|  | /* | 
|  | ** This file is in the public domain, so clarified as of | 
|  | ** 1996-06-05 by Arthur David Olson. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | ** Leap second handling from Bradley White. | 
|  | ** POSIX-style TZ environment variable handling from Guy Harris. | 
|  | */ | 
|  |  | 
|  | /*LINTLIBRARY*/ | 
|  |  | 
|  | #define LOCALTIME_IMPLEMENTATION | 
|  | #include "private.h" | 
|  |  | 
|  | #include "tzfile.h" | 
|  | #include "fcntl.h" | 
|  |  | 
|  | #if THREAD_SAFE | 
|  | # include <pthread.h> | 
|  | static pthread_mutex_t locallock = PTHREAD_MUTEX_INITIALIZER; | 
|  | static int lock(void) { return pthread_mutex_lock(&locallock); } | 
|  | static void unlock(void) { pthread_mutex_unlock(&locallock); } | 
|  | #else | 
|  | static int lock(void) { return 0; } | 
|  | static void unlock(void) { } | 
|  | #endif | 
|  |  | 
|  | /* NETBSD_INSPIRED_EXTERN functions are exported to callers if | 
|  | NETBSD_INSPIRED is defined, and are private otherwise.  */ | 
|  | #if NETBSD_INSPIRED | 
|  | # define NETBSD_INSPIRED_EXTERN | 
|  | #else | 
|  | # define NETBSD_INSPIRED_EXTERN static | 
|  | #endif | 
|  |  | 
|  | #ifndef TZ_ABBR_MAX_LEN | 
|  | #define TZ_ABBR_MAX_LEN 16 | 
|  | #endif /* !defined TZ_ABBR_MAX_LEN */ | 
|  |  | 
|  | #ifndef TZ_ABBR_CHAR_SET | 
|  | #define TZ_ABBR_CHAR_SET \ | 
|  | "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789 :+-._" | 
|  | #endif /* !defined TZ_ABBR_CHAR_SET */ | 
|  |  | 
|  | #ifndef TZ_ABBR_ERR_CHAR | 
|  | #define TZ_ABBR_ERR_CHAR    '_' | 
|  | #endif /* !defined TZ_ABBR_ERR_CHAR */ | 
|  |  | 
|  | /* | 
|  | ** SunOS 4.1.1 headers lack O_BINARY. | 
|  | */ | 
|  |  | 
|  | #ifdef O_BINARY | 
|  | #define OPEN_MODE   (O_RDONLY | O_BINARY) | 
|  | #endif /* defined O_BINARY */ | 
|  | #ifndef O_BINARY | 
|  | #define OPEN_MODE   O_RDONLY | 
|  | #endif /* !defined O_BINARY */ | 
|  |  | 
|  | #ifndef WILDABBR | 
|  | /* | 
|  | ** Someone might make incorrect use of a time zone abbreviation: | 
|  | **  1.  They might reference tzname[0] before calling tzset (explicitly | 
|  | **      or implicitly). | 
|  | **  2.  They might reference tzname[1] before calling tzset (explicitly | 
|  | **      or implicitly). | 
|  | **  3.  They might reference tzname[1] after setting to a time zone | 
|  | **      in which Daylight Saving Time is never observed. | 
|  | **  4.  They might reference tzname[0] after setting to a time zone | 
|  | **      in which Standard Time is never observed. | 
|  | **  5.  They might reference tm.TM_ZONE after calling offtime. | 
|  | ** What's best to do in the above cases is open to debate; | 
|  | ** for now, we just set things up so that in any of the five cases | 
|  | ** WILDABBR is used. Another possibility: initialize tzname[0] to the | 
|  | ** string "tzname[0] used before set", and similarly for the other cases. | 
|  | ** And another: initialize tzname[0] to "ERA", with an explanation in the | 
|  | ** manual page of what this "time zone abbreviation" means (doing this so | 
|  | ** that tzname[0] has the "normal" length of three characters). | 
|  | */ | 
|  | #define WILDABBR    "   " | 
|  | #endif /* !defined WILDABBR */ | 
|  |  | 
|  | static const char       wildabbr[] = WILDABBR; | 
|  |  | 
|  | static const char gmt[] = "GMT"; | 
|  |  | 
|  | /* | 
|  | ** The DST rules to use if TZ has no rules and we can't load TZDEFRULES. | 
|  | ** We default to US rules as of 1999-08-17. | 
|  | ** POSIX 1003.1 section 8.1.1 says that the default DST rules are | 
|  | ** implementation dependent; for historical reasons, US rules are a | 
|  | ** common default. | 
|  | */ | 
|  | #ifndef TZDEFRULESTRING | 
|  | #define TZDEFRULESTRING ",M4.1.0,M10.5.0" | 
|  | #endif /* !defined TZDEFDST */ | 
|  |  | 
|  | struct ttinfo {              /* time type information */ | 
|  | int_fast32_t tt_gmtoff;  /* UT offset in seconds */ | 
|  | bool         tt_isdst;   /* used to set tm_isdst */ | 
|  | int          tt_abbrind; /* abbreviation list index */ | 
|  | bool         tt_ttisstd; /* transition is std time */ | 
|  | bool         tt_ttisgmt; /* transition is UT */ | 
|  | }; | 
|  |  | 
|  | struct lsinfo {              /* leap second information */ | 
|  | time_t       ls_trans;   /* transition time */ | 
|  | int_fast64_t ls_corr;    /* correction to apply */ | 
|  | }; | 
|  |  | 
|  | #define SMALLEST(a, b)	(((a) < (b)) ? (a) : (b)) | 
|  | #define BIGGEST(a, b)   (((a) > (b)) ? (a) : (b)) | 
|  |  | 
|  | #ifdef TZNAME_MAX | 
|  | #define MY_TZNAME_MAX   TZNAME_MAX | 
|  | #endif /* defined TZNAME_MAX */ | 
|  | #ifndef TZNAME_MAX | 
|  | #define MY_TZNAME_MAX   255 | 
|  | #endif /* !defined TZNAME_MAX */ | 
|  |  | 
|  | struct state { | 
|  | int           leapcnt; | 
|  | int           timecnt; | 
|  | int           typecnt; | 
|  | int           charcnt; | 
|  | bool          goback; | 
|  | bool          goahead; | 
|  | time_t        ats[TZ_MAX_TIMES]; | 
|  | unsigned char types[TZ_MAX_TIMES]; | 
|  | struct ttinfo ttis[TZ_MAX_TYPES]; | 
|  | char          chars[BIGGEST(BIGGEST(TZ_MAX_CHARS + 1, sizeof gmt), | 
|  | (2 * (MY_TZNAME_MAX + 1)))]; | 
|  | struct lsinfo lsis[TZ_MAX_LEAPS]; | 
|  | int           defaulttype; /* for early times or if no transitions */ | 
|  | }; | 
|  |  | 
|  | enum r_type { | 
|  | JULIAN_DAY,		/* Jn = Julian day */ | 
|  | DAY_OF_YEAR,		/* n = day of year */ | 
|  | MONTH_NTH_DAY_OF_WEEK	/* Mm.n.d = month, week, day of week */ | 
|  | }; | 
|  |  | 
|  | struct rule { | 
|  | enum r_type	r_type;		/* type of rule */ | 
|  | int          r_day;  /* day number of rule */ | 
|  | int          r_week; /* week number of rule */ | 
|  | int          r_mon;  /* month number of rule */ | 
|  | int_fast32_t r_time; /* transition time of rule */ | 
|  | }; | 
|  |  | 
|  | static struct tm *gmtsub(struct state const *, time_t const *, int_fast32_t, | 
|  | struct tm *); | 
|  | static bool increment_overflow(int *, int); | 
|  | static bool increment_overflow_time(time_t *, int_fast32_t); | 
|  | static bool normalize_overflow32(int_fast32_t *, int *, int); | 
|  | static struct tm *timesub(time_t const *, int_fast32_t, struct state const *, | 
|  | struct tm *); | 
|  | static bool typesequiv(struct state const *, int, int); | 
|  | static bool tzparse(char const *, struct state *, bool); | 
|  |  | 
|  | #ifdef ALL_STATE | 
|  | static struct state * lclptr; | 
|  | static struct state * gmtptr; | 
|  | #endif /* defined ALL_STATE */ | 
|  |  | 
|  | #ifndef ALL_STATE | 
|  | static struct state lclmem; | 
|  | static struct state gmtmem; | 
|  | #define lclptr      (&lclmem) | 
|  | #define gmtptr      (&gmtmem) | 
|  | #endif /* State Farm */ | 
|  |  | 
|  | #ifndef TZ_STRLEN_MAX | 
|  | #define TZ_STRLEN_MAX 255 | 
|  | #endif /* !defined TZ_STRLEN_MAX */ | 
|  |  | 
|  | static char lcl_TZname[TZ_STRLEN_MAX + 1]; | 
|  | static int  lcl_is_set; | 
|  |  | 
|  | /* | 
|  | ** Section 4.12.3 of X3.159-1989 requires that | 
|  | **  Except for the strftime function, these functions [asctime, | 
|  | **  ctime, gmtime, localtime] return values in one of two static | 
|  | **  objects: a broken-down time structure and an array of char. | 
|  | ** Thanks to Paul Eggert for noting this. | 
|  | */ | 
|  |  | 
|  | static struct tm	tm; | 
|  |  | 
|  | #if !HAVE_POSIX_DECLS | 
|  | char *			tzname[2] = { | 
|  | (char *) wildabbr, | 
|  | (char *) wildabbr | 
|  | }; | 
|  | #ifdef USG_COMPAT | 
|  | long			timezone; | 
|  | int			daylight; | 
|  | # endif | 
|  | #endif | 
|  |  | 
|  | #ifdef ALTZONE | 
|  | long			altzone; | 
|  | #endif /* defined ALTZONE */ | 
|  |  | 
|  | /* Initialize *S to a value based on GMTOFF, ISDST, and ABBRIND.  */ | 
|  | static void | 
|  | init_ttinfo(struct ttinfo *s, int_fast32_t gmtoff, bool isdst, int abbrind) | 
|  | { | 
|  | s->tt_gmtoff = gmtoff; | 
|  | s->tt_isdst = isdst; | 
|  | s->tt_abbrind = abbrind; | 
|  | s->tt_ttisstd = false; | 
|  | s->tt_ttisgmt = false; | 
|  | } | 
|  |  | 
|  | static int_fast32_t | 
|  | detzcode(const char *const codep) | 
|  | { | 
|  | register int_fast32_t	result; | 
|  | register int		i; | 
|  | int_fast32_t one = 1; | 
|  | int_fast32_t halfmaxval = one << (32 - 2); | 
|  | int_fast32_t maxval = halfmaxval - 1 + halfmaxval; | 
|  | int_fast32_t minval = -1 - maxval; | 
|  |  | 
|  | result = codep[0] & 0x7f; | 
|  | for (i = 1; i < 4; ++i) | 
|  | result = (result << 8) | (codep[i] & 0xff); | 
|  |  | 
|  | if (codep[0] & 0x80) { | 
|  | /* Do two's-complement negation even on non-two's-complement machines. | 
|  | If the result would be minval - 1, return minval.  */ | 
|  | result -= !TWOS_COMPLEMENT(int_fast32_t) && result != 0; | 
|  | result += minval; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static int_fast64_t | 
|  | detzcode64(const char *const codep) | 
|  | { | 
|  | register uint_fast64_t result; | 
|  | register int	i; | 
|  | int_fast64_t one = 1; | 
|  | int_fast64_t halfmaxval = one << (64 - 2); | 
|  | int_fast64_t maxval = halfmaxval - 1 + halfmaxval; | 
|  | int_fast64_t minval = -TWOS_COMPLEMENT(int_fast64_t) - maxval; | 
|  |  | 
|  | result = codep[0] & 0x7f; | 
|  | for (i = 1; i < 8; ++i) | 
|  | result = (result << 8) | (codep[i] & 0xff); | 
|  |  | 
|  | if (codep[0] & 0x80) { | 
|  | /* Do two's-complement negation even on non-two's-complement machines. | 
|  | If the result would be minval - 1, return minval.  */ | 
|  | result -= !TWOS_COMPLEMENT(int_fast64_t) && result != 0; | 
|  | result += minval; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static void | 
|  | update_tzname_etc(struct state const *sp, struct ttinfo const *ttisp) | 
|  | { | 
|  | tzname[ttisp->tt_isdst] = (char *) &sp->chars[ttisp->tt_abbrind]; | 
|  | #ifdef USG_COMPAT | 
|  | if (!ttisp->tt_isdst) | 
|  | timezone = - ttisp->tt_gmtoff; | 
|  | #endif | 
|  | #ifdef ALTZONE | 
|  | if (ttisp->tt_isdst) | 
|  | altzone = - ttisp->tt_gmtoff; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void | 
|  | settzname(void) | 
|  | { | 
|  | register struct state * const	sp = lclptr; | 
|  | register int			i; | 
|  |  | 
|  | tzname[0] = tzname[1] = (char *) wildabbr; | 
|  | #ifdef USG_COMPAT | 
|  | daylight = 0; | 
|  | timezone = 0; | 
|  | #endif /* defined USG_COMPAT */ | 
|  | #ifdef ALTZONE | 
|  | altzone = 0; | 
|  | #endif /* defined ALTZONE */ | 
|  | if (sp == NULL) { | 
|  | tzname[0] = tzname[1] = (char *) gmt; | 
|  | return; | 
|  | } | 
|  | /* | 
|  | ** And to get the latest zone names into tzname. . . | 
|  | */ | 
|  | for (i = 0; i < sp->typecnt; ++i) { | 
|  | register const struct ttinfo * const	ttisp = &sp->ttis[i]; | 
|  | update_tzname_etc(sp, ttisp); | 
|  | } | 
|  | for (i = 0; i < sp->timecnt; ++i) { | 
|  | register const struct ttinfo * const	ttisp = | 
|  | &sp->ttis[ | 
|  | sp->types[i]]; | 
|  | update_tzname_etc(sp, ttisp); | 
|  | #ifdef USG_COMPAT | 
|  | if (ttisp->tt_isdst) | 
|  | daylight = 1; | 
|  | #endif /* defined USG_COMPAT */ | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | scrub_abbrs(struct state *sp) | 
|  | { | 
|  | int i; | 
|  | /* | 
|  | ** First, replace bogus characters. | 
|  | */ | 
|  | for (i = 0; i < sp->charcnt; ++i) | 
|  | if (strchr(TZ_ABBR_CHAR_SET, sp->chars[i]) == NULL) | 
|  | sp->chars[i] = TZ_ABBR_ERR_CHAR; | 
|  | /* | 
|  | ** Second, truncate long abbreviations. | 
|  | */ | 
|  | for (i = 0; i < sp->typecnt; ++i) { | 
|  | register const struct ttinfo * const	ttisp = &sp->ttis[i]; | 
|  | register char *				cp = &sp->chars[ttisp->tt_abbrind]; | 
|  |  | 
|  | if (strlen(cp) > TZ_ABBR_MAX_LEN && | 
|  | strcmp(cp, GRANDPARENTED) != 0) | 
|  | *(cp + TZ_ABBR_MAX_LEN) = '\0'; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool | 
|  | differ_by_repeat(const time_t t1, const time_t t0) | 
|  | { | 
|  | if (TYPE_BIT(time_t) - TYPE_SIGNED(time_t) < SECSPERREPEAT_BITS) | 
|  | return 0; | 
|  | #if defined(__LP64__) // 32-bit Android/glibc has a signed 32-bit time_t; 64-bit doesn't. | 
|  | return t1 - t0 == SECSPERREPEAT; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Input buffer for data read from a compiled tz file.  */ | 
|  | union input_buffer { | 
|  | /* The first part of the buffer, interpreted as a header.  */ | 
|  | struct tzhead tzhead; | 
|  |  | 
|  | /* The entire buffer.  */ | 
|  | char buf[2 * sizeof(struct tzhead) + 2 * sizeof (struct state) | 
|  | + 4 * TZ_MAX_TIMES]; | 
|  | }; | 
|  |  | 
|  | /* Local storage needed for 'tzloadbody'.  */ | 
|  | union local_storage { | 
|  | /* The file name to be opened.  */ | 
|  | char fullname[FILENAME_MAX + 1]; | 
|  |  | 
|  | /* The results of analyzing the file's contents after it is opened.  */ | 
|  | struct { | 
|  | /* The input buffer.  */ | 
|  | union input_buffer u; | 
|  |  | 
|  | /* A temporary state used for parsing a TZ string in the file.  */ | 
|  | struct state st; | 
|  | } u; | 
|  | }; | 
|  |  | 
|  | /* Load tz data from the file named NAME into *SP.  Read extended | 
|  | format if DOEXTEND.  Use *LSP for temporary storage.  Return 0 on | 
|  | success, an errno value on failure.  */ | 
|  | static int | 
|  | tzloadbody(char const *name, struct state *sp, bool doextend, | 
|  | union local_storage *lsp) | 
|  | { | 
|  | register int			i; | 
|  | register int			fid; | 
|  | register int			stored; | 
|  | register ssize_t		nread; | 
|  | #if !defined(__BIONIC__) | 
|  | register bool doaccess; | 
|  | register char *fullname = lsp->fullname; | 
|  | #endif | 
|  | register union input_buffer *up = &lsp->u.u; | 
|  | register int tzheadsize = sizeof (struct tzhead); | 
|  |  | 
|  | sp->goback = sp->goahead = false; | 
|  |  | 
|  | if (! name) { | 
|  | name = TZDEFAULT; | 
|  | if (! name) | 
|  | return EINVAL; | 
|  | } | 
|  |  | 
|  | #if defined(__BIONIC__) | 
|  | extern int __bionic_open_tzdata(const char*, int32_t*); | 
|  | int32_t entry_length; | 
|  | fid = __bionic_open_tzdata(name, &entry_length); | 
|  | #else | 
|  | if (name[0] == ':') | 
|  | ++name; | 
|  | doaccess = name[0] == '/'; | 
|  | if (!doaccess) { | 
|  | char const *p = TZDIR; | 
|  | if (! p) | 
|  | return EINVAL; | 
|  | if (sizeof lsp->fullname - 1 <= strlen(p) + strlen(name)) | 
|  | return ENAMETOOLONG; | 
|  | strcpy(fullname, p); | 
|  | strcat(fullname, "/"); | 
|  | strcat(fullname, name); | 
|  | /* Set doaccess if '.' (as in "../") shows up in name.  */ | 
|  | if (strchr(name, '.')) | 
|  | doaccess = true; | 
|  | name = fullname; | 
|  | } | 
|  | if (doaccess && access(name, R_OK) != 0) | 
|  | return errno; | 
|  | fid = open(name, OPEN_MODE); | 
|  | #endif | 
|  | if (fid < 0) | 
|  | return errno; | 
|  |  | 
|  | #if defined(__BIONIC__) | 
|  | nread = TEMP_FAILURE_RETRY(read(fid, up->buf, entry_length)); | 
|  | #else | 
|  | nread = read(fid, up->buf, sizeof up->buf); | 
|  | #endif | 
|  | if (nread < tzheadsize) { | 
|  | int err = nread < 0 ? errno : EINVAL; | 
|  | close(fid); | 
|  | return err; | 
|  | } | 
|  | if (close(fid) < 0) | 
|  | return errno; | 
|  | for (stored = 4; stored <= 8; stored *= 2) { | 
|  | int_fast32_t ttisstdcnt = detzcode(up->tzhead.tzh_ttisstdcnt); | 
|  | int_fast32_t ttisgmtcnt = detzcode(up->tzhead.tzh_ttisgmtcnt); | 
|  | int_fast32_t leapcnt = detzcode(up->tzhead.tzh_leapcnt); | 
|  | int_fast32_t timecnt = detzcode(up->tzhead.tzh_timecnt); | 
|  | int_fast32_t typecnt = detzcode(up->tzhead.tzh_typecnt); | 
|  | int_fast32_t charcnt = detzcode(up->tzhead.tzh_charcnt); | 
|  | char const *p = up->buf + tzheadsize; | 
|  | if (! (0 <= leapcnt && leapcnt < TZ_MAX_LEAPS | 
|  | && 0 < typecnt && typecnt < TZ_MAX_TYPES | 
|  | && 0 <= timecnt && timecnt < TZ_MAX_TIMES | 
|  | && 0 <= charcnt && charcnt < TZ_MAX_CHARS | 
|  | && (ttisstdcnt == typecnt || ttisstdcnt == 0) | 
|  | && (ttisgmtcnt == typecnt || ttisgmtcnt == 0))) | 
|  | return EINVAL; | 
|  | if (nread | 
|  | < (tzheadsize		/* struct tzhead */ | 
|  | + timecnt * stored	/* ats */ | 
|  | + timecnt		/* types */ | 
|  | + typecnt * 6		/* ttinfos */ | 
|  | + charcnt		/* chars */ | 
|  | + leapcnt * (stored + 4)	/* lsinfos */ | 
|  | + ttisstdcnt		/* ttisstds */ | 
|  | + ttisgmtcnt))		/* ttisgmts */ | 
|  | return EINVAL; | 
|  | sp->leapcnt = leapcnt; | 
|  | sp->timecnt = timecnt; | 
|  | sp->typecnt = typecnt; | 
|  | sp->charcnt = charcnt; | 
|  |  | 
|  | /* Read transitions, discarding those out of time_t range. | 
|  | But pretend the last transition before time_t_min | 
|  | occurred at time_t_min.  */ | 
|  | timecnt = 0; | 
|  | for (i = 0; i < sp->timecnt; ++i) { | 
|  | int_fast64_t at | 
|  | = stored == 4 ? detzcode(p) : detzcode64(p); | 
|  | sp->types[i] = at <= time_t_max; | 
|  | if (sp->types[i]) { | 
|  | time_t attime | 
|  | = ((TYPE_SIGNED(time_t) ? at < time_t_min : at < 0) | 
|  | ? time_t_min : at); | 
|  | if (timecnt && attime <= sp->ats[timecnt - 1]) { | 
|  | if (attime < sp->ats[timecnt - 1]) | 
|  | return EINVAL; | 
|  | sp->types[i - 1] = 0; | 
|  | timecnt--; | 
|  | } | 
|  | sp->ats[timecnt++] = attime; | 
|  | } | 
|  | p += stored; | 
|  | } | 
|  |  | 
|  | timecnt = 0; | 
|  | for (i = 0; i < sp->timecnt; ++i) { | 
|  | unsigned char typ = *p++; | 
|  | if (sp->typecnt <= typ) | 
|  | return EINVAL; | 
|  | if (sp->types[i]) | 
|  | sp->types[timecnt++] = typ; | 
|  | } | 
|  | sp->timecnt = timecnt; | 
|  | for (i = 0; i < sp->typecnt; ++i) { | 
|  | register struct ttinfo *	ttisp; | 
|  | unsigned char isdst, abbrind; | 
|  |  | 
|  | ttisp = &sp->ttis[i]; | 
|  | ttisp->tt_gmtoff = detzcode(p); | 
|  | p += 4; | 
|  | isdst = *p++; | 
|  | if (! (isdst < 2)) | 
|  | return EINVAL; | 
|  | ttisp->tt_isdst = isdst; | 
|  | abbrind = *p++; | 
|  | if (! (abbrind < sp->charcnt)) | 
|  | return EINVAL; | 
|  | ttisp->tt_abbrind = abbrind; | 
|  | } | 
|  | for (i = 0; i < sp->charcnt; ++i) | 
|  | sp->chars[i] = *p++; | 
|  | sp->chars[i] = '\0';	/* ensure '\0' at end */ | 
|  |  | 
|  | /* Read leap seconds, discarding those out of time_t range.  */ | 
|  | leapcnt = 0; | 
|  | for (i = 0; i < sp->leapcnt; ++i) { | 
|  | int_fast64_t tr = stored == 4 ? detzcode(p) : detzcode64(p); | 
|  | int_fast32_t corr = detzcode(p + stored); | 
|  | p += stored + 4; | 
|  | if (tr <= time_t_max) { | 
|  | time_t trans | 
|  | = ((TYPE_SIGNED(time_t) ? tr < time_t_min : tr < 0) | 
|  | ? time_t_min : tr); | 
|  | if (leapcnt && trans <= sp->lsis[leapcnt - 1].ls_trans) { | 
|  | if (trans < sp->lsis[leapcnt - 1].ls_trans) | 
|  | return EINVAL; | 
|  | leapcnt--; | 
|  | } | 
|  | sp->lsis[leapcnt].ls_trans = trans; | 
|  | sp->lsis[leapcnt].ls_corr = corr; | 
|  | leapcnt++; | 
|  | } | 
|  | } | 
|  | sp->leapcnt = leapcnt; | 
|  |  | 
|  | for (i = 0; i < sp->typecnt; ++i) { | 
|  | register struct ttinfo *	ttisp; | 
|  |  | 
|  | ttisp = &sp->ttis[i]; | 
|  | if (ttisstdcnt == 0) | 
|  | ttisp->tt_ttisstd = false; | 
|  | else { | 
|  | if (*p != true && *p != false) | 
|  | return EINVAL; | 
|  | ttisp->tt_ttisstd = *p++; | 
|  | } | 
|  | } | 
|  | for (i = 0; i < sp->typecnt; ++i) { | 
|  | register struct ttinfo *	ttisp; | 
|  |  | 
|  | ttisp = &sp->ttis[i]; | 
|  | if (ttisgmtcnt == 0) | 
|  | ttisp->tt_ttisgmt = false; | 
|  | else { | 
|  | if (*p != true && *p != false) | 
|  | return EINVAL; | 
|  | ttisp->tt_ttisgmt = *p++; | 
|  | } | 
|  | } | 
|  | /* | 
|  | ** If this is an old file, we're done. | 
|  | */ | 
|  | if (up->tzhead.tzh_version[0] == '\0') | 
|  | break; | 
|  | nread -= p - up->buf; | 
|  | memmove(up->buf, p, nread); | 
|  | } | 
|  | if (doextend && nread > 2 && | 
|  | up->buf[0] == '\n' && up->buf[nread - 1] == '\n' && | 
|  | sp->typecnt + 2 <= TZ_MAX_TYPES) { | 
|  | struct state	*ts = &lsp->u.st; | 
|  |  | 
|  | up->buf[nread - 1] = '\0'; | 
|  | if (tzparse(&up->buf[1], ts, false) | 
|  | && ts->typecnt == 2) { | 
|  |  | 
|  | /* Attempt to reuse existing abbreviations. | 
|  | Without this, America/Anchorage would stop | 
|  | working after 2037 when TZ_MAX_CHARS is 50, as | 
|  | sp->charcnt equals 42 (for LMT CAT CAWT CAPT AHST | 
|  | AHDT YST AKDT AKST) and ts->charcnt equals 10 | 
|  | (for AKST AKDT).  Reusing means sp->charcnt can | 
|  | stay 42 in this example.  */ | 
|  | int gotabbr = 0; | 
|  | int charcnt = sp->charcnt; | 
|  | for (i = 0; i < 2; i++) { | 
|  | char *tsabbr = ts->chars + ts->ttis[i].tt_abbrind; | 
|  | int j; | 
|  | for (j = 0; j < charcnt; j++) | 
|  | if (strcmp(sp->chars + j, tsabbr) == 0) { | 
|  | ts->ttis[i].tt_abbrind = j; | 
|  | gotabbr++; | 
|  | break; | 
|  | } | 
|  | if (! (j < charcnt)) { | 
|  | int tsabbrlen = strlen(tsabbr); | 
|  | if (j + tsabbrlen < TZ_MAX_CHARS) { | 
|  | strcpy(sp->chars + j, tsabbr); | 
|  | charcnt = j + tsabbrlen + 1; | 
|  | ts->ttis[i].tt_abbrind = j; | 
|  | gotabbr++; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (gotabbr == 2) { | 
|  | sp->charcnt = charcnt; | 
|  | for (i = 0; i < ts->timecnt; i++) | 
|  | if (sp->ats[sp->timecnt - 1] < ts->ats[i]) | 
|  | break; | 
|  | while (i < ts->timecnt | 
|  | && sp->timecnt < TZ_MAX_TIMES) { | 
|  | sp->ats[sp->timecnt] = ts->ats[i]; | 
|  | sp->types[sp->timecnt] = (sp->typecnt | 
|  | + ts->types[i]); | 
|  | sp->timecnt++; | 
|  | i++; | 
|  | } | 
|  | sp->ttis[sp->typecnt++] = ts->ttis[0]; | 
|  | sp->ttis[sp->typecnt++] = ts->ttis[1]; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (sp->timecnt > 1) { | 
|  | for (i = 1; i < sp->timecnt; ++i) | 
|  | if (typesequiv(sp, sp->types[i], sp->types[0]) && | 
|  | differ_by_repeat(sp->ats[i], sp->ats[0])) { | 
|  | sp->goback = true; | 
|  | break; | 
|  | } | 
|  | for (i = sp->timecnt - 2; i >= 0; --i) | 
|  | if (typesequiv(sp, sp->types[sp->timecnt - 1], | 
|  | sp->types[i]) && | 
|  | differ_by_repeat(sp->ats[sp->timecnt - 1], | 
|  | sp->ats[i])) { | 
|  | sp->goahead = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* | 
|  | ** If type 0 is is unused in transitions, | 
|  | ** it's the type to use for early times. | 
|  | */ | 
|  | for (i = 0; i < sp->timecnt; ++i) | 
|  | if (sp->types[i] == 0) | 
|  | break; | 
|  | i = i < sp->timecnt ? -1 : 0; | 
|  | /* | 
|  | ** Absent the above, | 
|  | ** if there are transition times | 
|  | ** and the first transition is to a daylight time | 
|  | ** find the standard type less than and closest to | 
|  | ** the type of the first transition. | 
|  | */ | 
|  | if (i < 0 && sp->timecnt > 0 && sp->ttis[sp->types[0]].tt_isdst) { | 
|  | i = sp->types[0]; | 
|  | while (--i >= 0) | 
|  | if (!sp->ttis[i].tt_isdst) | 
|  | break; | 
|  | } | 
|  | /* | 
|  | ** If no result yet, find the first standard type. | 
|  | ** If there is none, punt to type zero. | 
|  | */ | 
|  | if (i < 0) { | 
|  | i = 0; | 
|  | while (sp->ttis[i].tt_isdst) | 
|  | if (++i >= sp->typecnt) { | 
|  | i = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  | sp->defaulttype = i; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Load tz data from the file named NAME into *SP.  Read extended | 
|  | format if DOEXTEND.  Return 0 on success, an errno value on failure.  */ | 
|  | static int | 
|  | tzload(char const *name, struct state *sp, bool doextend) | 
|  | { | 
|  | #ifdef ALL_STATE | 
|  | union local_storage *lsp = malloc(sizeof *lsp); | 
|  | if (!lsp) | 
|  | return errno; | 
|  | else { | 
|  | int err = tzloadbody(name, sp, doextend, lsp); | 
|  | free(lsp); | 
|  | return err; | 
|  | } | 
|  | #else | 
|  | union local_storage ls; | 
|  | return tzloadbody(name, sp, doextend, &ls); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static bool | 
|  | typesequiv(const struct state *sp, int a, int b) | 
|  | { | 
|  | register bool result; | 
|  |  | 
|  | if (sp == NULL || | 
|  | a < 0 || a >= sp->typecnt || | 
|  | b < 0 || b >= sp->typecnt) | 
|  | result = false; | 
|  | else { | 
|  | register const struct ttinfo *	ap = &sp->ttis[a]; | 
|  | register const struct ttinfo *	bp = &sp->ttis[b]; | 
|  | result = ap->tt_gmtoff == bp->tt_gmtoff && | 
|  | ap->tt_isdst == bp->tt_isdst && | 
|  | ap->tt_ttisstd == bp->tt_ttisstd && | 
|  | ap->tt_ttisgmt == bp->tt_ttisgmt && | 
|  | strcmp(&sp->chars[ap->tt_abbrind], | 
|  | &sp->chars[bp->tt_abbrind]) == 0; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static const int	mon_lengths[2][MONSPERYEAR] = { | 
|  | { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }, | 
|  | { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 } | 
|  | }; | 
|  |  | 
|  | static const int	year_lengths[2] = { | 
|  | DAYSPERNYEAR, DAYSPERLYEAR | 
|  | }; | 
|  |  | 
|  | /* | 
|  | ** Given a pointer into a time zone string, scan until a character that is not | 
|  | ** a valid character in a zone name is found. Return a pointer to that | 
|  | ** character. | 
|  | */ | 
|  |  | 
|  | static const char * ATTRIBUTE_PURE | 
|  | getzname(register const char *strp) | 
|  | { | 
|  | register char	c; | 
|  |  | 
|  | while ((c = *strp) != '\0' && !is_digit(c) && c != ',' && c != '-' && | 
|  | c != '+') | 
|  | ++strp; | 
|  | return strp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Given a pointer into an extended time zone string, scan until the ending | 
|  | ** delimiter of the zone name is located. Return a pointer to the delimiter. | 
|  | ** | 
|  | ** As with getzname above, the legal character set is actually quite | 
|  | ** restricted, with other characters producing undefined results. | 
|  | ** We don't do any checking here; checking is done later in common-case code. | 
|  | */ | 
|  |  | 
|  | static const char * ATTRIBUTE_PURE | 
|  | getqzname(register const char *strp, const int delim) | 
|  | { | 
|  | register int	c; | 
|  |  | 
|  | while ((c = *strp) != '\0' && c != delim) | 
|  | ++strp; | 
|  | return strp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Given a pointer into a time zone string, extract a number from that string. | 
|  | ** Check that the number is within a specified range; if it is not, return | 
|  | ** NULL. | 
|  | ** Otherwise, return a pointer to the first character not part of the number. | 
|  | */ | 
|  |  | 
|  | static const char * | 
|  | getnum(register const char *strp, int *const nump, const int min, const int max) | 
|  | { | 
|  | register char	c; | 
|  | register int	num; | 
|  |  | 
|  | if (strp == NULL || !is_digit(c = *strp)) | 
|  | return NULL; | 
|  | num = 0; | 
|  | do { | 
|  | num = num * 10 + (c - '0'); | 
|  | if (num > max) | 
|  | return NULL;	/* illegal value */ | 
|  | c = *++strp; | 
|  | } while (is_digit(c)); | 
|  | if (num < min) | 
|  | return NULL;		/* illegal value */ | 
|  | *nump = num; | 
|  | return strp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Given a pointer into a time zone string, extract a number of seconds, | 
|  | ** in hh[:mm[:ss]] form, from the string. | 
|  | ** If any error occurs, return NULL. | 
|  | ** Otherwise, return a pointer to the first character not part of the number | 
|  | ** of seconds. | 
|  | */ | 
|  |  | 
|  | static const char * | 
|  | getsecs(register const char *strp, int_fast32_t *const secsp) | 
|  | { | 
|  | int	num; | 
|  |  | 
|  | /* | 
|  | ** 'HOURSPERDAY * DAYSPERWEEK - 1' allows quasi-Posix rules like | 
|  | ** "M10.4.6/26", which does not conform to Posix, | 
|  | ** but which specifies the equivalent of | 
|  | ** "02:00 on the first Sunday on or after 23 Oct". | 
|  | */ | 
|  | strp = getnum(strp, &num, 0, HOURSPERDAY * DAYSPERWEEK - 1); | 
|  | if (strp == NULL) | 
|  | return NULL; | 
|  | *secsp = num * (int_fast32_t) SECSPERHOUR; | 
|  | if (*strp == ':') { | 
|  | ++strp; | 
|  | strp = getnum(strp, &num, 0, MINSPERHOUR - 1); | 
|  | if (strp == NULL) | 
|  | return NULL; | 
|  | *secsp += num * SECSPERMIN; | 
|  | if (*strp == ':') { | 
|  | ++strp; | 
|  | /* 'SECSPERMIN' allows for leap seconds.  */ | 
|  | strp = getnum(strp, &num, 0, SECSPERMIN); | 
|  | if (strp == NULL) | 
|  | return NULL; | 
|  | *secsp += num; | 
|  | } | 
|  | } | 
|  | return strp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Given a pointer into a time zone string, extract an offset, in | 
|  | ** [+-]hh[:mm[:ss]] form, from the string. | 
|  | ** If any error occurs, return NULL. | 
|  | ** Otherwise, return a pointer to the first character not part of the time. | 
|  | */ | 
|  |  | 
|  | static const char * | 
|  | getoffset(register const char *strp, int_fast32_t *const offsetp) | 
|  | { | 
|  | register bool neg = false; | 
|  |  | 
|  | if (*strp == '-') { | 
|  | neg = true; | 
|  | ++strp; | 
|  | } else if (*strp == '+') | 
|  | ++strp; | 
|  | strp = getsecs(strp, offsetp); | 
|  | if (strp == NULL) | 
|  | return NULL;		/* illegal time */ | 
|  | if (neg) | 
|  | *offsetp = -*offsetp; | 
|  | return strp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Given a pointer into a time zone string, extract a rule in the form | 
|  | ** date[/time]. See POSIX section 8 for the format of "date" and "time". | 
|  | ** If a valid rule is not found, return NULL. | 
|  | ** Otherwise, return a pointer to the first character not part of the rule. | 
|  | */ | 
|  |  | 
|  | static const char * | 
|  | getrule(const char *strp, register struct rule *const rulep) | 
|  | { | 
|  | if (*strp == 'J') { | 
|  | /* | 
|  | ** Julian day. | 
|  | */ | 
|  | rulep->r_type = JULIAN_DAY; | 
|  | ++strp; | 
|  | strp = getnum(strp, &rulep->r_day, 1, DAYSPERNYEAR); | 
|  | } else if (*strp == 'M') { | 
|  | /* | 
|  | ** Month, week, day. | 
|  | */ | 
|  | rulep->r_type = MONTH_NTH_DAY_OF_WEEK; | 
|  | ++strp; | 
|  | strp = getnum(strp, &rulep->r_mon, 1, MONSPERYEAR); | 
|  | if (strp == NULL) | 
|  | return NULL; | 
|  | if (*strp++ != '.') | 
|  | return NULL; | 
|  | strp = getnum(strp, &rulep->r_week, 1, 5); | 
|  | if (strp == NULL) | 
|  | return NULL; | 
|  | if (*strp++ != '.') | 
|  | return NULL; | 
|  | strp = getnum(strp, &rulep->r_day, 0, DAYSPERWEEK - 1); | 
|  | } else if (is_digit(*strp)) { | 
|  | /* | 
|  | ** Day of year. | 
|  | */ | 
|  | rulep->r_type = DAY_OF_YEAR; | 
|  | strp = getnum(strp, &rulep->r_day, 0, DAYSPERLYEAR - 1); | 
|  | } else	return NULL;		/* invalid format */ | 
|  | if (strp == NULL) | 
|  | return NULL; | 
|  | if (*strp == '/') { | 
|  | /* | 
|  | ** Time specified. | 
|  | */ | 
|  | ++strp; | 
|  | strp = getoffset(strp, &rulep->r_time); | 
|  | } else	rulep->r_time = 2 * SECSPERHOUR;	/* default = 2:00:00 */ | 
|  | return strp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Given a year, a rule, and the offset from UT at the time that rule takes | 
|  | ** effect, calculate the year-relative time that rule takes effect. | 
|  | */ | 
|  |  | 
|  | static int_fast32_t ATTRIBUTE_PURE | 
|  | transtime(const int year, register const struct rule *const rulep, | 
|  | const int_fast32_t offset) | 
|  | { | 
|  | register bool         leapyear; | 
|  | register int_fast32_t value; | 
|  | register int          i; | 
|  | int d, m1, yy0, yy1, yy2, dow; | 
|  |  | 
|  | INITIALIZE(value); | 
|  | leapyear = isleap(year); | 
|  | switch (rulep->r_type) { | 
|  |  | 
|  | case JULIAN_DAY: | 
|  | /* | 
|  | ** Jn - Julian day, 1 == January 1, 60 == March 1 even in leap | 
|  | ** years. | 
|  | ** In non-leap years, or if the day number is 59 or less, just | 
|  | ** add SECSPERDAY times the day number-1 to the time of | 
|  | ** January 1, midnight, to get the day. | 
|  | */ | 
|  | value = (rulep->r_day - 1) * SECSPERDAY; | 
|  | if (leapyear && rulep->r_day >= 60) | 
|  | value += SECSPERDAY; | 
|  | break; | 
|  |  | 
|  | case DAY_OF_YEAR: | 
|  | /* | 
|  | ** n - day of year. | 
|  | ** Just add SECSPERDAY times the day number to the time of | 
|  | ** January 1, midnight, to get the day. | 
|  | */ | 
|  | value = rulep->r_day * SECSPERDAY; | 
|  | break; | 
|  |  | 
|  | case MONTH_NTH_DAY_OF_WEEK: | 
|  | /* | 
|  | ** Mm.n.d - nth "dth day" of month m. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | ** Use Zeller's Congruence to get day-of-week of first day of | 
|  | ** month. | 
|  | */ | 
|  | m1 = (rulep->r_mon + 9) % 12 + 1; | 
|  | yy0 = (rulep->r_mon <= 2) ? (year - 1) : year; | 
|  | yy1 = yy0 / 100; | 
|  | yy2 = yy0 % 100; | 
|  | dow = ((26 * m1 - 2) / 10 + | 
|  | 1 + yy2 + yy2 / 4 + yy1 / 4 - 2 * yy1) % 7; | 
|  | if (dow < 0) | 
|  | dow += DAYSPERWEEK; | 
|  |  | 
|  | /* | 
|  | ** "dow" is the day-of-week of the first day of the month. Get | 
|  | ** the day-of-month (zero-origin) of the first "dow" day of the | 
|  | ** month. | 
|  | */ | 
|  | d = rulep->r_day - dow; | 
|  | if (d < 0) | 
|  | d += DAYSPERWEEK; | 
|  | for (i = 1; i < rulep->r_week; ++i) { | 
|  | if (d + DAYSPERWEEK >= | 
|  | mon_lengths[leapyear][rulep->r_mon - 1]) | 
|  | break; | 
|  | d += DAYSPERWEEK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** "d" is the day-of-month (zero-origin) of the day we want. | 
|  | */ | 
|  | value = d * SECSPERDAY; | 
|  | for (i = 0; i < rulep->r_mon - 1; ++i) | 
|  | value += mon_lengths[leapyear][i] * SECSPERDAY; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** "value" is the year-relative time of 00:00:00 UT on the day in | 
|  | ** question. To get the year-relative time of the specified local | 
|  | ** time on that day, add the transition time and the current offset | 
|  | ** from UT. | 
|  | */ | 
|  | return value + rulep->r_time + offset; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Given a POSIX section 8-style TZ string, fill in the rule tables as | 
|  | ** appropriate. | 
|  | */ | 
|  |  | 
|  | static bool | 
|  | tzparse(const char *name, struct state *sp, bool lastditch) | 
|  | { | 
|  | const char *			stdname; | 
|  | const char *			dstname; | 
|  | size_t				stdlen; | 
|  | size_t				dstlen; | 
|  | size_t				charcnt; | 
|  | int_fast32_t			stdoffset; | 
|  | int_fast32_t			dstoffset; | 
|  | register char *			cp; | 
|  | register bool			load_ok; | 
|  |  | 
|  | stdname = name; | 
|  | if (lastditch) { | 
|  | stdlen = sizeof gmt - 1; | 
|  | name += stdlen; | 
|  | stdoffset = 0; | 
|  | } else { | 
|  | if (*name == '<') { | 
|  | name++; | 
|  | stdname = name; | 
|  | name = getqzname(name, '>'); | 
|  | if (*name != '>') | 
|  | return false; | 
|  | stdlen = name - stdname; | 
|  | name++; | 
|  | } else { | 
|  | name = getzname(name); | 
|  | stdlen = name - stdname; | 
|  | } | 
|  | if (!stdlen) | 
|  | return false; | 
|  | name = getoffset(name, &stdoffset); | 
|  | if (name == NULL) | 
|  | return false; | 
|  | } | 
|  | charcnt = stdlen + 1; | 
|  | if (sizeof sp->chars < charcnt) | 
|  | return false; | 
|  | load_ok = tzload(TZDEFRULES, sp, false) == 0; | 
|  | if (!load_ok) | 
|  | sp->leapcnt = 0;		/* so, we're off a little */ | 
|  | if (*name != '\0') { | 
|  | if (*name == '<') { | 
|  | dstname = ++name; | 
|  | name = getqzname(name, '>'); | 
|  | if (*name != '>') | 
|  | return false; | 
|  | dstlen = name - dstname; | 
|  | name++; | 
|  | } else { | 
|  | dstname = name; | 
|  | name = getzname(name); | 
|  | dstlen = name - dstname; /* length of DST zone name */ | 
|  | } | 
|  | if (!dstlen) | 
|  | return false; | 
|  | charcnt += dstlen + 1; | 
|  | if (sizeof sp->chars < charcnt) | 
|  | return false; | 
|  | if (*name != '\0' && *name != ',' && *name != ';') { | 
|  | name = getoffset(name, &dstoffset); | 
|  | if (name == NULL) | 
|  | return false; | 
|  | } else	dstoffset = stdoffset - SECSPERHOUR; | 
|  | if (*name == '\0' && !load_ok) | 
|  | name = TZDEFRULESTRING; | 
|  | if (*name == ',' || *name == ';') { | 
|  | struct rule	start; | 
|  | struct rule	end; | 
|  | register int	year; | 
|  | register int	yearlim; | 
|  | register int	timecnt; | 
|  | time_t		janfirst; | 
|  |  | 
|  | ++name; | 
|  | if ((name = getrule(name, &start)) == NULL) | 
|  | return false; | 
|  | if (*name++ != ',') | 
|  | return false; | 
|  | if ((name = getrule(name, &end)) == NULL) | 
|  | return false; | 
|  | if (*name != '\0') | 
|  | return false; | 
|  | sp->typecnt = 2;	/* standard time and DST */ | 
|  | /* | 
|  | ** Two transitions per year, from EPOCH_YEAR forward. | 
|  | */ | 
|  | init_ttinfo(&sp->ttis[0], -dstoffset, true, stdlen + 1); | 
|  | init_ttinfo(&sp->ttis[1], -stdoffset, false, 0); | 
|  | sp->defaulttype = 0; | 
|  | timecnt = 0; | 
|  | janfirst = 0; | 
|  | yearlim = EPOCH_YEAR + YEARSPERREPEAT; | 
|  | for (year = EPOCH_YEAR; year < yearlim; year++) { | 
|  | int_fast32_t | 
|  | starttime = transtime(year, &start, stdoffset), | 
|  | endtime = transtime(year, &end, dstoffset); | 
|  | int_fast32_t | 
|  | yearsecs = (year_lengths[isleap(year)] | 
|  | * SECSPERDAY); | 
|  | bool reversed = endtime < starttime; | 
|  | if (reversed) { | 
|  | int_fast32_t swap = starttime; | 
|  | starttime = endtime; | 
|  | endtime = swap; | 
|  | } | 
|  | if (reversed | 
|  | || (starttime < endtime | 
|  | && (endtime - starttime | 
|  | < (yearsecs | 
|  | + (stdoffset - dstoffset))))) { | 
|  | if (TZ_MAX_TIMES - 2 < timecnt) | 
|  | break; | 
|  | yearlim = year + YEARSPERREPEAT + 1; | 
|  | sp->ats[timecnt] = janfirst; | 
|  | if (increment_overflow_time | 
|  | (&sp->ats[timecnt], starttime)) | 
|  | break; | 
|  | sp->types[timecnt++] = reversed; | 
|  | sp->ats[timecnt] = janfirst; | 
|  | if (increment_overflow_time | 
|  | (&sp->ats[timecnt], endtime)) | 
|  | break; | 
|  | sp->types[timecnt++] = !reversed; | 
|  | } | 
|  | if (increment_overflow_time(&janfirst, yearsecs)) | 
|  | break; | 
|  | } | 
|  | sp->timecnt = timecnt; | 
|  | if (!timecnt) | 
|  | sp->typecnt = 1;	/* Perpetual DST.  */ | 
|  | } else { | 
|  | register int_fast32_t	theirstdoffset; | 
|  | register int_fast32_t	theirdstoffset; | 
|  | register int_fast32_t	theiroffset; | 
|  | register bool		isdst; | 
|  | register int		i; | 
|  | register int		j; | 
|  |  | 
|  | if (*name != '\0') | 
|  | return false; | 
|  | /* | 
|  | ** Initial values of theirstdoffset and theirdstoffset. | 
|  | */ | 
|  | theirstdoffset = 0; | 
|  | for (i = 0; i < sp->timecnt; ++i) { | 
|  | j = sp->types[i]; | 
|  | if (!sp->ttis[j].tt_isdst) { | 
|  | theirstdoffset = | 
|  | -sp->ttis[j].tt_gmtoff; | 
|  | break; | 
|  | } | 
|  | } | 
|  | theirdstoffset = 0; | 
|  | for (i = 0; i < sp->timecnt; ++i) { | 
|  | j = sp->types[i]; | 
|  | if (sp->ttis[j].tt_isdst) { | 
|  | theirdstoffset = | 
|  | -sp->ttis[j].tt_gmtoff; | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* | 
|  | ** Initially we're assumed to be in standard time. | 
|  | */ | 
|  | isdst = false; | 
|  | theiroffset = theirstdoffset; | 
|  | /* | 
|  | ** Now juggle transition times and types | 
|  | ** tracking offsets as you do. | 
|  | */ | 
|  | for (i = 0; i < sp->timecnt; ++i) { | 
|  | j = sp->types[i]; | 
|  | sp->types[i] = sp->ttis[j].tt_isdst; | 
|  | if (sp->ttis[j].tt_ttisgmt) { | 
|  | /* No adjustment to transition time */ | 
|  | } else { | 
|  | /* | 
|  | ** If summer time is in effect, and the | 
|  | ** transition time was not specified as | 
|  | ** standard time, add the summer time | 
|  | ** offset to the transition time; | 
|  | ** otherwise, add the standard time | 
|  | ** offset to the transition time. | 
|  | */ | 
|  | /* | 
|  | ** Transitions from DST to DDST | 
|  | ** will effectively disappear since | 
|  | ** POSIX provides for only one DST | 
|  | ** offset. | 
|  | */ | 
|  | if (isdst && !sp->ttis[j].tt_ttisstd) { | 
|  | sp->ats[i] += dstoffset - | 
|  | theirdstoffset; | 
|  | } else { | 
|  | sp->ats[i] += stdoffset - | 
|  | theirstdoffset; | 
|  | } | 
|  | } | 
|  | theiroffset = -sp->ttis[j].tt_gmtoff; | 
|  | if (sp->ttis[j].tt_isdst) | 
|  | theirdstoffset = theiroffset; | 
|  | else	theirstdoffset = theiroffset; | 
|  | } | 
|  | /* | 
|  | ** Finally, fill in ttis. | 
|  | */ | 
|  | init_ttinfo(&sp->ttis[0], -stdoffset, false, 0); | 
|  | init_ttinfo(&sp->ttis[1], -dstoffset, true, stdlen + 1); | 
|  | sp->typecnt = 2; | 
|  | sp->defaulttype = 0; | 
|  | } | 
|  | } else { | 
|  | dstlen = 0; | 
|  | sp->typecnt = 1;		/* only standard time */ | 
|  | sp->timecnt = 0; | 
|  | init_ttinfo(&sp->ttis[0], -stdoffset, false, 0); | 
|  | sp->defaulttype = 0; | 
|  | } | 
|  | sp->charcnt = charcnt; | 
|  | cp = sp->chars; | 
|  | memcpy(cp, stdname, stdlen); | 
|  | cp += stdlen; | 
|  | *cp++ = '\0'; | 
|  | if (dstlen != 0) { | 
|  | memcpy(cp, dstname, dstlen); | 
|  | *(cp + dstlen) = '\0'; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void | 
|  | gmtload(struct state *const sp) | 
|  | { | 
|  | if (tzload(gmt, sp, true) != 0) | 
|  | tzparse(gmt, sp, true); | 
|  | } | 
|  |  | 
|  | /* Initialize *SP to a value appropriate for the TZ setting NAME. | 
|  | Return 0 on success, an errno value on failure.  */ | 
|  | static int | 
|  | zoneinit(struct state *sp, char const *name) | 
|  | { | 
|  | if (name && ! name[0]) { | 
|  | /* | 
|  | ** User wants it fast rather than right. | 
|  | */ | 
|  | sp->leapcnt = 0;		/* so, we're off a little */ | 
|  | sp->timecnt = 0; | 
|  | sp->typecnt = 0; | 
|  | sp->charcnt = 0; | 
|  | sp->goback = sp->goahead = false; | 
|  | init_ttinfo(&sp->ttis[0], 0, false, 0); | 
|  | strcpy(sp->chars, gmt); | 
|  | sp->defaulttype = 0; | 
|  | return 0; | 
|  | } else { | 
|  | int err = tzload(name, sp, true); | 
|  | if (err != 0 && name && name[0] != ':' && tzparse(name, sp, false)) | 
|  | err = 0; | 
|  | if (err == 0) | 
|  | scrub_abbrs(sp); | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | void | 
|  | tzsetlcl(char const *name) | 
|  | { | 
|  | struct state *sp = lclptr; | 
|  | int lcl = name ? strlen(name) < sizeof lcl_TZname : -1; | 
|  | if (lcl < 0 | 
|  | ? lcl_is_set < 0 | 
|  | : 0 < lcl_is_set && strcmp(lcl_TZname, name) == 0) | 
|  | return; | 
|  | #ifdef ALL_STATE | 
|  | if (! sp) | 
|  | lclptr = sp = malloc(sizeof *lclptr); | 
|  | #endif /* defined ALL_STATE */ | 
|  | if (sp) { | 
|  | if (zoneinit(sp, name) != 0) | 
|  | zoneinit(sp, ""); | 
|  | if (0 < lcl) | 
|  | strcpy(lcl_TZname, name); | 
|  | } | 
|  | settzname(); | 
|  | lcl_is_set = lcl; | 
|  | } | 
|  |  | 
|  | #ifdef STD_INSPIRED | 
|  | void | 
|  | tzsetwall(void) | 
|  | { | 
|  | if (lock() != 0) | 
|  | return; | 
|  | tzsetlcl(NULL); | 
|  | unlock(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #if defined(__BIONIC__) | 
|  | extern void tzset_unlocked(void); | 
|  | #else | 
|  | static void | 
|  | tzset_unlocked(void) | 
|  | { | 
|  | tzsetlcl(getenv("TZ")); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void | 
|  | tzset(void) | 
|  | { | 
|  | if (lock() != 0) | 
|  | return; | 
|  | tzset_unlocked(); | 
|  | unlock(); | 
|  | } | 
|  |  | 
|  | static void | 
|  | gmtcheck(void) | 
|  | { | 
|  | static bool gmt_is_set; | 
|  | if (lock() != 0) | 
|  | return; | 
|  | if (! gmt_is_set) { | 
|  | #ifdef ALL_STATE | 
|  | gmtptr = malloc(sizeof *gmtptr); | 
|  | #endif | 
|  | if (gmtptr) | 
|  | gmtload(gmtptr); | 
|  | gmt_is_set = true; | 
|  | } | 
|  | unlock(); | 
|  | } | 
|  |  | 
|  | #if NETBSD_INSPIRED | 
|  |  | 
|  | timezone_t | 
|  | tzalloc(char const *name) | 
|  | { | 
|  | timezone_t sp = malloc(sizeof *sp); | 
|  | if (sp) { | 
|  | int err = zoneinit(sp, name); | 
|  | if (err != 0) { | 
|  | free(sp); | 
|  | errno = err; | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  | return sp; | 
|  | } | 
|  |  | 
|  | void | 
|  | tzfree(timezone_t sp) | 
|  | { | 
|  | free(sp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** NetBSD 6.1.4 has ctime_rz, but omit it because POSIX says ctime and | 
|  | ** ctime_r are obsolescent and have potential security problems that | 
|  | ** ctime_rz would share.  Callers can instead use localtime_rz + strftime. | 
|  | ** | 
|  | ** NetBSD 6.1.4 has tzgetname, but omit it because it doesn't work | 
|  | ** in zones with three or more time zone abbreviations. | 
|  | ** Callers can instead use localtime_rz + strftime. | 
|  | */ | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | ** The easy way to behave "as if no library function calls" localtime | 
|  | ** is to not call it, so we drop its guts into "localsub", which can be | 
|  | ** freely called. (And no, the PANS doesn't require the above behavior, | 
|  | ** but it *is* desirable.) | 
|  | ** | 
|  | ** If successful and SETNAME is nonzero, | 
|  | ** set the applicable parts of tzname, timezone and altzone; | 
|  | ** however, it's OK to omit this step if the time zone is POSIX-compatible, | 
|  | ** since in that case tzset should have already done this step correctly. | 
|  | ** SETNAME's type is intfast32_t for compatibility with gmtsub, | 
|  | ** but it is actually a boolean and its value should be 0 or 1. | 
|  | */ | 
|  |  | 
|  | /*ARGSUSED*/ | 
|  | static struct tm * | 
|  | localsub(struct state const *sp, time_t const *timep, int_fast32_t setname, | 
|  | struct tm *const tmp) | 
|  | { | 
|  | register const struct ttinfo *	ttisp; | 
|  | register int			i; | 
|  | register struct tm *		result; | 
|  | const time_t			t = *timep; | 
|  |  | 
|  | if (sp == NULL) { | 
|  | /* Don't bother to set tzname etc.; tzset has already done it.  */ | 
|  | return gmtsub(gmtptr, timep, 0, tmp); | 
|  | } | 
|  | if ((sp->goback && t < sp->ats[0]) || | 
|  | (sp->goahead && t > sp->ats[sp->timecnt - 1])) { | 
|  | time_t			newt = t; | 
|  | register time_t		seconds; | 
|  | register time_t		years; | 
|  |  | 
|  | if (t < sp->ats[0]) | 
|  | seconds = sp->ats[0] - t; | 
|  | else	seconds = t - sp->ats[sp->timecnt - 1]; | 
|  | --seconds; | 
|  | years = (seconds / SECSPERREPEAT + 1) * YEARSPERREPEAT; | 
|  | seconds = years * AVGSECSPERYEAR; | 
|  | if (t < sp->ats[0]) | 
|  | newt += seconds; | 
|  | else	newt -= seconds; | 
|  | if (newt < sp->ats[0] || | 
|  | newt > sp->ats[sp->timecnt - 1]) | 
|  | return NULL;	/* "cannot happen" */ | 
|  | result = localsub(sp, &newt, setname, tmp); | 
|  | if (result) { | 
|  | register int_fast64_t newy; | 
|  |  | 
|  | newy = result->tm_year; | 
|  | if (t < sp->ats[0]) | 
|  | newy -= years; | 
|  | else	newy += years; | 
|  | if (! (INT_MIN <= newy && newy <= INT_MAX)) | 
|  | return NULL; | 
|  | result->tm_year = newy; | 
|  | } | 
|  | return result; | 
|  | } | 
|  | if (sp->timecnt == 0 || t < sp->ats[0]) { | 
|  | i = sp->defaulttype; | 
|  | } else { | 
|  | register int	lo = 1; | 
|  | register int	hi = sp->timecnt; | 
|  |  | 
|  | while (lo < hi) { | 
|  | register int	mid = (lo + hi) >> 1; | 
|  |  | 
|  | if (t < sp->ats[mid]) | 
|  | hi = mid; | 
|  | else	lo = mid + 1; | 
|  | } | 
|  | i = (int) sp->types[lo - 1]; | 
|  | } | 
|  | ttisp = &sp->ttis[i]; | 
|  | /* | 
|  | ** To get (wrong) behavior that's compatible with System V Release 2.0 | 
|  | ** you'd replace the statement below with | 
|  | **	t += ttisp->tt_gmtoff; | 
|  | **	timesub(&t, 0L, sp, tmp); | 
|  | */ | 
|  | result = timesub(&t, ttisp->tt_gmtoff, sp, tmp); | 
|  | if (result) { | 
|  | result->tm_isdst = ttisp->tt_isdst; | 
|  | #ifdef TM_ZONE | 
|  | result->TM_ZONE = (char *) &sp->chars[ttisp->tt_abbrind]; | 
|  | #endif /* defined TM_ZONE */ | 
|  | if (setname) | 
|  | update_tzname_etc(sp, ttisp); | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | #if NETBSD_INSPIRED | 
|  |  | 
|  | struct tm * | 
|  | localtime_rz(struct state *sp, time_t const *timep, struct tm *tmp) | 
|  | { | 
|  | return localsub(sp, timep, 0, tmp); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static struct tm * | 
|  | localtime_tzset(time_t const *timep, struct tm *tmp) | 
|  | { | 
|  | int err = lock(); | 
|  | if (err) { | 
|  | errno = err; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | // http://b/31339449: POSIX says localtime(3) acts as if it called tzset(3), but upstream | 
|  | // and glibc both think it's okay for localtime_r(3) to not do so (presumably because of | 
|  | // the "not required to set tzname" clause). It's unclear that POSIX actually intended this, | 
|  | // the BSDs disagree with glibc, and it's confusing to developers to have localtime_r(3) | 
|  | // behave differently than other time zone-sensitive functions in <time.h>. | 
|  | tzset_unlocked(); | 
|  |  | 
|  | tmp = localsub(lclptr, timep, true, tmp); | 
|  | unlock(); | 
|  | return tmp; | 
|  | } | 
|  |  | 
|  | struct tm * | 
|  | localtime(const time_t *timep) | 
|  | { | 
|  | return localtime_tzset(timep, &tm); | 
|  | } | 
|  |  | 
|  | struct tm * | 
|  | localtime_r(const time_t *timep, struct tm *tmp) | 
|  | { | 
|  | return localtime_tzset(timep, tmp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** gmtsub is to gmtime as localsub is to localtime. | 
|  | */ | 
|  |  | 
|  | static struct tm * | 
|  | gmtsub(struct state const *sp, time_t const *timep, int_fast32_t offset, | 
|  | struct tm *tmp) | 
|  | { | 
|  | register struct tm *	result; | 
|  |  | 
|  | result = timesub(timep, offset, gmtptr, tmp); | 
|  | #ifdef TM_ZONE | 
|  | /* | 
|  | ** Could get fancy here and deliver something such as | 
|  | ** "UT+xxxx" or "UT-xxxx" if offset is non-zero, | 
|  | ** but this is no time for a treasure hunt. | 
|  | */ | 
|  | tmp->TM_ZONE = ((char *) | 
|  | (offset ? wildabbr : gmtptr ? gmtptr->chars : gmt)); | 
|  | #endif /* defined TM_ZONE */ | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Re-entrant version of gmtime. | 
|  | */ | 
|  |  | 
|  | struct tm * | 
|  | gmtime_r(const time_t *timep, struct tm *tmp) | 
|  | { | 
|  | gmtcheck(); | 
|  | return gmtsub(gmtptr, timep, 0, tmp); | 
|  | } | 
|  |  | 
|  | struct tm * | 
|  | gmtime(const time_t *timep) | 
|  | { | 
|  | return gmtime_r(timep, &tm); | 
|  | } | 
|  |  | 
|  | #ifdef STD_INSPIRED | 
|  |  | 
|  | struct tm * | 
|  | offtime(const time_t *timep, long offset) | 
|  | { | 
|  | gmtcheck(); | 
|  | return gmtsub(gmtptr, timep, offset, &tm); | 
|  | } | 
|  |  | 
|  | #endif /* defined STD_INSPIRED */ | 
|  |  | 
|  | /* | 
|  | ** Return the number of leap years through the end of the given year | 
|  | ** where, to make the math easy, the answer for year zero is defined as zero. | 
|  | */ | 
|  |  | 
|  | static int ATTRIBUTE_PURE | 
|  | leaps_thru_end_of(register const int y) | 
|  | { | 
|  | return (y >= 0) ? (y / 4 - y / 100 + y / 400) : | 
|  | -(leaps_thru_end_of(-(y + 1)) + 1); | 
|  | } | 
|  |  | 
|  | static struct tm * | 
|  | timesub(const time_t *timep, int_fast32_t offset, | 
|  | const struct state *sp, struct tm *tmp) | 
|  | { | 
|  | register const struct lsinfo *	lp; | 
|  | register time_t			tdays; | 
|  | register int			idays;	/* unsigned would be so 2003 */ | 
|  | register int_fast64_t		rem; | 
|  | int				y; | 
|  | register const int *		ip; | 
|  | register int_fast64_t		corr; | 
|  | register bool			hit; | 
|  | register int			i; | 
|  |  | 
|  | corr = 0; | 
|  | hit = false; | 
|  | i = (sp == NULL) ? 0 : sp->leapcnt; | 
|  | while (--i >= 0) { | 
|  | lp = &sp->lsis[i]; | 
|  | if (*timep >= lp->ls_trans) { | 
|  | if (*timep == lp->ls_trans) { | 
|  | hit = ((i == 0 && lp->ls_corr > 0) || | 
|  | lp->ls_corr > sp->lsis[i - 1].ls_corr); | 
|  | if (hit) | 
|  | while (i > 0 && | 
|  | sp->lsis[i].ls_trans == | 
|  | sp->lsis[i - 1].ls_trans + 1 && | 
|  | sp->lsis[i].ls_corr == | 
|  | sp->lsis[i - 1].ls_corr + 1) { | 
|  | ++hit; | 
|  | --i; | 
|  | } | 
|  | } | 
|  | corr = lp->ls_corr; | 
|  | break; | 
|  | } | 
|  | } | 
|  | y = EPOCH_YEAR; | 
|  | tdays = *timep / SECSPERDAY; | 
|  | rem = *timep % SECSPERDAY; | 
|  | while (tdays < 0 || tdays >= year_lengths[isleap(y)]) { | 
|  | int		newy; | 
|  | register time_t	tdelta; | 
|  | register int	idelta; | 
|  | register int	leapdays; | 
|  |  | 
|  | tdelta = tdays / DAYSPERLYEAR; | 
|  | if (! ((! TYPE_SIGNED(time_t) || INT_MIN <= tdelta) | 
|  | && tdelta <= INT_MAX)) | 
|  | goto out_of_range; | 
|  | idelta = tdelta; | 
|  | if (idelta == 0) | 
|  | idelta = (tdays < 0) ? -1 : 1; | 
|  | newy = y; | 
|  | if (increment_overflow(&newy, idelta)) | 
|  | goto out_of_range; | 
|  | leapdays = leaps_thru_end_of(newy - 1) - | 
|  | leaps_thru_end_of(y - 1); | 
|  | tdays -= ((time_t) newy - y) * DAYSPERNYEAR; | 
|  | tdays -= leapdays; | 
|  | y = newy; | 
|  | } | 
|  | /* | 
|  | ** Given the range, we can now fearlessly cast... | 
|  | */ | 
|  | idays = tdays; | 
|  | rem += offset - corr; | 
|  | while (rem < 0) { | 
|  | rem += SECSPERDAY; | 
|  | --idays; | 
|  | } | 
|  | while (rem >= SECSPERDAY) { | 
|  | rem -= SECSPERDAY; | 
|  | ++idays; | 
|  | } | 
|  | while (idays < 0) { | 
|  | if (increment_overflow(&y, -1)) | 
|  | goto out_of_range; | 
|  | idays += year_lengths[isleap(y)]; | 
|  | } | 
|  | while (idays >= year_lengths[isleap(y)]) { | 
|  | idays -= year_lengths[isleap(y)]; | 
|  | if (increment_overflow(&y, 1)) | 
|  | goto out_of_range; | 
|  | } | 
|  | tmp->tm_year = y; | 
|  | if (increment_overflow(&tmp->tm_year, -TM_YEAR_BASE)) | 
|  | goto out_of_range; | 
|  | tmp->tm_yday = idays; | 
|  | /* | 
|  | ** The "extra" mods below avoid overflow problems. | 
|  | */ | 
|  | tmp->tm_wday = EPOCH_WDAY + | 
|  | ((y - EPOCH_YEAR) % DAYSPERWEEK) * | 
|  | (DAYSPERNYEAR % DAYSPERWEEK) + | 
|  | leaps_thru_end_of(y - 1) - | 
|  | leaps_thru_end_of(EPOCH_YEAR - 1) + | 
|  | idays; | 
|  | tmp->tm_wday %= DAYSPERWEEK; | 
|  | if (tmp->tm_wday < 0) | 
|  | tmp->tm_wday += DAYSPERWEEK; | 
|  | tmp->tm_hour = (int) (rem / SECSPERHOUR); | 
|  | rem %= SECSPERHOUR; | 
|  | tmp->tm_min = (int) (rem / SECSPERMIN); | 
|  | /* | 
|  | ** A positive leap second requires a special | 
|  | ** representation. This uses "... ??:59:60" et seq. | 
|  | */ | 
|  | tmp->tm_sec = (int) (rem % SECSPERMIN) + hit; | 
|  | ip = mon_lengths[isleap(y)]; | 
|  | for (tmp->tm_mon = 0; idays >= ip[tmp->tm_mon]; ++(tmp->tm_mon)) | 
|  | idays -= ip[tmp->tm_mon]; | 
|  | tmp->tm_mday = (int) (idays + 1); | 
|  | tmp->tm_isdst = 0; | 
|  | #ifdef TM_GMTOFF | 
|  | tmp->TM_GMTOFF = offset; | 
|  | #endif /* defined TM_GMTOFF */ | 
|  | return tmp; | 
|  |  | 
|  | out_of_range: | 
|  | errno = EOVERFLOW; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | char * | 
|  | ctime(const time_t *timep) | 
|  | { | 
|  | /* | 
|  | ** Section 4.12.3.2 of X3.159-1989 requires that | 
|  | **	The ctime function converts the calendar time pointed to by timer | 
|  | **	to local time in the form of a string. It is equivalent to | 
|  | **		asctime(localtime(timer)) | 
|  | */ | 
|  | struct tm *tmp = localtime(timep); | 
|  | return tmp ? asctime(tmp) : NULL; | 
|  | } | 
|  |  | 
|  | char * | 
|  | ctime_r(const time_t *timep, char *buf) | 
|  | { | 
|  | struct tm mytm; | 
|  | struct tm *tmp = localtime_r(timep, &mytm); | 
|  | return tmp ? asctime_r(tmp, buf) : NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Adapted from code provided by Robert Elz, who writes: | 
|  | **	The "best" way to do mktime I think is based on an idea of Bob | 
|  | **	Kridle's (so its said...) from a long time ago. | 
|  | **	It does a binary search of the time_t space. Since time_t's are | 
|  | **	just 32 bits, its a max of 32 iterations (even at 64 bits it | 
|  | **	would still be very reasonable). | 
|  | */ | 
|  |  | 
|  | #ifndef WRONG | 
|  | #define WRONG	(-1) | 
|  | #endif /* !defined WRONG */ | 
|  |  | 
|  | /* | 
|  | ** Normalize logic courtesy Paul Eggert. | 
|  | */ | 
|  |  | 
|  | static bool | 
|  | increment_overflow(int *ip, int j) | 
|  | { | 
|  | register int const	i = *ip; | 
|  |  | 
|  | /* | 
|  | ** If i >= 0 there can only be overflow if i + j > INT_MAX | 
|  | ** or if j > INT_MAX - i; given i >= 0, INT_MAX - i cannot overflow. | 
|  | ** If i < 0 there can only be overflow if i + j < INT_MIN | 
|  | ** or if j < INT_MIN - i; given i < 0, INT_MIN - i cannot overflow. | 
|  | */ | 
|  | if ((i >= 0) ? (j > INT_MAX - i) : (j < INT_MIN - i)) | 
|  | return true; | 
|  | *ip += j; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | increment_overflow32(int_fast32_t *const lp, int const m) | 
|  | { | 
|  | register int_fast32_t const	l = *lp; | 
|  |  | 
|  | if ((l >= 0) ? (m > INT_FAST32_MAX - l) : (m < INT_FAST32_MIN - l)) | 
|  | return true; | 
|  | *lp += m; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | increment_overflow_time(time_t *tp, int_fast32_t j) | 
|  | { | 
|  | /* | 
|  | ** This is like | 
|  | ** 'if (! (time_t_min <= *tp + j && *tp + j <= time_t_max)) ...', | 
|  | ** except that it does the right thing even if *tp + j would overflow. | 
|  | */ | 
|  | if (! (j < 0 | 
|  | ? (TYPE_SIGNED(time_t) ? time_t_min - j <= *tp : -1 - j < *tp) | 
|  | : *tp <= time_t_max - j)) | 
|  | return true; | 
|  | *tp += j; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool | 
|  | normalize_overflow(int *const tensptr, int *const unitsptr, const int base) | 
|  | { | 
|  | register int	tensdelta; | 
|  |  | 
|  | tensdelta = (*unitsptr >= 0) ? | 
|  | (*unitsptr / base) : | 
|  | (-1 - (-1 - *unitsptr) / base); | 
|  | *unitsptr -= tensdelta * base; | 
|  | return increment_overflow(tensptr, tensdelta); | 
|  | } | 
|  |  | 
|  | static bool | 
|  | normalize_overflow32(int_fast32_t *tensptr, int *unitsptr, int base) | 
|  | { | 
|  | register int	tensdelta; | 
|  |  | 
|  | tensdelta = (*unitsptr >= 0) ? | 
|  | (*unitsptr / base) : | 
|  | (-1 - (-1 - *unitsptr) / base); | 
|  | *unitsptr -= tensdelta * base; | 
|  | return increment_overflow32(tensptr, tensdelta); | 
|  | } | 
|  |  | 
|  | static int | 
|  | tmcomp(register const struct tm *const atmp, | 
|  | register const struct tm *const btmp) | 
|  | { | 
|  | register int	result; | 
|  |  | 
|  | if (atmp->tm_year != btmp->tm_year) | 
|  | return atmp->tm_year < btmp->tm_year ? -1 : 1; | 
|  | if ((result = (atmp->tm_mon - btmp->tm_mon)) == 0 && | 
|  | (result = (atmp->tm_mday - btmp->tm_mday)) == 0 && | 
|  | (result = (atmp->tm_hour - btmp->tm_hour)) == 0 && | 
|  | (result = (atmp->tm_min - btmp->tm_min)) == 0) | 
|  | result = atmp->tm_sec - btmp->tm_sec; | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static time_t | 
|  | time2sub(struct tm *const tmp, | 
|  | struct tm *(*funcp)(struct state const *, time_t const *, | 
|  | int_fast32_t, struct tm *), | 
|  | struct state const *sp, | 
|  | const int_fast32_t offset, | 
|  | bool *okayp, | 
|  | bool do_norm_secs) | 
|  | { | 
|  | register int			dir; | 
|  | register int			i, j; | 
|  | register int			saved_seconds; | 
|  | register int_fast32_t		li; | 
|  | register time_t			lo; | 
|  | register time_t			hi; | 
|  | int_fast32_t			y; | 
|  | time_t				newt; | 
|  | time_t				t; | 
|  | struct tm			yourtm, mytm; | 
|  |  | 
|  | *okayp = false; | 
|  | yourtm = *tmp; | 
|  | if (do_norm_secs) { | 
|  | if (normalize_overflow(&yourtm.tm_min, &yourtm.tm_sec, | 
|  | SECSPERMIN)) | 
|  | return WRONG; | 
|  | } | 
|  | if (normalize_overflow(&yourtm.tm_hour, &yourtm.tm_min, MINSPERHOUR)) | 
|  | return WRONG; | 
|  | if (normalize_overflow(&yourtm.tm_mday, &yourtm.tm_hour, HOURSPERDAY)) | 
|  | return WRONG; | 
|  | y = yourtm.tm_year; | 
|  | if (normalize_overflow32(&y, &yourtm.tm_mon, MONSPERYEAR)) | 
|  | return WRONG; | 
|  | /* | 
|  | ** Turn y into an actual year number for now. | 
|  | ** It is converted back to an offset from TM_YEAR_BASE later. | 
|  | */ | 
|  | if (increment_overflow32(&y, TM_YEAR_BASE)) | 
|  | return WRONG; | 
|  | while (yourtm.tm_mday <= 0) { | 
|  | if (increment_overflow32(&y, -1)) | 
|  | return WRONG; | 
|  | li = y + (1 < yourtm.tm_mon); | 
|  | yourtm.tm_mday += year_lengths[isleap(li)]; | 
|  | } | 
|  | while (yourtm.tm_mday > DAYSPERLYEAR) { | 
|  | li = y + (1 < yourtm.tm_mon); | 
|  | yourtm.tm_mday -= year_lengths[isleap(li)]; | 
|  | if (increment_overflow32(&y, 1)) | 
|  | return WRONG; | 
|  | } | 
|  | for ( ; ; ) { | 
|  | i = mon_lengths[isleap(y)][yourtm.tm_mon]; | 
|  | if (yourtm.tm_mday <= i) | 
|  | break; | 
|  | yourtm.tm_mday -= i; | 
|  | if (++yourtm.tm_mon >= MONSPERYEAR) { | 
|  | yourtm.tm_mon = 0; | 
|  | if (increment_overflow32(&y, 1)) | 
|  | return WRONG; | 
|  | } | 
|  | } | 
|  | if (increment_overflow32(&y, -TM_YEAR_BASE)) | 
|  | return WRONG; | 
|  | if (! (INT_MIN <= y && y <= INT_MAX)) | 
|  | return WRONG; | 
|  | yourtm.tm_year = y; | 
|  | if (yourtm.tm_sec >= 0 && yourtm.tm_sec < SECSPERMIN) | 
|  | saved_seconds = 0; | 
|  | else if (y + TM_YEAR_BASE < EPOCH_YEAR) { | 
|  | /* | 
|  | ** We can't set tm_sec to 0, because that might push the | 
|  | ** time below the minimum representable time. | 
|  | ** Set tm_sec to 59 instead. | 
|  | ** This assumes that the minimum representable time is | 
|  | ** not in the same minute that a leap second was deleted from, | 
|  | ** which is a safer assumption than using 58 would be. | 
|  | */ | 
|  | if (increment_overflow(&yourtm.tm_sec, 1 - SECSPERMIN)) | 
|  | return WRONG; | 
|  | saved_seconds = yourtm.tm_sec; | 
|  | yourtm.tm_sec = SECSPERMIN - 1; | 
|  | } else { | 
|  | saved_seconds = yourtm.tm_sec; | 
|  | yourtm.tm_sec = 0; | 
|  | } | 
|  | /* | 
|  | ** Do a binary search (this works whatever time_t's type is). | 
|  | */ | 
|  | lo = time_t_min; | 
|  | hi = time_t_max; | 
|  | for ( ; ; ) { | 
|  | t = lo / 2 + hi / 2; | 
|  | if (t < lo) | 
|  | t = lo; | 
|  | else if (t > hi) | 
|  | t = hi; | 
|  | if (! funcp(sp, &t, offset, &mytm)) { | 
|  | /* | 
|  | ** Assume that t is too extreme to be represented in | 
|  | ** a struct tm; arrange things so that it is less | 
|  | ** extreme on the next pass. | 
|  | */ | 
|  | dir = (t > 0) ? 1 : -1; | 
|  | } else	dir = tmcomp(&mytm, &yourtm); | 
|  | if (dir != 0) { | 
|  | if (t == lo) { | 
|  | if (t == time_t_max) | 
|  | return WRONG; | 
|  | ++t; | 
|  | ++lo; | 
|  | } else if (t == hi) { | 
|  | if (t == time_t_min) | 
|  | return WRONG; | 
|  | --t; | 
|  | --hi; | 
|  | } | 
|  | if (lo > hi) | 
|  | return WRONG; | 
|  | if (dir > 0) | 
|  | hi = t; | 
|  | else	lo = t; | 
|  | continue; | 
|  | } | 
|  | #if defined TM_GMTOFF && ! UNINIT_TRAP | 
|  | if (mytm.TM_GMTOFF != yourtm.TM_GMTOFF | 
|  | && (yourtm.TM_GMTOFF < 0 | 
|  | ? (-SECSPERDAY <= yourtm.TM_GMTOFF | 
|  | && (mytm.TM_GMTOFF <= | 
|  | (SMALLEST (INT_FAST32_MAX, LONG_MAX) | 
|  | + yourtm.TM_GMTOFF))) | 
|  | : (yourtm.TM_GMTOFF <= SECSPERDAY | 
|  | && ((BIGGEST (INT_FAST32_MIN, LONG_MIN) | 
|  | + yourtm.TM_GMTOFF) | 
|  | <= mytm.TM_GMTOFF)))) { | 
|  | /* MYTM matches YOURTM except with the wrong UTC offset. | 
|  | YOURTM.TM_GMTOFF is plausible, so try it instead. | 
|  | It's OK if YOURTM.TM_GMTOFF contains uninitialized data, | 
|  | since the guess gets checked.  */ | 
|  | time_t altt = t; | 
|  | int_fast32_t diff = mytm.TM_GMTOFF - yourtm.TM_GMTOFF; | 
|  | if (!increment_overflow_time(&altt, diff)) { | 
|  | struct tm alttm; | 
|  | if (funcp(sp, &altt, offset, &alttm) | 
|  | && alttm.tm_isdst == mytm.tm_isdst | 
|  | && alttm.TM_GMTOFF == yourtm.TM_GMTOFF | 
|  | && tmcomp(&alttm, &yourtm) == 0) { | 
|  | t = altt; | 
|  | mytm = alttm; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  | if (yourtm.tm_isdst < 0 || mytm.tm_isdst == yourtm.tm_isdst) | 
|  | break; | 
|  | /* | 
|  | ** Right time, wrong type. | 
|  | ** Hunt for right time, right type. | 
|  | ** It's okay to guess wrong since the guess | 
|  | ** gets checked. | 
|  | */ | 
|  | if (sp == NULL) | 
|  | return WRONG; | 
|  | for (i = sp->typecnt - 1; i >= 0; --i) { | 
|  | if (sp->ttis[i].tt_isdst != yourtm.tm_isdst) | 
|  | continue; | 
|  | for (j = sp->typecnt - 1; j >= 0; --j) { | 
|  | if (sp->ttis[j].tt_isdst == yourtm.tm_isdst) | 
|  | continue; | 
|  | newt = t + sp->ttis[j].tt_gmtoff - | 
|  | sp->ttis[i].tt_gmtoff; | 
|  | if (! funcp(sp, &newt, offset, &mytm)) | 
|  | continue; | 
|  | if (tmcomp(&mytm, &yourtm) != 0) | 
|  | continue; | 
|  | if (mytm.tm_isdst != yourtm.tm_isdst) | 
|  | continue; | 
|  | /* | 
|  | ** We have a match. | 
|  | */ | 
|  | t = newt; | 
|  | goto label; | 
|  | } | 
|  | } | 
|  | return WRONG; | 
|  | } | 
|  | label: | 
|  | newt = t + saved_seconds; | 
|  | if ((newt < t) != (saved_seconds < 0)) | 
|  | return WRONG; | 
|  | t = newt; | 
|  | if (funcp(sp, &t, offset, tmp)) | 
|  | *okayp = true; | 
|  | return t; | 
|  | } | 
|  |  | 
|  | static time_t | 
|  | time2(struct tm * const	tmp, | 
|  | struct tm *(*funcp)(struct state const *, time_t const *, | 
|  | int_fast32_t, struct tm *), | 
|  | struct state const *sp, | 
|  | const int_fast32_t offset, | 
|  | bool *okayp) | 
|  | { | 
|  | time_t	t; | 
|  |  | 
|  | /* | 
|  | ** First try without normalization of seconds | 
|  | ** (in case tm_sec contains a value associated with a leap second). | 
|  | ** If that fails, try with normalization of seconds. | 
|  | */ | 
|  | t = time2sub(tmp, funcp, sp, offset, okayp, false); | 
|  | return *okayp ? t : time2sub(tmp, funcp, sp, offset, okayp, true); | 
|  | } | 
|  |  | 
|  | static time_t | 
|  | time1(struct tm *const tmp, | 
|  | struct tm *(*funcp) (struct state const *, time_t const *, | 
|  | int_fast32_t, struct tm *), | 
|  | struct state const *sp, | 
|  | const int_fast32_t offset) | 
|  | { | 
|  | register time_t			t; | 
|  | register int			samei, otheri; | 
|  | register int			sameind, otherind; | 
|  | register int			i; | 
|  | register int			nseen; | 
|  | char				seen[TZ_MAX_TYPES]; | 
|  | unsigned char			types[TZ_MAX_TYPES]; | 
|  | bool				okay; | 
|  |  | 
|  | if (tmp == NULL) { | 
|  | errno = EINVAL; | 
|  | return WRONG; | 
|  | } | 
|  | if (tmp->tm_isdst > 1) | 
|  | tmp->tm_isdst = 1; | 
|  | t = time2(tmp, funcp, sp, offset, &okay); | 
|  | if (okay) | 
|  | return t; | 
|  | if (tmp->tm_isdst < 0) | 
|  | #ifdef PCTS | 
|  | /* | 
|  | ** POSIX Conformance Test Suite code courtesy Grant Sullivan. | 
|  | */ | 
|  | tmp->tm_isdst = 0;	/* reset to std and try again */ | 
|  | #else | 
|  | return t; | 
|  | #endif /* !defined PCTS */ | 
|  | /* | 
|  | ** We're supposed to assume that somebody took a time of one type | 
|  | ** and did some math on it that yielded a "struct tm" that's bad. | 
|  | ** We try to divine the type they started from and adjust to the | 
|  | ** type they need. | 
|  | */ | 
|  | if (sp == NULL) | 
|  | return WRONG; | 
|  | for (i = 0; i < sp->typecnt; ++i) | 
|  | seen[i] = false; | 
|  | nseen = 0; | 
|  | for (i = sp->timecnt - 1; i >= 0; --i) | 
|  | if (!seen[sp->types[i]]) { | 
|  | seen[sp->types[i]] = true; | 
|  | types[nseen++] = sp->types[i]; | 
|  | } | 
|  | for (sameind = 0; sameind < nseen; ++sameind) { | 
|  | samei = types[sameind]; | 
|  | if (sp->ttis[samei].tt_isdst != tmp->tm_isdst) | 
|  | continue; | 
|  | for (otherind = 0; otherind < nseen; ++otherind) { | 
|  | otheri = types[otherind]; | 
|  | if (sp->ttis[otheri].tt_isdst == tmp->tm_isdst) | 
|  | continue; | 
|  | tmp->tm_sec += sp->ttis[otheri].tt_gmtoff - | 
|  | sp->ttis[samei].tt_gmtoff; | 
|  | tmp->tm_isdst = !tmp->tm_isdst; | 
|  | t = time2(tmp, funcp, sp, offset, &okay); | 
|  | if (okay) | 
|  | return t; | 
|  | tmp->tm_sec -= sp->ttis[otheri].tt_gmtoff - | 
|  | sp->ttis[samei].tt_gmtoff; | 
|  | tmp->tm_isdst = !tmp->tm_isdst; | 
|  | } | 
|  | } | 
|  | return WRONG; | 
|  | } | 
|  |  | 
|  | static time_t | 
|  | mktime_tzname(struct state *sp, struct tm *tmp, bool setname) | 
|  | { | 
|  | if (sp) | 
|  | return time1(tmp, localsub, sp, setname); | 
|  | else { | 
|  | gmtcheck(); | 
|  | return time1(tmp, gmtsub, gmtptr, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | #if NETBSD_INSPIRED | 
|  |  | 
|  | time_t | 
|  | mktime_z(struct state *sp, struct tm *tmp) | 
|  | { | 
|  | return mktime_tzname(sp, tmp, false); | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | time_t | 
|  | mktime(struct tm *tmp) | 
|  | { | 
|  | #if defined(__BIONIC__) | 
|  | int saved_errno = errno; | 
|  | #endif | 
|  |  | 
|  | time_t t; | 
|  | int err = lock(); | 
|  | if (err) { | 
|  | errno = err; | 
|  | return -1; | 
|  | } | 
|  | tzset_unlocked(); | 
|  | t = mktime_tzname(lclptr, tmp, true); | 
|  | unlock(); | 
|  |  | 
|  | #if defined(__BIONIC__) | 
|  | errno = (t == -1) ? EOVERFLOW : saved_errno; | 
|  | #endif | 
|  | return t; | 
|  | } | 
|  |  | 
|  | #ifdef STD_INSPIRED | 
|  |  | 
|  | time_t | 
|  | timelocal(struct tm *tmp) | 
|  | { | 
|  | if (tmp != NULL) | 
|  | tmp->tm_isdst = -1;	/* in case it wasn't initialized */ | 
|  | return mktime(tmp); | 
|  | } | 
|  |  | 
|  | time_t | 
|  | timegm(struct tm *tmp) | 
|  | { | 
|  | return timeoff(tmp, 0); | 
|  | } | 
|  |  | 
|  | time_t | 
|  | timeoff(struct tm *tmp, long offset) | 
|  | { | 
|  | if (tmp) | 
|  | tmp->tm_isdst = 0; | 
|  | gmtcheck(); | 
|  | return time1(tmp, gmtsub, gmtptr, offset); | 
|  | } | 
|  |  | 
|  | #endif /* defined STD_INSPIRED */ | 
|  |  | 
|  | /* | 
|  | ** XXX--is the below the right way to conditionalize?? | 
|  | */ | 
|  |  | 
|  | #ifdef STD_INSPIRED | 
|  |  | 
|  | /* | 
|  | ** IEEE Std 1003.1-1988 (POSIX) legislates that 536457599 | 
|  | ** shall correspond to "Wed Dec 31 23:59:59 UTC 1986", which | 
|  | ** is not the case if we are accounting for leap seconds. | 
|  | ** So, we provide the following conversion routines for use | 
|  | ** when exchanging timestamps with POSIX conforming systems. | 
|  | */ | 
|  |  | 
|  | static int_fast64_t | 
|  | leapcorr(struct state const *sp, time_t t) | 
|  | { | 
|  | register struct lsinfo const *	lp; | 
|  | register int			i; | 
|  |  | 
|  | i = sp->leapcnt; | 
|  | while (--i >= 0) { | 
|  | lp = &sp->lsis[i]; | 
|  | if (t >= lp->ls_trans) | 
|  | return lp->ls_corr; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | NETBSD_INSPIRED_EXTERN time_t ATTRIBUTE_PURE | 
|  | time2posix_z(struct state *sp, time_t t) | 
|  | { | 
|  | return t - leapcorr(sp, t); | 
|  | } | 
|  |  | 
|  | time_t | 
|  | time2posix(time_t t) | 
|  | { | 
|  | int err = lock(); | 
|  | if (err) { | 
|  | errno = err; | 
|  | return -1; | 
|  | } | 
|  | if (!lcl_is_set) | 
|  | tzset_unlocked(); | 
|  | if (lclptr) | 
|  | t = time2posix_z(lclptr, t); | 
|  | unlock(); | 
|  | return t; | 
|  | } | 
|  |  | 
|  | NETBSD_INSPIRED_EXTERN time_t ATTRIBUTE_PURE | 
|  | posix2time_z(struct state *sp, time_t t) | 
|  | { | 
|  | time_t	x; | 
|  | time_t	y; | 
|  | /* | 
|  | ** For a positive leap second hit, the result | 
|  | ** is not unique. For a negative leap second | 
|  | ** hit, the corresponding time doesn't exist, | 
|  | ** so we return an adjacent second. | 
|  | */ | 
|  | x = t + leapcorr(sp, t); | 
|  | y = x - leapcorr(sp, x); | 
|  | if (y < t) { | 
|  | do { | 
|  | x++; | 
|  | y = x - leapcorr(sp, x); | 
|  | } while (y < t); | 
|  | x -= y != t; | 
|  | } else if (y > t) { | 
|  | do { | 
|  | --x; | 
|  | y = x - leapcorr(sp, x); | 
|  | } while (y > t); | 
|  | x += y != t; | 
|  | } | 
|  | return x; | 
|  | } | 
|  |  | 
|  | time_t | 
|  | posix2time(time_t t) | 
|  | { | 
|  | int err = lock(); | 
|  | if (err) { | 
|  | errno = err; | 
|  | return -1; | 
|  | } | 
|  | if (!lcl_is_set) | 
|  | tzset_unlocked(); | 
|  | if (lclptr) | 
|  | t = posix2time_z(lclptr, t); | 
|  | unlock(); | 
|  | return t; | 
|  | } | 
|  |  | 
|  | #endif /* defined STD_INSPIRED */ | 
|  |  | 
|  | #ifdef time_tz | 
|  |  | 
|  | /* Convert from the underlying system's time_t to the ersatz time_tz, | 
|  | which is called 'time_t' in this file.  */ | 
|  |  | 
|  | time_t | 
|  | time(time_t *p) | 
|  | { | 
|  | time_t r = sys_time(0); | 
|  | if (p) | 
|  | *p = r; | 
|  | return r; | 
|  | } | 
|  |  | 
|  | #endif |