*args = initial_args;
*num_args = 2;
return true;
}
class LogReader {
public:
LogReader(pid_t pid, log_id log) {
std::call_once(log_start_time_flag_, []() {
// Use this to figure out the point at which to start grabbing the log.
// This avoids accidentally grabbing data from a previous process with
// the same pid.
log_start_time_ = {};
logger_list* list = android_logger_list_open(LOG_ID_MAIN, ANDROID_LOG_NONBLOCK, 1000, 0);
if (list == nullptr) {
return;
}
log_msg log_msg;
int ret = android_logger_list_read(list, &log_msg);
android_logger_list_close(list);
if (ret <= 0) {
return;
}
log_start_time_.tv_sec = log_msg.entry.sec;
log_start_time_.tv_nsec = log_msg.entry.nsec;
});
std::call_once(jmp_data_key_flag_, []() {
pthread_key_create(&jmp_data_key_, [](void* ptr) { free(ptr); });
signal(SIGUSR1, [](int) {
jmp_buf* jb = reinterpret_cast<jmp_buf*>(pthread_getspecific(jmp_data_key_));
if (jb != nullptr) {
// The thread reading the log is in a blocking read call that
// cannot be interrupted. In order to get out of this read loop,
// it's necessary to call longjmp when a SIGUSR1 signal is sent
// to the thread.
longjmp(*jb, 1);
}
});
});
reader_.reset(new std::thread([this, pid, log] {
tid_.store(gettid(), std::memory_order_release);
logger_list* list;
while (true) {
// Do not use non-blocking mode so that the two threads
// are essentially asleep and not consuming any cpu.
list = android_logger_list_open(log, 0, 1000, pid);
if (list != nullptr) {
break;
}
// Wait for a short time for the log to become available.
usleep(1000);
}
jmp_buf* jb = reinterpret_cast<jmp_buf*>(malloc(sizeof(jmp_buf)));
if (jb == nullptr) {
printf("Failed to allocate memory for jmp_buf\n");
return;
}
pthread_setspecific(jmp_data_key_, jb);
if (setjmp(*jb) != 0) {
// SIGUSR1 signal hit, we need to terminate the thread.
android_logger_list_free(list);
return;
}
while (true) {
log_msg msg;
int actual = android_logger_list_read(list, &msg);
if (actual < 0) {
if (actual == -EINTR) {
// Interrupted retry.
continue;
}
// Unknown error.
break;
} else if (actual == 0) {
// Nothing left to read.
break;
}
// Do not allow SIGUSR1 while processing the log message.
// This avoids a deadlock if the thread is being terminated
// at this moment.
sigset64_t mask_set;
sigprocmask64(SIG_SETMASK, nullptr, &mask_set);
sigaddset64(&mask_set, SIGUSR1);
sigprocmask64(SIG_SETMASK, &mask_set, nullptr);
{
// Lock while appending to the data.
std::lock_guard<std::mutex> guard(data_lock_);
char* msg_str = msg.msg();
// Make sure the message is not empty and recent.
if (msg_str != nullptr && (msg.entry.sec > log_start_time_.tv_sec ||
(msg.entry.sec == log_start_time_.tv_sec &&
msg.entry.nsec > log_start_time_.tv_nsec))) {
// Skip the tag part of the message.
char* tag = msg_str + 1;
msg_str = tag + strlen(tag) + 1;
log_data_ += msg_str;
if (log_data_.back() != '\n') {
log_data_ += '\n';
}
}
}
// Re-enable SIGUSR1
sigprocmask64(SIG_SETMASK, nullptr, &mask_set);
sigdelset64(&mask_set, SIGUSR1);
sigprocmask64(SIG_SETMASK, &mask_set, nullptr);
}
android_logger_list_free(list);
}));
}
virtual ~LogReader() {
tgkill(getpid(), tid_.load(std::memory_order_acquire), SIGUSR1);
reader_->join();
}
std::string GetLog() {
std::lock_guard<std::mutex> guard(data_lock_);
return log_data_;
}
private:
std::unique_ptr<std::thread> reader_;
std::string log_data_;
std::mutex data_lock_;
std::atomic<pid_t> tid_;
static std::once_flag jmp_data_key_flag_;
static pthread_key_t jmp_data_key_;
static std::once_flag log_start_time_flag_;
static log_time log_start_time_;
};
std::once_flag LogReader::jmp_data_key_flag_;
pthread_key_t LogReader::jmp_data_key_;
std::once_flag LogReader::log_start_time_flag_;
log_time LogReader::log_start_time_;
class MallocDebugSystemTest : public ::testing::Test {
protected:
void SetUp() override {
expected_log_strings_.clear();
unexpected_log_strings_.clear();
// All tests expect this message to be present.
expected_log_strings_.push_back("malloc debug enabled");
}
void Exec(const char* test_name, const char* debug_options, int expected_exit_code = 0) {
std::random_device rd;
std::mt19937 generator(rd());
std::uniform_int_distribution<> rand_usleep_time(1, 10);
std::srand(std::time(nullptr));
for (size_t i = 0; i < kMaxRetries; i++) {
ASSERT_NO_FATAL_FAILURE(InternalExec(test_name, debug_options, expected_exit_code));
// Due to log messages sometimes getting lost, if a log message
// is not present, allow retrying the test.
std::string error_msg;
bool found_expected = CheckExpectedLogStrings(&error_msg);
if (!found_expected) {
ASSERT_NE(i, kMaxRetries - 1) << error_msg;
// Sleep a random amount of time to attempt to avoid tests syncing
// up and sending the log messages at the same time.
usleep(1000 * rand_usleep_time(generator));
}
// This doesn't need to be retried since if the log message is
// present, that is an immediate fail.
ASSERT_NO_FATAL_FAILURE(VerifyUnexpectedLogStrings());
if (found_expected) {
break;
}
}
}
void InternalExec(const char* test_name, const char* debug_options, int expected_exit_code) {
int fds[2];
ASSERT_NE(-1, pipe(fds));
ASSERT_NE(-1, fcntl(fds[0], F_SETFL, O_NONBLOCK));
if ((pid_ = fork()) == 0) {
ASSERT_EQ(0, setenv("LIBC_DEBUG_MALLOC_OPTIONS", debug_options, 1));
close(fds[0]);
close(STDIN_FILENO);
close(STDOUT_FILENO);
close(STDERR_FILENO);
ASSERT_NE(0, dup2(fds[1], STDOUT_FILENO));
ASSERT_NE(0, dup2(fds[1], STDERR_FILENO));
std::vector<const char*> args;
// Get a copy of this argument so it doesn't disappear on us.
std::string exec(testing::internal::GetArgvs()[0]);
args.push_back(exec.c_str());
args.push_back("--gtest_also_run_disabled_tests");
std::string filter_arg = std::string("--gtest_filter=") + test_name;
args.push_back(filter_arg.c_str());
// Need this because some code depends on exit codes from the test run
// but the isolation runner does not support that.
args.push_back("--no_isolate");
args.push_back(nullptr);
execv(args[0], reinterpret_cast<char* const*>(const_cast<char**>(args.data())));
exit(20);
}
ASSERT_NE(-1, pid_);
close(fds[1]);
// Create threads to read the log output from the forked process as
// soon as possible in case there is something flooding the log.
log_main_.reset(new LogReader(pid_, LOG_ID_MAIN));
log_crash_.reset(new LogReader(pid_, LOG_ID_CRASH));
output_.clear();
std::vector<char> buffer(4096);
time_t start_time = time(nullptr);
bool read_done = false;
while (true) {
struct pollfd read_fd = {.fd = fds[0], .events = POLLIN};
if (TEMP_FAILURE_RETRY(poll(&read_fd, 1, 1)) > 0) {
ssize_t bytes = TEMP_FAILURE_RETRY(read(fds[0], buffer.data(), sizeof(buffer) - 1));
if (bytes == -1 && errno == EAGAIN) {
continue;
}
ASSERT_NE(-1, bytes);
if (bytes == 0) {
read_done = true;
break;
}
output_.append(buffer.data(), bytes);
}
if ((time(nullptr) - start_time) > kReadOutputTimeoutSeconds) {
kill(pid_, SIGINT);
break;
}
}
bool done = false;
int status;
start_time = time(nullptr);
while (true) {
int wait_pid = waitpid(pid_, &status, WNOHANG);
if (pid_ == wait_pid) {
done = true;
break;
}
if ((time(nullptr) - start_time) > kWaitpidTimeoutSeconds) {
break;
}
}
if (!done) {
kill(pid_, SIGKILL);
start_time = time(nullptr);
while (true) {
int kill_status;
int wait_pid = waitpid(pid_, &kill_status, WNOHANG);
if (wait_pid == pid_ || (time(nullptr) - start_time) > kWaitpidTimeoutSeconds) {
break;
}
}
}
// Check timeout conditions first.
ASSERT_TRUE(read_done) << "Timed out while reading data, output:\n" << output_;
ASSERT_TRUE(done) << "Timed out waiting for waitpid, output:\n" << output_;
ASSERT_FALSE(WIFSIGNALED(status)) << "Failed with signal " << WTERMSIG(status) << "\nOutput:\n"
<< output_;
ASSERT_EQ(expected_exit_code, WEXITSTATUS(status)) << "Output:\n" << output_;
}
bool CheckExpectedLogStrings(std::string* error_msg) {
time_t start = time(nullptr);
std::string missing_match;
std::string log_str;
while (true) {
log_str = log_main_->GetLog();
missing_match.clear();
// Look for the expected strings.
for (auto str : expected_log_strings_) {
if (log_str.find(str) == std::string::npos) {
missing_match = str;
break;
}
}
if (missing_match.empty()) {
return true;
}
if ((time(nullptr) - start) > kLogTimeoutSeconds) {
break;
}
}
*error_msg = android::base::StringPrintf("Didn't find string '%s' in log output:\n%s",
missing_match.c_str(), log_str.c_str());
return false;
}
void VerifyUnexpectedLogStrings() {
std::string log_str = log_main_->GetLog();
for (auto str : unexpected_log_strings_) {
ASSERT_TRUE(log_str.find(str) == std::string::npos)
<< "Unexpectedly found string '" << str << "' in log output:\n"
<< log_str;
}
}
void VerifyLeak(const char* test_prefix) {
struct FunctionInfo {
const char* name;
size_t size;
};
static FunctionInfo functions[] = {
{
"aligned_alloc",
1152,
},
{
"calloc",
1123,
},
{
"malloc",
1123,
},
{
"memalign",
1123,
},
{
"posix_memalign",
1123,
},
{
"reallocarray",
1123,
},
{
"realloc",
1123,
},
#if !defined(__LP64__)
{
"pvalloc",
4096,
},
{
"valloc",
1123,
}
#endif
};
size_t match_len = expected_log_strings_.size() + 1;
expected_log_strings_.resize(match_len);
for (size_t i = 0; i < sizeof(functions) / sizeof(FunctionInfo); i++) {
SCOPED_TRACE(testing::Message()
<< functions[i].name << " expected size " << functions[i].size);
expected_log_strings_[match_len - 1] =
android::base::StringPrintf("leaked block of size %zu at", functions[i].size);
std::string test = std::string("MallocTests.DISABLED_") + test_prefix + functions[i].name;
ASSERT_NO_FATAL_FAILURE(Exec(test.c_str(), "verbose backtrace leak_track"));
}
}
std::unique_ptr<LogReader> log_main_;
std::unique_ptr<LogReader> log_crash_;
pid_t pid_;
std::string output_;
std::vector<std::string> expected_log_strings_;
std::vector<std::string> unexpected_log_strings_;
static constexpr size_t kReadOutputTimeoutSeconds = 180;
static constexpr size_t kWaitpidTimeoutSeconds = 10;
static constexpr size_t kLogTimeoutSeconds = 5;
static constexpr size_t kMaxRetries = 3;
};
TEST(MallocTests, DISABLED_smoke) {}
TEST_F(MallocDebugSystemTest, smoke) {
Exec("MallocTests.DISABLED_smoke", "verbose backtrace");
}
static void SetAllocationLimit() {
// Set to a large value, this is only to enable the limit code and
// verify that malloc debug is still called properly.
size_t limit = 500 * 1024 * 1024;
ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit)));
}
static void AlignedAlloc() {
void* ptr = aligned_alloc(64, 1152);
ASSERT_TRUE(ptr != nullptr);
memset(ptr, 0, 1152);
}
TEST(MallocTests, DISABLED_leak_memory_aligned_alloc) {
AlignedAlloc();
}
TEST(MallocTests, DISABLED_leak_memory_limit_aligned_alloc) {
SetAllocationLimit();
AlignedAlloc();
}
static void Calloc() {
void* ptr = calloc(1, 1123);
ASSERT_TRUE(ptr != nullptr);
memset(ptr, 1, 1123);
}
TEST(MallocTests, DISABLED_leak_memory_calloc) {
Calloc();
}
TEST(MallocTests, DISABLED_leak_memory_limit_calloc) {
SetAllocationLimit();
Calloc();
}
static void Malloc() {
void* ptr = malloc(1123);
ASSERT_TRUE(ptr != nullptr);
memset(ptr, 0, 1123);
}
TEST(MallocTests, DISABLED_leak_memory_malloc) {
Malloc();
}
TEST(MallocTests, DISABLED_leak_memory_limit_malloc) {
SetAllocationLimit();
Malloc();
}
static void Memalign() {
void* ptr = memalign(64, 1123);
ASSERT_TRUE(ptr != nullptr);
memset(ptr, 0, 1123);
}
TEST(MallocTests, DISABLED_leak_memory_memalign) {
Memalign();
}
TEST(MallocTests, DISABLED_leak_memory_limit_memalign) {
SetAllocationLimit();
Memalign();
}
static void PosixMemalign() {
void* ptr;
ASSERT_EQ(0, posix_memalign(&ptr, 64, 1123));
ASSERT_TRUE(ptr != nullptr);
memset(ptr, 0, 1123);
}
TEST(MallocTests, DISABLED_leak_memory_posix_memalign) {
PosixMemalign();
}
TEST(MallocTests, DISABLED_leak_memory_limit_posix_memalign) {
SetAllocationLimit();
PosixMemalign();
}
static void Reallocarray() {
void* ptr = reallocarray(nullptr, 1, 1123);
ASSERT_TRUE(ptr != nullptr);
memset(ptr, 0, 1123);
}
TEST(MallocTests, DISABLED_leak_memory_reallocarray) {
Reallocarray();
}
TEST(MallocTests, DISABLED_leak_memory_limit_reallocarray) {
SetAllocationLimit();
Reallocarray();
}
static void Realloc() {
void* ptr = realloc(nullptr, 1123);
ASSERT_TRUE(ptr != nullptr);
memset(ptr, 0, 1123);
}
TEST(MallocTests, DISABLED_leak_memory_realloc) {
Realloc();
}
TEST(MallocTests, DISABLED_leak_memory_limit_realloc) {
SetAllocationLimit();
Realloc();
}
#if !defined(__LP64__)
extern "C" void* pvalloc(size_t);
static void Pvalloc() {
void* ptr = pvalloc(1123);
ASSERT_TRUE(ptr != nullptr);
memset(ptr, 0, 1123);
}
TEST(MallocTests, DISABLED_leak_memory_pvalloc) {
Pvalloc();
}
TEST(MallocTests, DISABLED_leak_memory_limit_pvalloc) {
SetAllocationLimit();
Pvalloc();
}
extern "C" void* valloc(size_t);
static void Valloc() {
void* ptr = valloc(1123);
ASSERT_TRUE(ptr != nullptr);
memset(ptr, 0, 1123);
}
TEST(MallocTests, DISABLED_leak_memory_valloc) {
Valloc();
}
TEST(MallocTests, DISABLED_leak_memory_limit_valloc) {
SetAllocationLimit();
Valloc();
}
#endif
TEST_F(MallocDebugSystemTest, verify_leak) {
VerifyLeak("leak_memory_");
}
TEST_F(MallocDebugSystemTest, verify_leak_allocation_limit) {
SKIP_WITH_HWASAN;
VerifyLeak("leak_memory_limit_");
}
static constexpr int kExpectedExitCode = 30;
static constexpr size_t kMaxThreads = sizeof(uint32_t) * 8;
TEST(MallocTests, DISABLED_exit_while_threads_allocating) {
std::atomic_uint32_t thread_mask = {};
for (size_t i = 0; i < kMaxThreads; i++) {
std::thread malloc_thread([&thread_mask, i] {
while (true) {
void* ptr = malloc(100);
if (ptr == nullptr) {
exit(1000);
}
free(ptr);
thread_mask.fetch_or(1U << i);
}
});
malloc_thread.detach();
}
// Wait until each thread has done at least one allocation.
while (thread_mask.load() != UINT32_MAX)
;
exit(kExpectedExitCode);
}
// Verify that exiting while other threads are doing malloc operations,
// that there are no crashes.
TEST_F(MallocDebugSystemTest, exit_while_threads_allocating) {
for (size_t i = 0; i < 100; i++) {
SCOPED_TRACE(::testing::Message() << "Run " << i);
ASSERT_NO_FATAL_FAILURE(Exec("MallocTests.DISABLED_exit_while_threads_allocating",
"verbose backtrace", kExpectedExitCode));
std::string log_str = log_crash_->GetLog();
ASSERT_TRUE(log_str.find("Fatal signal") == std::string::npos)
<< "Found crash in log.\nLog message: " << log_str << " pid: " << pid_;
}
}
TEST(MallocTests, DISABLED_exit_while_threads_freeing_allocs_with_header) {
static constexpr size_t kMaxAllocsPerThread = 1000;
std::atomic_uint32_t thread_mask = {};
std::atomic_bool run;
std::vector<std::vector<void*>> allocs(kMaxThreads);
// Pre-allocate a bunch of memory so that we can try to trigger
// the frees after the main thread finishes.
for (size_t i = 0; i < kMaxThreads; i++) {
for (size_t j = 0; j < kMaxAllocsPerThread; j++) {
void* ptr = malloc(8);
ASSERT_TRUE(ptr != nullptr);
allocs[i].push_back(ptr);
}
}
for (size_t i = 0; i < kMaxThreads; i++) {
std::thread malloc_thread([&thread_mask, &run, &allocs, i] {
thread_mask.fetch_or(1U << i);
while (!run)
;
for (auto ptr : allocs[i]) {
free(ptr);
}
});
malloc_thread.detach();
}
// Wait until all threads are running.
while (thread_mask.load() != UINT32_MAX)
;
run = true;
exit(kExpectedExitCode);
}
TEST_F(MallocDebugSystemTest, exit_while_threads_freeing_allocs_with_header) {
for (size_t i = 0; i < 50; i++) {
SCOPED_TRACE(::testing::Message() << "Run " << i);
// Enable guard to force the use of a header.
ASSERT_NO_FATAL_FAILURE(
Exec("MallocTests.DISABLED_exit_while_threads_freeing_allocs_with_header", "verbose guard",
kExpectedExitCode));
std::string log_str = log_crash_->GetLog();
ASSERT_TRUE(log_str.find("Fatal signal") == std::string::npos)
<< "Found crash in log.\nLog message: " << log_str << " pid: " << pid_;
}
}
TEST(MallocTests, DISABLED_write_leak_info) {
TemporaryFile tf;
ASSERT_TRUE(tf.fd != -1);
FILE* fp = fdopen(tf.fd, "w+");
if (fp == nullptr) {
printf("Unable to create %s\n", tf.path);
_exit(1);
}
tf.release();
void* ptr = malloc(1000);
if (ptr == nullptr) {
printf("malloc failed\n");
_exit(1);
}
memset(ptr, 0, 1000);
android_mallopt(M_WRITE_MALLOC_LEAK_INFO_TO_FILE, fp, sizeof(fp));
fclose(fp);
free(ptr);
}
TEST_F(MallocDebugSystemTest, write_leak_info_no_header) {
unexpected_log_strings_.push_back(" HAS INVALID TAG ");
unexpected_log_strings_.push_back("USED AFTER FREE ");
unexpected_log_strings_.push_back("UNKNOWN POINTER ");
Exec("MallocTests.DISABLED_write_leak_info", "verbose backtrace");
}
TEST_F(MallocDebugSystemTest, write_leak_info_header) {
unexpected_log_strings_.push_back(" HAS INVALID TAG ");
unexpected_log_strings_.push_back("USED AFTER FREE ");
unexpected_log_strings_.push_back("UNKNOWN POINTER ");
Exec("MallocTests.DISABLED_write_leak_info", "verbose backtrace guard");
}
TEST(MallocTests, DISABLED_malloc_and_backtrace_deadlock) {
std::atomic_bool running(false);
pid_t tid;
std::thread thread([&tid, &running] {
tid = gettid();
running = true;
while (running) {
void* ptr = malloc(200);
if (ptr == nullptr) {
return;
}
free(ptr);
}
});
while (!running) {
}
static constexpr size_t kNumUnwinds = 1000;
for (size_t i = 0; i < kNumUnwinds; i++) {
std::unique_ptr<Backtrace> backtrace(Backtrace::Create(getpid(), tid));
// Only verify that there is at least one frame in the unwind.
// This is not a test of the unwinder and clang for arm seems to
// produces an increasing number of code that does not have unwind
// information.
ASSERT_TRUE(backtrace->Unwind(0)) << "Failed on unwind " << i;
}
running = false;
thread.join();
}
TEST_F(MallocDebugSystemTest, malloc_and_backtrace_deadlock) {
// Make sure that malloc debug is enabled and that no timeouts occur during
// unwinds.
unexpected_log_strings_.push_back("Timed out waiting for ");
Exec("MallocTests.DISABLED_malloc_and_backtrace_deadlock", "verbose verify_pointers", 0);
}