blob: f589172c0466d2575501d2aee79fad446f8c1fef [file] [log] [blame]
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
#include "absl/random/internal/randen.h"
#include <cstdint>
#include <cstdio>
#include <cstring>
#include "absl/base/internal/raw_logging.h"
#include "absl/random/internal/nanobenchmark.h"
#include "absl/random/internal/platform.h"
#include "absl/random/internal/randen_engine.h"
#include "absl/random/internal/randen_hwaes.h"
#include "absl/random/internal/randen_slow.h"
#include "absl/strings/numbers.h"
namespace {
using absl::random_internal::Randen;
using absl::random_internal::RandenHwAes;
using absl::random_internal::RandenSlow;
using absl::random_internal_nanobenchmark::FuncInput;
using absl::random_internal_nanobenchmark::FuncOutput;
using absl::random_internal_nanobenchmark::InvariantTicksPerSecond;
using absl::random_internal_nanobenchmark::MeasureClosure;
using absl::random_internal_nanobenchmark::Params;
using absl::random_internal_nanobenchmark::PinThreadToCPU;
using absl::random_internal_nanobenchmark::Result;
// Local state parameters.
static constexpr size_t kStateSizeT = Randen::kStateBytes / sizeof(uint64_t);
static constexpr size_t kSeedSizeT = Randen::kSeedBytes / sizeof(uint32_t);
// Randen implementation benchmarks.
template <typename T>
struct AbsorbFn : public T {
mutable uint64_t state[kStateSizeT] = {};
mutable uint32_t seed[kSeedSizeT] = {};
static constexpr size_t bytes() { return sizeof(seed); }
FuncOutput operator()(const FuncInput num_iters) const {
for (size_t i = 0; i < num_iters; ++i) {
this->Absorb(seed, state);
}
return state[0];
}
};
template <typename T>
struct GenerateFn : public T {
mutable uint64_t state[kStateSizeT];
GenerateFn() { std::memset(state, 0, sizeof(state)); }
static constexpr size_t bytes() { return sizeof(state); }
FuncOutput operator()(const FuncInput num_iters) const {
const auto* keys = this->GetKeys();
for (size_t i = 0; i < num_iters; ++i) {
this->Generate(keys, state);
}
return state[0];
}
};
template <typename UInt>
struct Engine {
mutable absl::random_internal::randen_engine<UInt> rng;
static constexpr size_t bytes() { return sizeof(UInt); }
FuncOutput operator()(const FuncInput num_iters) const {
for (size_t i = 0; i < num_iters - 1; ++i) {
rng();
}
return rng();
}
};
template <size_t N>
void Print(const char* name, const size_t n, const Result (&results)[N],
const size_t bytes) {
if (n == 0) {
ABSL_RAW_LOG(
WARNING,
"WARNING: Measurement failed, should not happen when using "
"PinThreadToCPU unless the region to measure takes > 1 second.\n");
return;
}
static const double ns_per_tick = 1e9 / InvariantTicksPerSecond();
static constexpr const double kNsPerS = 1e9; // ns/s
static constexpr const double kMBPerByte = 1.0 / 1048576.0; // Mb / b
static auto header = [] {
return printf("%20s %8s: %12s ticks; %9s (%9s) %8s\n", "Name", "Count",
"Total", "Variance", "Time", "bytes/s");
}();
(void)header;
for (size_t i = 0; i < n; ++i) {
const double ticks_per_call = results[i].ticks / results[i].input;
const double ns_per_call = ns_per_tick * ticks_per_call;
const double bytes_per_ns = bytes / ns_per_call;
const double mb_per_s = bytes_per_ns * kNsPerS * kMBPerByte;
// Output
printf("%20s %8zu: %12.2f ticks; MAD=%4.2f%% (%6.1f ns) %8.1f Mb/s\n",
name, results[i].input, results[i].ticks,
results[i].variability * 100.0, ns_per_call, mb_per_s);
}
}
// Fails here
template <typename Op, size_t N>
void Measure(const char* name, const FuncInput (&inputs)[N]) {
Op op;
Result results[N];
Params params;
params.verbose = false;
params.max_evals = 6; // avoid test timeout
const size_t num_results = MeasureClosure(op, inputs, N, results, params);
Print(name, num_results, results, op.bytes());
}
// unpredictable == 1 but the compiler does not know that.
void RunAll(const int argc, char* argv[]) {
if (argc == 2) {
int cpu = -1;
if (!absl::SimpleAtoi(argv[1], &cpu)) {
ABSL_RAW_LOG(FATAL, "The optional argument must be a CPU number >= 0.\n");
}
PinThreadToCPU(cpu);
}
// The compiler cannot reduce this to a constant.
const FuncInput unpredictable = (argc != 999);
static const FuncInput inputs[] = {unpredictable * 100, unpredictable * 1000};
#if !defined(ABSL_INTERNAL_DISABLE_AES) && ABSL_HAVE_ACCELERATED_AES
Measure<AbsorbFn<RandenHwAes>>("Absorb (HwAes)", inputs);
#endif
Measure<AbsorbFn<RandenSlow>>("Absorb (Slow)", inputs);
#if !defined(ABSL_INTERNAL_DISABLE_AES) && ABSL_HAVE_ACCELERATED_AES
Measure<GenerateFn<RandenHwAes>>("Generate (HwAes)", inputs);
#endif
Measure<GenerateFn<RandenSlow>>("Generate (Slow)", inputs);
// Measure the production engine.
static const FuncInput inputs1[] = {unpredictable * 1000,
unpredictable * 10000};
Measure<Engine<uint64_t>>("randen_engine<uint64_t>", inputs1);
Measure<Engine<uint32_t>>("randen_engine<uint32_t>", inputs1);
}
} // namespace
int main(int argc, char* argv[]) {
RunAll(argc, argv);
return 0;
}