| /* | 
 |  * Copyright (C) 2013 The Android Open Source Project | 
 |  * | 
 |  * Licensed under the Apache License, Version 2.0 (the "License"); | 
 |  * you may not use this file except in compliance with the License. | 
 |  * You may obtain a copy of the License at | 
 |  * | 
 |  *      http://www.apache.org/licenses/LICENSE-2.0 | 
 |  * | 
 |  * Unless required by applicable law or agreed to in writing, software | 
 |  * distributed under the License is distributed on an "AS IS" BASIS, | 
 |  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 |  * See the License for the specific language governing permissions and | 
 |  * limitations under the License. | 
 |  */ | 
 |  | 
 | #include <gtest/gtest.h> | 
 |  | 
 | #include <elf.h> | 
 | #include <limits.h> | 
 | #include <malloc.h> | 
 | #include <pthread.h> | 
 | #include <signal.h> | 
 | #include <stdint.h> | 
 | #include <stdio.h> | 
 | #include <stdlib.h> | 
 | #include <string.h> | 
 | #include <sys/auxv.h> | 
 | #include <sys/prctl.h> | 
 | #include <sys/types.h> | 
 | #include <sys/wait.h> | 
 | #include <unistd.h> | 
 |  | 
 | #include <atomic> | 
 | #include <thread> | 
 |  | 
 | #include <tinyxml2.h> | 
 |  | 
 | #include <android-base/file.h> | 
 |  | 
 | #include "utils.h" | 
 |  | 
 | #if defined(__BIONIC__) | 
 |  | 
 | #include "SignalUtils.h" | 
 |  | 
 | #include "platform/bionic/malloc.h" | 
 | #include "platform/bionic/mte_kernel.h" | 
 | #include "platform/bionic/reserved_signals.h" | 
 | #include "private/bionic_config.h" | 
 |  | 
 | #define HAVE_REALLOCARRAY 1 | 
 |  | 
 | #else | 
 |  | 
 | #define HAVE_REALLOCARRAY __GLIBC_PREREQ(2, 26) | 
 |  | 
 | #endif | 
 |  | 
 | TEST(malloc, malloc_std) { | 
 |   // Simple malloc test. | 
 |   void *ptr = malloc(100); | 
 |   ASSERT_TRUE(ptr != nullptr); | 
 |   ASSERT_LE(100U, malloc_usable_size(ptr)); | 
 |   free(ptr); | 
 | } | 
 |  | 
 | TEST(malloc, malloc_overflow) { | 
 |   SKIP_WITH_HWASAN; | 
 |   errno = 0; | 
 |   ASSERT_EQ(nullptr, malloc(SIZE_MAX)); | 
 |   ASSERT_EQ(ENOMEM, errno); | 
 | } | 
 |  | 
 | TEST(malloc, calloc_std) { | 
 |   // Simple calloc test. | 
 |   size_t alloc_len = 100; | 
 |   char *ptr = (char *)calloc(1, alloc_len); | 
 |   ASSERT_TRUE(ptr != nullptr); | 
 |   ASSERT_LE(alloc_len, malloc_usable_size(ptr)); | 
 |   for (size_t i = 0; i < alloc_len; i++) { | 
 |     ASSERT_EQ(0, ptr[i]); | 
 |   } | 
 |   free(ptr); | 
 | } | 
 |  | 
 | TEST(malloc, calloc_illegal) { | 
 |   SKIP_WITH_HWASAN; | 
 |   errno = 0; | 
 |   ASSERT_EQ(nullptr, calloc(-1, 100)); | 
 |   ASSERT_EQ(ENOMEM, errno); | 
 | } | 
 |  | 
 | TEST(malloc, calloc_overflow) { | 
 |   SKIP_WITH_HWASAN; | 
 |   errno = 0; | 
 |   ASSERT_EQ(nullptr, calloc(1, SIZE_MAX)); | 
 |   ASSERT_EQ(ENOMEM, errno); | 
 |   errno = 0; | 
 |   ASSERT_EQ(nullptr, calloc(SIZE_MAX, SIZE_MAX)); | 
 |   ASSERT_EQ(ENOMEM, errno); | 
 |   errno = 0; | 
 |   ASSERT_EQ(nullptr, calloc(2, SIZE_MAX)); | 
 |   ASSERT_EQ(ENOMEM, errno); | 
 |   errno = 0; | 
 |   ASSERT_EQ(nullptr, calloc(SIZE_MAX, 2)); | 
 |   ASSERT_EQ(ENOMEM, errno); | 
 | } | 
 |  | 
 | TEST(malloc, memalign_multiple) { | 
 |   SKIP_WITH_HWASAN << "hwasan requires power of 2 alignment"; | 
 |   // Memalign test where the alignment is any value. | 
 |   for (size_t i = 0; i <= 12; i++) { | 
 |     for (size_t alignment = 1 << i; alignment < (1U << (i+1)); alignment++) { | 
 |       char *ptr = reinterpret_cast<char*>(memalign(alignment, 100)); | 
 |       ASSERT_TRUE(ptr != nullptr) << "Failed at alignment " << alignment; | 
 |       ASSERT_LE(100U, malloc_usable_size(ptr)) << "Failed at alignment " << alignment; | 
 |       ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptr) % ((1U << i))) | 
 |           << "Failed at alignment " << alignment; | 
 |       free(ptr); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | TEST(malloc, memalign_overflow) { | 
 |   SKIP_WITH_HWASAN; | 
 |   ASSERT_EQ(nullptr, memalign(4096, SIZE_MAX)); | 
 | } | 
 |  | 
 | TEST(malloc, memalign_non_power2) { | 
 |   SKIP_WITH_HWASAN; | 
 |   void* ptr; | 
 |   for (size_t align = 0; align <= 256; align++) { | 
 |     ptr = memalign(align, 1024); | 
 |     ASSERT_TRUE(ptr != nullptr) << "Failed at align " << align; | 
 |     free(ptr); | 
 |   } | 
 | } | 
 |  | 
 | TEST(malloc, memalign_realloc) { | 
 |   // Memalign and then realloc the pointer a couple of times. | 
 |   for (size_t alignment = 1; alignment <= 4096; alignment <<= 1) { | 
 |     char *ptr = (char*)memalign(alignment, 100); | 
 |     ASSERT_TRUE(ptr != nullptr); | 
 |     ASSERT_LE(100U, malloc_usable_size(ptr)); | 
 |     ASSERT_EQ(0U, (intptr_t)ptr % alignment); | 
 |     memset(ptr, 0x23, 100); | 
 |  | 
 |     ptr = (char*)realloc(ptr, 200); | 
 |     ASSERT_TRUE(ptr != nullptr); | 
 |     ASSERT_LE(200U, malloc_usable_size(ptr)); | 
 |     ASSERT_TRUE(ptr != nullptr); | 
 |     for (size_t i = 0; i < 100; i++) { | 
 |       ASSERT_EQ(0x23, ptr[i]); | 
 |     } | 
 |     memset(ptr, 0x45, 200); | 
 |  | 
 |     ptr = (char*)realloc(ptr, 300); | 
 |     ASSERT_TRUE(ptr != nullptr); | 
 |     ASSERT_LE(300U, malloc_usable_size(ptr)); | 
 |     for (size_t i = 0; i < 200; i++) { | 
 |       ASSERT_EQ(0x45, ptr[i]); | 
 |     } | 
 |     memset(ptr, 0x67, 300); | 
 |  | 
 |     ptr = (char*)realloc(ptr, 250); | 
 |     ASSERT_TRUE(ptr != nullptr); | 
 |     ASSERT_LE(250U, malloc_usable_size(ptr)); | 
 |     for (size_t i = 0; i < 250; i++) { | 
 |       ASSERT_EQ(0x67, ptr[i]); | 
 |     } | 
 |     free(ptr); | 
 |   } | 
 | } | 
 |  | 
 | TEST(malloc, malloc_realloc_larger) { | 
 |   // Realloc to a larger size, malloc is used for the original allocation. | 
 |   char *ptr = (char *)malloc(100); | 
 |   ASSERT_TRUE(ptr != nullptr); | 
 |   ASSERT_LE(100U, malloc_usable_size(ptr)); | 
 |   memset(ptr, 67, 100); | 
 |  | 
 |   ptr = (char *)realloc(ptr, 200); | 
 |   ASSERT_TRUE(ptr != nullptr); | 
 |   ASSERT_LE(200U, malloc_usable_size(ptr)); | 
 |   for (size_t i = 0; i < 100; i++) { | 
 |     ASSERT_EQ(67, ptr[i]); | 
 |   } | 
 |   free(ptr); | 
 | } | 
 |  | 
 | TEST(malloc, malloc_realloc_smaller) { | 
 |   // Realloc to a smaller size, malloc is used for the original allocation. | 
 |   char *ptr = (char *)malloc(200); | 
 |   ASSERT_TRUE(ptr != nullptr); | 
 |   ASSERT_LE(200U, malloc_usable_size(ptr)); | 
 |   memset(ptr, 67, 200); | 
 |  | 
 |   ptr = (char *)realloc(ptr, 100); | 
 |   ASSERT_TRUE(ptr != nullptr); | 
 |   ASSERT_LE(100U, malloc_usable_size(ptr)); | 
 |   for (size_t i = 0; i < 100; i++) { | 
 |     ASSERT_EQ(67, ptr[i]); | 
 |   } | 
 |   free(ptr); | 
 | } | 
 |  | 
 | TEST(malloc, malloc_multiple_realloc) { | 
 |   // Multiple reallocs, malloc is used for the original allocation. | 
 |   char *ptr = (char *)malloc(200); | 
 |   ASSERT_TRUE(ptr != nullptr); | 
 |   ASSERT_LE(200U, malloc_usable_size(ptr)); | 
 |   memset(ptr, 0x23, 200); | 
 |  | 
 |   ptr = (char *)realloc(ptr, 100); | 
 |   ASSERT_TRUE(ptr != nullptr); | 
 |   ASSERT_LE(100U, malloc_usable_size(ptr)); | 
 |   for (size_t i = 0; i < 100; i++) { | 
 |     ASSERT_EQ(0x23, ptr[i]); | 
 |   } | 
 |  | 
 |   ptr = (char*)realloc(ptr, 50); | 
 |   ASSERT_TRUE(ptr != nullptr); | 
 |   ASSERT_LE(50U, malloc_usable_size(ptr)); | 
 |   for (size_t i = 0; i < 50; i++) { | 
 |     ASSERT_EQ(0x23, ptr[i]); | 
 |   } | 
 |  | 
 |   ptr = (char*)realloc(ptr, 150); | 
 |   ASSERT_TRUE(ptr != nullptr); | 
 |   ASSERT_LE(150U, malloc_usable_size(ptr)); | 
 |   for (size_t i = 0; i < 50; i++) { | 
 |     ASSERT_EQ(0x23, ptr[i]); | 
 |   } | 
 |   memset(ptr, 0x23, 150); | 
 |  | 
 |   ptr = (char*)realloc(ptr, 425); | 
 |   ASSERT_TRUE(ptr != nullptr); | 
 |   ASSERT_LE(425U, malloc_usable_size(ptr)); | 
 |   for (size_t i = 0; i < 150; i++) { | 
 |     ASSERT_EQ(0x23, ptr[i]); | 
 |   } | 
 |   free(ptr); | 
 | } | 
 |  | 
 | TEST(malloc, calloc_realloc_larger) { | 
 |   // Realloc to a larger size, calloc is used for the original allocation. | 
 |   char *ptr = (char *)calloc(1, 100); | 
 |   ASSERT_TRUE(ptr != nullptr); | 
 |   ASSERT_LE(100U, malloc_usable_size(ptr)); | 
 |  | 
 |   ptr = (char *)realloc(ptr, 200); | 
 |   ASSERT_TRUE(ptr != nullptr); | 
 |   ASSERT_LE(200U, malloc_usable_size(ptr)); | 
 |   for (size_t i = 0; i < 100; i++) { | 
 |     ASSERT_EQ(0, ptr[i]); | 
 |   } | 
 |   free(ptr); | 
 | } | 
 |  | 
 | TEST(malloc, calloc_realloc_smaller) { | 
 |   // Realloc to a smaller size, calloc is used for the original allocation. | 
 |   char *ptr = (char *)calloc(1, 200); | 
 |   ASSERT_TRUE(ptr != nullptr); | 
 |   ASSERT_LE(200U, malloc_usable_size(ptr)); | 
 |  | 
 |   ptr = (char *)realloc(ptr, 100); | 
 |   ASSERT_TRUE(ptr != nullptr); | 
 |   ASSERT_LE(100U, malloc_usable_size(ptr)); | 
 |   for (size_t i = 0; i < 100; i++) { | 
 |     ASSERT_EQ(0, ptr[i]); | 
 |   } | 
 |   free(ptr); | 
 | } | 
 |  | 
 | TEST(malloc, calloc_multiple_realloc) { | 
 |   // Multiple reallocs, calloc is used for the original allocation. | 
 |   char *ptr = (char *)calloc(1, 200); | 
 |   ASSERT_TRUE(ptr != nullptr); | 
 |   ASSERT_LE(200U, malloc_usable_size(ptr)); | 
 |  | 
 |   ptr = (char *)realloc(ptr, 100); | 
 |   ASSERT_TRUE(ptr != nullptr); | 
 |   ASSERT_LE(100U, malloc_usable_size(ptr)); | 
 |   for (size_t i = 0; i < 100; i++) { | 
 |     ASSERT_EQ(0, ptr[i]); | 
 |   } | 
 |  | 
 |   ptr = (char*)realloc(ptr, 50); | 
 |   ASSERT_TRUE(ptr != nullptr); | 
 |   ASSERT_LE(50U, malloc_usable_size(ptr)); | 
 |   for (size_t i = 0; i < 50; i++) { | 
 |     ASSERT_EQ(0, ptr[i]); | 
 |   } | 
 |  | 
 |   ptr = (char*)realloc(ptr, 150); | 
 |   ASSERT_TRUE(ptr != nullptr); | 
 |   ASSERT_LE(150U, malloc_usable_size(ptr)); | 
 |   for (size_t i = 0; i < 50; i++) { | 
 |     ASSERT_EQ(0, ptr[i]); | 
 |   } | 
 |   memset(ptr, 0, 150); | 
 |  | 
 |   ptr = (char*)realloc(ptr, 425); | 
 |   ASSERT_TRUE(ptr != nullptr); | 
 |   ASSERT_LE(425U, malloc_usable_size(ptr)); | 
 |   for (size_t i = 0; i < 150; i++) { | 
 |     ASSERT_EQ(0, ptr[i]); | 
 |   } | 
 |   free(ptr); | 
 | } | 
 |  | 
 | TEST(malloc, realloc_overflow) { | 
 |   SKIP_WITH_HWASAN; | 
 |   errno = 0; | 
 |   ASSERT_EQ(nullptr, realloc(nullptr, SIZE_MAX)); | 
 |   ASSERT_EQ(ENOMEM, errno); | 
 |   void* ptr = malloc(100); | 
 |   ASSERT_TRUE(ptr != nullptr); | 
 |   errno = 0; | 
 |   ASSERT_EQ(nullptr, realloc(ptr, SIZE_MAX)); | 
 |   ASSERT_EQ(ENOMEM, errno); | 
 |   free(ptr); | 
 | } | 
 |  | 
 | #if defined(HAVE_DEPRECATED_MALLOC_FUNCS) | 
 | extern "C" void* pvalloc(size_t); | 
 | extern "C" void* valloc(size_t); | 
 | #endif | 
 |  | 
 | TEST(malloc, pvalloc_std) { | 
 | #if defined(HAVE_DEPRECATED_MALLOC_FUNCS) | 
 |   size_t pagesize = sysconf(_SC_PAGESIZE); | 
 |   void* ptr = pvalloc(100); | 
 |   ASSERT_TRUE(ptr != nullptr); | 
 |   ASSERT_TRUE((reinterpret_cast<uintptr_t>(ptr) & (pagesize-1)) == 0); | 
 |   ASSERT_LE(pagesize, malloc_usable_size(ptr)); | 
 |   free(ptr); | 
 | #else | 
 |   GTEST_SKIP() << "pvalloc not supported."; | 
 | #endif | 
 | } | 
 |  | 
 | TEST(malloc, pvalloc_overflow) { | 
 | #if defined(HAVE_DEPRECATED_MALLOC_FUNCS) | 
 |   ASSERT_EQ(nullptr, pvalloc(SIZE_MAX)); | 
 | #else | 
 |   GTEST_SKIP() << "pvalloc not supported."; | 
 | #endif | 
 | } | 
 |  | 
 | TEST(malloc, valloc_std) { | 
 | #if defined(HAVE_DEPRECATED_MALLOC_FUNCS) | 
 |   size_t pagesize = sysconf(_SC_PAGESIZE); | 
 |   void* ptr = valloc(100); | 
 |   ASSERT_TRUE(ptr != nullptr); | 
 |   ASSERT_TRUE((reinterpret_cast<uintptr_t>(ptr) & (pagesize-1)) == 0); | 
 |   free(ptr); | 
 | #else | 
 |   GTEST_SKIP() << "valloc not supported."; | 
 | #endif | 
 | } | 
 |  | 
 | TEST(malloc, valloc_overflow) { | 
 | #if defined(HAVE_DEPRECATED_MALLOC_FUNCS) | 
 |   ASSERT_EQ(nullptr, valloc(SIZE_MAX)); | 
 | #else | 
 |   GTEST_SKIP() << "valloc not supported."; | 
 | #endif | 
 | } | 
 |  | 
 | TEST(malloc, malloc_info) { | 
 | #ifdef __BIONIC__ | 
 |   SKIP_WITH_HWASAN; // hwasan does not implement malloc_info | 
 |  | 
 |   TemporaryFile tf; | 
 |   ASSERT_TRUE(tf.fd != -1); | 
 |   FILE* fp = fdopen(tf.fd, "w+"); | 
 |   tf.release(); | 
 |   ASSERT_TRUE(fp != nullptr); | 
 |   ASSERT_EQ(0, malloc_info(0, fp)); | 
 |   ASSERT_EQ(0, fclose(fp)); | 
 |  | 
 |   std::string contents; | 
 |   ASSERT_TRUE(android::base::ReadFileToString(tf.path, &contents)); | 
 |  | 
 |   tinyxml2::XMLDocument doc; | 
 |   ASSERT_EQ(tinyxml2::XML_SUCCESS, doc.Parse(contents.c_str())); | 
 |  | 
 |   auto root = doc.FirstChildElement(); | 
 |   ASSERT_NE(nullptr, root); | 
 |   ASSERT_STREQ("malloc", root->Name()); | 
 |   std::string version(root->Attribute("version")); | 
 |   if (version == "jemalloc-1") { | 
 |     auto arena = root->FirstChildElement(); | 
 |     for (; arena != nullptr; arena = arena->NextSiblingElement()) { | 
 |       int val; | 
 |  | 
 |       ASSERT_STREQ("heap", arena->Name()); | 
 |       ASSERT_EQ(tinyxml2::XML_SUCCESS, arena->QueryIntAttribute("nr", &val)); | 
 |       ASSERT_EQ(tinyxml2::XML_SUCCESS, | 
 |                 arena->FirstChildElement("allocated-large")->QueryIntText(&val)); | 
 |       ASSERT_EQ(tinyxml2::XML_SUCCESS, | 
 |                 arena->FirstChildElement("allocated-huge")->QueryIntText(&val)); | 
 |       ASSERT_EQ(tinyxml2::XML_SUCCESS, | 
 |                 arena->FirstChildElement("allocated-bins")->QueryIntText(&val)); | 
 |       ASSERT_EQ(tinyxml2::XML_SUCCESS, | 
 |                 arena->FirstChildElement("bins-total")->QueryIntText(&val)); | 
 |  | 
 |       auto bin = arena->FirstChildElement("bin"); | 
 |       for (; bin != nullptr; bin = bin ->NextSiblingElement()) { | 
 |         if (strcmp(bin->Name(), "bin") == 0) { | 
 |           ASSERT_EQ(tinyxml2::XML_SUCCESS, bin->QueryIntAttribute("nr", &val)); | 
 |           ASSERT_EQ(tinyxml2::XML_SUCCESS, | 
 |                     bin->FirstChildElement("allocated")->QueryIntText(&val)); | 
 |           ASSERT_EQ(tinyxml2::XML_SUCCESS, | 
 |                     bin->FirstChildElement("nmalloc")->QueryIntText(&val)); | 
 |           ASSERT_EQ(tinyxml2::XML_SUCCESS, | 
 |                     bin->FirstChildElement("ndalloc")->QueryIntText(&val)); | 
 |         } | 
 |       } | 
 |     } | 
 |   } else if (version == "scudo-1") { | 
 |     auto element = root->FirstChildElement(); | 
 |     for (; element != nullptr; element = element->NextSiblingElement()) { | 
 |       int val; | 
 |  | 
 |       ASSERT_STREQ("alloc", element->Name()); | 
 |       ASSERT_EQ(tinyxml2::XML_SUCCESS, element->QueryIntAttribute("size", &val)); | 
 |       ASSERT_EQ(tinyxml2::XML_SUCCESS, element->QueryIntAttribute("count", &val)); | 
 |     } | 
 |   } else { | 
 |     // Do not verify output for debug malloc. | 
 |     ASSERT_TRUE(version == "debug-malloc-1") << "Unknown version: " << version; | 
 |   } | 
 | #endif | 
 | } | 
 |  | 
 | TEST(malloc, malloc_info_matches_mallinfo) { | 
 | #ifdef __BIONIC__ | 
 |   SKIP_WITH_HWASAN; // hwasan does not implement malloc_info | 
 |  | 
 |   TemporaryFile tf; | 
 |   ASSERT_TRUE(tf.fd != -1); | 
 |   FILE* fp = fdopen(tf.fd, "w+"); | 
 |   tf.release(); | 
 |   ASSERT_TRUE(fp != nullptr); | 
 |   size_t mallinfo_before_allocated_bytes = mallinfo().uordblks; | 
 |   ASSERT_EQ(0, malloc_info(0, fp)); | 
 |   size_t mallinfo_after_allocated_bytes = mallinfo().uordblks; | 
 |   ASSERT_EQ(0, fclose(fp)); | 
 |  | 
 |   std::string contents; | 
 |   ASSERT_TRUE(android::base::ReadFileToString(tf.path, &contents)); | 
 |  | 
 |   tinyxml2::XMLDocument doc; | 
 |   ASSERT_EQ(tinyxml2::XML_SUCCESS, doc.Parse(contents.c_str())); | 
 |  | 
 |   size_t total_allocated_bytes = 0; | 
 |   auto root = doc.FirstChildElement(); | 
 |   ASSERT_NE(nullptr, root); | 
 |   ASSERT_STREQ("malloc", root->Name()); | 
 |   std::string version(root->Attribute("version")); | 
 |   if (version == "jemalloc-1") { | 
 |     auto arena = root->FirstChildElement(); | 
 |     for (; arena != nullptr; arena = arena->NextSiblingElement()) { | 
 |       int val; | 
 |  | 
 |       ASSERT_STREQ("heap", arena->Name()); | 
 |       ASSERT_EQ(tinyxml2::XML_SUCCESS, arena->QueryIntAttribute("nr", &val)); | 
 |       ASSERT_EQ(tinyxml2::XML_SUCCESS, | 
 |                 arena->FirstChildElement("allocated-large")->QueryIntText(&val)); | 
 |       total_allocated_bytes += val; | 
 |       ASSERT_EQ(tinyxml2::XML_SUCCESS, | 
 |                 arena->FirstChildElement("allocated-huge")->QueryIntText(&val)); | 
 |       total_allocated_bytes += val; | 
 |       ASSERT_EQ(tinyxml2::XML_SUCCESS, | 
 |                 arena->FirstChildElement("allocated-bins")->QueryIntText(&val)); | 
 |       total_allocated_bytes += val; | 
 |       ASSERT_EQ(tinyxml2::XML_SUCCESS, | 
 |                 arena->FirstChildElement("bins-total")->QueryIntText(&val)); | 
 |     } | 
 |     // The total needs to be between the mallinfo call before and after | 
 |     // since malloc_info allocates some memory. | 
 |     EXPECT_LE(mallinfo_before_allocated_bytes, total_allocated_bytes); | 
 |     EXPECT_GE(mallinfo_after_allocated_bytes, total_allocated_bytes); | 
 |   } else if (version == "scudo-1") { | 
 |     auto element = root->FirstChildElement(); | 
 |     for (; element != nullptr; element = element->NextSiblingElement()) { | 
 |       ASSERT_STREQ("alloc", element->Name()); | 
 |       int size; | 
 |       ASSERT_EQ(tinyxml2::XML_SUCCESS, element->QueryIntAttribute("size", &size)); | 
 |       int count; | 
 |       ASSERT_EQ(tinyxml2::XML_SUCCESS, element->QueryIntAttribute("count", &count)); | 
 |       total_allocated_bytes += size * count; | 
 |     } | 
 |     // Scudo only gives the information on the primary, so simply make | 
 |     // sure that the value is non-zero. | 
 |     EXPECT_NE(0U, total_allocated_bytes); | 
 |   } else { | 
 |     // Do not verify output for debug malloc. | 
 |     ASSERT_TRUE(version == "debug-malloc-1") << "Unknown version: " << version; | 
 |   } | 
 | #endif | 
 | } | 
 |  | 
 | TEST(malloc, calloc_usable_size) { | 
 |   for (size_t size = 1; size <= 2048; size++) { | 
 |     void* pointer = malloc(size); | 
 |     ASSERT_TRUE(pointer != nullptr); | 
 |     memset(pointer, 0xeb, malloc_usable_size(pointer)); | 
 |     free(pointer); | 
 |  | 
 |     // We should get a previous pointer that has been set to non-zero. | 
 |     // If calloc does not zero out all of the data, this will fail. | 
 |     uint8_t* zero_mem = reinterpret_cast<uint8_t*>(calloc(1, size)); | 
 |     ASSERT_TRUE(pointer != nullptr); | 
 |     size_t usable_size = malloc_usable_size(zero_mem); | 
 |     for (size_t i = 0; i < usable_size; i++) { | 
 |       ASSERT_EQ(0, zero_mem[i]) << "Failed at allocation size " << size << " at byte " << i; | 
 |     } | 
 |     free(zero_mem); | 
 |   } | 
 | } | 
 |  | 
 | TEST(malloc, malloc_0) { | 
 |   void* p = malloc(0); | 
 |   ASSERT_TRUE(p != nullptr); | 
 |   free(p); | 
 | } | 
 |  | 
 | TEST(malloc, calloc_0_0) { | 
 |   void* p = calloc(0, 0); | 
 |   ASSERT_TRUE(p != nullptr); | 
 |   free(p); | 
 | } | 
 |  | 
 | TEST(malloc, calloc_0_1) { | 
 |   void* p = calloc(0, 1); | 
 |   ASSERT_TRUE(p != nullptr); | 
 |   free(p); | 
 | } | 
 |  | 
 | TEST(malloc, calloc_1_0) { | 
 |   void* p = calloc(1, 0); | 
 |   ASSERT_TRUE(p != nullptr); | 
 |   free(p); | 
 | } | 
 |  | 
 | TEST(malloc, realloc_nullptr_0) { | 
 |   // realloc(nullptr, size) is actually malloc(size). | 
 |   void* p = realloc(nullptr, 0); | 
 |   ASSERT_TRUE(p != nullptr); | 
 |   free(p); | 
 | } | 
 |  | 
 | TEST(malloc, realloc_0) { | 
 |   void* p = malloc(1024); | 
 |   ASSERT_TRUE(p != nullptr); | 
 |   // realloc(p, 0) is actually free(p). | 
 |   void* p2 = realloc(p, 0); | 
 |   ASSERT_TRUE(p2 == nullptr); | 
 | } | 
 |  | 
 | constexpr size_t MAX_LOOPS = 200; | 
 |  | 
 | // Make sure that memory returned by malloc is aligned to allow these data types. | 
 | TEST(malloc, verify_alignment) { | 
 |   uint32_t** values_32 = new uint32_t*[MAX_LOOPS]; | 
 |   uint64_t** values_64 = new uint64_t*[MAX_LOOPS]; | 
 |   long double** values_ldouble = new long double*[MAX_LOOPS]; | 
 |   // Use filler to attempt to force the allocator to get potentially bad alignments. | 
 |   void** filler = new void*[MAX_LOOPS]; | 
 |  | 
 |   for (size_t i = 0; i < MAX_LOOPS; i++) { | 
 |     // Check uint32_t pointers. | 
 |     filler[i] = malloc(1); | 
 |     ASSERT_TRUE(filler[i] != nullptr); | 
 |  | 
 |     values_32[i] = reinterpret_cast<uint32_t*>(malloc(sizeof(uint32_t))); | 
 |     ASSERT_TRUE(values_32[i] != nullptr); | 
 |     *values_32[i] = i; | 
 |     ASSERT_EQ(*values_32[i], i); | 
 |     ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_32[i]) & (sizeof(uint32_t) - 1)); | 
 |  | 
 |     free(filler[i]); | 
 |   } | 
 |  | 
 |   for (size_t i = 0; i < MAX_LOOPS; i++) { | 
 |     // Check uint64_t pointers. | 
 |     filler[i] = malloc(1); | 
 |     ASSERT_TRUE(filler[i] != nullptr); | 
 |  | 
 |     values_64[i] = reinterpret_cast<uint64_t*>(malloc(sizeof(uint64_t))); | 
 |     ASSERT_TRUE(values_64[i] != nullptr); | 
 |     *values_64[i] = 0x1000 + i; | 
 |     ASSERT_EQ(*values_64[i], 0x1000 + i); | 
 |     ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_64[i]) & (sizeof(uint64_t) - 1)); | 
 |  | 
 |     free(filler[i]); | 
 |   } | 
 |  | 
 |   for (size_t i = 0; i < MAX_LOOPS; i++) { | 
 |     // Check long double pointers. | 
 |     filler[i] = malloc(1); | 
 |     ASSERT_TRUE(filler[i] != nullptr); | 
 |  | 
 |     values_ldouble[i] = reinterpret_cast<long double*>(malloc(sizeof(long double))); | 
 |     ASSERT_TRUE(values_ldouble[i] != nullptr); | 
 |     *values_ldouble[i] = 5.5 + i; | 
 |     ASSERT_DOUBLE_EQ(*values_ldouble[i], 5.5 + i); | 
 |     // 32 bit glibc has a long double size of 12 bytes, so hardcode the | 
 |     // required alignment to 0x7. | 
 | #if !defined(__BIONIC__) && !defined(__LP64__) | 
 |     ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_ldouble[i]) & 0x7); | 
 | #else | 
 |     ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(values_ldouble[i]) & (sizeof(long double) - 1)); | 
 | #endif | 
 |  | 
 |     free(filler[i]); | 
 |   } | 
 |  | 
 |   for (size_t i = 0; i < MAX_LOOPS; i++) { | 
 |     free(values_32[i]); | 
 |     free(values_64[i]); | 
 |     free(values_ldouble[i]); | 
 |   } | 
 |  | 
 |   delete[] filler; | 
 |   delete[] values_32; | 
 |   delete[] values_64; | 
 |   delete[] values_ldouble; | 
 | } | 
 |  | 
 | TEST(malloc, mallopt_smoke) { | 
 |   errno = 0; | 
 |   ASSERT_EQ(0, mallopt(-1000, 1)); | 
 |   // mallopt doesn't set errno. | 
 |   ASSERT_EQ(0, errno); | 
 | } | 
 |  | 
 | TEST(malloc, mallopt_decay) { | 
 | #if defined(__BIONIC__) | 
 |   SKIP_WITH_HWASAN << "hwasan does not implement mallopt"; | 
 |   errno = 0; | 
 |   ASSERT_EQ(1, mallopt(M_DECAY_TIME, 1)); | 
 |   ASSERT_EQ(1, mallopt(M_DECAY_TIME, 0)); | 
 |   ASSERT_EQ(1, mallopt(M_DECAY_TIME, 1)); | 
 |   ASSERT_EQ(1, mallopt(M_DECAY_TIME, 0)); | 
 | #else | 
 |   GTEST_SKIP() << "bionic-only test"; | 
 | #endif | 
 | } | 
 |  | 
 | TEST(malloc, mallopt_purge) { | 
 | #if defined(__BIONIC__) | 
 |   SKIP_WITH_HWASAN << "hwasan does not implement mallopt"; | 
 |   errno = 0; | 
 |   ASSERT_EQ(1, mallopt(M_PURGE, 0)); | 
 | #else | 
 |   GTEST_SKIP() << "bionic-only test"; | 
 | #endif | 
 | } | 
 |  | 
 | TEST(malloc, reallocarray_overflow) { | 
 | #if HAVE_REALLOCARRAY | 
 |   // Values that cause overflow to a result small enough (8 on LP64) that malloc would "succeed". | 
 |   size_t a = static_cast<size_t>(INTPTR_MIN + 4); | 
 |   size_t b = 2; | 
 |  | 
 |   errno = 0; | 
 |   ASSERT_TRUE(reallocarray(nullptr, a, b) == nullptr); | 
 |   ASSERT_EQ(ENOMEM, errno); | 
 |  | 
 |   errno = 0; | 
 |   ASSERT_TRUE(reallocarray(nullptr, b, a) == nullptr); | 
 |   ASSERT_EQ(ENOMEM, errno); | 
 | #else | 
 |   GTEST_SKIP() << "reallocarray not available"; | 
 | #endif | 
 | } | 
 |  | 
 | TEST(malloc, reallocarray) { | 
 | #if HAVE_REALLOCARRAY | 
 |   void* p = reallocarray(nullptr, 2, 32); | 
 |   ASSERT_TRUE(p != nullptr); | 
 |   ASSERT_GE(malloc_usable_size(p), 64U); | 
 | #else | 
 |   GTEST_SKIP() << "reallocarray not available"; | 
 | #endif | 
 | } | 
 |  | 
 | TEST(malloc, mallinfo) { | 
 | #if defined(__BIONIC__) | 
 |   SKIP_WITH_HWASAN << "hwasan does not implement mallinfo"; | 
 |   static size_t sizes[] = { | 
 |     8, 32, 128, 4096, 32768, 131072, 1024000, 10240000, 20480000, 300000000 | 
 |   }; | 
 |  | 
 |   constexpr static size_t kMaxAllocs = 50; | 
 |  | 
 |   for (size_t size : sizes) { | 
 |     // If some of these allocations are stuck in a thread cache, then keep | 
 |     // looping until we make an allocation that changes the total size of the | 
 |     // memory allocated. | 
 |     // jemalloc implementations counts the thread cache allocations against | 
 |     // total memory allocated. | 
 |     void* ptrs[kMaxAllocs] = {}; | 
 |     bool pass = false; | 
 |     for (size_t i = 0; i < kMaxAllocs; i++) { | 
 |       size_t allocated = mallinfo().uordblks; | 
 |       ptrs[i] = malloc(size); | 
 |       ASSERT_TRUE(ptrs[i] != nullptr); | 
 |       size_t new_allocated = mallinfo().uordblks; | 
 |       if (allocated != new_allocated) { | 
 |         size_t usable_size = malloc_usable_size(ptrs[i]); | 
 |         // Only check if the total got bigger by at least allocation size. | 
 |         // Sometimes the mallinfo numbers can go backwards due to compaction | 
 |         // and/or freeing of cached data. | 
 |         if (new_allocated >= allocated + usable_size) { | 
 |           pass = true; | 
 |           break; | 
 |         } | 
 |       } | 
 |     } | 
 |     for (void* ptr : ptrs) { | 
 |       free(ptr); | 
 |     } | 
 |     ASSERT_TRUE(pass) | 
 |         << "For size " << size << " allocated bytes did not increase after " | 
 |         << kMaxAllocs << " allocations."; | 
 |   } | 
 | #else | 
 |   GTEST_SKIP() << "glibc is broken"; | 
 | #endif | 
 | } | 
 |  | 
 | template <typename Type> | 
 | void __attribute__((optnone)) VerifyAlignment(Type* floating) { | 
 |   size_t expected_alignment = alignof(Type); | 
 |   if (expected_alignment != 0) { | 
 |     ASSERT_EQ(0U, (expected_alignment - 1) & reinterpret_cast<uintptr_t>(floating)) | 
 |         << "Expected alignment " << expected_alignment << " ptr value " << floating; | 
 |   } | 
 | } | 
 |  | 
 | template <typename Type> | 
 | void __attribute__((optnone)) TestAllocateType() { | 
 |   // The number of allocations to do in a row. This is to attempt to | 
 |   // expose the worst case alignment for native allocators that use | 
 |   // bins. | 
 |   static constexpr size_t kMaxConsecutiveAllocs = 100; | 
 |  | 
 |   // Verify using new directly. | 
 |   Type* types[kMaxConsecutiveAllocs]; | 
 |   for (size_t i = 0; i < kMaxConsecutiveAllocs; i++) { | 
 |     types[i] = new Type; | 
 |     VerifyAlignment(types[i]); | 
 |     if (::testing::Test::HasFatalFailure()) { | 
 |       return; | 
 |     } | 
 |   } | 
 |   for (size_t i = 0; i < kMaxConsecutiveAllocs; i++) { | 
 |     delete types[i]; | 
 |   } | 
 |  | 
 |   // Verify using malloc. | 
 |   for (size_t i = 0; i < kMaxConsecutiveAllocs; i++) { | 
 |     types[i] = reinterpret_cast<Type*>(malloc(sizeof(Type))); | 
 |     ASSERT_TRUE(types[i] != nullptr); | 
 |     VerifyAlignment(types[i]); | 
 |     if (::testing::Test::HasFatalFailure()) { | 
 |       return; | 
 |     } | 
 |   } | 
 |   for (size_t i = 0; i < kMaxConsecutiveAllocs; i++) { | 
 |     free(types[i]); | 
 |   } | 
 |  | 
 |   // Verify using a vector. | 
 |   std::vector<Type> type_vector(kMaxConsecutiveAllocs); | 
 |   for (size_t i = 0; i < type_vector.size(); i++) { | 
 |     VerifyAlignment(&type_vector[i]); | 
 |     if (::testing::Test::HasFatalFailure()) { | 
 |       return; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | #if defined(__ANDROID__) | 
 | static void __attribute__((optnone)) AndroidVerifyAlignment(size_t alloc_size, size_t aligned_bytes) { | 
 |   void* ptrs[100]; | 
 |   uintptr_t mask = aligned_bytes - 1; | 
 |   for (size_t i = 0; i < sizeof(ptrs) / sizeof(void*); i++) { | 
 |     ptrs[i] = malloc(alloc_size); | 
 |     ASSERT_TRUE(ptrs[i] != nullptr); | 
 |     ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(ptrs[i]) & mask) | 
 |         << "Expected at least " << aligned_bytes << " byte alignment: size " | 
 |         << alloc_size << " actual ptr " << ptrs[i]; | 
 |   } | 
 | } | 
 | #endif | 
 |  | 
 | TEST(malloc, align_check) { | 
 |   // See http://www.open-std.org/jtc1/sc22/wg14/www/docs/summary.htm#dr_445 | 
 |   // for a discussion of type alignment. | 
 |   ASSERT_NO_FATAL_FAILURE(TestAllocateType<float>()); | 
 |   ASSERT_NO_FATAL_FAILURE(TestAllocateType<double>()); | 
 |   ASSERT_NO_FATAL_FAILURE(TestAllocateType<long double>()); | 
 |  | 
 |   ASSERT_NO_FATAL_FAILURE(TestAllocateType<char>()); | 
 |   ASSERT_NO_FATAL_FAILURE(TestAllocateType<char16_t>()); | 
 |   ASSERT_NO_FATAL_FAILURE(TestAllocateType<char32_t>()); | 
 |   ASSERT_NO_FATAL_FAILURE(TestAllocateType<wchar_t>()); | 
 |   ASSERT_NO_FATAL_FAILURE(TestAllocateType<signed char>()); | 
 |   ASSERT_NO_FATAL_FAILURE(TestAllocateType<short int>()); | 
 |   ASSERT_NO_FATAL_FAILURE(TestAllocateType<int>()); | 
 |   ASSERT_NO_FATAL_FAILURE(TestAllocateType<long int>()); | 
 |   ASSERT_NO_FATAL_FAILURE(TestAllocateType<long long int>()); | 
 |   ASSERT_NO_FATAL_FAILURE(TestAllocateType<unsigned char>()); | 
 |   ASSERT_NO_FATAL_FAILURE(TestAllocateType<unsigned short int>()); | 
 |   ASSERT_NO_FATAL_FAILURE(TestAllocateType<unsigned int>()); | 
 |   ASSERT_NO_FATAL_FAILURE(TestAllocateType<unsigned long int>()); | 
 |   ASSERT_NO_FATAL_FAILURE(TestAllocateType<unsigned long long int>()); | 
 |  | 
 | #if defined(__ANDROID__) | 
 |   // On Android, there is a lot of code that expects certain alignments: | 
 |   // - Allocations of a size that rounds up to a multiple of 16 bytes | 
 |   //   must have at least 16 byte alignment. | 
 |   // - Allocations of a size that rounds up to a multiple of 8 bytes and | 
 |   //   not 16 bytes, are only required to have at least 8 byte alignment. | 
 |   // This is regardless of whether it is in a 32 bit or 64 bit environment. | 
 |  | 
 |   // See http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2293.htm for | 
 |   // a discussion of this alignment mess. The code below is enforcing | 
 |   // strong-alignment, since who knows what code depends on this behavior now. | 
 |   for (size_t i = 1; i <= 128; i++) { | 
 |     size_t rounded = (i + 7) & ~7; | 
 |     if ((rounded % 16) == 0) { | 
 |       AndroidVerifyAlignment(i, 16); | 
 |     } else { | 
 |       AndroidVerifyAlignment(i, 8); | 
 |     } | 
 |     if (::testing::Test::HasFatalFailure()) { | 
 |       return; | 
 |     } | 
 |   } | 
 | #endif | 
 | } | 
 |  | 
 | // Jemalloc doesn't pass this test right now, so leave it as disabled. | 
 | TEST(malloc, DISABLED_alloc_after_fork) { | 
 |   // Both of these need to be a power of 2. | 
 |   static constexpr size_t kMinAllocationSize = 8; | 
 |   static constexpr size_t kMaxAllocationSize = 2097152; | 
 |  | 
 |   static constexpr size_t kNumAllocatingThreads = 5; | 
 |   static constexpr size_t kNumForkLoops = 100; | 
 |  | 
 |   std::atomic_bool stop; | 
 |  | 
 |   // Create threads that simply allocate and free different sizes. | 
 |   std::vector<std::thread*> threads; | 
 |   for (size_t i = 0; i < kNumAllocatingThreads; i++) { | 
 |     std::thread* t = new std::thread([&stop] { | 
 |       while (!stop) { | 
 |         for (size_t size = kMinAllocationSize; size <= kMaxAllocationSize; size <<= 1) { | 
 |           void* ptr = malloc(size); | 
 |           if (ptr == nullptr) { | 
 |             return; | 
 |           } | 
 |           // Make sure this value is not optimized away. | 
 |           asm volatile("" : : "r,m"(ptr) : "memory"); | 
 |           free(ptr); | 
 |         } | 
 |       } | 
 |     }); | 
 |     threads.push_back(t); | 
 |   } | 
 |  | 
 |   // Create a thread to fork and allocate. | 
 |   for (size_t i = 0; i < kNumForkLoops; i++) { | 
 |     pid_t pid; | 
 |     if ((pid = fork()) == 0) { | 
 |       for (size_t size = kMinAllocationSize; size <= kMaxAllocationSize; size <<= 1) { | 
 |         void* ptr = malloc(size); | 
 |         ASSERT_TRUE(ptr != nullptr); | 
 |         // Make sure this value is not optimized away. | 
 |         asm volatile("" : : "r,m"(ptr) : "memory"); | 
 |         // Make sure we can touch all of the allocation. | 
 |         memset(ptr, 0x1, size); | 
 |         ASSERT_LE(size, malloc_usable_size(ptr)); | 
 |         free(ptr); | 
 |       } | 
 |       _exit(10); | 
 |     } | 
 |     ASSERT_NE(-1, pid); | 
 |     AssertChildExited(pid, 10); | 
 |   } | 
 |  | 
 |   stop = true; | 
 |   for (auto thread : threads) { | 
 |     thread->join(); | 
 |     delete thread; | 
 |   } | 
 | } | 
 |  | 
 | TEST(android_mallopt, error_on_unexpected_option) { | 
 | #if defined(__BIONIC__) | 
 |   const int unrecognized_option = -1; | 
 |   errno = 0; | 
 |   EXPECT_EQ(false, android_mallopt(unrecognized_option, nullptr, 0)); | 
 |   EXPECT_EQ(ENOTSUP, errno); | 
 | #else | 
 |   GTEST_SKIP() << "bionic-only test"; | 
 | #endif | 
 | } | 
 |  | 
 | bool IsDynamic() { | 
 | #if defined(__LP64__) | 
 |   Elf64_Ehdr ehdr; | 
 | #else | 
 |   Elf32_Ehdr ehdr; | 
 | #endif | 
 |   std::string path(android::base::GetExecutablePath()); | 
 |  | 
 |   int fd = open(path.c_str(), O_RDONLY | O_CLOEXEC); | 
 |   if (fd == -1) { | 
 |     // Assume dynamic on error. | 
 |     return true; | 
 |   } | 
 |   bool read_completed = android::base::ReadFully(fd, &ehdr, sizeof(ehdr)); | 
 |   close(fd); | 
 |   // Assume dynamic in error cases. | 
 |   return !read_completed || ehdr.e_type == ET_DYN; | 
 | } | 
 |  | 
 | TEST(android_mallopt, init_zygote_child_profiling) { | 
 | #if defined(__BIONIC__) | 
 |   // Successful call. | 
 |   errno = 0; | 
 |   if (IsDynamic()) { | 
 |     EXPECT_EQ(true, android_mallopt(M_INIT_ZYGOTE_CHILD_PROFILING, nullptr, 0)); | 
 |     EXPECT_EQ(0, errno); | 
 |   } else { | 
 |     // Not supported in static executables. | 
 |     EXPECT_EQ(false, android_mallopt(M_INIT_ZYGOTE_CHILD_PROFILING, nullptr, 0)); | 
 |     EXPECT_EQ(ENOTSUP, errno); | 
 |   } | 
 |  | 
 |   // Unexpected arguments rejected. | 
 |   errno = 0; | 
 |   char unexpected = 0; | 
 |   EXPECT_EQ(false, android_mallopt(M_INIT_ZYGOTE_CHILD_PROFILING, &unexpected, 1)); | 
 |   if (IsDynamic()) { | 
 |     EXPECT_EQ(EINVAL, errno); | 
 |   } else { | 
 |     EXPECT_EQ(ENOTSUP, errno); | 
 |   } | 
 | #else | 
 |   GTEST_SKIP() << "bionic-only test"; | 
 | #endif | 
 | } | 
 |  | 
 | #if defined(__BIONIC__) | 
 | template <typename FuncType> | 
 | void CheckAllocationFunction(FuncType func) { | 
 |   // Assumes that no more than 108MB of memory is allocated before this. | 
 |   size_t limit = 128 * 1024 * 1024; | 
 |   ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit))); | 
 |   if (!func(20 * 1024 * 1024)) | 
 |     exit(1); | 
 |   if (func(128 * 1024 * 1024)) | 
 |     exit(1); | 
 |   exit(0); | 
 | } | 
 | #endif | 
 |  | 
 | TEST(android_mallopt, set_allocation_limit) { | 
 | #if defined(__BIONIC__) | 
 |   EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return calloc(bytes, 1) != nullptr; }), | 
 |               testing::ExitedWithCode(0), ""); | 
 |   EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return calloc(1, bytes) != nullptr; }), | 
 |               testing::ExitedWithCode(0), ""); | 
 |   EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return malloc(bytes) != nullptr; }), | 
 |               testing::ExitedWithCode(0), ""); | 
 |   EXPECT_EXIT(CheckAllocationFunction( | 
 |                   [](size_t bytes) { return memalign(sizeof(void*), bytes) != nullptr; }), | 
 |               testing::ExitedWithCode(0), ""); | 
 |   EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { | 
 |                 void* ptr; | 
 |                 return posix_memalign(&ptr, sizeof(void *), bytes) == 0; | 
 |               }), | 
 |               testing::ExitedWithCode(0), ""); | 
 |   EXPECT_EXIT(CheckAllocationFunction( | 
 |                   [](size_t bytes) { return aligned_alloc(sizeof(void*), bytes) != nullptr; }), | 
 |               testing::ExitedWithCode(0), ""); | 
 |   EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { | 
 |                 void* p = malloc(1024 * 1024); | 
 |                 return realloc(p, bytes) != nullptr; | 
 |               }), | 
 |               testing::ExitedWithCode(0), ""); | 
 | #if !defined(__LP64__) | 
 |   EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return pvalloc(bytes) != nullptr; }), | 
 |               testing::ExitedWithCode(0), ""); | 
 |   EXPECT_EXIT(CheckAllocationFunction([](size_t bytes) { return valloc(bytes) != nullptr; }), | 
 |               testing::ExitedWithCode(0), ""); | 
 | #endif | 
 | #else | 
 |   GTEST_SKIP() << "bionic extension"; | 
 | #endif | 
 | } | 
 |  | 
 | TEST(android_mallopt, set_allocation_limit_multiple) { | 
 | #if defined(__BIONIC__) | 
 |   // Only the first set should work. | 
 |   size_t limit = 256 * 1024 * 1024; | 
 |   ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit))); | 
 |   limit = 32 * 1024 * 1024; | 
 |   ASSERT_FALSE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit))); | 
 | #else | 
 |   GTEST_SKIP() << "bionic extension"; | 
 | #endif | 
 | } | 
 |  | 
 | #if defined(__BIONIC__) | 
 | static constexpr size_t kAllocationSize = 8 * 1024 * 1024; | 
 |  | 
 | static size_t GetMaxAllocations() { | 
 |   size_t max_pointers = 0; | 
 |   void* ptrs[20]; | 
 |   for (size_t i = 0; i < sizeof(ptrs) / sizeof(void*); i++) { | 
 |     ptrs[i] = malloc(kAllocationSize); | 
 |     if (ptrs[i] == nullptr) { | 
 |       max_pointers = i; | 
 |       break; | 
 |     } | 
 |   } | 
 |   for (size_t i = 0; i < max_pointers; i++) { | 
 |     free(ptrs[i]); | 
 |   } | 
 |   return max_pointers; | 
 | } | 
 |  | 
 | static void VerifyMaxPointers(size_t max_pointers) { | 
 |   // Now verify that we can allocate the same number as before. | 
 |   void* ptrs[20]; | 
 |   for (size_t i = 0; i < max_pointers; i++) { | 
 |     ptrs[i] = malloc(kAllocationSize); | 
 |     ASSERT_TRUE(ptrs[i] != nullptr) << "Failed to allocate on iteration " << i; | 
 |   } | 
 |  | 
 |   // Make sure the next allocation still fails. | 
 |   ASSERT_TRUE(malloc(kAllocationSize) == nullptr); | 
 |   for (size_t i = 0; i < max_pointers; i++) { | 
 |     free(ptrs[i]); | 
 |   } | 
 | } | 
 | #endif | 
 |  | 
 | TEST(android_mallopt, set_allocation_limit_realloc_increase) { | 
 | #if defined(__BIONIC__) | 
 |   size_t limit = 128 * 1024 * 1024; | 
 |   ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit))); | 
 |  | 
 |   size_t max_pointers = GetMaxAllocations(); | 
 |   ASSERT_TRUE(max_pointers != 0) << "Limit never reached."; | 
 |  | 
 |   void* memory = malloc(10 * 1024 * 1024); | 
 |   ASSERT_TRUE(memory != nullptr); | 
 |  | 
 |   // Increase size. | 
 |   memory = realloc(memory, 20 * 1024 * 1024); | 
 |   ASSERT_TRUE(memory != nullptr); | 
 |   memory = realloc(memory, 40 * 1024 * 1024); | 
 |   ASSERT_TRUE(memory != nullptr); | 
 |   memory = realloc(memory, 60 * 1024 * 1024); | 
 |   ASSERT_TRUE(memory != nullptr); | 
 |   memory = realloc(memory, 80 * 1024 * 1024); | 
 |   ASSERT_TRUE(memory != nullptr); | 
 |   // Now push past limit. | 
 |   memory = realloc(memory, 130 * 1024 * 1024); | 
 |   ASSERT_TRUE(memory == nullptr); | 
 |  | 
 |   VerifyMaxPointers(max_pointers); | 
 | #else | 
 |   GTEST_SKIP() << "bionic extension"; | 
 | #endif | 
 | } | 
 |  | 
 | TEST(android_mallopt, set_allocation_limit_realloc_decrease) { | 
 | #if defined(__BIONIC__) | 
 |   size_t limit = 100 * 1024 * 1024; | 
 |   ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit))); | 
 |  | 
 |   size_t max_pointers = GetMaxAllocations(); | 
 |   ASSERT_TRUE(max_pointers != 0) << "Limit never reached."; | 
 |  | 
 |   void* memory = malloc(80 * 1024 * 1024); | 
 |   ASSERT_TRUE(memory != nullptr); | 
 |  | 
 |   // Decrease size. | 
 |   memory = realloc(memory, 60 * 1024 * 1024); | 
 |   ASSERT_TRUE(memory != nullptr); | 
 |   memory = realloc(memory, 40 * 1024 * 1024); | 
 |   ASSERT_TRUE(memory != nullptr); | 
 |   memory = realloc(memory, 20 * 1024 * 1024); | 
 |   ASSERT_TRUE(memory != nullptr); | 
 |   memory = realloc(memory, 10 * 1024 * 1024); | 
 |   ASSERT_TRUE(memory != nullptr); | 
 |   free(memory); | 
 |  | 
 |   VerifyMaxPointers(max_pointers); | 
 | #else | 
 |   GTEST_SKIP() << "bionic extension"; | 
 | #endif | 
 | } | 
 |  | 
 | TEST(android_mallopt, set_allocation_limit_realloc_free) { | 
 | #if defined(__BIONIC__) | 
 |   size_t limit = 100 * 1024 * 1024; | 
 |   ASSERT_TRUE(android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit))); | 
 |  | 
 |   size_t max_pointers = GetMaxAllocations(); | 
 |   ASSERT_TRUE(max_pointers != 0) << "Limit never reached."; | 
 |  | 
 |   void* memory = malloc(60 * 1024 * 1024); | 
 |   ASSERT_TRUE(memory != nullptr); | 
 |  | 
 |   memory = realloc(memory, 0); | 
 |   ASSERT_TRUE(memory == nullptr); | 
 |  | 
 |   VerifyMaxPointers(max_pointers); | 
 | #else | 
 |   GTEST_SKIP() << "bionic extension"; | 
 | #endif | 
 | } | 
 |  | 
 | #if defined(__BIONIC__) | 
 | static void* SetAllocationLimit(void* data) { | 
 |   std::atomic_bool* go = reinterpret_cast<std::atomic_bool*>(data); | 
 |   while (!go->load()) { | 
 |   } | 
 |   size_t limit = 500 * 1024 * 1024; | 
 |   if (android_mallopt(M_SET_ALLOCATION_LIMIT_BYTES, &limit, sizeof(limit))) { | 
 |     return reinterpret_cast<void*>(-1); | 
 |   } | 
 |   return nullptr; | 
 | } | 
 |  | 
 | static void SetAllocationLimitMultipleThreads() { | 
 |   std::atomic_bool go; | 
 |   go = false; | 
 |  | 
 |   static constexpr size_t kNumThreads = 4; | 
 |   pthread_t threads[kNumThreads]; | 
 |   for (size_t i = 0; i < kNumThreads; i++) { | 
 |     ASSERT_EQ(0, pthread_create(&threads[i], nullptr, SetAllocationLimit, &go)); | 
 |   } | 
 |  | 
 |   // Let them go all at once. | 
 |   go = true; | 
 |   // Send hardcoded signal (BIONIC_SIGNAL_PROFILER with value 0) to trigger | 
 |   // heapprofd handler. | 
 |   union sigval signal_value; | 
 |   signal_value.sival_int = 0; | 
 |   ASSERT_EQ(0, sigqueue(getpid(), BIONIC_SIGNAL_PROFILER, signal_value)); | 
 |  | 
 |   size_t num_successful = 0; | 
 |   for (size_t i = 0; i < kNumThreads; i++) { | 
 |     void* result; | 
 |     ASSERT_EQ(0, pthread_join(threads[i], &result)); | 
 |     if (result != nullptr) { | 
 |       num_successful++; | 
 |     } | 
 |   } | 
 |   ASSERT_EQ(1U, num_successful); | 
 |   exit(0); | 
 | } | 
 | #endif | 
 |  | 
 | TEST(android_mallopt, set_allocation_limit_multiple_threads) { | 
 | #if defined(__BIONIC__) | 
 |   if (IsDynamic()) { | 
 |     ASSERT_TRUE(android_mallopt(M_INIT_ZYGOTE_CHILD_PROFILING, nullptr, 0)); | 
 |   } | 
 |  | 
 |   // Run this a number of times as a stress test. | 
 |   for (size_t i = 0; i < 100; i++) { | 
 |     // Not using ASSERT_EXIT because errors messages are not displayed. | 
 |     pid_t pid; | 
 |     if ((pid = fork()) == 0) { | 
 |       ASSERT_NO_FATAL_FAILURE(SetAllocationLimitMultipleThreads()); | 
 |     } | 
 |     ASSERT_NE(-1, pid); | 
 |     int status; | 
 |     ASSERT_EQ(pid, wait(&status)); | 
 |     ASSERT_EQ(0, WEXITSTATUS(status)); | 
 |   } | 
 | #else | 
 |   GTEST_SKIP() << "bionic extension"; | 
 | #endif | 
 | } | 
 |  | 
 | #if defined(__BIONIC__) && defined(__aarch64__) && defined(ANDROID_EXPERIMENTAL_MTE) | 
 | template <int SiCode> void CheckSiCode(int, siginfo_t* info, void*) { | 
 |   if (info->si_code != SiCode) { | 
 |     _exit(2); | 
 |   } | 
 |   _exit(1); | 
 | } | 
 |  | 
 | static bool SetTagCheckingLevel(int level) { | 
 |   int tagged_addr_ctrl = prctl(PR_GET_TAGGED_ADDR_CTRL, 0, 0, 0, 0); | 
 |   if (tagged_addr_ctrl < 0) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   tagged_addr_ctrl = (tagged_addr_ctrl & ~PR_MTE_TCF_MASK) | level; | 
 |   return prctl(PR_SET_TAGGED_ADDR_CTRL, tagged_addr_ctrl, 0, 0, 0) == 0; | 
 | } | 
 | #endif | 
 |  | 
 | TEST(android_mallopt, tag_level) { | 
 | #if defined(__BIONIC__) && defined(__aarch64__) && defined(ANDROID_EXPERIMENTAL_MTE) | 
 |   if (!(getauxval(AT_HWCAP2) & HWCAP2_MTE)) { | 
 |     GTEST_SKIP() << "requires MTE support"; | 
 |     return; | 
 |   } | 
 |  | 
 |   std::unique_ptr<int[]> p = std::make_unique<int[]>(4); | 
 |  | 
 |   // First, check that memory tagging is enabled and the default tag checking level is async. | 
 |   // We assume that scudo is used on all MTE enabled hardware; scudo inserts a header with a | 
 |   // mismatching tag before each allocation. | 
 |   EXPECT_EXIT( | 
 |       { | 
 |         ScopedSignalHandler ssh(SIGSEGV, CheckSiCode<SEGV_MTEAERR>, SA_SIGINFO); | 
 |         p[-1] = 42; | 
 |       }, | 
 |       testing::ExitedWithCode(1), ""); | 
 |  | 
 |   EXPECT_TRUE(SetTagCheckingLevel(PR_MTE_TCF_SYNC)); | 
 |   EXPECT_EXIT( | 
 |       { | 
 |         ScopedSignalHandler ssh(SIGSEGV, CheckSiCode<SEGV_MTESERR>, SA_SIGINFO); | 
 |         p[-1] = 42; | 
 |       }, | 
 |       testing::ExitedWithCode(1), ""); | 
 |  | 
 |   EXPECT_TRUE(SetTagCheckingLevel(PR_MTE_TCF_NONE)); | 
 |   volatile int oob ATTRIBUTE_UNUSED = p[-1]; | 
 |  | 
 |   HeapTaggingLevel tag_level = M_HEAP_TAGGING_LEVEL_TBI; | 
 |   EXPECT_FALSE(android_mallopt(M_SET_HEAP_TAGGING_LEVEL, &tag_level, sizeof(tag_level))); | 
 |  | 
 |   tag_level = M_HEAP_TAGGING_LEVEL_NONE; | 
 |   EXPECT_TRUE(android_mallopt(M_SET_HEAP_TAGGING_LEVEL, &tag_level, sizeof(tag_level))); | 
 |   std::unique_ptr<int[]> p2 = std::make_unique<int[]>(4); | 
 |   EXPECT_EQ(0u, reinterpret_cast<uintptr_t>(p2.get()) >> 56); | 
 |  | 
 |   tag_level = M_HEAP_TAGGING_LEVEL_ASYNC; | 
 |   EXPECT_FALSE(android_mallopt(M_SET_HEAP_TAGGING_LEVEL, &tag_level, sizeof(tag_level))); | 
 |  | 
 |   tag_level = M_HEAP_TAGGING_LEVEL_NONE; | 
 |   EXPECT_TRUE(android_mallopt(M_SET_HEAP_TAGGING_LEVEL, &tag_level, sizeof(tag_level))); | 
 | #else | 
 |   GTEST_SKIP() << "arm64 only"; | 
 | #endif | 
 | } |