blob: 38f61e9b1fd4a2029b83e0ebe8ac48ff9258bcc4 [file] [log] [blame]
// Copyright 2022 The Abseil Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Simultaneous memcopy and CRC-32C for x86-64 and ARM 64. Uses integer
// registers because XMM registers do not support the CRC instruction (yet).
// While copying, compute the running CRC of the data being copied.
//
// It is assumed that any CPU running this code has SSE4.2 instructions
// available (for CRC32C). This file will do nothing if that is not true.
//
// The CRC instruction has a 3-byte latency, and we are stressing the ALU ports
// here (unlike a traditional memcopy, which has almost no ALU use), so we will
// need to copy in such a way that the CRC unit is used efficiently. We have two
// regimes in this code:
// 1. For operations of size < kCrcSmallSize, do the CRC then the memcpy
// 2. For operations of size > kCrcSmallSize:
// a) compute an initial CRC + copy on a small amount of data to align the
// destination pointer on a 16-byte boundary.
// b) Split the data into 3 main regions and a tail (smaller than 48 bytes)
// c) Do the copy and CRC of the 3 main regions, interleaving (start with
// full cache line copies for each region, then move to single 16 byte
// pieces per region).
// d) Combine the CRCs with CRC32C::Concat.
// e) Copy the tail and extend the CRC with the CRC of the tail.
// This method is not ideal for op sizes between ~1k and ~8k because CRC::Concat
// takes a significant amount of time. A medium-sized approach could be added
// using 3 CRCs over fixed-size blocks where the zero-extensions required for
// CRC32C::Concat can be precomputed.
#ifdef __SSE4_2__
#include <immintrin.h>
#endif
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include <array>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <memory>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/optimization.h"
#include "absl/base/prefetch.h"
#include "absl/crc/crc32c.h"
#include "absl/crc/internal/cpu_detect.h"
#include "absl/crc/internal/crc32_x86_arm_combined_simd.h"
#include "absl/crc/internal/crc_memcpy.h"
#include "absl/strings/string_view.h"
#if defined(ABSL_INTERNAL_HAVE_X86_64_ACCELERATED_CRC_MEMCPY_ENGINE) || \
defined(ABSL_INTERNAL_HAVE_ARM_ACCELERATED_CRC_MEMCPY_ENGINE)
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace crc_internal {
namespace {
inline crc32c_t ShortCrcCopy(char* dst, const char* src, std::size_t length,
crc32c_t crc) {
// Small copy: just go 1 byte at a time: being nice to the branch predictor
// is more important here than anything else
uint32_t crc_uint32 = static_cast<uint32_t>(crc);
for (std::size_t i = 0; i < length; i++) {
uint8_t data = *reinterpret_cast<const uint8_t*>(src);
crc_uint32 = CRC32_u8(crc_uint32, data);
*reinterpret_cast<uint8_t*>(dst) = data;
++src;
++dst;
}
return crc32c_t{crc_uint32};
}
constexpr size_t kIntLoadsPerVec = sizeof(V128) / sizeof(uint64_t);
// Common function for copying the tails of multiple large regions.
// Disable ubsan for benign unaligned access. See b/254108538.
template <size_t vec_regions, size_t int_regions>
ABSL_ATTRIBUTE_NO_SANITIZE_UNDEFINED inline void LargeTailCopy(
crc32c_t* crcs, char** dst, const char** src, size_t region_size,
size_t copy_rounds) {
std::array<V128, vec_regions> data;
std::array<uint64_t, kIntLoadsPerVec * int_regions> int_data;
while (copy_rounds > 0) {
for (size_t i = 0; i < vec_regions; i++) {
size_t region = i;
auto* vsrc = reinterpret_cast<const V128*>(*src + region_size * region);
auto* vdst = reinterpret_cast<V128*>(*dst + region_size * region);
// Load the blocks, unaligned
data[i] = V128_LoadU(vsrc);
// Store the blocks, aligned
V128_Store(vdst, data[i]);
// Compute the running CRC
crcs[region] = crc32c_t{static_cast<uint32_t>(
CRC32_u64(static_cast<uint32_t>(crcs[region]),
static_cast<uint64_t>(V128_Extract64<0>(data[i]))))};
crcs[region] = crc32c_t{static_cast<uint32_t>(
CRC32_u64(static_cast<uint32_t>(crcs[region]),
static_cast<uint64_t>(V128_Extract64<1>(data[i]))))};
}
for (size_t i = 0; i < int_regions; i++) {
size_t region = vec_regions + i;
auto* usrc =
reinterpret_cast<const uint64_t*>(*src + region_size * region);
auto* udst = reinterpret_cast<uint64_t*>(*dst + region_size * region);
for (size_t j = 0; j < kIntLoadsPerVec; j++) {
size_t data_index = i * kIntLoadsPerVec + j;
int_data[data_index] = *(usrc + j);
crcs[region] = crc32c_t{CRC32_u64(static_cast<uint32_t>(crcs[region]),
int_data[data_index])};
*(udst + j) = int_data[data_index];
}
}
// Increment pointers
*src += sizeof(V128);
*dst += sizeof(V128);
--copy_rounds;
}
}
} // namespace
template <size_t vec_regions, size_t int_regions>
class AcceleratedCrcMemcpyEngine : public CrcMemcpyEngine {
public:
AcceleratedCrcMemcpyEngine() = default;
AcceleratedCrcMemcpyEngine(const AcceleratedCrcMemcpyEngine&) = delete;
AcceleratedCrcMemcpyEngine operator=(const AcceleratedCrcMemcpyEngine&) =
delete;
crc32c_t Compute(void* __restrict dst, const void* __restrict src,
std::size_t length, crc32c_t initial_crc) const override;
};
// Disable ubsan for benign unaligned access. See b/254108538.
template <size_t vec_regions, size_t int_regions>
ABSL_ATTRIBUTE_NO_SANITIZE_UNDEFINED crc32c_t
AcceleratedCrcMemcpyEngine<vec_regions, int_regions>::Compute(
void* __restrict dst, const void* __restrict src, std::size_t length,
crc32c_t initial_crc) const {
constexpr std::size_t kRegions = vec_regions + int_regions;
static_assert(kRegions > 0, "Must specify at least one region.");
constexpr uint32_t kCrcDataXor = uint32_t{0xffffffff};
constexpr std::size_t kBlockSize = sizeof(V128);
constexpr std::size_t kCopyRoundSize = kRegions * kBlockSize;
// Number of blocks per cacheline.
constexpr std::size_t kBlocksPerCacheLine = ABSL_CACHELINE_SIZE / kBlockSize;
char* dst_bytes = static_cast<char*>(dst);
const char* src_bytes = static_cast<const char*>(src);
// Make sure that one prefetch per big block is enough to cover the whole
// dataset, and we don't prefetch too much.
static_assert(ABSL_CACHELINE_SIZE % kBlockSize == 0,
"Cache lines are not divided evenly into blocks, may have "
"unintended behavior!");
// Experimentally-determined boundary between a small and large copy.
// Below this number, spin-up and concatenation of CRCs takes enough time that
// it kills the throughput gains of using 3 regions and wide vectors.
constexpr size_t kCrcSmallSize = 256;
// Experimentally-determined prefetch distance. Main loop copies will
// prefeth data 2 cache lines ahead.
constexpr std::size_t kPrefetchAhead = 2 * ABSL_CACHELINE_SIZE;
// Small-size CRC-memcpy : just do CRC + memcpy
if (length < kCrcSmallSize) {
crc32c_t crc =
ExtendCrc32c(initial_crc, absl::string_view(src_bytes, length));
memcpy(dst, src, length);
return crc;
}
// Start work on the CRC: undo the XOR from the previous calculation or set up
// the initial value of the CRC.
initial_crc = crc32c_t{static_cast<uint32_t>(initial_crc) ^ kCrcDataXor};
// Do an initial alignment copy, so we can use aligned store instructions to
// the destination pointer. We align the destination pointer because the
// penalty for an unaligned load is small compared to the penalty of an
// unaligned store on modern CPUs.
std::size_t bytes_from_last_aligned =
reinterpret_cast<uintptr_t>(dst) & (kBlockSize - 1);
if (bytes_from_last_aligned != 0) {
std::size_t bytes_for_alignment = kBlockSize - bytes_from_last_aligned;
// Do the short-sized copy and CRC.
initial_crc =
ShortCrcCopy(dst_bytes, src_bytes, bytes_for_alignment, initial_crc);
src_bytes += bytes_for_alignment;
dst_bytes += bytes_for_alignment;
length -= bytes_for_alignment;
}
// We are going to do the copy and CRC in kRegions regions to make sure that
// we can saturate the CRC unit. The CRCs will be combined at the end of the
// run. Copying will use the SSE registers, and we will extract words from
// the SSE registers to add to the CRC. Initially, we run the loop one full
// cache line per region at a time, in order to insert prefetches.
// Initialize CRCs for kRegions regions.
crc32c_t crcs[kRegions];
crcs[0] = initial_crc;
for (size_t i = 1; i < kRegions; i++) {
crcs[i] = crc32c_t{kCrcDataXor};
}
// Find the number of rounds to copy and the region size. Also compute the
// tail size here.
size_t copy_rounds = length / kCopyRoundSize;
// Find the size of each region and the size of the tail.
const std::size_t region_size = copy_rounds * kBlockSize;
const std::size_t tail_size = length - (kRegions * region_size);
// Holding registers for data in each region.
std::array<V128, vec_regions> vec_data;
std::array<uint64_t, int_regions * kIntLoadsPerVec> int_data;
// Main loop.
while (copy_rounds > kBlocksPerCacheLine) {
// Prefetch kPrefetchAhead bytes ahead of each pointer.
for (size_t i = 0; i < kRegions; i++) {
absl::PrefetchToLocalCache(src_bytes + kPrefetchAhead + region_size * i);
#ifdef ABSL_INTERNAL_HAVE_X86_64_ACCELERATED_CRC_MEMCPY_ENGINE
// TODO(b/297082454): investigate dropping prefetch on x86.
absl::PrefetchToLocalCache(dst_bytes + kPrefetchAhead + region_size * i);
#endif
}
// Load and store data, computing CRC on the way.
for (size_t i = 0; i < kBlocksPerCacheLine; i++) {
// Copy and CRC the data for the CRC regions.
for (size_t j = 0; j < vec_regions; j++) {
// Cycle which regions get vector load/store and integer load/store, to
// engage prefetching logic around vector load/stores and save issue
// slots by using the integer registers.
size_t region = (j + i) % kRegions;
auto* vsrc =
reinterpret_cast<const V128*>(src_bytes + region_size * region);
auto* vdst = reinterpret_cast<V128*>(dst_bytes + region_size * region);
// Load and CRC data.
vec_data[j] = V128_LoadU(vsrc + i);
crcs[region] = crc32c_t{static_cast<uint32_t>(
CRC32_u64(static_cast<uint32_t>(crcs[region]),
static_cast<uint64_t>(V128_Extract64<0>(vec_data[j]))))};
crcs[region] = crc32c_t{static_cast<uint32_t>(
CRC32_u64(static_cast<uint32_t>(crcs[region]),
static_cast<uint64_t>(V128_Extract64<1>(vec_data[j]))))};
// Store the data.
V128_Store(vdst + i, vec_data[j]);
}
// Preload the partial CRCs for the CLMUL subregions.
for (size_t j = 0; j < int_regions; j++) {
// Cycle which regions get vector load/store and integer load/store, to
// engage prefetching logic around vector load/stores and save issue
// slots by using the integer registers.
size_t region = (j + vec_regions + i) % kRegions;
auto* usrc =
reinterpret_cast<const uint64_t*>(src_bytes + region_size * region);
auto* udst =
reinterpret_cast<uint64_t*>(dst_bytes + region_size * region);
for (size_t k = 0; k < kIntLoadsPerVec; k++) {
size_t data_index = j * kIntLoadsPerVec + k;
// Load and CRC the data.
int_data[data_index] = *(usrc + i * kIntLoadsPerVec + k);
crcs[region] = crc32c_t{CRC32_u64(static_cast<uint32_t>(crcs[region]),
int_data[data_index])};
// Store the data.
*(udst + i * kIntLoadsPerVec + k) = int_data[data_index];
}
}
}
// Increment pointers
src_bytes += kBlockSize * kBlocksPerCacheLine;
dst_bytes += kBlockSize * kBlocksPerCacheLine;
copy_rounds -= kBlocksPerCacheLine;
}
// Copy and CRC the tails of each region.
LargeTailCopy<vec_regions, int_regions>(crcs, &dst_bytes, &src_bytes,
region_size, copy_rounds);
// Move the source and destination pointers to the end of the region
src_bytes += region_size * (kRegions - 1);
dst_bytes += region_size * (kRegions - 1);
// Copy and CRC the tail through the XMM registers.
std::size_t tail_blocks = tail_size / kBlockSize;
LargeTailCopy<0, 1>(&crcs[kRegions - 1], &dst_bytes, &src_bytes, 0,
tail_blocks);
// Final tail copy for under 16 bytes.
crcs[kRegions - 1] =
ShortCrcCopy(dst_bytes, src_bytes, tail_size - tail_blocks * kBlockSize,
crcs[kRegions - 1]);
if (kRegions == 1) {
// If there is only one region, finalize and return its CRC.
return crc32c_t{static_cast<uint32_t>(crcs[0]) ^ kCrcDataXor};
}
// Finalize the first CRCs: XOR the internal CRCs by the XOR mask to undo the
// XOR done before doing block copy + CRCs.
for (size_t i = 0; i + 1 < kRegions; i++) {
crcs[i] = crc32c_t{static_cast<uint32_t>(crcs[i]) ^ kCrcDataXor};
}
// Build a CRC of the first kRegions - 1 regions.
crc32c_t full_crc = crcs[0];
for (size_t i = 1; i + 1 < kRegions; i++) {
full_crc = ConcatCrc32c(full_crc, crcs[i], region_size);
}
// Finalize and concatenate the final CRC, then return.
crcs[kRegions - 1] =
crc32c_t{static_cast<uint32_t>(crcs[kRegions - 1]) ^ kCrcDataXor};
return ConcatCrc32c(full_crc, crcs[kRegions - 1], region_size + tail_size);
}
CrcMemcpy::ArchSpecificEngines CrcMemcpy::GetArchSpecificEngines() {
#ifdef UNDEFINED_BEHAVIOR_SANITIZER
// UBSAN does not play nicely with unaligned loads (which we use a lot).
// Get the underlying architecture.
CpuType cpu_type = GetCpuType();
switch (cpu_type) {
case CpuType::kAmdRome:
case CpuType::kAmdNaples:
case CpuType::kAmdMilan:
case CpuType::kAmdGenoa:
case CpuType::kAmdRyzenV3000:
case CpuType::kIntelCascadelakeXeon:
case CpuType::kIntelSkylakeXeon:
case CpuType::kIntelSkylake:
case CpuType::kIntelBroadwell:
case CpuType::kIntelHaswell:
case CpuType::kIntelIvybridge:
return {
/*.temporal=*/new FallbackCrcMemcpyEngine(),
/*.non_temporal=*/new CrcNonTemporalMemcpyAVXEngine(),
};
// INTEL_SANDYBRIDGE performs better with SSE than AVX.
case CpuType::kIntelSandybridge:
return {
/*.temporal=*/new FallbackCrcMemcpyEngine(),
/*.non_temporal=*/new CrcNonTemporalMemcpyEngine(),
};
default:
return {/*.temporal=*/new FallbackCrcMemcpyEngine(),
/*.non_temporal=*/new FallbackCrcMemcpyEngine()};
}
#else
// Get the underlying architecture.
CpuType cpu_type = GetCpuType();
switch (cpu_type) {
// On Zen 2, PEXTRQ uses 2 micro-ops, including one on the vector store port
// which data movement from the vector registers to the integer registers
// (where CRC32C happens) to crowd the same units as vector stores. As a
// result, using that path exclusively causes bottlenecking on this port.
// We can avoid this bottleneck by using the integer side of the CPU for
// most operations rather than the vector side. We keep a vector region to
// engage some of the prefetching logic in the cache hierarchy which seems
// to give vector instructions special treatment. These prefetch units see
// strided access to each region, and do the right thing.
case CpuType::kAmdRome:
case CpuType::kAmdNaples:
case CpuType::kAmdMilan:
case CpuType::kAmdGenoa:
case CpuType::kAmdRyzenV3000:
return {
/*.temporal=*/new AcceleratedCrcMemcpyEngine<1, 2>(),
/*.non_temporal=*/new CrcNonTemporalMemcpyAVXEngine(),
};
// PCLMULQDQ is slow and we don't have wide enough issue width to take
// advantage of it. For an unknown architecture, don't risk using CLMULs.
case CpuType::kIntelCascadelakeXeon:
case CpuType::kIntelSkylakeXeon:
case CpuType::kIntelSkylake:
case CpuType::kIntelBroadwell:
case CpuType::kIntelHaswell:
case CpuType::kIntelIvybridge:
return {
/*.temporal=*/new AcceleratedCrcMemcpyEngine<3, 0>(),
/*.non_temporal=*/new CrcNonTemporalMemcpyAVXEngine(),
};
// INTEL_SANDYBRIDGE performs better with SSE than AVX.
case CpuType::kIntelSandybridge:
return {
/*.temporal=*/new AcceleratedCrcMemcpyEngine<3, 0>(),
/*.non_temporal=*/new CrcNonTemporalMemcpyEngine(),
};
default:
return {/*.temporal=*/new FallbackCrcMemcpyEngine(),
/*.non_temporal=*/new FallbackCrcMemcpyEngine()};
}
#endif // UNDEFINED_BEHAVIOR_SANITIZER
}
// For testing, allow the user to specify which engine they want.
std::unique_ptr<CrcMemcpyEngine> CrcMemcpy::GetTestEngine(int vector,
int integer) {
if (vector == 3 && integer == 0) {
return std::make_unique<AcceleratedCrcMemcpyEngine<3, 0>>();
} else if (vector == 1 && integer == 2) {
return std::make_unique<AcceleratedCrcMemcpyEngine<1, 2>>();
} else if (vector == 1 && integer == 0) {
return std::make_unique<AcceleratedCrcMemcpyEngine<1, 0>>();
}
return nullptr;
}
} // namespace crc_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_INTERNAL_HAVE_X86_64_ACCELERATED_CRC_MEMCPY_ENGINE ||
// ABSL_INTERNAL_HAVE_ARM_ACCELERATED_CRC_MEMCPY_ENGINE