| // Copyright 2017 The Abseil Authors. | 
 | // | 
 | // Licensed under the Apache License, Version 2.0 (the "License"); | 
 | // you may not use this file except in compliance with the License. | 
 | // You may obtain a copy of the License at | 
 | // | 
 | //      https://www.apache.org/licenses/LICENSE-2.0 | 
 | // | 
 | // Unless required by applicable law or agreed to in writing, software | 
 | // distributed under the License is distributed on an "AS IS" BASIS, | 
 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
 | // See the License for the specific language governing permissions and | 
 | // limitations under the License. | 
 | // | 
 | // Produce stack trace | 
 |  | 
 | #ifndef ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_ | 
 | #define ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_ | 
 |  | 
 | #if defined(__linux__) && (defined(__i386__) || defined(__x86_64__)) | 
 | #include <ucontext.h>  // for ucontext_t | 
 | #endif | 
 |  | 
 | #if !defined(_WIN32) | 
 | #include <unistd.h> | 
 | #endif | 
 |  | 
 | #include <cassert> | 
 | #include <cstdint> | 
 | #include <limits> | 
 |  | 
 | #include "absl/base/attributes.h" | 
 | #include "absl/base/macros.h" | 
 | #include "absl/base/port.h" | 
 | #include "absl/debugging/internal/address_is_readable.h" | 
 | #include "absl/debugging/internal/vdso_support.h"  // a no-op on non-elf or non-glibc systems | 
 | #include "absl/debugging/stacktrace.h" | 
 |  | 
 | using absl::debugging_internal::AddressIsReadable; | 
 |  | 
 | #if defined(__linux__) && defined(__i386__) | 
 | // Count "push %reg" instructions in VDSO __kernel_vsyscall(), | 
 | // preceding "syscall" or "sysenter". | 
 | // If __kernel_vsyscall uses frame pointer, answer 0. | 
 | // | 
 | // kMaxBytes tells how many instruction bytes of __kernel_vsyscall | 
 | // to analyze before giving up. Up to kMaxBytes+1 bytes of | 
 | // instructions could be accessed. | 
 | // | 
 | // Here are known __kernel_vsyscall instruction sequences: | 
 | // | 
 | // SYSENTER (linux-2.6.26/arch/x86/vdso/vdso32/sysenter.S). | 
 | // Used on Intel. | 
 | //  0xffffe400 <__kernel_vsyscall+0>:       push   %ecx | 
 | //  0xffffe401 <__kernel_vsyscall+1>:       push   %edx | 
 | //  0xffffe402 <__kernel_vsyscall+2>:       push   %ebp | 
 | //  0xffffe403 <__kernel_vsyscall+3>:       mov    %esp,%ebp | 
 | //  0xffffe405 <__kernel_vsyscall+5>:       sysenter | 
 | // | 
 | // SYSCALL (see linux-2.6.26/arch/x86/vdso/vdso32/syscall.S). | 
 | // Used on AMD. | 
 | //  0xffffe400 <__kernel_vsyscall+0>:       push   %ebp | 
 | //  0xffffe401 <__kernel_vsyscall+1>:       mov    %ecx,%ebp | 
 | //  0xffffe403 <__kernel_vsyscall+3>:       syscall | 
 | // | 
 |  | 
 | // The sequence below isn't actually expected in Google fleet, | 
 | // here only for completeness. Remove this comment from OSS release. | 
 |  | 
 | // i386 (see linux-2.6.26/arch/x86/vdso/vdso32/int80.S) | 
 | //  0xffffe400 <__kernel_vsyscall+0>:       int $0x80 | 
 | //  0xffffe401 <__kernel_vsyscall+1>:       ret | 
 | // | 
 | static const int kMaxBytes = 10; | 
 |  | 
 | // We use assert()s instead of DCHECK()s -- this is too low level | 
 | // for DCHECK(). | 
 |  | 
 | static int CountPushInstructions(const unsigned char *const addr) { | 
 |   int result = 0; | 
 |   for (int i = 0; i < kMaxBytes; ++i) { | 
 |     if (addr[i] == 0x89) { | 
 |       // "mov reg,reg" | 
 |       if (addr[i + 1] == 0xE5) { | 
 |         // Found "mov %esp,%ebp". | 
 |         return 0; | 
 |       } | 
 |       ++i;  // Skip register encoding byte. | 
 |     } else if (addr[i] == 0x0F && | 
 |                (addr[i + 1] == 0x34 || addr[i + 1] == 0x05)) { | 
 |       // Found "sysenter" or "syscall". | 
 |       return result; | 
 |     } else if ((addr[i] & 0xF0) == 0x50) { | 
 |       // Found "push %reg". | 
 |       ++result; | 
 |     } else if (addr[i] == 0xCD && addr[i + 1] == 0x80) { | 
 |       // Found "int $0x80" | 
 |       assert(result == 0); | 
 |       return 0; | 
 |     } else { | 
 |       // Unexpected instruction. | 
 |       assert(false && "unexpected instruction in __kernel_vsyscall"); | 
 |       return 0; | 
 |     } | 
 |   } | 
 |   // Unexpected: didn't find SYSENTER or SYSCALL in | 
 |   // [__kernel_vsyscall, __kernel_vsyscall + kMaxBytes) interval. | 
 |   assert(false && "did not find SYSENTER or SYSCALL in __kernel_vsyscall"); | 
 |   return 0; | 
 | } | 
 | #endif | 
 |  | 
 | // Assume stack frames larger than 100,000 bytes are bogus. | 
 | static const int kMaxFrameBytes = 100000; | 
 | // Stack end to use when we don't know the actual stack end | 
 | // (effectively just the end of address space). | 
 | constexpr uintptr_t kUnknownStackEnd = | 
 |     std::numeric_limits<size_t>::max() - sizeof(void *); | 
 |  | 
 | // Returns the stack frame pointer from signal context, 0 if unknown. | 
 | // vuc is a ucontext_t *.  We use void* to avoid the use | 
 | // of ucontext_t on non-POSIX systems. | 
 | static uintptr_t GetFP(const void *vuc) { | 
 | #if !defined(__linux__) | 
 |   static_cast<void>(vuc);  // Avoid an unused argument compiler warning. | 
 | #else | 
 |   if (vuc != nullptr) { | 
 |     auto *uc = reinterpret_cast<const ucontext_t *>(vuc); | 
 | #if defined(__i386__) | 
 |     const auto bp = uc->uc_mcontext.gregs[REG_EBP]; | 
 |     const auto sp = uc->uc_mcontext.gregs[REG_ESP]; | 
 | #elif defined(__x86_64__) | 
 |     const auto bp = uc->uc_mcontext.gregs[REG_RBP]; | 
 |     const auto sp = uc->uc_mcontext.gregs[REG_RSP]; | 
 | #else | 
 |     const uintptr_t bp = 0; | 
 |     const uintptr_t sp = 0; | 
 | #endif | 
 |     // Sanity-check that the base pointer is valid. It's possible that some | 
 |     // code in the process is compiled with --copt=-fomit-frame-pointer or | 
 |     // --copt=-momit-leaf-frame-pointer. | 
 |     // | 
 |     // TODO(bcmills): -momit-leaf-frame-pointer is currently the default | 
 |     // behavior when building with clang.  Talk to the C++ toolchain team about | 
 |     // fixing that. | 
 |     if (bp >= sp && bp - sp <= kMaxFrameBytes) | 
 |       return static_cast<uintptr_t>(bp); | 
 |  | 
 |     // If bp isn't a plausible frame pointer, return the stack pointer instead. | 
 |     // If we're lucky, it points to the start of a stack frame; otherwise, we'll | 
 |     // get one frame of garbage in the stack trace and fail the sanity check on | 
 |     // the next iteration. | 
 |     return static_cast<uintptr_t>(sp); | 
 |   } | 
 | #endif | 
 |   return 0; | 
 | } | 
 |  | 
 | // Given a pointer to a stack frame, locate and return the calling | 
 | // stackframe, or return null if no stackframe can be found. Perform sanity | 
 | // checks (the strictness of which is controlled by the boolean parameter | 
 | // "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned. | 
 | template <bool STRICT_UNWINDING, bool WITH_CONTEXT> | 
 | ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS  // May read random elements from stack. | 
 | ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY   // May read random elements from stack. | 
 | static void **NextStackFrame(void **old_fp, const void *uc, | 
 |                              size_t stack_low, size_t stack_high) { | 
 |   void **new_fp = (void **)*old_fp; | 
 |  | 
 | #if defined(__linux__) && defined(__i386__) | 
 |   if (WITH_CONTEXT && uc != nullptr) { | 
 |     // How many "push %reg" instructions are there at __kernel_vsyscall? | 
 |     // This is constant for a given kernel and processor, so compute | 
 |     // it only once. | 
 |     static int num_push_instructions = -1;  // Sentinel: not computed yet. | 
 |     // Initialize with sentinel value: __kernel_rt_sigreturn can not possibly | 
 |     // be there. | 
 |     static const unsigned char *kernel_rt_sigreturn_address = nullptr; | 
 |     static const unsigned char *kernel_vsyscall_address = nullptr; | 
 |     if (num_push_instructions == -1) { | 
 | #ifdef ABSL_HAVE_VDSO_SUPPORT | 
 |       absl::debugging_internal::VDSOSupport vdso; | 
 |       if (vdso.IsPresent()) { | 
 |         absl::debugging_internal::VDSOSupport::SymbolInfo | 
 |             rt_sigreturn_symbol_info; | 
 |         absl::debugging_internal::VDSOSupport::SymbolInfo vsyscall_symbol_info; | 
 |         if (!vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.5", STT_FUNC, | 
 |                                &rt_sigreturn_symbol_info) || | 
 |             !vdso.LookupSymbol("__kernel_vsyscall", "LINUX_2.5", STT_FUNC, | 
 |                                &vsyscall_symbol_info) || | 
 |             rt_sigreturn_symbol_info.address == nullptr || | 
 |             vsyscall_symbol_info.address == nullptr) { | 
 |           // Unexpected: 32-bit VDSO is present, yet one of the expected | 
 |           // symbols is missing or null. | 
 |           assert(false && "VDSO is present, but doesn't have expected symbols"); | 
 |           num_push_instructions = 0; | 
 |         } else { | 
 |           kernel_rt_sigreturn_address = | 
 |               reinterpret_cast<const unsigned char *>( | 
 |                   rt_sigreturn_symbol_info.address); | 
 |           kernel_vsyscall_address = | 
 |               reinterpret_cast<const unsigned char *>( | 
 |                   vsyscall_symbol_info.address); | 
 |           num_push_instructions = | 
 |               CountPushInstructions(kernel_vsyscall_address); | 
 |         } | 
 |       } else { | 
 |         num_push_instructions = 0; | 
 |       } | 
 | #else  // ABSL_HAVE_VDSO_SUPPORT | 
 |       num_push_instructions = 0; | 
 | #endif  // ABSL_HAVE_VDSO_SUPPORT | 
 |     } | 
 |     if (num_push_instructions != 0 && kernel_rt_sigreturn_address != nullptr && | 
 |         old_fp[1] == kernel_rt_sigreturn_address) { | 
 |       const ucontext_t *ucv = static_cast<const ucontext_t *>(uc); | 
 |       // This kernel does not use frame pointer in its VDSO code, | 
 |       // and so %ebp is not suitable for unwinding. | 
 |       void **const reg_ebp = | 
 |           reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_EBP]); | 
 |       const unsigned char *const reg_eip = | 
 |           reinterpret_cast<unsigned char *>(ucv->uc_mcontext.gregs[REG_EIP]); | 
 |       if (new_fp == reg_ebp && kernel_vsyscall_address <= reg_eip && | 
 |           reg_eip - kernel_vsyscall_address < kMaxBytes) { | 
 |         // We "stepped up" to __kernel_vsyscall, but %ebp is not usable. | 
 |         // Restore from 'ucv' instead. | 
 |         void **const reg_esp = | 
 |             reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_ESP]); | 
 |         // Check that alleged %esp is not null and is reasonably aligned. | 
 |         if (reg_esp && | 
 |             ((uintptr_t)reg_esp & (sizeof(reg_esp) - 1)) == 0) { | 
 |           // Check that alleged %esp is actually readable. This is to prevent | 
 |           // "double fault" in case we hit the first fault due to e.g. stack | 
 |           // corruption. | 
 |           void *const reg_esp2 = reg_esp[num_push_instructions - 1]; | 
 |           if (AddressIsReadable(reg_esp2)) { | 
 |             // Alleged %esp is readable, use it for further unwinding. | 
 |             new_fp = reinterpret_cast<void **>(reg_esp2); | 
 |           } | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 | #endif | 
 |  | 
 |   const uintptr_t old_fp_u = reinterpret_cast<uintptr_t>(old_fp); | 
 |   const uintptr_t new_fp_u = reinterpret_cast<uintptr_t>(new_fp); | 
 |  | 
 |   // Check that the transition from frame pointer old_fp to frame | 
 |   // pointer new_fp isn't clearly bogus.  Skip the checks if new_fp | 
 |   // matches the signal context, so that we don't skip out early when | 
 |   // using an alternate signal stack. | 
 |   // | 
 |   // TODO(bcmills): The GetFP call should be completely unnecessary when | 
 |   // ENABLE_COMBINED_UNWINDER is set (because we should be back in the thread's | 
 |   // stack by this point), but it is empirically still needed (e.g. when the | 
 |   // stack includes a call to abort).  unw_get_reg returns UNW_EBADREG for some | 
 |   // frames.  Figure out why GetValidFrameAddr and/or libunwind isn't doing what | 
 |   // it's supposed to. | 
 |   if (STRICT_UNWINDING && | 
 |       (!WITH_CONTEXT || uc == nullptr || new_fp_u != GetFP(uc))) { | 
 |     // With the stack growing downwards, older stack frame must be | 
 |     // at a greater address that the current one. | 
 |     if (new_fp_u <= old_fp_u) return nullptr; | 
 |  | 
 |     // If we get a very large frame size, it may be an indication that we | 
 |     // guessed frame pointers incorrectly and now risk a paging fault | 
 |     // dereferencing a wrong frame pointer. Or maybe not because large frames | 
 |     // are possible as well. The main stack is assumed to be readable, | 
 |     // so we assume the large frame is legit if we know the real stack bounds | 
 |     // and are within the stack. | 
 |     if (new_fp_u - old_fp_u > kMaxFrameBytes) { | 
 |       if (stack_high < kUnknownStackEnd && | 
 |           static_cast<size_t>(getpagesize()) < stack_low) { | 
 |         // Stack bounds are known. | 
 |         if (!(stack_low < new_fp_u && new_fp_u <= stack_high)) { | 
 |           // new_fp_u is not within the known stack. | 
 |           return nullptr; | 
 |         } | 
 |       } else { | 
 |         // Stack bounds are unknown, prefer truncated stack to possible crash. | 
 |         return nullptr; | 
 |       } | 
 |     } | 
 |     if (stack_low < old_fp_u && old_fp_u <= stack_high) { | 
 |       // Old BP was in the expected stack region... | 
 |       if (!(stack_low < new_fp_u && new_fp_u <= stack_high)) { | 
 |         // ... but new BP is outside of expected stack region. | 
 |         // It is most likely bogus. | 
 |         return nullptr; | 
 |       } | 
 |     } else { | 
 |       // We may be here if we are executing in a co-routine with a | 
 |       // separate stack. We can't do safety checks in this case. | 
 |     } | 
 |   } else { | 
 |     if (new_fp == nullptr) return nullptr;  // skip AddressIsReadable() below | 
 |     // In the non-strict mode, allow discontiguous stack frames. | 
 |     // (alternate-signal-stacks for example). | 
 |     if (new_fp == old_fp) return nullptr; | 
 |   } | 
 |  | 
 |   if (new_fp_u & (sizeof(void *) - 1)) return nullptr; | 
 | #ifdef __i386__ | 
 |   // On 32-bit machines, the stack pointer can be very close to | 
 |   // 0xffffffff, so we explicitly check for a pointer into the | 
 |   // last two pages in the address space | 
 |   if (new_fp_u >= 0xffffe000) return nullptr; | 
 | #endif | 
 | #if !defined(_WIN32) | 
 |   if (!STRICT_UNWINDING) { | 
 |     // Lax sanity checks cause a crash in 32-bit tcmalloc/crash_reason_test | 
 |     // on AMD-based machines with VDSO-enabled kernels. | 
 |     // Make an extra sanity check to insure new_fp is readable. | 
 |     // Note: NextStackFrame<false>() is only called while the program | 
 |     //       is already on its last leg, so it's ok to be slow here. | 
 |  | 
 |     if (!AddressIsReadable(new_fp)) { | 
 |       return nullptr; | 
 |     } | 
 |   } | 
 | #endif | 
 |   return new_fp; | 
 | } | 
 |  | 
 | template <bool IS_STACK_FRAMES, bool IS_WITH_CONTEXT> | 
 | ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS  // May read random elements from stack. | 
 | ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY   // May read random elements from stack. | 
 | ABSL_ATTRIBUTE_NOINLINE | 
 | static int UnwindImpl(void **result, int *sizes, int max_depth, int skip_count, | 
 |                       const void *ucp, int *min_dropped_frames) { | 
 |   int n = 0; | 
 |   void **fp = reinterpret_cast<void **>(__builtin_frame_address(0)); | 
 |  | 
 |   // Assume that the first page is not stack. | 
 |   size_t stack_low = static_cast<size_t>(getpagesize()); | 
 |   size_t stack_high = kUnknownStackEnd; | 
 |  | 
 |   while (fp && n < max_depth) { | 
 |     if (*(fp + 1) == reinterpret_cast<void *>(0)) { | 
 |       // In 64-bit code, we often see a frame that | 
 |       // points to itself and has a return address of 0. | 
 |       break; | 
 |     } | 
 |     void **next_fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>( | 
 |         fp, ucp, stack_low, stack_high); | 
 |     if (skip_count > 0) { | 
 |       skip_count--; | 
 |     } else { | 
 |       result[n] = *(fp + 1); | 
 |       if (IS_STACK_FRAMES) { | 
 |         if (next_fp > fp) { | 
 |           sizes[n] = static_cast<int>( | 
 |               reinterpret_cast<uintptr_t>(next_fp) - | 
 |               reinterpret_cast<uintptr_t>(fp)); | 
 |         } else { | 
 |           // A frame-size of 0 is used to indicate unknown frame size. | 
 |           sizes[n] = 0; | 
 |         } | 
 |       } | 
 |       n++; | 
 |     } | 
 |     fp = next_fp; | 
 |   } | 
 |   if (min_dropped_frames != nullptr) { | 
 |     // Implementation detail: we clamp the max of frames we are willing to | 
 |     // count, so as not to spend too much time in the loop below. | 
 |     const int kMaxUnwind = 1000; | 
 |     int num_dropped_frames = 0; | 
 |     for (int j = 0; fp != nullptr && j < kMaxUnwind; j++) { | 
 |       if (skip_count > 0) { | 
 |         skip_count--; | 
 |       } else { | 
 |         num_dropped_frames++; | 
 |       } | 
 |       fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(fp, ucp, stack_low, | 
 |                                                              stack_high); | 
 |     } | 
 |     *min_dropped_frames = num_dropped_frames; | 
 |   } | 
 |   return n; | 
 | } | 
 |  | 
 | namespace absl { | 
 | ABSL_NAMESPACE_BEGIN | 
 | namespace debugging_internal { | 
 | bool StackTraceWorksForTest() { | 
 |   return true; | 
 | } | 
 | }  // namespace debugging_internal | 
 | ABSL_NAMESPACE_END | 
 | }  // namespace absl | 
 |  | 
 | #endif  // ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_ |