blob: c2fa37f9d74e7d2d17e2a55a989591bfe32f73db [file] [log] [blame]
/* Copyright (c) 2015-2021 The Khronos Group Inc.
* Copyright (c) 2015-2021 Valve Corporation
* Copyright (c) 2015-2021 LunarG, Inc.
* Copyright (C) 2015-2021 Google Inc.
* Modifications Copyright (C) 2020 Advanced Micro Devices, Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Chris Forbes <chrisf@ijw.co.nz>
* Author: Dave Houlton <daveh@lunarg.com>
* Author: Tobias Hector <tobias.hector@amd.com>
*/
#include "shader_validation.h"
#include <cassert>
#include <chrono>
#include <cinttypes>
#include <cmath>
#include <map>
#include <sstream>
#include <string>
#include <unordered_map>
#include <vector>
#include <spirv/unified1/spirv.hpp>
#include "vk_loader_platform.h"
#include "vk_enum_string_helper.h"
#include "vk_layer_data.h"
#include "vk_layer_extension_utils.h"
#include "vk_layer_utils.h"
#include "chassis.h"
#include "core_validation.h"
#include "spirv-tools/libspirv.h"
#include "xxhash.h"
void decoration_set::add(uint32_t decoration, uint32_t value) {
switch (decoration) {
case spv::DecorationLocation:
flags |= location_bit;
location = value;
break;
case spv::DecorationPatch:
flags |= patch_bit;
break;
case spv::DecorationRelaxedPrecision:
flags |= relaxed_precision_bit;
break;
case spv::DecorationBlock:
flags |= block_bit;
break;
case spv::DecorationBufferBlock:
flags |= buffer_block_bit;
break;
case spv::DecorationComponent:
flags |= component_bit;
component = value;
break;
case spv::DecorationInputAttachmentIndex:
flags |= input_attachment_index_bit;
input_attachment_index = value;
break;
case spv::DecorationDescriptorSet:
flags |= descriptor_set_bit;
descriptor_set = value;
break;
case spv::DecorationBinding:
flags |= binding_bit;
binding = value;
break;
case spv::DecorationNonWritable:
flags |= nonwritable_bit;
break;
case spv::DecorationBuiltIn:
flags |= builtin_bit;
builtin = value;
break;
}
}
enum FORMAT_TYPE {
FORMAT_TYPE_FLOAT = 1, // UNORM, SNORM, FLOAT, USCALED, SSCALED, SRGB -- anything we consider float in the shader
FORMAT_TYPE_SINT = 2,
FORMAT_TYPE_UINT = 4,
};
typedef std::pair<unsigned, unsigned> location_t;
static shader_stage_attributes shader_stage_attribs[] = {
{"vertex shader", false, false, VK_SHADER_STAGE_VERTEX_BIT},
{"tessellation control shader", true, true, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT},
{"tessellation evaluation shader", true, false, VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT},
{"geometry shader", true, false, VK_SHADER_STAGE_GEOMETRY_BIT},
{"fragment shader", false, false, VK_SHADER_STAGE_FRAGMENT_BIT},
};
unsigned ExecutionModelToShaderStageFlagBits(unsigned mode);
// SPIRV utility functions
void SHADER_MODULE_STATE::BuildDefIndex() {
function_set func_set = {};
EntryPoint *entry_point = nullptr;
for (auto insn : *this) {
// offset is not 0, it means it's updated and the offset is in a Function.
if (func_set.offset) {
func_set.op_lists.insert({insn.opcode(), insn.offset()});
} else if (entry_point) {
entry_point->decorate_list.insert({insn.opcode(), insn.offset()});
}
switch (insn.opcode()) {
// Types
case spv::OpTypeVoid:
case spv::OpTypeBool:
case spv::OpTypeInt:
case spv::OpTypeFloat:
case spv::OpTypeVector:
case spv::OpTypeMatrix:
case spv::OpTypeImage:
case spv::OpTypeSampler:
case spv::OpTypeSampledImage:
case spv::OpTypeArray:
case spv::OpTypeRuntimeArray:
case spv::OpTypeStruct:
case spv::OpTypeOpaque:
case spv::OpTypePointer:
case spv::OpTypeFunction:
case spv::OpTypeEvent:
case spv::OpTypeDeviceEvent:
case spv::OpTypeReserveId:
case spv::OpTypeQueue:
case spv::OpTypePipe:
case spv::OpTypeAccelerationStructureNV:
case spv::OpTypeCooperativeMatrixNV:
def_index[insn.word(1)] = insn.offset();
break;
// Fixed constants
case spv::OpConstantTrue:
case spv::OpConstantFalse:
case spv::OpConstant:
case spv::OpConstantComposite:
case spv::OpConstantSampler:
case spv::OpConstantNull:
def_index[insn.word(2)] = insn.offset();
break;
// Specialization constants
case spv::OpSpecConstantTrue:
case spv::OpSpecConstantFalse:
case spv::OpSpecConstant:
case spv::OpSpecConstantComposite:
case spv::OpSpecConstantOp:
def_index[insn.word(2)] = insn.offset();
break;
// Variables
case spv::OpVariable:
def_index[insn.word(2)] = insn.offset();
break;
// Functions
case spv::OpFunction:
def_index[insn.word(2)] = insn.offset();
func_set.id = insn.word(2);
func_set.offset = insn.offset();
func_set.op_lists.clear();
break;
// Decorations
case spv::OpDecorate: {
auto target_id = insn.word(1);
decorations[target_id].add(insn.word(2), insn.len() > 3u ? insn.word(3) : 0u);
} break;
case spv::OpGroupDecorate: {
auto const &src = decorations[insn.word(1)];
for (auto i = 2u; i < insn.len(); i++) decorations[insn.word(i)].merge(src);
} break;
// Entry points ... add to the entrypoint table
case spv::OpEntryPoint: {
// Entry points do not have an id (the id is the function id) and thus need their own table
auto entrypoint_name = reinterpret_cast<char const *>(&insn.word(3));
auto execution_model = insn.word(1);
auto entrypoint_stage = ExecutionModelToShaderStageFlagBits(execution_model);
entry_points.emplace(entrypoint_name,
EntryPoint{insn.offset(), static_cast<VkShaderStageFlagBits>(entrypoint_stage)});
auto range = entry_points.equal_range(entrypoint_name);
for (auto it = range.first; it != range.second; ++it) {
if (it->second.offset == insn.offset()) {
entry_point = &(it->second);
break;
}
}
assert(entry_point != nullptr);
break;
}
case spv::OpFunctionEnd: {
assert(entry_point != nullptr);
func_set.length = insn.offset() - func_set.offset;
entry_point->function_set_list.emplace_back(func_set);
break;
}
default:
// We don't care about any other defs for now.
break;
}
}
}
unsigned ExecutionModelToShaderStageFlagBits(unsigned mode) {
switch (mode) {
case spv::ExecutionModelVertex:
return VK_SHADER_STAGE_VERTEX_BIT;
case spv::ExecutionModelTessellationControl:
return VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT;
case spv::ExecutionModelTessellationEvaluation:
return VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT;
case spv::ExecutionModelGeometry:
return VK_SHADER_STAGE_GEOMETRY_BIT;
case spv::ExecutionModelFragment:
return VK_SHADER_STAGE_FRAGMENT_BIT;
case spv::ExecutionModelGLCompute:
return VK_SHADER_STAGE_COMPUTE_BIT;
case spv::ExecutionModelRayGenerationNV:
return VK_SHADER_STAGE_RAYGEN_BIT_NV;
case spv::ExecutionModelAnyHitNV:
return VK_SHADER_STAGE_ANY_HIT_BIT_NV;
case spv::ExecutionModelClosestHitNV:
return VK_SHADER_STAGE_CLOSEST_HIT_BIT_NV;
case spv::ExecutionModelMissNV:
return VK_SHADER_STAGE_MISS_BIT_NV;
case spv::ExecutionModelIntersectionNV:
return VK_SHADER_STAGE_INTERSECTION_BIT_NV;
case spv::ExecutionModelCallableNV:
return VK_SHADER_STAGE_CALLABLE_BIT_NV;
case spv::ExecutionModelTaskNV:
return VK_SHADER_STAGE_TASK_BIT_NV;
case spv::ExecutionModelMeshNV:
return VK_SHADER_STAGE_MESH_BIT_NV;
default:
return 0;
}
}
const SHADER_MODULE_STATE::EntryPoint *FindEntrypointStruct(SHADER_MODULE_STATE const *src, char const *name,
VkShaderStageFlagBits stageBits) {
auto range = src->entry_points.equal_range(name);
for (auto it = range.first; it != range.second; ++it) {
if (it->second.stage == stageBits) {
return &(it->second);
}
}
return nullptr;
}
spirv_inst_iter FindEntrypoint(SHADER_MODULE_STATE const *src, char const *name, VkShaderStageFlagBits stageBits) {
auto range = src->entry_points.equal_range(name);
for (auto it = range.first; it != range.second; ++it) {
if (it->second.stage == stageBits) {
return src->at(it->second.offset);
}
}
return src->end();
}
static char const *StorageClassName(unsigned sc) {
switch (sc) {
case spv::StorageClassInput:
return "input";
case spv::StorageClassOutput:
return "output";
case spv::StorageClassUniformConstant:
return "const uniform";
case spv::StorageClassUniform:
return "uniform";
case spv::StorageClassWorkgroup:
return "workgroup local";
case spv::StorageClassCrossWorkgroup:
return "workgroup global";
case spv::StorageClassPrivate:
return "private global";
case spv::StorageClassFunction:
return "function";
case spv::StorageClassGeneric:
return "generic";
case spv::StorageClassAtomicCounter:
return "atomic counter";
case spv::StorageClassImage:
return "image";
case spv::StorageClassPushConstant:
return "push constant";
case spv::StorageClassStorageBuffer:
return "storage buffer";
default:
return "unknown";
}
}
// Get the value of an integral constant
unsigned GetConstantValue(SHADER_MODULE_STATE const *src, unsigned id) {
auto value = src->get_def(id);
assert(value != src->end());
if (value.opcode() != spv::OpConstant) {
// TODO: Either ensure that the specialization transform is already performed on a module we're
// considering here, OR -- specialize on the fly now.
return 1;
}
return value.word(3);
}
static void DescribeTypeInner(std::ostringstream &ss, SHADER_MODULE_STATE const *src, unsigned type) {
auto insn = src->get_def(type);
assert(insn != src->end());
switch (insn.opcode()) {
case spv::OpTypeBool:
ss << "bool";
break;
case spv::OpTypeInt:
ss << (insn.word(3) ? 's' : 'u') << "int" << insn.word(2);
break;
case spv::OpTypeFloat:
ss << "float" << insn.word(2);
break;
case spv::OpTypeVector:
ss << "vec" << insn.word(3) << " of ";
DescribeTypeInner(ss, src, insn.word(2));
break;
case spv::OpTypeMatrix:
ss << "mat" << insn.word(3) << " of ";
DescribeTypeInner(ss, src, insn.word(2));
break;
case spv::OpTypeArray:
ss << "arr[" << GetConstantValue(src, insn.word(3)) << "] of ";
DescribeTypeInner(ss, src, insn.word(2));
break;
case spv::OpTypeRuntimeArray:
ss << "runtime arr[] of ";
DescribeTypeInner(ss, src, insn.word(2));
break;
case spv::OpTypePointer:
ss << "ptr to " << StorageClassName(insn.word(2)) << " ";
DescribeTypeInner(ss, src, insn.word(3));
break;
case spv::OpTypeStruct: {
ss << "struct of (";
for (unsigned i = 2; i < insn.len(); i++) {
DescribeTypeInner(ss, src, insn.word(i));
if (i == insn.len() - 1) {
ss << ")";
} else {
ss << ", ";
}
}
break;
}
case spv::OpTypeSampler:
ss << "sampler";
break;
case spv::OpTypeSampledImage:
ss << "sampler+";
DescribeTypeInner(ss, src, insn.word(2));
break;
case spv::OpTypeImage:
ss << "image(dim=" << insn.word(3) << ", sampled=" << insn.word(7) << ")";
break;
case spv::OpTypeAccelerationStructureNV:
ss << "accelerationStruture";
break;
default:
ss << "oddtype";
break;
}
}
static std::string DescribeType(SHADER_MODULE_STATE const *src, unsigned type) {
std::ostringstream ss;
DescribeTypeInner(ss, src, type);
return ss.str();
}
static bool IsNarrowNumericType(spirv_inst_iter type) {
if (type.opcode() != spv::OpTypeInt && type.opcode() != spv::OpTypeFloat) return false;
return type.word(2) < 64;
}
static bool TypesMatch(SHADER_MODULE_STATE const *a, SHADER_MODULE_STATE const *b, unsigned a_type, unsigned b_type, bool a_arrayed,
bool b_arrayed, bool relaxed) {
// Walk two type trees together, and complain about differences
auto a_insn = a->get_def(a_type);
auto b_insn = b->get_def(b_type);
assert(a_insn != a->end());
assert(b_insn != b->end());
// Ignore runtime-sized arrays-- they cannot appear in these interfaces.
if (a_arrayed && a_insn.opcode() == spv::OpTypeArray) {
return TypesMatch(a, b, a_insn.word(2), b_type, false, b_arrayed, relaxed);
}
if (b_arrayed && b_insn.opcode() == spv::OpTypeArray) {
// We probably just found the extra level of arrayness in b_type: compare the type inside it to a_type
return TypesMatch(a, b, a_type, b_insn.word(2), a_arrayed, false, relaxed);
}
if (a_insn.opcode() == spv::OpTypeVector && relaxed && IsNarrowNumericType(b_insn)) {
return TypesMatch(a, b, a_insn.word(2), b_type, a_arrayed, b_arrayed, false);
}
if (a_insn.opcode() != b_insn.opcode()) {
return false;
}
if (a_insn.opcode() == spv::OpTypePointer) {
// Match on pointee type. storage class is expected to differ
return TypesMatch(a, b, a_insn.word(3), b_insn.word(3), a_arrayed, b_arrayed, relaxed);
}
if (a_arrayed || b_arrayed) {
// If we havent resolved array-of-verts by here, we're not going to.
return false;
}
switch (a_insn.opcode()) {
case spv::OpTypeBool:
return true;
case spv::OpTypeInt:
// Match on width, signedness
return a_insn.word(2) == b_insn.word(2) && a_insn.word(3) == b_insn.word(3);
case spv::OpTypeFloat:
// Match on width
return a_insn.word(2) == b_insn.word(2);
case spv::OpTypeVector:
// Match on element type, count.
if (!TypesMatch(a, b, a_insn.word(2), b_insn.word(2), a_arrayed, b_arrayed, false)) return false;
if (relaxed && IsNarrowNumericType(a->get_def(a_insn.word(2)))) {
return a_insn.word(3) >= b_insn.word(3);
} else {
return a_insn.word(3) == b_insn.word(3);
}
case spv::OpTypeMatrix:
// Match on element type, count.
return TypesMatch(a, b, a_insn.word(2), b_insn.word(2), a_arrayed, b_arrayed, false) &&
a_insn.word(3) == b_insn.word(3);
case spv::OpTypeArray:
// Match on element type, count. these all have the same layout. we don't get here if b_arrayed. This differs from
// vector & matrix types in that the array size is the id of a constant instruction, * not a literal within OpTypeArray
return TypesMatch(a, b, a_insn.word(2), b_insn.word(2), a_arrayed, b_arrayed, false) &&
GetConstantValue(a, a_insn.word(3)) == GetConstantValue(b, b_insn.word(3));
case spv::OpTypeStruct:
// Match on all element types
{
if (a_insn.len() != b_insn.len()) {
return false; // Structs cannot match if member counts differ
}
for (unsigned i = 2; i < a_insn.len(); i++) {
if (!TypesMatch(a, b, a_insn.word(i), b_insn.word(i), a_arrayed, b_arrayed, false)) {
return false;
}
}
return true;
}
default:
// Remaining types are CLisms, or may not appear in the interfaces we are interested in. Just claim no match.
return false;
}
}
static unsigned GetLocationsConsumedByType(SHADER_MODULE_STATE const *src, unsigned type, bool strip_array_level) {
auto insn = src->get_def(type);
assert(insn != src->end());
switch (insn.opcode()) {
case spv::OpTypePointer:
// See through the ptr -- this is only ever at the toplevel for graphics shaders we're never actually passing
// pointers around.
return GetLocationsConsumedByType(src, insn.word(3), strip_array_level);
case spv::OpTypeArray:
if (strip_array_level) {
return GetLocationsConsumedByType(src, insn.word(2), false);
} else {
return GetConstantValue(src, insn.word(3)) * GetLocationsConsumedByType(src, insn.word(2), false);
}
case spv::OpTypeMatrix:
// Num locations is the dimension * element size
return insn.word(3) * GetLocationsConsumedByType(src, insn.word(2), false);
case spv::OpTypeVector: {
auto scalar_type = src->get_def(insn.word(2));
auto bit_width =
(scalar_type.opcode() == spv::OpTypeInt || scalar_type.opcode() == spv::OpTypeFloat) ? scalar_type.word(2) : 32;
// Locations are 128-bit wide; 3- and 4-component vectors of 64 bit types require two.
return (bit_width * insn.word(3) + 127) / 128;
}
default:
// Everything else is just 1.
return 1;
// TODO: extend to handle 64bit scalar types, whose vectors may need multiple locations.
}
}
static unsigned GetComponentsConsumedByType(SHADER_MODULE_STATE const *src, unsigned type, bool strip_array_level) {
auto insn = src->get_def(type);
assert(insn != src->end());
switch (insn.opcode()) {
case spv::OpTypePointer:
// See through the ptr -- this is only ever at the toplevel for graphics shaders we're never actually passing
// pointers around.
return GetComponentsConsumedByType(src, insn.word(3), strip_array_level);
case spv::OpTypeStruct: {
uint32_t sum = 0;
for (uint32_t i = 2; i < insn.len(); i++) { // i=2 to skip word(0) and word(1)=ID of struct
sum += GetComponentsConsumedByType(src, insn.word(i), false);
}
return sum;
}
case spv::OpTypeArray:
if (strip_array_level) {
return GetComponentsConsumedByType(src, insn.word(2), false);
} else {
return GetConstantValue(src, insn.word(3)) * GetComponentsConsumedByType(src, insn.word(2), false);
}
case spv::OpTypeMatrix:
// Num locations is the dimension * element size
return insn.word(3) * GetComponentsConsumedByType(src, insn.word(2), false);
case spv::OpTypeVector: {
auto scalar_type = src->get_def(insn.word(2));
auto bit_width =
(scalar_type.opcode() == spv::OpTypeInt || scalar_type.opcode() == spv::OpTypeFloat) ? scalar_type.word(2) : 32;
// One component is 32-bit
return (bit_width * insn.word(3) + 31) / 32;
}
case spv::OpTypeFloat: {
auto bit_width = insn.word(2);
return (bit_width + 31) / 32;
}
case spv::OpTypeInt: {
auto bit_width = insn.word(2);
return (bit_width + 31) / 32;
}
case spv::OpConstant:
return GetComponentsConsumedByType(src, insn.word(1), false);
default:
return 0;
}
}
static unsigned GetLocationsConsumedByFormat(VkFormat format) {
switch (format) {
case VK_FORMAT_R64G64B64A64_SFLOAT:
case VK_FORMAT_R64G64B64A64_SINT:
case VK_FORMAT_R64G64B64A64_UINT:
case VK_FORMAT_R64G64B64_SFLOAT:
case VK_FORMAT_R64G64B64_SINT:
case VK_FORMAT_R64G64B64_UINT:
return 2;
default:
return 1;
}
}
static unsigned GetFormatType(VkFormat fmt) {
if (FormatIsSInt(fmt)) return FORMAT_TYPE_SINT;
if (FormatIsUInt(fmt)) return FORMAT_TYPE_UINT;
if (FormatIsDepthAndStencil(fmt)) return FORMAT_TYPE_FLOAT | FORMAT_TYPE_UINT;
if (fmt == VK_FORMAT_UNDEFINED) return 0;
// everything else -- UNORM/SNORM/FLOAT/USCALED/SSCALED is all float in the shader.
return FORMAT_TYPE_FLOAT;
}
// characterizes a SPIR-V type appearing in an interface to a FF stage, for comparison to a VkFormat's characterization above.
// also used for input attachments, as we statically know their format.
static unsigned GetFundamentalType(SHADER_MODULE_STATE const *src, unsigned type) {
auto insn = src->get_def(type);
assert(insn != src->end());
switch (insn.opcode()) {
case spv::OpTypeInt:
return insn.word(3) ? FORMAT_TYPE_SINT : FORMAT_TYPE_UINT;
case spv::OpTypeFloat:
return FORMAT_TYPE_FLOAT;
case spv::OpTypeVector:
case spv::OpTypeMatrix:
case spv::OpTypeArray:
case spv::OpTypeRuntimeArray:
case spv::OpTypeImage:
return GetFundamentalType(src, insn.word(2));
case spv::OpTypePointer:
return GetFundamentalType(src, insn.word(3));
default:
return 0;
}
}
static uint32_t GetShaderStageId(VkShaderStageFlagBits stage) {
uint32_t bit_pos = uint32_t(u_ffs(stage));
return bit_pos - 1;
}
static spirv_inst_iter GetStructType(SHADER_MODULE_STATE const *src, spirv_inst_iter def, bool is_array_of_verts) {
while (true) {
if (def.opcode() == spv::OpTypePointer) {
def = src->get_def(def.word(3));
} else if (def.opcode() == spv::OpTypeArray && is_array_of_verts) {
def = src->get_def(def.word(2));
is_array_of_verts = false;
} else if (def.opcode() == spv::OpTypeStruct) {
return def;
} else {
return src->end();
}
}
}
static bool CollectInterfaceBlockMembers(SHADER_MODULE_STATE const *src, std::map<location_t, interface_var> *out,
bool is_array_of_verts, uint32_t id, uint32_t type_id, bool is_patch,
int /*first_location*/) {
// Walk down the type_id presented, trying to determine whether it's actually an interface block.
auto type = GetStructType(src, src->get_def(type_id), is_array_of_verts && !is_patch);
if (type == src->end() || !(src->get_decorations(type.word(1)).flags & decoration_set::block_bit)) {
// This isn't an interface block.
return false;
}
std::unordered_map<unsigned, unsigned> member_components;
std::unordered_map<unsigned, unsigned> member_relaxed_precision;
std::unordered_map<unsigned, unsigned> member_patch;
// Walk all the OpMemberDecorate for type's result id -- first pass, collect components.
for (auto insn : *src) {
if (insn.opcode() == spv::OpMemberDecorate && insn.word(1) == type.word(1)) {
unsigned member_index = insn.word(2);
if (insn.word(3) == spv::DecorationComponent) {
unsigned component = insn.word(4);
member_components[member_index] = component;
}
if (insn.word(3) == spv::DecorationRelaxedPrecision) {
member_relaxed_precision[member_index] = 1;
}
if (insn.word(3) == spv::DecorationPatch) {
member_patch[member_index] = 1;
}
}
}
// TODO: correctly handle location assignment from outside
// Second pass -- produce the output, from Location decorations
for (auto insn : *src) {
if (insn.opcode() == spv::OpMemberDecorate && insn.word(1) == type.word(1)) {
unsigned member_index = insn.word(2);
unsigned member_type_id = type.word(2 + member_index);
if (insn.word(3) == spv::DecorationLocation) {
unsigned location = insn.word(4);
unsigned num_locations = GetLocationsConsumedByType(src, member_type_id, false);
auto component_it = member_components.find(member_index);
unsigned component = component_it == member_components.end() ? 0 : component_it->second;
bool is_relaxed_precision = member_relaxed_precision.find(member_index) != member_relaxed_precision.end();
bool member_is_patch = is_patch || member_patch.count(member_index) > 0;
for (unsigned int offset = 0; offset < num_locations; offset++) {
interface_var v = {};
v.id = id;
// TODO: member index in interface_var too?
v.type_id = member_type_id;
v.offset = offset;
v.is_patch = member_is_patch;
v.is_block_member = true;
v.is_relaxed_precision = is_relaxed_precision;
(*out)[std::make_pair(location + offset, component)] = v;
}
}
}
}
return true;
}
static std::vector<uint32_t> FindEntrypointInterfaces(spirv_inst_iter entrypoint) {
assert(entrypoint.opcode() == spv::OpEntryPoint);
std::vector<uint32_t> interfaces;
// Find the end of the entrypoint's name string. additional zero bytes follow the actual null terminator, to fill out the
// rest of the word - so we only need to look at the last byte in the word to determine which word contains the terminator.
uint32_t word = 3;
while (entrypoint.word(word) & 0xff000000u) {
++word;
}
++word;
for (; word < entrypoint.len(); word++) interfaces.push_back(entrypoint.word(word));
return interfaces;
}
static std::map<location_t, interface_var> CollectInterfaceByLocation(SHADER_MODULE_STATE const *src, spirv_inst_iter entrypoint,
spv::StorageClass sinterface, bool is_array_of_verts) {
// TODO: handle index=1 dual source outputs from FS -- two vars will have the same location, and we DON'T want to clobber.
std::map<location_t, interface_var> out;
for (uint32_t iid : FindEntrypointInterfaces(entrypoint)) {
auto insn = src->get_def(iid);
assert(insn != src->end());
assert(insn.opcode() == spv::OpVariable);
if (insn.word(3) == static_cast<uint32_t>(sinterface)) {
auto d = src->get_decorations(iid);
unsigned id = insn.word(2);
unsigned type = insn.word(1);
int location = d.location;
int builtin = d.builtin;
unsigned component = d.component;
bool is_patch = (d.flags & decoration_set::patch_bit) != 0;
bool is_relaxed_precision = (d.flags & decoration_set::relaxed_precision_bit) != 0;
if (builtin != -1) {
continue;
} else if (!CollectInterfaceBlockMembers(src, &out, is_array_of_verts, id, type, is_patch, location)) {
// A user-defined interface variable, with a location. Where a variable occupied multiple locations, emit
// one result for each.
unsigned num_locations = GetLocationsConsumedByType(src, type, is_array_of_verts && !is_patch);
for (unsigned int offset = 0; offset < num_locations; offset++) {
interface_var v = {};
v.id = id;
v.type_id = type;
v.offset = offset;
v.is_patch = is_patch;
v.is_relaxed_precision = is_relaxed_precision;
out[std::make_pair(location + offset, component)] = v;
}
}
}
}
return out;
}
static std::vector<uint32_t> CollectBuiltinBlockMembers(SHADER_MODULE_STATE const *src, spirv_inst_iter entrypoint,
uint32_t storageClass) {
std::vector<uint32_t> variables;
std::vector<uint32_t> builtin_struct_members;
std::vector<uint32_t> builtin_decorations;
for (auto insn : *src) {
switch (insn.opcode()) {
// Find all built-in member decorations
case spv::OpMemberDecorate:
if (insn.word(3) == spv::DecorationBuiltIn) {
builtin_struct_members.push_back(insn.word(1));
}
break;
// Find all built-in decorations
case spv::OpDecorate:
switch (insn.word(2)) {
case spv::DecorationBlock: {
uint32_t block_id = insn.word(1);
for (auto built_in_block_id : builtin_struct_members) {
// Check if one of the members of the block are built-in -> the block is built-in
if (block_id == built_in_block_id) {
builtin_decorations.push_back(block_id);
break;
}
}
break;
}
case spv::DecorationBuiltIn:
builtin_decorations.push_back(insn.word(1));
break;
default:
break;
}
break;
default:
break;
}
}
// Find all interface variables belonging to the entrypoint and matching the storage class
for (uint32_t id : FindEntrypointInterfaces(entrypoint)) {
auto def = src->get_def(id);
assert(def != src->end());
assert(def.opcode() == spv::OpVariable);
if (def.word(3) == storageClass) variables.push_back(def.word(1));
}
// Find all members belonging to the builtin block selected
std::vector<uint32_t> builtin_block_members;
for (auto &var : variables) {
auto def = src->get_def(src->get_def(var).word(3));
// It could be an array of IO blocks. The element type should be the struct defining the block contents
if (def.opcode() == spv::OpTypeArray) def = src->get_def(def.word(2));
// Now find all members belonging to the struct defining the IO block
if (def.opcode() == spv::OpTypeStruct) {
for (auto built_in_id : builtin_decorations) {
if (built_in_id == def.word(1)) {
for (int i = 2; i < static_cast<int>(def.len()); i++) {
builtin_block_members.push_back(spv::BuiltInMax); // Start with undefined builtin for each struct member.
}
// These shouldn't be left after replacing.
for (auto insn : *src) {
if (insn.opcode() == spv::OpMemberDecorate && insn.word(1) == built_in_id &&
insn.word(3) == spv::DecorationBuiltIn) {
auto struct_index = insn.word(2);
assert(struct_index < builtin_block_members.size());
builtin_block_members[struct_index] = insn.word(4);
}
}
}
}
}
}
return builtin_block_members;
}
static std::vector<std::pair<uint32_t, interface_var>> CollectInterfaceByInputAttachmentIndex(
SHADER_MODULE_STATE const *src, std::unordered_set<uint32_t> const &accessible_ids) {
std::vector<std::pair<uint32_t, interface_var>> out;
for (auto insn : *src) {
if (insn.opcode() == spv::OpDecorate) {
if (insn.word(2) == spv::DecorationInputAttachmentIndex) {
auto attachment_index = insn.word(3);
auto id = insn.word(1);
if (accessible_ids.count(id)) {
auto def = src->get_def(id);
assert(def != src->end());
if (def.opcode() == spv::OpVariable && def.word(3) == spv::StorageClassUniformConstant) {
auto num_locations = GetLocationsConsumedByType(src, def.word(1), false);
for (unsigned int offset = 0; offset < num_locations; offset++) {
interface_var v = {};
v.id = id;
v.type_id = def.word(1);
v.offset = offset;
out.emplace_back(attachment_index + offset, v);
}
}
}
}
}
}
return out;
}
static bool AtomicOperation(uint32_t opcode) {
switch (opcode) {
case spv::OpAtomicLoad:
case spv::OpAtomicStore:
case spv::OpAtomicExchange:
case spv::OpAtomicCompareExchange:
case spv::OpAtomicCompareExchangeWeak:
case spv::OpAtomicIIncrement:
case spv::OpAtomicIDecrement:
case spv::OpAtomicIAdd:
case spv::OpAtomicISub:
case spv::OpAtomicSMin:
case spv::OpAtomicUMin:
case spv::OpAtomicSMax:
case spv::OpAtomicUMax:
case spv::OpAtomicAnd:
case spv::OpAtomicOr:
case spv::OpAtomicXor:
case spv::OpAtomicFAddEXT:
return true;
default:
return false;
}
return false;
}
// Only includes valid group operations used in Vulkan (for now thats only subgroup ops) and any non supported operation will be
// covered with VUID 01090
static bool GroupOperation(uint32_t opcode) {
switch (opcode) {
case spv::OpGroupNonUniformElect:
case spv::OpGroupNonUniformAll:
case spv::OpGroupNonUniformAny:
case spv::OpGroupNonUniformAllEqual:
case spv::OpGroupNonUniformBroadcast:
case spv::OpGroupNonUniformBroadcastFirst:
case spv::OpGroupNonUniformBallot:
case spv::OpGroupNonUniformInverseBallot:
case spv::OpGroupNonUniformBallotBitExtract:
case spv::OpGroupNonUniformBallotBitCount:
case spv::OpGroupNonUniformBallotFindLSB:
case spv::OpGroupNonUniformBallotFindMSB:
case spv::OpGroupNonUniformShuffle:
case spv::OpGroupNonUniformShuffleXor:
case spv::OpGroupNonUniformShuffleUp:
case spv::OpGroupNonUniformShuffleDown:
case spv::OpGroupNonUniformIAdd:
case spv::OpGroupNonUniformFAdd:
case spv::OpGroupNonUniformIMul:
case spv::OpGroupNonUniformFMul:
case spv::OpGroupNonUniformSMin:
case spv::OpGroupNonUniformUMin:
case spv::OpGroupNonUniformFMin:
case spv::OpGroupNonUniformSMax:
case spv::OpGroupNonUniformUMax:
case spv::OpGroupNonUniformFMax:
case spv::OpGroupNonUniformBitwiseAnd:
case spv::OpGroupNonUniformBitwiseOr:
case spv::OpGroupNonUniformBitwiseXor:
case spv::OpGroupNonUniformLogicalAnd:
case spv::OpGroupNonUniformLogicalOr:
case spv::OpGroupNonUniformLogicalXor:
case spv::OpGroupNonUniformQuadBroadcast:
case spv::OpGroupNonUniformQuadSwap:
case spv::OpGroupNonUniformPartitionNV:
return true;
default:
return false;
}
return false;
}
bool CheckObjectIDFromOpLoad(uint32_t object_id, const std::vector<unsigned> &operator_members,
const std::unordered_map<unsigned, unsigned> &load_members,
const std::unordered_map<unsigned, std::pair<unsigned, unsigned>> &accesschain_members) {
for (auto load_id : operator_members) {
if (object_id == load_id) return true;
auto load_it = load_members.find(load_id);
if (load_it == load_members.end()) {
continue;
}
if (load_it->second == object_id) {
return true;
}
auto accesschain_it = accesschain_members.find(load_it->second);
if (accesschain_it == accesschain_members.end()) {
continue;
}
if (accesschain_it->second.first == object_id) {
return true;
}
}
return false;
}
bool CheckImageOperandsBiasOffset(uint32_t type) {
return type & (spv::ImageOperandsBiasMask | spv::ImageOperandsConstOffsetMask | spv::ImageOperandsOffsetMask |
spv::ImageOperandsConstOffsetsMask)
? true
: false;
}
struct shader_module_used_operators {
bool updated;
std::vector<unsigned> imagwrite_members;
std::vector<unsigned> atomic_members;
std::vector<unsigned> store_members;
std::vector<unsigned> atomic_store_members;
std::vector<unsigned> sampler_implicitLod_dref_proj_members; // sampler Load id
std::vector<unsigned> sampler_bias_offset_members; // sampler Load id
std::vector<std::pair<unsigned, unsigned>> sampledImage_members; // <image,sampler> Load id
std::unordered_map<unsigned, unsigned> load_members;
std::unordered_map<unsigned, std::pair<unsigned, unsigned>> accesschain_members;
std::unordered_map<unsigned, unsigned> image_texel_pointer_members;
shader_module_used_operators() : updated(false) {}
void update(SHADER_MODULE_STATE const *module) {
if (updated) return;
updated = true;
for (auto insn : *module) {
switch (insn.opcode()) {
case spv::OpImageSampleImplicitLod:
case spv::OpImageSampleProjImplicitLod:
case spv::OpImageSampleProjExplicitLod:
case spv::OpImageSparseSampleImplicitLod:
case spv::OpImageSparseSampleProjImplicitLod:
case spv::OpImageSparseSampleProjExplicitLod: {
sampler_implicitLod_dref_proj_members.emplace_back(insn.word(3)); // Load id
// ImageOperands in index: 5
if (insn.len() > 5 && CheckImageOperandsBiasOffset(insn.word(5))) {
sampler_bias_offset_members.emplace_back(insn.word(3));
}
break;
}
case spv::OpImageSampleDrefImplicitLod:
case spv::OpImageSampleDrefExplicitLod:
case spv::OpImageSampleProjDrefImplicitLod:
case spv::OpImageSampleProjDrefExplicitLod:
case spv::OpImageSparseSampleDrefImplicitLod:
case spv::OpImageSparseSampleDrefExplicitLod:
case spv::OpImageSparseSampleProjDrefImplicitLod:
case spv::OpImageSparseSampleProjDrefExplicitLod: {
sampler_implicitLod_dref_proj_members.emplace_back(insn.word(3)); // Load id
// ImageOperands in index: 6
if (insn.len() > 6 && CheckImageOperandsBiasOffset(insn.word(6))) {
sampler_bias_offset_members.emplace_back(insn.word(3));
}
break;
}
case spv::OpImageSampleExplicitLod:
case spv::OpImageSparseSampleExplicitLod: {
// ImageOperands in index: 5
if (insn.len() > 5 && CheckImageOperandsBiasOffset(insn.word(5))) {
sampler_bias_offset_members.emplace_back(insn.word(3));
}
break;
}
case spv::OpStore: {
store_members.emplace_back(insn.word(1)); // object id or AccessChain id
break;
}
case spv::OpImageWrite: {
imagwrite_members.emplace_back(insn.word(1)); // Load id
break;
}
case spv::OpSampledImage: {
// 3: image load id, 4: sampler load id
sampledImage_members.emplace_back(std::pair<unsigned, unsigned>(insn.word(3), insn.word(4)));
break;
}
case spv::OpLoad: {
// 2: Load id, 3: object id or AccessChain id
load_members.insert(std::make_pair(insn.word(2), insn.word(3)));
break;
}
case spv::OpAccessChain: {
if (insn.len() == 4) {
// If it is for struct, the length is only 4.
// 2: AccessChain id, 3: object id
accesschain_members.insert(std::make_pair(insn.word(2), std::pair<unsigned, unsigned>(insn.word(3), 0)));
} else {
// 2: AccessChain id, 3: object id, 4: object id of array index
accesschain_members.insert(
std::make_pair(insn.word(2), std::pair<unsigned, unsigned>(insn.word(3), insn.word(4))));
}
break;
}
case spv::OpImageTexelPointer: {
// 2: ImageTexelPointer id, 3: object id
image_texel_pointer_members.insert(std::make_pair(insn.word(2), insn.word(3)));
break;
}
default: {
if (AtomicOperation(insn.opcode())) {
if (insn.opcode() == spv::OpAtomicStore) {
atomic_store_members.emplace_back(insn.word(1)); // ImageTexelPointer id
} else {
atomic_members.emplace_back(insn.word(3)); // ImageTexelPointer id
}
}
break;
}
}
}
}
};
// Takes a OpVariable and looks at the the descriptor type it uses. This will find things such as if the variable is writable, image
// atomic operation, matching images to samplers, etc
static void IsSpecificDescriptorType(SHADER_MODULE_STATE const *module, const spirv_inst_iter &id_it, bool is_storage_buffer,
bool is_check_writable, interface_var &out_interface_var,
shader_module_used_operators &used_operators) {
uint32_t type_id = id_it.word(1);
unsigned int id = id_it.word(2);
auto type = module->get_def(type_id);
// Strip off any array or ptrs. Where we remove array levels, adjust the descriptor count for each dimension.
while (type.opcode() == spv::OpTypeArray || type.opcode() == spv::OpTypePointer || type.opcode() == spv::OpTypeRuntimeArray ||
type.opcode() == spv::OpTypeSampledImage) {
if (type.opcode() == spv::OpTypeArray || type.opcode() == spv::OpTypeRuntimeArray ||
type.opcode() == spv::OpTypeSampledImage) {
type = module->get_def(type.word(2)); // Element type
} else {
type = module->get_def(type.word(3)); // Pointer type
}
}
switch (type.opcode()) {
case spv::OpTypeImage: {
auto dim = type.word(3);
if (dim != spv::DimSubpassData) {
used_operators.update(module);
if (CheckObjectIDFromOpLoad(id, used_operators.imagwrite_members, used_operators.load_members,
used_operators.accesschain_members)) {
out_interface_var.is_writable = true;
}
if (CheckObjectIDFromOpLoad(id, used_operators.sampler_implicitLod_dref_proj_members, used_operators.load_members,
used_operators.accesschain_members)) {
out_interface_var.is_sampler_implicitLod_dref_proj = true;
}
if (CheckObjectIDFromOpLoad(id, used_operators.sampler_bias_offset_members, used_operators.load_members,
used_operators.accesschain_members)) {
out_interface_var.is_sampler_bias_offset = true;
}
if (CheckObjectIDFromOpLoad(id, used_operators.atomic_members, used_operators.image_texel_pointer_members,
used_operators.accesschain_members) ||
CheckObjectIDFromOpLoad(id, used_operators.atomic_store_members, used_operators.image_texel_pointer_members,
used_operators.accesschain_members)) {
out_interface_var.is_atomic_operation = true;
}
for (auto &itp_id : used_operators.sampledImage_members) {
// Find if image id match.
uint32_t image_index = 0;
auto load_it = used_operators.load_members.find(itp_id.first);
if (load_it == used_operators.load_members.end()) {
continue;
} else {
if (load_it->second != id) {
auto accesschain_it = used_operators.accesschain_members.find(load_it->second);
if (accesschain_it == used_operators.accesschain_members.end()) {
continue;
} else {
if (accesschain_it->second.first != id) {
continue;
}
if (used_operators.load_members.end() !=
used_operators.load_members.find(accesschain_it->second.second)) {
// image_index isn't a constant, skip.
break;
}
image_index = GetConstantValue(module, accesschain_it->second.second);
}
}
}
// Find sampler's set binding.
load_it = used_operators.load_members.find(itp_id.second);
if (load_it == used_operators.load_members.end()) {
continue;
} else {
uint32_t sampler_id = load_it->second;
uint32_t sampler_index = 0;
auto accesschain_it = used_operators.accesschain_members.find(load_it->second);
if (accesschain_it != used_operators.accesschain_members.end()) {
if (used_operators.load_members.end() !=
used_operators.load_members.find(accesschain_it->second.second)) {
// sampler_index isn't a constant, skip.
break;
}
sampler_id = accesschain_it->second.first;
sampler_index = GetConstantValue(module, accesschain_it->second.second);
}
auto sampler_dec = module->get_decorations(sampler_id);
if (image_index >= out_interface_var.samplers_used_by_image.size()) {
out_interface_var.samplers_used_by_image.resize(image_index + 1);
}
out_interface_var.samplers_used_by_image[image_index].emplace(
SamplerUsedByImage{descriptor_slot_t{sampler_dec.descriptor_set, sampler_dec.binding}, sampler_index});
}
}
}
return;
}
case spv::OpTypeStruct: {
std::unordered_set<unsigned> nonwritable_members;
if (module->get_decorations(type.word(1)).flags & decoration_set::buffer_block_bit) is_storage_buffer = true;
for (auto insn : *module) {
if (insn.opcode() == spv::OpMemberDecorate && insn.word(1) == type.word(1) &&
insn.word(3) == spv::DecorationNonWritable) {
nonwritable_members.insert(insn.word(2));
}
}
// A buffer is writable if it's either flavor of storage buffer, and has any member not decorated
// as nonwritable.
if (is_storage_buffer && nonwritable_members.size() != type.len() - 2) {
used_operators.update(module);
for (auto oid : used_operators.store_members) {
if (id == oid) {
out_interface_var.is_writable = true;
return;
}
auto accesschain_it = used_operators.accesschain_members.find(oid);
if (accesschain_it == used_operators.accesschain_members.end()) {
continue;
}
if (accesschain_it->second.first == id) {
out_interface_var.is_writable = true;
return;
}
}
if (CheckObjectIDFromOpLoad(id, used_operators.atomic_store_members, used_operators.image_texel_pointer_members,
used_operators.accesschain_members)) {
out_interface_var.is_writable = true;
return;
}
}
}
}
}
std::vector<std::pair<descriptor_slot_t, interface_var>> CollectInterfaceByDescriptorSlot(
SHADER_MODULE_STATE const *src, std::unordered_set<uint32_t> const &accessible_ids, bool *has_writable_descriptor,
bool *has_atomic_descriptor) {
std::vector<std::pair<descriptor_slot_t, interface_var>> out;
shader_module_used_operators operators;
for (auto id : accessible_ids) {
auto insn = src->get_def(id);
assert(insn != src->end());
if (insn.opcode() == spv::OpVariable &&
(insn.word(3) == spv::StorageClassUniform || insn.word(3) == spv::StorageClassUniformConstant ||
insn.word(3) == spv::StorageClassStorageBuffer)) {
auto d = src->get_decorations(insn.word(2));
unsigned set = d.descriptor_set;
unsigned binding = d.binding;
interface_var v = {};
v.id = insn.word(2);
v.type_id = insn.word(1);
IsSpecificDescriptorType(src, insn, insn.word(3) == spv::StorageClassStorageBuffer,
!(d.flags & decoration_set::nonwritable_bit), v, operators);
if (v.is_writable) *has_writable_descriptor = true;
if (v.is_atomic_operation) *has_atomic_descriptor = true;
out.emplace_back(std::make_pair(set, binding), v);
}
}
return out;
}
void DefineStructMember(const SHADER_MODULE_STATE &src, const spirv_inst_iter &it,
const std::vector<uint32_t> &memberDecorate_offsets, shader_struct_member &data) {
const auto struct_it = GetStructType(&src, it, false);
assert(struct_it != src.end());
data.size = 0;
shader_struct_member data1;
uint32_t i = 2;
uint32_t local_offset = 0;
std::vector<uint32_t> offsets;
offsets.resize(struct_it.len() - i);
// The members of struct in SPRIV_R aren't always sort, so we need to know their order.
for (const auto offset : memberDecorate_offsets) {
const auto member_decorate = src.at(offset);
if (member_decorate.word(1) != struct_it.word(1)) {
continue;
}
offsets[member_decorate.word(2)] = member_decorate.word(4);
}
for (const auto offset : offsets) {
local_offset = offset;
data1 = {};
data1.root = data.root;
data1.offset = local_offset;
auto def_member = src.get_def(struct_it.word(i));
// Array could be multi-dimensional
while (def_member.opcode() == spv::OpTypeArray) {
const auto len_id = def_member.word(3);
const auto def_len = src.get_def(len_id);
data1.array_length_hierarchy.emplace_back(def_len.word(3)); // array length
def_member = src.get_def(def_member.word(2));
}
if (def_member.opcode() == spv::OpTypeStruct) {
DefineStructMember(src, def_member, memberDecorate_offsets, data1);
} else if (def_member.opcode() == spv::OpTypePointer) {
if (def_member.word(2) == spv::StorageClassPhysicalStorageBuffer) {
// If it's a pointer with PhysicalStorageBuffer class, this member is essentially a uint64_t containing an address
// that "points to something."
data1.size = 8;
} else {
// If it's OpTypePointer. it means the member is a buffer, the type will be TypePointer, and then struct
DefineStructMember(src, def_member, memberDecorate_offsets, data1);
}
} else {
if (def_member.opcode() == spv::OpTypeMatrix) {
data1.array_length_hierarchy.emplace_back(def_member.word(3)); // matrix's columns. matrix's row is vector.
def_member = src.get_def(def_member.word(2));
}
if (def_member.opcode() == spv::OpTypeVector) {
data1.array_length_hierarchy.emplace_back(def_member.word(3)); // vector length
def_member = src.get_def(def_member.word(2));
}
// Get scalar type size. The value in SPRV-R is bit. It needs to translate to byte.
data1.size = (def_member.word(2) / 8);
}
const auto array_length_hierarchy_szie = data1.array_length_hierarchy.size();
if (array_length_hierarchy_szie > 0) {
data1.array_block_size.resize(array_length_hierarchy_szie, 1);
for (int i2 = static_cast<int>(array_length_hierarchy_szie - 1); i2 > 0; --i2) {
data1.array_block_size[i2 - 1] = data1.array_length_hierarchy[i2] * data1.array_block_size[i2];
}
}
data.struct_members.emplace_back(data1);
++i;
}
uint32_t total_array_length = 1;
for (const auto length : data1.array_length_hierarchy) {
total_array_length *= length;
}
data.size = local_offset + data1.size * total_array_length;
}
uint32_t UpdateOffset(uint32_t offset, const std::vector<uint32_t> &array_indices, const shader_struct_member &data) {
int array_indices_size = static_cast<int>(array_indices.size());
if (array_indices_size) {
uint32_t array_index = 0;
uint32_t i = 0;
for (const auto index : array_indices) {
array_index += (data.array_block_size[i] * index);
++i;
}
offset += (array_index * data.size);
}
return offset;
}
void SetUsedBytes(uint32_t offset, const std::vector<uint32_t> &array_indices, const shader_struct_member &data) {
int array_indices_size = static_cast<int>(array_indices.size());
uint32_t block_memory_size = data.size;
for (uint32_t i = static_cast<int>(array_indices_size); i < data.array_length_hierarchy.size(); ++i) {
block_memory_size *= data.array_length_hierarchy[i];
}
offset = UpdateOffset(offset, array_indices, data);
uint32_t end = offset + block_memory_size;
auto used_bytes = data.GetUsedbytes();
if (used_bytes->size() < end) {
used_bytes->resize(end, 0);
}
std::memset(used_bytes->data() + offset, true, static_cast<std::size_t>(block_memory_size));
}
void RunUsedArray(const SHADER_MODULE_STATE &src, uint32_t offset, std::vector<uint32_t> array_indices,
uint32_t access_chain_word_index, spirv_inst_iter &access_chain_it, const shader_struct_member &data) {
if (access_chain_word_index < access_chain_it.len()) {
if (data.array_length_hierarchy.size() > array_indices.size()) {
auto def_it = src.get_def(access_chain_it.word(access_chain_word_index));
++access_chain_word_index;
if (def_it != src.end() && def_it.opcode() == spv::OpConstant) {
array_indices.emplace_back(def_it.word(3));
RunUsedArray(src, offset, array_indices, access_chain_word_index, access_chain_it, data);
} else {
// If it is a variable, set the all array is used.
if (access_chain_word_index < access_chain_it.len()) {
uint32_t array_length = data.array_length_hierarchy[array_indices.size()];
for (uint32_t i = 0; i < array_length; ++i) {
auto array_indices2 = array_indices;
array_indices2.emplace_back(i);
RunUsedArray(src, offset, array_indices2, access_chain_word_index, access_chain_it, data);
}
} else {
SetUsedBytes(offset, array_indices, data);
}
}
} else {
offset = UpdateOffset(offset, array_indices, data);
RunUsedStruct(src, offset, access_chain_word_index, access_chain_it, data);
}
} else {
SetUsedBytes(offset, array_indices, data);
}
}
void RunUsedStruct(const SHADER_MODULE_STATE &src, uint32_t offset, uint32_t access_chain_word_index,
spirv_inst_iter &access_chain_it, const shader_struct_member &data) {
std::vector<uint32_t> array_indices_emptry;
if (access_chain_word_index < access_chain_it.len()) {
auto strcut_member_index = GetConstantValue(&src, access_chain_it.word(access_chain_word_index));
++access_chain_word_index;
auto data1 = data.struct_members[strcut_member_index];
RunUsedArray(src, offset + data1.offset, array_indices_emptry, access_chain_word_index, access_chain_it, data1);
}
}
void SetUsedStructMember(const SHADER_MODULE_STATE &src, const uint32_t variable_id,
const std::vector<function_set> &function_set_list, const shader_struct_member &data) {
for (const auto &func_set : function_set_list) {
auto range = func_set.op_lists.equal_range(spv::OpAccessChain);
for (auto it = range.first; it != range.second; ++it) {
auto access_chain = src.at(it->second);
if (access_chain.word(3) == variable_id) {
RunUsedStruct(src, 0, 4, access_chain, data);
}
}
}
}
void SetPushConstantUsedInShader(SHADER_MODULE_STATE &src) {
for (auto &entrypoint : src.entry_points) {
auto range = entrypoint.second.decorate_list.equal_range(spv::OpVariable);
for (auto it = range.first; it != range.second; ++it) {
const auto def_insn = src.at(it->second);
if (def_insn.word(3) == spv::StorageClassPushConstant) {
spirv_inst_iter type = src.get_def(def_insn.word(1));
const auto range2 = entrypoint.second.decorate_list.equal_range(spv::OpMemberDecorate);
std::vector<uint32_t> offsets;
for (auto it2 = range2.first; it2 != range2.second; ++it2) {
auto member_decorate = src.at(it2->second);
if (member_decorate.len() == 5 && member_decorate.word(3) == spv::DecorationOffset) {
offsets.emplace_back(member_decorate.offset());
}
}
entrypoint.second.push_constant_used_in_shader.root = &entrypoint.second.push_constant_used_in_shader;
DefineStructMember(src, type, offsets, entrypoint.second.push_constant_used_in_shader);
SetUsedStructMember(src, def_insn.word(2), entrypoint.second.function_set_list,
entrypoint.second.push_constant_used_in_shader);
}
}
}
}
std::unordered_set<uint32_t> CollectWritableOutputLocationinFS(const SHADER_MODULE_STATE &module,
const VkPipelineShaderStageCreateInfo &stage_info) {
std::unordered_set<uint32_t> location_list;
if (stage_info.stage != VK_SHADER_STAGE_FRAGMENT_BIT) return location_list;
const auto entrypoint = FindEntrypoint(&module, stage_info.pName, stage_info.stage);
const auto outputs = CollectInterfaceByLocation(&module, entrypoint, spv::StorageClassOutput, false);
std::unordered_set<unsigned> store_members;
std::unordered_map<unsigned, unsigned> accesschain_members;
for (auto insn : module) {
switch (insn.opcode()) {
case spv::OpStore:
case spv::OpAtomicStore: {
store_members.insert(insn.word(1)); // object id or AccessChain id
break;
}
case spv::OpAccessChain: {
// 2: AccessChain id, 3: object id
if (insn.word(3)) accesschain_members.insert(std::make_pair(insn.word(2), insn.word(3)));
break;
}
default:
break;
}
}
if (store_members.empty()) {
return location_list;
}
for (auto output : outputs) {
auto store_it = store_members.find(output.second.id);
if (store_it != store_members.end()) {
location_list.insert(output.first.first);
store_members.erase(store_it);
continue;
}
store_it = store_members.begin();
while (store_it != store_members.end()) {
auto accesschain_it = accesschain_members.find(*store_it);
if (accesschain_it == accesschain_members.end()) {
++store_it;
continue;
}
if (accesschain_it->second == output.second.id) {
location_list.insert(output.first.first);
store_members.erase(store_it);
accesschain_members.erase(accesschain_it);
break;
}
++store_it;
}
}
return location_list;
}
bool CoreChecks::ValidateViConsistency(VkPipelineVertexInputStateCreateInfo const *vi) const {
// Walk the binding descriptions, which describe the step rate and stride of each vertex buffer. Each binding should
// be specified only once.
std::unordered_map<uint32_t, VkVertexInputBindingDescription const *> bindings;
bool skip = false;
for (unsigned i = 0; i < vi->vertexBindingDescriptionCount; i++) {
auto desc = &vi->pVertexBindingDescriptions[i];
auto &binding = bindings[desc->binding];
if (binding) {
// TODO: "VUID-VkGraphicsPipelineCreateInfo-pStages-00742" perhaps?
skip |= LogError(device, kVUID_Core_Shader_InconsistentVi, "Duplicate vertex input binding descriptions for binding %d",
desc->binding);
} else {
binding = desc;
}
}
return skip;
}
bool CoreChecks::ValidateViAgainstVsInputs(VkPipelineVertexInputStateCreateInfo const *vi, SHADER_MODULE_STATE const *vs,
spirv_inst_iter entrypoint) const {
bool skip = false;
const auto inputs = CollectInterfaceByLocation(vs, entrypoint, spv::StorageClassInput, false);
// Build index by location
std::map<uint32_t, const VkVertexInputAttributeDescription *> attribs;
if (vi) {
for (uint32_t i = 0; i < vi->vertexAttributeDescriptionCount; ++i) {
const auto num_locations = GetLocationsConsumedByFormat(vi->pVertexAttributeDescriptions[i].format);
for (uint32_t j = 0; j < num_locations; ++j) {
attribs[vi->pVertexAttributeDescriptions[i].location + j] = &vi->pVertexAttributeDescriptions[i];
}
}
}
struct AttribInputPair {
const VkVertexInputAttributeDescription *attrib = nullptr;
const interface_var *input = nullptr;
};
std::map<uint32_t, AttribInputPair> location_map;
for (const auto &attrib_it : attribs) location_map[attrib_it.first].attrib = attrib_it.second;
for (const auto &input_it : inputs) location_map[input_it.first.first].input = &input_it.second;
for (const auto &location_it : location_map) {
const auto location = location_it.first;
const auto attrib = location_it.second.attrib;
const auto input = location_it.second.input;
if (attrib && !input) {
skip |= LogPerformanceWarning(vs->vk_shader_module, kVUID_Core_Shader_OutputNotConsumed,
"Vertex attribute at location %" PRIu32 " not consumed by vertex shader", location);
} else if (!attrib && input) {
skip |= LogError(vs->vk_shader_module, kVUID_Core_Shader_InputNotProduced,
"Vertex shader consumes input at location %" PRIu32 " but not provided", location);
} else if (attrib && input) {
const auto attrib_type = GetFormatType(attrib->format);
const auto input_type = GetFundamentalType(vs, input->type_id);
// Type checking
if (!(attrib_type & input_type)) {
skip |= LogError(vs->vk_shader_module, kVUID_Core_Shader_InterfaceTypeMismatch,
"Attribute type of `%s` at location %" PRIu32 " does not match vertex shader input type of `%s`",
string_VkFormat(attrib->format), location, DescribeType(vs, input->type_id).c_str());
}
} else { // !attrib && !input
assert(false); // at least one exists in the map
}
}
return skip;
}
bool CoreChecks::ValidateFsOutputsAgainstRenderPass(SHADER_MODULE_STATE const *fs, spirv_inst_iter entrypoint,
PIPELINE_STATE const *pipeline, uint32_t subpass_index) const {
bool skip = false;
const auto rpci = pipeline->rp_state->createInfo.ptr();
struct Attachment {
const VkAttachmentReference2 *reference = nullptr;
const VkAttachmentDescription2 *attachment = nullptr;
const interface_var *output = nullptr;
};
std::map<uint32_t, Attachment> location_map;
const auto subpass = rpci->pSubpasses[subpass_index];
for (uint32_t i = 0; i < subpass.colorAttachmentCount; ++i) {
auto const &reference = subpass.pColorAttachments[i];
location_map[i].reference = &reference;
if (reference.attachment != VK_ATTACHMENT_UNUSED &&
rpci->pAttachments[reference.attachment].format != VK_FORMAT_UNDEFINED) {
location_map[i].attachment = &rpci->pAttachments[reference.attachment];
}
}
// TODO: dual source blend index (spv::DecIndex, zero if not provided)
const auto outputs = CollectInterfaceByLocation(fs, entrypoint, spv::StorageClassOutput, false);
for (const auto &output_it : outputs) {
auto const location = output_it.first.first;
location_map[location].output = &output_it.second;
}
const bool alpha_to_coverage_enabled = pipeline->graphicsPipelineCI.pMultisampleState != NULL &&
pipeline->graphicsPipelineCI.pMultisampleState->alphaToCoverageEnable == VK_TRUE;
for (const auto &location_it : location_map) {
const auto reference = location_it.second.reference;
if (reference != nullptr && reference->attachment == VK_ATTACHMENT_UNUSED) {
continue;
}
const auto location = location_it.first;
const auto attachment = location_it.second.attachment;
const auto output = location_it.second.output;
if (attachment && !output) {
if (pipeline->attachments[location].colorWriteMask != 0) {
skip |= LogWarning(fs->vk_shader_module, kVUID_Core_Shader_InputNotProduced,
"Attachment %" PRIu32
" not written by fragment shader; undefined values will be written to attachment",
location);
}
} else if (!attachment && output) {
if (!(alpha_to_coverage_enabled && location == 0)) {
skip |= LogWarning(fs->vk_shader_module, kVUID_Core_Shader_OutputNotConsumed,
"fragment shader writes to output location %" PRIu32 " with no matching attachment", location);
}
} else if (attachment && output) {
const auto attachment_type = GetFormatType(attachment->format);
const auto output_type = GetFundamentalType(fs, output->type_id);
// Type checking
if (!(output_type & attachment_type)) {
skip |=
LogWarning(fs->vk_shader_module, kVUID_Core_Shader_InterfaceTypeMismatch,
"Attachment %" PRIu32
" of type `%s` does not match fragment shader output type of `%s`; resulting values are undefined",
location, string_VkFormat(attachment->format), DescribeType(fs, output->type_id).c_str());
}
} else { // !attachment && !output
assert(false); // at least one exists in the map
}
}
const auto output_zero = location_map.count(0) ? location_map[0].output : nullptr;
bool location_zero_has_alpha = output_zero && fs->get_def(output_zero->type_id) != fs->end() &&
GetComponentsConsumedByType(fs, output_zero->type_id, false) == 4;
if (alpha_to_coverage_enabled && !location_zero_has_alpha) {
skip |= LogError(fs->vk_shader_module, kVUID_Core_Shader_NoAlphaAtLocation0WithAlphaToCoverage,
"fragment shader doesn't declare alpha output at location 0 even though alpha to coverage is enabled.");
}
return skip;
}
// For some built-in analysis we need to know if the variable decorated with as the built-in was actually written to.
// This function examines instructions in the static call tree for a write to this variable.
static bool IsBuiltInWritten(SHADER_MODULE_STATE const *src, spirv_inst_iter builtin_instr, spirv_inst_iter entrypoint) {
auto type = builtin_instr.opcode();
uint32_t target_id = builtin_instr.word(1);
bool init_complete = false;
if (type == spv::OpMemberDecorate) {
// Built-in is part of a structure -- examine instructions up to first function body to get initial IDs
auto insn = entrypoint;
while (!init_complete && (insn.opcode() != spv::OpFunction)) {
switch (insn.opcode()) {
case spv::OpTypePointer:
if ((insn.word(3) == target_id) && (insn.word(2) == spv::StorageClassOutput)) {
target_id = insn.word(1);
}
break;
case spv::OpVariable:
if (insn.word(1) == target_id) {
target_id = insn.word(2);
init_complete = true;
}
break;
}
insn++;
}
}
if (!init_complete && (type == spv::OpMemberDecorate)) return false;
bool found_write = false;
std::unordered_set<uint32_t> worklist;
worklist.insert(entrypoint.word(2));
// Follow instructions in call graph looking for writes to target
while (!worklist.empty() && !found_write) {
auto id_iter = worklist.begin();
auto id = *id_iter;
worklist.erase(id_iter);
auto insn = src->get_def(id);
if (insn == src->end()) {
continue;
}
if (insn.opcode() == spv::OpFunction) {
// Scan body of function looking for other function calls or items in our ID chain
while (++insn, insn.opcode() != spv::OpFunctionEnd) {
switch (insn.opcode()) {
case spv::OpAccessChain:
if (insn.word(3) == target_id) {
if (type == spv::OpMemberDecorate) {
auto value = GetConstantValue(src, insn.word(4));
if (value == builtin_instr.word(2)) {
target_id = insn.word(2);
}
} else {
target_id = insn.word(2);
}
}
break;
case spv::OpStore:
if (insn.word(1) == target_id) {
found_write = true;
}
break;
case spv::OpFunctionCall:
worklist.insert(insn.word(3));
break;
}
}
}
}
return found_write;
}
// For some analyses, we need to know about all ids referenced by the static call tree of a particular entrypoint. This is
// important for identifying the set of shader resources actually used by an entrypoint, for example.
// Note: we only explore parts of the image which might actually contain ids we care about for the above analyses.
// - NOT the shader input/output interfaces.
//
// TODO: The set of interesting opcodes here was determined by eyeballing the SPIRV spec. It might be worth
// converting parts of this to be generated from the machine-readable spec instead.
std::unordered_set<uint32_t> MarkAccessibleIds(SHADER_MODULE_STATE const *src, spirv_inst_iter entrypoint) {
std::unordered_set<uint32_t> ids;
std::unordered_set<uint32_t> worklist;
worklist.insert(entrypoint.word(2));
while (!worklist.empty()) {
auto id_iter = worklist.begin();
auto id = *id_iter;
worklist.erase(id_iter);
auto insn = src->get_def(id);
if (insn == src->end()) {
// ID is something we didn't collect in BuildDefIndex. that's OK -- we'll stumble across all kinds of things here
// that we may not care about.
continue;
}
// Try to add to the output set
if (!ids.insert(id).second) {
continue; // If we already saw this id, we don't want to walk it again.
}
switch (insn.opcode()) {
case spv::OpFunction:
// Scan whole body of the function, enlisting anything interesting
while (++insn, insn.opcode() != spv::OpFunctionEnd) {
switch (insn.opcode()) {
case spv::OpLoad:
worklist.insert(insn.word(3)); // ptr
break;
case spv::OpStore:
worklist.insert(insn.word(1)); // ptr
break;
case spv::OpAccessChain:
case spv::OpInBoundsAccessChain:
worklist.insert(insn.word(3)); // base ptr
break;
case spv::OpSampledImage:
case spv::OpImageSampleImplicitLod:
case spv::OpImageSampleExplicitLod:
case spv::OpImageSampleDrefImplicitLod:
case spv::OpImageSampleDrefExplicitLod:
case spv::OpImageSampleProjImplicitLod:
case spv::OpImageSampleProjExplicitLod:
case spv::OpImageSampleProjDrefImplicitLod:
case spv::OpImageSampleProjDrefExplicitLod:
case spv::OpImageFetch:
case spv::OpImageGather:
case spv::OpImageDrefGather:
case spv::OpImageRead:
case spv::OpImage:
case spv::OpImageQueryFormat:
case spv::OpImageQueryOrder:
case spv::OpImageQuerySizeLod:
case spv::OpImageQuerySize:
case spv::OpImageQueryLod:
case spv::OpImageQueryLevels:
case spv::OpImageQuerySamples:
case spv::OpImageSparseSampleImplicitLod:
case spv::OpImageSparseSampleExplicitLod:
case spv::OpImageSparseSampleDrefImplicitLod:
case spv::OpImageSparseSampleDrefExplicitLod:
case spv::OpImageSparseSampleProjImplicitLod:
case spv::OpImageSparseSampleProjExplicitLod:
case spv::OpImageSparseSampleProjDrefImplicitLod:
case spv::OpImageSparseSampleProjDrefExplicitLod:
case spv::OpImageSparseFetch:
case spv::OpImageSparseGather:
case spv::OpImageSparseDrefGather:
case spv::OpImageTexelPointer:
worklist.insert(insn.word(3)); // Image or sampled image
break;
case spv::OpImageWrite:
worklist.insert(insn.word(1)); // Image -- different operand order to above
break;
case spv::OpFunctionCall:
for (uint32_t i = 3; i < insn.len(); i++) {
worklist.insert(insn.word(i)); // fn itself, and all args
}
break;
case spv::OpExtInst:
for (uint32_t i = 5; i < insn.len(); i++) {
worklist.insert(insn.word(i)); // Operands to ext inst
}
break;
default: {
if (AtomicOperation(insn.opcode())) {
if (insn.opcode() == spv::OpAtomicStore) {
worklist.insert(insn.word(1)); // ptr
} else {
worklist.insert(insn.word(3)); // ptr
}
}
break;
}
}
}
break;
}
}
return ids;
}
PushConstantByteState CoreChecks::ValidatePushConstantSetUpdate(const std::vector<uint8_t> &push_constant_data_update,
const shader_struct_member &push_constant_used_in_shader,
uint32_t &out_issue_index) const {
const auto *used_bytes = push_constant_used_in_shader.GetUsedbytes();
const auto used_bytes_size = used_bytes->size();
if (used_bytes_size == 0) return PC_Byte_Updated;
const auto push_constant_data_update_size = push_constant_data_update.size();
const auto *data = push_constant_data_update.data();
if ((*data == PC_Byte_Updated) && std::memcmp(data, data + 1, push_constant_data_update_size - 1) == 0) {
if (used_bytes_size <= push_constant_data_update_size) {
return PC_Byte_Updated;
}
const auto used_bytes_size1 = used_bytes_size - push_constant_data_update_size;
const auto *used_bytes_data1 = used_bytes->data() + push_constant_data_update_size;
if ((*used_bytes_data1 == 0) && std::memcmp(used_bytes_data1, used_bytes_data1 + 1, used_bytes_size1 - 1) == 0) {
return PC_Byte_Updated;
}
}
uint32_t i = 0;
for (const auto used : *used_bytes) {
if (used) {
if (i >= push_constant_data_update.size() || push_constant_data_update[i] == PC_Byte_Not_Set) {
out_issue_index = i;
return PC_Byte_Not_Set;
} else if (push_constant_data_update[i] == PC_Byte_Not_Updated) {
out_issue_index = i;
return PC_Byte_Not_Updated;
}
}
++i;
}
return PC_Byte_Updated;
}
bool CoreChecks::ValidatePushConstantUsage(const PIPELINE_STATE &pipeline, SHADER_MODULE_STATE const *src,
VkPipelineShaderStageCreateInfo const *pStage) const {
bool skip = false;
// Validate directly off the offsets. this isn't quite correct for arrays and matrices, but is a good first step.
const auto *entrypoint = FindEntrypointStruct(src, pStage->pName, pStage->stage);
if (!entrypoint || !entrypoint->push_constant_used_in_shader.IsUsed()) {
return skip;
}
std::vector<VkPushConstantRange> const *push_constant_ranges = pipeline.pipeline_layout->push_constant_ranges.get();
bool found_stage = false;
for (auto const &range : *push_constant_ranges) {
if (range.stageFlags & pStage->stage) {
found_stage = true;
std::string location_desc;
std::vector<uint8_t> push_constant_bytes_set;
if (range.offset > 0) {
push_constant_bytes_set.resize(range.offset, PC_Byte_Not_Set);
}
push_constant_bytes_set.resize(range.offset + range.size, PC_Byte_Updated);
uint32_t issue_index = 0;
const auto ret =
ValidatePushConstantSetUpdate(push_constant_bytes_set, entrypoint->push_constant_used_in_shader, issue_index);
if (ret == PC_Byte_Not_Set) {
const auto loc_descr = entrypoint->push_constant_used_in_shader.GetLocationDesc(issue_index);
LogObjectList objlist(src->vk_shader_module);
objlist.add(pipeline.pipeline_layout->layout);
skip |= LogError(objlist, kVUID_Core_Shader_PushConstantOutOfRange,
"Push-constant buffer:%s in %s is out of range in %s.", loc_descr.c_str(),
string_VkShaderStageFlags(pStage->stage).c_str(),
report_data->FormatHandle(pipeline.pipeline_layout->layout).c_str());
break;
}
}
}
if (!found_stage) {
LogObjectList objlist(src->vk_shader_module);
objlist.add(pipeline.pipeline_layout->layout);
skip |= LogError(
objlist, kVUID_Core_Shader_PushConstantOutOfRange, "Push constant is used in %s of %s. But %s doesn't set %s.",
string_VkShaderStageFlags(pStage->stage).c_str(), report_data->FormatHandle(src->vk_shader_module).c_str(),
report_data->FormatHandle(pipeline.pipeline_layout->layout).c_str(), string_VkShaderStageFlags(pStage->stage).c_str());
}
return skip;
}
bool CoreChecks::ValidateBuiltinLimits(SHADER_MODULE_STATE const *src, const std::unordered_set<uint32_t> &accessible_ids,
VkShaderStageFlagBits stage) const {
bool skip = false;
// Currently all builtin tested are only found in fragment shaders
if (stage != VK_SHADER_STAGE_FRAGMENT_BIT) {
return skip;
}
for (const auto id : accessible_ids) {
auto insn = src->get_def(id);
const decoration_set decorations = src->get_decorations(insn.word(2));
// Built-ins are obtained from OpVariable
if (((decorations.flags & decoration_set::builtin_bit) != 0) && (insn.opcode() == spv::OpVariable)) {
auto type_pointer = src->get_def(insn.word(1));
assert(type_pointer.opcode() == spv::OpTypePointer);
auto type = src->get_def(type_pointer.word(3));
if (type.opcode() == spv::OpTypeArray) {
uint32_t length = static_cast<uint32_t>(GetConstantValue(src, type.word(3)));
switch (decorations.builtin) {
case spv::BuiltInSampleMask:
// Handles both the input and output sampleMask
if (length > phys_dev_props.limits.maxSampleMaskWords) {
skip |= LogError(device, "VUID-VkPipelineShaderStageCreateInfo-maxSampleMaskWords-00711",
"vkCreateGraphicsPipelines(): The BuiltIns SampleMask array sizes is %u which exceeds "
"maxSampleMaskWords of %u in %s.",
length, phys_dev_props.limits.maxSampleMaskWords,
report_data->FormatHandle(src->vk_shader_module).c_str());
}
break;
}
}
}
}
return skip;
}
// Validate that data for each specialization entry is fully contained within the buffer.
bool CoreChecks::ValidateSpecializationOffsets(VkPipelineShaderStageCreateInfo const *info) const {
bool skip = false;
VkSpecializationInfo const *spec = info->pSpecializationInfo;
if (spec) {
for (auto i = 0u; i < spec->mapEntryCount; i++) {
if (spec->pMapEntries[i].offset >= spec->dataSize) {
skip |= LogError(device, "VUID-VkSpecializationInfo-offset-00773",
"Specialization entry %u (for constant id %u) references memory outside provided specialization "
"data (bytes %u.." PRINTF_SIZE_T_SPECIFIER "; " PRINTF_SIZE_T_SPECIFIER " bytes provided)..",
i, spec->pMapEntries[i].constantID, spec->pMapEntries[i].offset,
spec->pMapEntries[i].offset + spec->dataSize - 1, spec->dataSize);
continue;
}
if (spec->pMapEntries[i].offset + spec->pMapEntries[i].size > spec->dataSize) {
skip |= LogError(device, "VUID-VkSpecializationInfo-pMapEntries-00774",
"Specialization entry %u (for constant id %u) references memory outside provided specialization "
"data (bytes %u.." PRINTF_SIZE_T_SPECIFIER "; " PRINTF_SIZE_T_SPECIFIER " bytes provided)..",
i, spec->pMapEntries[i].constantID, spec->pMapEntries[i].offset,
spec->pMapEntries[i].offset + spec->pMapEntries[i].size - 1, spec->dataSize);
}
}
}
return skip;
}
// TODO (jbolz): Can this return a const reference?
static std::set<uint32_t> TypeToDescriptorTypeSet(SHADER_MODULE_STATE const *module, uint32_t type_id, unsigned &descriptor_count,
bool is_khr) {
auto type = module->get_def(type_id);
bool is_storage_buffer = false;
descriptor_count = 1;
std::set<uint32_t> ret;
// Strip off any array or ptrs. Where we remove array levels, adjust the descriptor count for each dimension.
while (type.opcode() == spv::OpTypeArray || type.opcode() == spv::OpTypePointer || type.opcode() == spv::OpTypeRuntimeArray) {
if (type.opcode() == spv::OpTypeRuntimeArray) {
descriptor_count = 0;
type = module->get_def(type.word(2));
} else if (type.opcode() == spv::OpTypeArray) {
descriptor_count *= GetConstantValue(module, type.word(3));
type = module->get_def(type.word(2));
} else {
if (type.word(2) == spv::StorageClassStorageBuffer) {
is_storage_buffer = true;
}
type = module->get_def(type.word(3));
}
}
switch (type.opcode()) {
case spv::OpTypeStruct: {
for (auto insn : *module) {
if (insn.opcode() == spv::OpDecorate && insn.word(1) == type.word(1)) {
if (insn.word(2) == spv::DecorationBlock) {
if (is_storage_buffer) {
ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC);
return ret;
} else {
ret.insert(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
ret.insert(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
ret.insert(VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT);
return ret;
}
} else if (insn.word(2) == spv::DecorationBufferBlock) {
ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC);
return ret;
}
}
}
// Invalid
return ret;
}
case spv::OpTypeSampler:
ret.insert(VK_DESCRIPTOR_TYPE_SAMPLER);
ret.insert(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
return ret;
case spv::OpTypeSampledImage: {
// Slight relaxation for some GLSL historical madness: samplerBuffer doesn't really have a sampler, and a texel
// buffer descriptor doesn't really provide one. Allow this slight mismatch.
auto image_type = module->get_def(type.word(2));
auto dim = image_type.word(3);
auto sampled = image_type.word(7);
if (dim == spv::DimBuffer && sampled == 1) {
ret.insert(VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER);
return ret;
}
}
ret.insert(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
return ret;
case spv::OpTypeImage: {
// Many descriptor types backing image types-- depends on dimension and whether the image will be used with a sampler.
// SPIRV for Vulkan requires that sampled be 1 or 2 -- leaving the decision to runtime is unacceptable.
auto dim = type.word(3);
auto sampled = type.word(7);
if (dim == spv::DimSubpassData) {
ret.insert(VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT);
return ret;
} else if (dim == spv::DimBuffer) {
if (sampled == 1) {
ret.insert(VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER);
return ret;
} else {
ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER);
return ret;
}
} else if (sampled == 1) {
ret.insert(VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE);
ret.insert(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
return ret;
} else {
ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE);
return ret;
}
}
case spv::OpTypeAccelerationStructureNV:
is_khr ? ret.insert(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR)
: ret.insert(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_NV);
return ret;
// We shouldn't really see any other junk types -- but if we do, they're a mismatch.
default:
return ret; // Matches nothing
}
}
static std::string string_descriptorTypes(const std::set<uint32_t> &descriptor_types) {
std::stringstream ss;
for (auto it = descriptor_types.begin(); it != descriptor_types.end(); ++it) {
if (ss.tellp()) ss << ", ";
ss << string_VkDescriptorType(VkDescriptorType(*it));
}
return ss.str();
}
bool CoreChecks::RequirePropertyFlag(VkBool32 check, char const *flag, char const *structure, const char *vuid) const {
if (!check) {
if (LogError(device, vuid, "Shader requires flag %s set in %s but it is not set on the device", flag, structure)) {
return true;
}
}
return false;
}
bool CoreChecks::RequireFeature(VkBool32 feature, char const *feature_name, const char *vuid) const {
if (!feature) {
if (LogError(device, vuid, "Shader requires %s but is not enabled on the device", feature_name)) {
return true;
}
}
return false;
}
bool CoreChecks::ValidateShaderStageWritableOrAtomicDescriptor(VkShaderStageFlagBits stage, bool has_writable_descriptor,
bool has_atomic_descriptor) const {
bool skip = false;
if (has_writable_descriptor || has_atomic_descriptor) {
switch (stage) {
case VK_SHADER_STAGE_COMPUTE_BIT:
case VK_SHADER_STAGE_RAYGEN_BIT_NV:
case VK_SHADER_STAGE_ANY_HIT_BIT_NV:
case VK_SHADER_STAGE_CLOSEST_HIT_BIT_NV:
case VK_SHADER_STAGE_MISS_BIT_NV:
case VK_SHADER_STAGE_INTERSECTION_BIT_NV:
case VK_SHADER_STAGE_CALLABLE_BIT_NV:
case VK_SHADER_STAGE_TASK_BIT_NV:
case VK_SHADER_STAGE_MESH_BIT_NV:
/* No feature requirements for writes and atomics from compute
* raytracing, or mesh stages */
break;
case VK_SHADER_STAGE_FRAGMENT_BIT:
skip |= RequireFeature(enabled_features.core.fragmentStoresAndAtomics, "fragmentStoresAndAtomics",
kVUID_Core_Shader_FeatureNotEnabled);
break;
default:
skip |= RequireFeature(enabled_features.core.vertexPipelineStoresAndAtomics, "vertexPipelineStoresAndAtomics",
kVUID_Core_Shader_FeatureNotEnabled);
break;
}
}
return skip;
}
bool CoreChecks::ValidateShaderStageGroupNonUniform(SHADER_MODULE_STATE const *module, VkShaderStageFlagBits stage) const {
bool skip = false;
auto const subgroup_props = phys_dev_props_core11;
const VkSubgroupFeatureFlags supported_stages = subgroup_props.subgroupSupportedStages;
for (auto inst : *module) {
// Check anything using a group operation (which currently is only OpGroupNonUnifrom* operations)
if (GroupOperation(inst.opcode()) == true) {
// Check the quad operations.
if ((inst.opcode() == spv::OpGroupNonUniformQuadBroadcast) || (inst.opcode() == spv::OpGroupNonUniformQuadSwap)) {
if ((stage != VK_SHADER_STAGE_FRAGMENT_BIT) && (stage != VK_SHADER_STAGE_COMPUTE_BIT)) {
skip |= RequireFeature(subgroup_props.subgroupQuadOperationsInAllStages,
"VkPhysicalDeviceSubgroupProperties::quadOperationsInAllStages",
kVUID_Core_Shader_FeatureNotEnabled);
}
}
uint32_t scope_type = spv::ScopeMax;
if (inst.opcode() == spv::OpGroupNonUniformPartitionNV) {
// OpGroupNonUniformPartitionNV always assumed subgroup as missing operand
scope_type = spv::ScopeSubgroup;
} else {
// "All <id> used for Scope <id> must be of an OpConstant"
auto scope_id = module->get_def(inst.word(3));
scope_type = scope_id.word(3);
}
if (scope_type == spv::ScopeSubgroup) {
// "Group operations with subgroup scope" must have stage support
skip |=
RequirePropertyFlag(supported_stages & stage, string_VkShaderStageFlagBits(stage),
"VkPhysicalDeviceSubgroupProperties::supportedStages", kVUID_Core_Shader_ExceedDeviceLimit);
}
if (!enabled_features.core12.shaderSubgroupExtendedTypes) {
auto type = module->get_def(inst.word(1));
if (type.opcode() == spv::OpTypeVector) {
// Get the element type
type = module->get_def(type.word(2));
}
if (type.opcode() == spv::OpTypeBool) {
break;
}
// Both OpTypeInt and OpTypeFloat the width is in the 2nd word.
const uint32_t width = type.word(2);
if ((type.opcode() == spv::OpTypeFloat && width == 16) ||
(type.opcode() == spv::OpTypeInt && (width == 8 || width == 16 || width == 64))) {
skip |= RequireFeature(enabled_features.core12.shaderSubgroupExtendedTypes,
"VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures::shaderSubgroupExtendedTypes",
kVUID_Core_Shader_FeatureNotEnabled);
}
}
}
}
return skip;
}
bool CoreChecks::ValidateShaderStageInputOutputLimits(SHADER_MODULE_STATE const *src, VkPipelineShaderStageCreateInfo const *pStage,
const PIPELINE_STATE *pipeline, spirv_inst_iter entrypoint) const {
if (pStage->stage == VK_SHADER_STAGE_COMPUTE_BIT || pStage->stage == VK_SHADER_STAGE_ALL_GRAPHICS ||
pStage->stage == VK_SHADER_STAGE_ALL) {
return false;
}
bool skip = false;
auto const &limits = phys_dev_props.limits;
std::set<uint32_t> patch_i_ds;
struct Variable {
uint32_t baseTypePtrID;
uint32_t ID;
uint32_t storageClass;
};
std::vector<Variable> variables;
uint32_t num_vertices = 0;
bool is_iso_lines = false;
bool is_point_mode = false;
auto entrypoint_variables = FindEntrypointInterfaces(entrypoint);
for (auto insn : *src) {
switch (insn.opcode()) {
// Find all Patch decorations
case spv::OpDecorate:
switch (insn.word(2)) {
case spv::DecorationPatch: {
patch_i_ds.insert(insn.word(1));
break;
}
default:
break;
}
break;
// Find all input and output variables
case spv::OpVariable: {
Variable var = {};
var.storageClass = insn.word(3);
if ((var.storageClass == spv::StorageClassInput || var.storageClass == spv::StorageClassOutput) &&
// Only include variables in the entrypoint's interface
find(entrypoint_variables.begin(), entrypoint_variables.end(), insn.word(2)) != entrypoint_variables.end()) {
var.baseTypePtrID = insn.word(1);
var.ID = insn.word(2);
variables.push_back(var);
}
break;
}
case spv::OpExecutionMode:
if (insn.word(1) == entrypoint.word(2)) {
switch (insn.word(2)) {
default:
break;
case spv::ExecutionModeOutputVertices:
num_vertices = insn.word(3);
break;
case spv::ExecutionModeIsolines:
is_iso_lines = true;
break;
case spv::ExecutionModePointMode:
is_point_mode = true;
break;
}
}
break;
default:
break;
}
}
bool strip_output_array_level =
(pStage->stage == VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT || pStage->stage == VK_SHADER_STAGE_MESH_BIT_NV);
bool strip_input_array_level =
(pStage->stage == VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT ||
pStage->stage == VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT || pStage->stage == VK_SHADER_STAGE_GEOMETRY_BIT);
uint32_t num_comp_in = 0, num_comp_out = 0;
int max_comp_in = 0, max_comp_out = 0;
auto inputs = CollectInterfaceByLocation(src, entrypoint, spv::StorageClassInput, strip_input_array_level);
auto outputs = CollectInterfaceByLocation(src, entrypoint, spv::StorageClassOutput, strip_output_array_level);
// Find max component location used for input variables.
for (auto &var : inputs) {
int location = var.first.first;
int component = var.first.second;
interface_var &iv = var.second;
// Only need to look at the first location, since we use the type's whole size
if (iv.offset != 0) {
continue;
}
if (iv.is_patch) {
continue;
}
int num_components = GetComponentsConsumedByType(src, iv.type_id, strip_input_array_level);
max_comp_in = std::max(max_comp_in, location * 4 + component + num_components);
}
// Find max component location used for output variables.
for (auto &var : outputs) {
int location = var.first.first;
int component = var.first.second;
interface_var &iv = var.second;
// Only need to look at the first location, since we use the type's whole size
if (iv.offset != 0) {
continue;
}
if (iv.is_patch) {
continue;
}
int num_components = GetComponentsConsumedByType(src, iv.type_id, strip_output_array_level);
max_comp_out = std::max(max_comp_out, location * 4 + component + num_components);
}
// XXX TODO: Would be nice to rewrite this to use CollectInterfaceByLocation (or something similar),
// but that doesn't include builtins.
for (auto &var : variables) {
// Check if the variable is a patch. Patches can also be members of blocks,
// but if they are then the top-level arrayness has already been stripped
// by the time GetComponentsConsumedByType gets to it.
bool is_patch = patch_i_ds.find(var.ID) != patch_i_ds.end();
if (var.storageClass == spv::StorageClassInput) {
num_comp_in += GetComponentsConsumedByType(src, var.baseTypePtrID, strip_input_array_level && !is_patch);
} else { // var.storageClass == spv::StorageClassOutput
num_comp_out += GetComponentsConsumedByType(src, var.baseTypePtrID, strip_output_array_level && !is_patch);
}
}
switch (pStage->stage) {
case VK_SHADER_STAGE_VERTEX_BIT:
if (num_comp_out > limits.maxVertexOutputComponents) {
skip |= LogError(pipeline->pipeline, kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Vertex shader exceeds "
"VkPhysicalDeviceLimits::maxVertexOutputComponents of %u "
"components by %u components",
limits.maxVertexOutputComponents, num_comp_out - limits.maxVertexOutputComponents);
}
if (max_comp_out > static_cast<int>(limits.maxVertexOutputComponents)) {
skip |= LogError(pipeline->pipeline, kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Vertex shader output variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxVertexOutputComponents (%u)",
limits.maxVertexOutputComponents);
}
break;
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
if (num_comp_in > limits.maxTessellationControlPerVertexInputComponents) {
skip |= LogError(pipeline->pipeline, kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Tessellation control shader exceeds "
"VkPhysicalDeviceLimits::maxTessellationControlPerVertexInputComponents of %u "
"components by %u components",
limits.maxTessellationControlPerVertexInputComponents,
num_comp_in - limits.maxTessellationControlPerVertexInputComponents);
}
if (max_comp_in > static_cast<int>(limits.maxTessellationControlPerVertexInputComponents)) {
skip |=
LogError(pipeline->pipeline, kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Tessellation control shader input variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxTessellationControlPerVertexInputComponents (%u)",
limits.maxTessellationControlPerVertexInputComponents);
}
if (num_comp_out > limits.maxTessellationControlPerVertexOutputComponents) {
skip |= LogError(pipeline->pipeline, kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Tessellation control shader exceeds "
"VkPhysicalDeviceLimits::maxTessellationControlPerVertexOutputComponents of %u "
"components by %u components",
limits.maxTessellationControlPerVertexOutputComponents,
num_comp_out - limits.maxTessellationControlPerVertexOutputComponents);
}
if (max_comp_out > static_cast<int>(limits.maxTessellationControlPerVertexOutputComponents)) {
skip |=
LogError(pipeline->pipeline, kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Tessellation control shader output variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxTessellationControlPerVertexOutputComponents (%u)",
limits.maxTessellationControlPerVertexOutputComponents);
}
break;
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
if (num_comp_in > limits.maxTessellationEvaluationInputComponents) {
skip |= LogError(pipeline->pipeline, kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Tessellation evaluation shader exceeds "
"VkPhysicalDeviceLimits::maxTessellationEvaluationInputComponents of %u "
"components by %u components",
limits.maxTessellationEvaluationInputComponents,
num_comp_in - limits.maxTessellationEvaluationInputComponents);
}
if (max_comp_in > static_cast<int>(limits.maxTessellationEvaluationInputComponents)) {
skip |=
LogError(pipeline->pipeline, kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Tessellation evaluation shader input variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxTessellationEvaluationInputComponents (%u)",
limits.maxTessellationEvaluationInputComponents);
}
if (num_comp_out > limits.maxTessellationEvaluationOutputComponents) {
skip |= LogError(pipeline->pipeline, kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Tessellation evaluation shader exceeds "
"VkPhysicalDeviceLimits::maxTessellationEvaluationOutputComponents of %u "
"components by %u components",
limits.maxTessellationEvaluationOutputComponents,
num_comp_out - limits.maxTessellationEvaluationOutputComponents);
}
if (max_comp_out > static_cast<int>(limits.maxTessellationEvaluationOutputComponents)) {
skip |=
LogError(pipeline->pipeline, kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Tessellation evaluation shader output variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxTessellationEvaluationOutputComponents (%u)",
limits.maxTessellationEvaluationOutputComponents);
}
// Portability validation
if (IsExtEnabled(device_extensions.vk_khr_portability_subset)) {
if (is_iso_lines && (VK_FALSE == enabled_features.portability_subset_features.tessellationIsolines)) {
skip |= LogError(pipeline->pipeline, kVUID_Portability_Tessellation_Isolines,
"Invalid Pipeline CreateInfo state (portability error): Tessellation evaluation shader"
" is using abstract patch type IsoLines, but this is not supported on this platform");
}
if (is_point_mode && (VK_FALSE == enabled_features.portability_subset_features.tessellationPointMode)) {
skip |= LogError(pipeline->pipeline, kVUID_Portability_Tessellation_PointMode,
"Invalid Pipeline CreateInfo state (portability error): Tessellation evaluation shader"
" is using abstract patch type PointMode, but this is not supported on this platform");
}
}
break;
case VK_SHADER_STAGE_GEOMETRY_BIT:
if (num_comp_in > limits.maxGeometryInputComponents) {
skip |= LogError(pipeline->pipeline, kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Geometry shader exceeds "
"VkPhysicalDeviceLimits::maxGeometryInputComponents of %u "
"components by %u components",
limits.maxGeometryInputComponents, num_comp_in - limits.maxGeometryInputComponents);
}
if (max_comp_in > static_cast<int>(limits.maxGeometryInputComponents)) {
skip |= LogError(pipeline->pipeline, kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Geometry shader input variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxGeometryInputComponents (%u)",
limits.maxGeometryInputComponents);
}
if (num_comp_out > limits.maxGeometryOutputComponents) {
skip |= LogError(pipeline->pipeline, kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Geometry shader exceeds "
"VkPhysicalDeviceLimits::maxGeometryOutputComponents of %u "
"components by %u components",
limits.maxGeometryOutputComponents, num_comp_out - limits.maxGeometryOutputComponents);
}
if (max_comp_out > static_cast<int>(limits.maxGeometryOutputComponents)) {
skip |= LogError(pipeline->pipeline, kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Geometry shader output variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxGeometryOutputComponents (%u)",
limits.maxGeometryOutputComponents);
}
if (num_comp_out * num_vertices > limits.maxGeometryTotalOutputComponents) {
skip |= LogError(pipeline->pipeline, kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Geometry shader exceeds "
"VkPhysicalDeviceLimits::maxGeometryTotalOutputComponents of %u "
"components by %u components",
limits.maxGeometryTotalOutputComponents,
num_comp_out * num_vertices - limits.maxGeometryTotalOutputComponents);
}
break;
case VK_SHADER_STAGE_FRAGMENT_BIT:
if (num_comp_in > limits.maxFragmentInputComponents) {
skip |= LogError(pipeline->pipeline, kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Fragment shader exceeds "
"VkPhysicalDeviceLimits::maxFragmentInputComponents of %u "
"components by %u components",
limits.maxFragmentInputComponents, num_comp_in - limits.maxFragmentInputComponents);
}
if (max_comp_in > static_cast<int>(limits.maxFragmentInputComponents)) {
skip |= LogError(pipeline->pipeline, kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Fragment shader input variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxFragmentInputComponents (%u)",
limits.maxFragmentInputComponents);
}
break;
case VK_SHADER_STAGE_RAYGEN_BIT_NV:
case VK_SHADER_STAGE_ANY_HIT_BIT_NV:
case VK_SHADER_STAGE_CLOSEST_HIT_BIT_NV:
case VK_SHADER_STAGE_MISS_BIT_NV:
case VK_SHADER_STAGE_INTERSECTION_BIT_NV:
case VK_SHADER_STAGE_CALLABLE_BIT_NV:
case VK_SHADER_STAGE_TASK_BIT_NV:
case VK_SHADER_STAGE_MESH_BIT_NV:
break;
default:
assert(false); // This should never happen
}
return skip;
}
bool CoreChecks::ValidateShaderStageMaxResources(VkShaderStageFlagBits stage, const PIPELINE_STATE *pipeline) const {
bool skip = false;
uint32_t total_resources = 0;
// Only currently testing for graphics and compute pipelines
// TODO: Add check and support for Ray Tracing pipeline VUID 03428
if ((stage & (VK_SHADER_STAGE_ALL_GRAPHICS | VK_SHADER_STAGE_COMPUTE_BIT)) == 0) {
return false;
}
if (stage == VK_SHADER_STAGE_FRAGMENT_BIT) {
// "For the fragment shader stage the framebuffer color attachments also count against this limit"
total_resources += pipeline->rp_state->createInfo.pSubpasses[pipeline->graphicsPipelineCI.subpass].colorAttachmentCount;
}
// TODO: This reuses a lot of GetDescriptorCountMaxPerStage but currently would need to make it agnostic in a way to handle
// input from CreatePipeline and CreatePipelineLayout level
for (auto set_layout : pipeline->pipeline_layout->set_layouts) {
if ((set_layout->GetCreateFlags() & VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT) != 0) {
continue;
}
for (uint32_t binding_idx = 0; binding_idx < set_layout->GetBindingCount(); binding_idx++) {
const VkDescriptorSetLayoutBinding *binding = set_layout->GetDescriptorSetLayoutBindingPtrFromIndex(binding_idx);
// Bindings with a descriptorCount of 0 are "reserved" and should be skipped
if (((stage & binding->stageFlags) != 0) && (binding->descriptorCount > 0)) {
// Check only descriptor types listed in maxPerStageResources description in spec
switch (binding->descriptorType) {
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
total_resources += binding->descriptorCount;
break;
default:
break;
}
}
}
}
if (total_resources > phys_dev_props.limits.maxPerStageResources) {
const char *vuid = (stage == VK_SHADER_STAGE_COMPUTE_BIT) ? "VUID-VkComputePipelineCreateInfo-layout-01687"
: "VUID-VkGraphicsPipelineCreateInfo-layout-01688";
skip |= LogError(pipeline->pipeline, vuid,
"Invalid Pipeline CreateInfo State: Shader Stage %s exceeds component limit "
"VkPhysicalDeviceLimits::maxPerStageResources (%u)",
string_VkShaderStageFlagBits(stage), phys_dev_props.limits.maxPerStageResources);
}
return skip;
}
// copy the specialization constant value into buf, if it is present
void GetSpecConstantValue(VkPipelineShaderStageCreateInfo const *pStage, uint32_t spec_id, void *buf) {
VkSpecializationInfo const *spec = pStage->pSpecializationInfo;
if (spec && spec_id < spec->mapEntryCount) {
memcpy(buf, (uint8_t *)spec->pData + spec->pMapEntries[spec_id].offset, spec->pMapEntries[spec_id].size);
}
}
// Fill in value with the constant or specialization constant value, if available.
// Returns true if the value has been accurately filled out.
static bool GetIntConstantValue(spirv_inst_iter insn, SHADER_MODULE_STATE const *src, VkPipelineShaderStageCreateInfo const *pStage,
const std::unordered_map<uint32_t, uint32_t> &id_to_spec_id, uint32_t *value) {
auto type_id = src->get_def(insn.word(1));
if (type_id.opcode() != spv::OpTypeInt || type_id.word(2) != 32) {
return false;
}
switch (insn.opcode()) {
case spv::OpSpecConstant:
*value = insn.word(3);
GetSpecConstantValue(pStage, id_to_spec_id.at(insn.word(2)), value);
return true;
case spv::OpConstant:
*value = insn.word(3);
return true;
default:
return false;
}
}
// Map SPIR-V type to VK_COMPONENT_TYPE enum
VkComponentTypeNV GetComponentType(spirv_inst_iter insn, SHADER_MODULE_STATE const *src) {
switch (insn.opcode()) {
case spv::OpTypeInt:
switch (insn.word(2)) {
case 8:
return insn.word(3) != 0 ? VK_COMPONENT_TYPE_SINT8_NV : VK_COMPONENT_TYPE_UINT8_NV;
case 16:
return insn.word(3) != 0 ? VK_COMPONENT_TYPE_SINT16_NV : VK_COMPONENT_TYPE_UINT16_NV;
case 32:
return insn.word(3) != 0 ? VK_COMPONENT_TYPE_SINT32_NV : VK_COMPONENT_TYPE_UINT32_NV;
case 64:
return insn.word(3) != 0 ? VK_COMPONENT_TYPE_SINT64_NV : VK_COMPONENT_TYPE_UINT64_NV;
default:
return VK_COMPONENT_TYPE_MAX_ENUM_NV;
}
case spv::OpTypeFloat:
switch (insn.word(2)) {
case 16:
return VK_COMPONENT_TYPE_FLOAT16_NV;
case 32:
return VK_COMPONENT_TYPE_FLOAT32_NV;
case 64:
return VK_COMPONENT_TYPE_FLOAT64_NV;
default:
return VK_COMPONENT_TYPE_MAX_ENUM_NV;
}
default:
return VK_COMPONENT_TYPE_MAX_ENUM_NV;
}
}
// Validate SPV_NV_cooperative_matrix behavior that can't be statically validated
// in SPIRV-Tools (e.g. due to specialization constant usage).
bool CoreChecks::ValidateCooperativeMatrix(SHADER_MODULE_STATE const *src, VkPipelineShaderStageCreateInfo const *pStage,
const PIPELINE_STATE *pipeline) const {
bool skip = false;
// Map SPIR-V result ID to specialization constant id (SpecId decoration value)
std::unordered_map<uint32_t, uint32_t> id_to_spec_id;
// Map SPIR-V result ID to the ID of its type.
std::unordered_map<uint32_t, uint32_t> id_to_type_id;
struct CoopMatType {
uint32_t scope, rows, cols;
VkComponentTypeNV component_type;
bool all_constant;
CoopMatType() : scope(0), rows(0), cols(0), component_type(VK_COMPONENT_TYPE_MAX_ENUM_NV), all_constant(false) {}
void Init(uint32_t id, SHADER_MODULE_STATE const *src, VkPipelineShaderStageCreateInfo const *pStage,
const std::unordered_map<uint32_t, uint32_t> &id_to_spec_id) {
spirv_inst_iter insn = src->get_def(id);
uint32_t component_type_id = insn.word(2);
uint32_t scope_id = insn.word(3);
uint32_t rows_id = insn.word(4);
uint32_t cols_id = insn.word(5);
auto component_type_iter = src->get_def(component_type_id);
auto scope_iter = src->get_def(scope_id);
auto rows_iter = src->get_def(rows_id);
auto cols_iter = src->get_def(cols_id);
all_constant = true;
if (!GetIntConstantValue(scope_iter, src, pStage, id_to_spec_id, &scope)) {
all_constant = false;
}
if (!GetIntConstantValue(rows_iter, src, pStage, id_to_spec_id, &rows)) {
all_constant = false;
}
if (!GetIntConstantValue(cols_iter, src, pStage, id_to_spec_id, &cols)) {
all_constant = false;
}
component_type = GetComponentType(component_type_iter, src);
}
};
bool seen_coopmat_capability = false;
for (auto insn : *src) {
// Whitelist instructions whose result can be a cooperative matrix type, and
// keep track of their types. It would be nice if SPIRV-Headers generated code
// to identify which instructions have a result type and result id. Lacking that,
// this whitelist is based on the set of instructions that
// SPV_NV_cooperative_matrix says can be used with cooperative matrix types.
switch (insn.opcode()) {
case spv::OpLoad:
case spv::OpCooperativeMatrixLoadNV:
case spv::OpCooperativeMatrixMulAddNV:
case spv::OpSNegate:
case spv::OpFNegate:
case spv::OpIAdd:
case spv::OpFAdd:
case spv::OpISub:
case spv::OpFSub:
case spv::OpFDiv:
case spv::OpSDiv:
case spv::OpUDiv:
case spv::OpMatrixTimesScalar:
case spv::OpConstantComposite:
case spv::OpCompositeConstruct:
case spv::OpConvertFToU:
case spv::OpConvertFToS:
case spv::OpConvertSToF:
case spv::OpConvertUToF:
case spv::OpUConvert:
case spv::OpSConvert:
case spv::OpFConvert:
id_to_type_id[insn.word(2)] = insn.word(1);
break;
default:
break;
}
switch (insn.opcode()) {
case spv::OpDecorate:
if (insn.word(2) == spv::DecorationSpecId) {
id_to_spec_id[insn.word(1)] = insn.word(3);
}
break;
case spv::OpCapability:
if (insn.word(1) == spv::CapabilityCooperativeMatrixNV) {
seen_coopmat_capability = true;
if (!(pStage->stage & phys_dev_ext_props.cooperative_matrix_props.cooperativeMatrixSupportedStages)) {
skip |= LogError(
pipeline->pipeline, kVUID_Core_Shader_CooperativeMatrixSupportedStages,
"OpTypeCooperativeMatrixNV used in shader stage not in cooperativeMatrixSupportedStages (= %u)",
phys_dev_ext_props.cooperative_matrix_props.cooperativeMatrixSupportedStages);
}
}
break;
case spv::OpMemoryModel:
// If the capability isn't enabled, don't bother with the rest of this function.
// OpMemoryModel is the first required instruction after all OpCapability instructions.
if (!seen_coopmat_capability) {
return skip;
}
break;
case spv::OpTypeCooperativeMatrixNV: {
CoopMatType m;
m.Init(insn.word(1), src, pStage, id_to_spec_id);
if (m.all_constant) {
// Validate that the type parameters are all supported for one of the
// operands of a cooperative matrix property.
bool valid = false;
for (unsigned i = 0; i < cooperative_matrix_properties.size(); ++i) {
if (cooperative_matrix_properties[i].AType == m.component_type &&
cooperative_matrix_properties[i].MSize == m.rows && cooperative_matrix_properties[i].KSize == m.cols &&
cooperative_matrix_properties[i].scope == m.scope) {
valid = true;
break;
}
if (cooperative_matrix_properties[i].BType == m.component_type &&
cooperative_matrix_properties[i].KSize == m.rows && cooperative_matrix_properties[i].NSize == m.cols &&
cooperative_matrix_properties[i].scope == m.scope) {
valid = true;
break;
}
if (cooperative_matrix_properties[i].CType == m.component_type &&
cooperative_matrix_properties[i].MSize == m.rows && cooperative_matrix_properties[i].NSize == m.cols &&
cooperative_matrix_properties[i].scope == m.scope) {
valid = true;
break;
}
if (cooperative_matrix_properties[i].DType == m.component_type &&
cooperative_matrix_properties[i].MSize == m.rows && cooperative_matrix_properties[i].NSize == m.cols &&
cooperative_matrix_properties[i].scope == m.scope) {
valid = true;
break;
}
}
if (!valid) {
skip |= LogError(pipeline->pipeline, kVUID_Core_Shader_CooperativeMatrixType,
"OpTypeCooperativeMatrixNV (result id = %u) operands don't match a supported matrix type",
insn.word(1));
}
}
break;
}
case spv::OpCooperativeMatrixMulAddNV: {
CoopMatType a, b, c, d;
if (id_to_type_id.find(insn.word(2)) == id_to_type_id.end() ||
id_to_type_id.find(insn.word(3)) == id_to_type_id.end() ||
id_to_type_id.find(insn.word(4)) == id_to_type_id.end() ||
id_to_type_id.find(insn.word(5)) == id_to_type_id.end()) {
// Couldn't find type of matrix
assert(false);
break;
}
d.Init(id_to_type_id[insn.word(2)], src, pStage, id_to_spec_id);
a.Init(id_to_type_id[insn.word(3)], src, pStage, id_to_spec_id);
b.Init(id_to_type_id[insn.word(4)], src, pStage, id_to_spec_id);
c.Init(id_to_type_id[insn.word(5)], src, pStage, id_to_spec_id);
if (a.all_constant && b.all_constant && c.all_constant && d.all_constant) {
// Validate that the type parameters are all supported for the same
// cooperative matrix property.
bool valid = false;
for (unsigned i = 0; i < cooperative_matrix_properties.size(); ++i) {
if (cooperative_matrix_properties[i].AType == a.component_type &&
cooperative_matrix_properties[i].MSize == a.rows && cooperative_matrix_properties[i].KSize == a.cols &&
cooperative_matrix_properties[i].scope == a.scope &&
cooperative_matrix_properties[i].BType == b.component_type &&
cooperative_matrix_properties[i].KSize == b.rows && cooperative_matrix_properties[i].NSize == b.cols &&
cooperative_matrix_properties[i].scope == b.scope &&
cooperative_matrix_properties[i].CType == c.component_type &&
cooperative_matrix_properties[i].MSize == c.rows && cooperative_matrix_properties[i].NSize == c.cols &&
cooperative_matrix_properties[i].scope == c.scope &&
cooperative_matrix_properties[i].DType == d.component_type &&
cooperative_matrix_properties[i].MSize == d.rows && cooperative_matrix_properties[i].NSize == d.cols &&
cooperative_matrix_properties[i].scope == d.scope) {
valid = true;
break;
}
}
if (!valid) {
skip |= LogError(pipeline->pipeline, kVUID_Core_Shader_CooperativeMatrixMulAdd,
"OpCooperativeMatrixMulAddNV (result id = %u) operands don't match a supported matrix "
"VkCooperativeMatrixPropertiesNV",
insn.word(2));
}
}
break;
}
default:
break;
}
}
return skip;
}
bool CoreChecks::ValidateExecutionModes(SHADER_MODULE_STATE const *src, spirv_inst_iter entrypoint) const {
auto entrypoint_id = entrypoint.word(2);
// The first denorm execution mode encountered, along with its bit width.
// Used to check if SeparateDenormSettings is respected.
std::pair<spv::ExecutionMode, uint32_t> first_denorm_execution_mode = std::make_pair(spv::ExecutionModeMax, 0);
// The first rounding mode encountered, along with its bit width.
// Used to check if SeparateRoundingModeSettings is respected.
std::pair<spv::ExecutionMode, uint32_t> first_rounding_mode = std::make_pair(spv::ExecutionModeMax, 0);
bool skip = false;
uint32_t vertices_out = 0;
uint32_t invocations = 0;
for (auto insn : *src) {
if (insn.opcode() == spv::OpExecutionMode && insn.word(1) == entrypoint_id) {
auto mode = insn.word(2);
switch (mode) {
case spv::ExecutionModeSignedZeroInfNanPreserve: {
auto bit_width = insn.word(3);
if ((bit_width == 16 && !phys_dev_props_core12.shaderSignedZeroInfNanPreserveFloat16) ||
(bit_width == 32 && !phys_dev_props_core12.shaderSignedZeroInfNanPreserveFloat32) ||
(bit_width == 64 && !phys_dev_props_core12.shaderSignedZeroInfNanPreserveFloat64)) {
skip |= LogError(
device, kVUID_Core_Shader_FeatureNotEnabled,
"Shader requires SignedZeroInfNanPreserve for bit width %d but it is not enabled on the device",
bit_width);
}
break;
}
case spv::ExecutionModeDenormPreserve: {
auto bit_width = insn.word(3);
if ((bit_width == 16 && !phys_dev_props_core12.shaderDenormPreserveFloat16) ||
(bit_width == 32 && !phys_dev_props_core12.shaderDenormPreserveFloat32) ||
(bit_width == 64 && !phys_dev_props_core12.shaderDenormPreserveFloat64)) {
skip |= LogError(device, kVUID_Core_Shader_FeatureNotEnabled,
"Shader requires DenormPreserve for bit width %d but it is not enabled on the device",
bit_width);
}
if (first_denorm_execution_mode.first == spv::ExecutionModeMax) {
// Register the first denorm execution mode found
first_denorm_execution_mode = std::make_pair(static_cast<spv::ExecutionMode>(mode), bit_width);
} else if (first_denorm_execution_mode.first != mode && first_denorm_execution_mode.second != bit_width) {
switch (phys_dev_props_core12.denormBehaviorIndependence) {
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY:
if (first_rounding_mode.second != 32 && bit_width != 32) {
skip |= LogError(device, kVUID_Core_Shader_FeatureNotEnabled,
"Shader uses different denorm execution modes for 16 and 64-bit but "
"denormBehaviorIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY on the device");
}
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL:
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE:
skip |= LogError(device, kVUID_Core_Shader_FeatureNotEnabled,
"Shader uses different denorm execution modes for different bit widths but "
"denormBehaviorIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE on the device");
break;
default:
break;
}
}
break;
}
case spv::ExecutionModeDenormFlushToZero: {
auto bit_width = insn.word(3);
if ((bit_width == 16 && !phys_dev_props_core12.shaderDenormFlushToZeroFloat16) ||
(bit_width == 32 && !phys_dev_props_core12.shaderDenormFlushToZeroFloat32) ||
(bit_width == 64 && !phys_dev_props_core12.shaderDenormFlushToZeroFloat64)) {
skip |= LogError(device, kVUID_Core_Shader_FeatureNotEnabled,
"Shader requires DenormFlushToZero for bit width %d but it is not enabled on the device",
bit_width);
}
if (first_denorm_execution_mode.first == spv::ExecutionModeMax) {
// Register the first denorm execution mode found
first_denorm_execution_mode = std::make_pair(static_cast<spv::ExecutionMode>(mode), bit_width);
} else if (first_denorm_execution_mode.first != mode && first_denorm_execution_mode.second != bit_width) {
switch (phys_dev_props_core12.denormBehaviorIndependence) {
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY:
if (first_rounding_mode.second != 32 && bit_width != 32) {
skip |= LogError(device, kVUID_Core_Shader_FeatureNotEnabled,
"Shader uses different denorm execution modes for 16 and 64-bit but "
"denormBehaviorIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY on the device");
}
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL:
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE:
skip |= LogError(device, kVUID_Core_Shader_FeatureNotEnabled,
"Shader uses different denorm execution modes for different bit widths but "
"denormBehaviorIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE on the device");
break;
default:
break;
}
}
break;
}
case spv::ExecutionModeRoundingModeRTE: {
auto bit_width = insn.word(3);
if ((bit_width == 16 && !phys_dev_props_core12.shaderRoundingModeRTEFloat16) ||
(bit_width == 32 && !phys_dev_props_core12.shaderRoundingModeRTEFloat32) ||
(bit_width == 64 && !phys_dev_props_core12.shaderRoundingModeRTEFloat64)) {
skip |= LogError(device, kVUID_Core_Shader_FeatureNotEnabled,
"Shader requires RoundingModeRTE for bit width %d but it is not enabled on the device",
bit_width);
}
if (first_rounding_mode.first == spv::ExecutionModeMax) {
// Register the first rounding mode found
first_rounding_mode = std::make_pair(static_cast<spv::ExecutionMode>(mode), bit_width);
} else if (first_rounding_mode.first != mode && first_rounding_mode.second != bit_width) {
switch (phys_dev_props_core12.roundingModeIndependence) {
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY:
if (first_rounding_mode.second != 32 && bit_width != 32) {
skip |= LogError(device, kVUID_Core_Shader_FeatureNotEnabled,
"Shader uses different rounding modes for 16 and 64-bit but "
"roundingModeIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY on the device");
}
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL:
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE:
skip |= LogError(device, kVUID_Core_Shader_FeatureNotEnabled,
"Shader uses different rounding modes for different bit widths but "
"roundingModeIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE on the device");
break;
default:
break;
}
}
break;
}
case spv::ExecutionModeRoundingModeRTZ: {
auto bit_width = insn.word(3);
if ((bit_width == 16 && !phys_dev_props_core12.shaderRoundingModeRTZFloat16) ||
(bit_width == 32 && !phys_dev_props_core12.shaderRoundingModeRTZFloat32) ||
(bit_width == 64 && !phys_dev_props_core12.shaderRoundingModeRTZFloat64)) {
skip |= LogError(device, kVUID_Core_Shader_FeatureNotEnabled,
"Shader requires RoundingModeRTZ for bit width %d but it is not enabled on the device",
bit_width);
}
if (first_rounding_mode.first == spv::ExecutionModeMax) {
// Register the first rounding mode found
first_rounding_mode = std::make_pair(static_cast<spv::ExecutionMode>(mode), bit_width);
} else if (first_rounding_mode.first != mode && first_rounding_mode.second != bit_width) {
switch (phys_dev_props_core12.roundingModeIndependence) {
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY:
if (first_rounding_mode.second != 32 && bit_width != 32) {
skip |= LogError(device, kVUID_Core_Shader_FeatureNotEnabled,
"Shader uses different rounding modes for 16 and 64-bit but "
"roundingModeIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY on the device");
}
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL:
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE:
skip |= LogError(device, kVUID_Core_Shader_FeatureNotEnabled,
"Shader uses different rounding modes for different bit widths but "
"roundingModeIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE on the device");
break;
default:
break;
}
}
break;
}
case spv::ExecutionModeOutputVertices: {
vertices_out = insn.word(3);
break;
}
case spv::ExecutionModeInvocations: {
invocations = insn.word(3);
break;
}
}
}
}
if (entrypoint.word(1) == spv::ExecutionModelGeometry) {
if (vertices_out == 0 || vertices_out > phys_dev_props.limits.maxGeometryOutputVertices) {
skip |= LogError(device, "VUID-VkPipelineShaderStageCreateInfo-stage-00714",
"Geometry shader entry point must have an OpExecutionMode instruction that "
"specifies a maximum output vertex count that is greater than 0 and less "
"than or equal to maxGeometryOutputVertices. "
"OutputVertices=%d, maxGeometryOutputVertices=%d",
vertices_out, phys_dev_props.limits.maxGeometryOutputVertices);
}
if (invocations == 0 || invocations > phys_dev_props.limits.maxGeometryShaderInvocations) {
skip |= LogError(device, "VUID-VkPipelineShaderStageCreateInfo-stage-00715",
"Geometry shader entry point must have an OpExecutionMode instruction that "
"specifies an invocation count that is greater than 0 and less "
"than or equal to maxGeometryShaderInvocations. "
"Invocations=%d, maxGeometryShaderInvocations=%d",
invocations, phys_dev_props.limits.maxGeometryShaderInvocations);
}
}
return skip;
}
uint32_t DescriptorTypeToReqs(SHADER_MODULE_STATE const *module, uint32_t type_id) {
auto type = module->get_def(type_id);
while (true) {
switch (type.opcode()) {
case spv::OpTypeArray:
case spv::OpTypeRuntimeArray:
case spv::OpTypeSampledImage:
type = module->get_def(type.word(2));
break;
case spv::OpTypePointer:
type = module->get_def(type.word(3));
break;
case spv::OpTypeImage: {
auto dim = type.word(3);
auto arrayed = type.word(5);
auto msaa = type.word(6);
uint32_t bits = 0;
switch (GetFundamentalType(module, type.word(2))) {
case FORMAT_TYPE_FLOAT:
bits = DESCRIPTOR_REQ_COMPONENT_TYPE_FLOAT;
break;
case FORMAT_TYPE_UINT:
bits = DESCRIPTOR_REQ_COMPONENT_TYPE_UINT;
break;
case FORMAT_TYPE_SINT:
bits = DESCRIPTOR_REQ_COMPONENT_TYPE_SINT;
break;
default:
break;
}
switch (dim) {
case spv::Dim1D:
bits |= arrayed ? DESCRIPTOR_REQ_VIEW_TYPE_1D_ARRAY : DESCRIPTOR_REQ_VIEW_TYPE_1D;
return bits;
case spv::Dim2D:
bits |= msaa ? DESCRIPTOR_REQ_MULTI_SAMPLE : DESCRIPTOR_REQ_SINGLE_SAMPLE;
bits |= arrayed ? DESCRIPTOR_REQ_VIEW_TYPE_2D_ARRAY : DESCRIPTOR_REQ_VIEW_TYPE_2D;
return bits;
case spv::Dim3D:
bits |= DESCRIPTOR_REQ_VIEW_TYPE_3D;
return bits;
case spv::DimCube:
bits |= arrayed ? DESCRIPTOR_REQ_VIEW_TYPE_CUBE_ARRAY : DESCRIPTOR_REQ_VIEW_TYPE_CUBE;
return bits;
case spv::DimSubpassData:
bits |= msaa ? DESCRIPTOR_REQ_MULTI_SAMPLE : DESCRIPTOR_REQ_SINGLE_SAMPLE;
return bits;
default: // buffer, etc.
return bits;
}
}
default:
return 0;
}
}
}
// For given pipelineLayout verify that the set_layout_node at slot.first
// has the requested binding at slot.second and return ptr to that binding
static VkDescriptorSetLayoutBinding const *GetDescriptorBinding(PIPELINE_LAYOUT_STATE const *pipelineLayout,
descriptor_slot_t slot) {
if (!pipelineLayout) return nullptr;
if (slot.first >= pipelineLayout->set_layouts.size()) return nullptr;
return pipelineLayout->set_layouts[slot.first]->GetDescriptorSetLayoutBindingPtrFromBinding(slot.second);
}
int32_t GetShaderResourceDimensionality(const SHADER_MODULE_STATE *module, const interface_var &resource) {
if (module == nullptr) return -1;
auto type = module->get_def(resource.type_id);
while (true) {
switch (type.opcode()) {
case spv::OpTypeSampledImage:
type = module->get_def(type.word(2));
break;
case spv::OpTypePointer:
type = module->get_def(type.word(3));
break;
case spv::OpTypeImage:
return type.word(3);
default:
return -1;
}
}
}
bool FindLocalSize(SHADER_MODULE_STATE const *src, uint32_t &local_size_x, uint32_t &local_size_y, uint32_t &local_size_z) {
for (auto insn : *src) {
if (insn.opcode() == spv::OpEntryPoint) {
auto execution_model = insn.word(1);
auto entrypoint_stage_bits = ExecutionModelToShaderStageFlagBits(execution_model);
if (entrypoint_stage_bits == VK_SHADER_STAGE_COMPUTE_BIT) {
auto entrypoint_id = insn.word(2);
for (auto insn1 : *src) {
if (insn1.opcode() == spv::OpExecutionMode && insn1.word(1) == entrypoint_id &&
insn1.word(2) == spv::ExecutionModeLocalSize) {
local_size_x = insn1.word(3);
local_size_y = insn1.word(4);
local_size_z = insn1.word(5);
return true;
}
}
}
}
}
return false;
}
void ProcessExecutionModes(SHADER_MODULE_STATE const *src, const spirv_inst_iter &entrypoint, PIPELINE_STATE *pipeline) {
auto entrypoint_id = entrypoint.word(2);
bool is_point_mode = false;
for (auto insn : *src) {
if (insn.opcode() == spv::OpExecutionMode && insn.word(1) == entrypoint_id) {
switch (insn.word(2)) {
case spv::ExecutionModePointMode:
// In tessellation shaders, PointMode is separate and trumps the tessellation topology.
is_point_mode = true;
break;
case spv::ExecutionModeOutputPoints:
pipeline->topology_at_rasterizer = VK_PRIMITIVE_TOPOLOGY_POINT_LIST;
break;
case spv::ExecutionModeIsolines:
case spv::ExecutionModeOutputLineStrip:
pipeline->topology_at_rasterizer = VK_PRIMITIVE_TOPOLOGY_LINE_STRIP;
break;
case spv::ExecutionModeTriangles:
case spv::ExecutionModeQuads:
case spv::ExecutionModeOutputTriangleStrip:
pipeline->topology_at_rasterizer = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_STRIP;
break;
}
}
}
if (is_point_mode) pipeline->topology_at_rasterizer = VK_PRIMITIVE_TOPOLOGY_POINT_LIST;
}
// If PointList topology is specified in the pipeline, verify that a shader geometry stage writes PointSize
// o If there is only a vertex shader : gl_PointSize must be written when using points
// o If there is a geometry or tessellation shader:
// - If shaderTessellationAndGeometryPointSize feature is enabled:
// * gl_PointSize must be written in the final geometry stage
// - If shaderTessellationAndGeometryPointSize feature is disabled:
// * gl_PointSize must NOT be written and a default of 1.0 is assumed
bool CoreChecks::ValidatePointListShaderState(const PIPELINE_STATE *pipeline, SHADER_MODULE_STATE const *src,
spirv_inst_iter entrypoint, VkShaderStageFlagBits stage) const {
if (pipeline->topology_at_rasterizer != VK_PRIMITIVE_TOPOLOGY_POINT_LIST) {
return false;
}
bool pointsize_written = false;
bool skip = false;
// Search for PointSize built-in decorations
std::vector<uint32_t> pointsize_builtin_offsets;
spirv_inst_iter insn = entrypoint;
while (!pointsize_written && (insn.opcode() != spv::OpFunction)) {
if (insn.opcode() == spv::OpMemberDecorate) {
if (insn.word(3) == spv::DecorationBuiltIn) {
if (insn.word(4) == spv::BuiltInPointSize) {
pointsize_written = IsBuiltInWritten(src, insn, entrypoint);
}
}
} else if (insn.opcode() == spv::OpDecorate) {
if (insn.word(2) == spv::DecorationBuiltIn) {
if (insn.word(3) == spv::BuiltInPointSize) {
pointsize_written = IsBuiltInWritten(src, insn, entrypoint);
}
}
}
insn++;
}
if ((stage == VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT || stage == VK_SHADER_STAGE_GEOMETRY_BIT) &&
!enabled_features.core.shaderTessellationAndGeometryPointSize) {
if (pointsize_written) {
skip |= LogError(pipeline->pipeline, kVUID_Core_Shader_PointSizeBuiltInOverSpecified,
"Pipeline topology is set to POINT_LIST and geometry or tessellation shaders write PointSize which "
"is prohibited when the shaderTessellationAndGeometryPointSize feature is not enabled.");
}
} else if (!pointsize_written) {
skip |=
LogError(pipeline->pipeline, kVUID_Core_Shader_MissingPointSizeBuiltIn,
"Pipeline topology is set to POINT_LIST, but PointSize is not written to in the shader corresponding to %s.",
string_VkShaderStageFlagBits(stage));
}
return skip;
}
bool CoreChecks::ValidatePrimitiveRateShaderState(const PIPELINE_STATE *pipeline, SHADER_MODULE_STATE const *src,
spirv_inst_iter entrypoint, VkShaderStageFlagBits stage) const {
bool primitiverate_written = false;
bool viewportindex_written = false;
bool viewportmask_written = false;
bool skip = false;
// Check if the primitive shading rate is written
spirv_inst_iter insn = entrypoint;
while (!(primitiverate_written && viewportindex_written && viewportmask_written) && insn.opcode() != spv::OpFunction) {
if (insn.opcode() == spv::OpMemberDecorate) {
if (insn.word(3) == spv::DecorationBuiltIn) {
if (insn.word(4) == spv::BuiltInPrimitiveShadingRateKHR) {
primitiverate_written = IsBuiltInWritten(src, insn, entrypoint);
} else if (insn.word(4) == spv::BuiltInViewportIndex) {
viewportindex_written = IsBuiltInWritten(src, insn, entrypoint);
} else if (insn.word(4) == spv::BuiltInViewportMaskNV) {
viewportmask_written = IsBuiltInWritten(src, insn, entrypoint);
}
}
} else if (insn.opcode() == spv::OpDecorate) {
if (insn.word(2) == spv::DecorationBuiltIn) {
if (insn.word(3) == spv::BuiltInPrimitiveShadingRateKHR) {
primitiverate_written = IsBuiltInWritten(src, insn, entrypoint);
} else if (insn.word(3) == spv::BuiltInViewportIndex) {
viewportindex_written = IsBuiltInWritten(src, insn, entrypoint);
} else if (insn.word(3) == spv::BuiltInViewportMaskNV) {
viewportmask_written = IsBuiltInWritten(src, insn, entrypoint);
}
}
}
insn++;
}
if (!phys_dev_ext_props.fragment_shading_rate_props.primitiveFragmentShadingRateWithMultipleViewports &&
pipeline->graphicsPipelineCI.pViewportState) {
if (!IsDynamic(pipeline, VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT_EXT) &&
pipeline->graphicsPipelineCI.pViewportState->viewportCount > 1 && primitiverate_written) {
skip |= LogError(pipeline->pipeline,
"VUID-VkGraphicsPipelineCreateInfo-primitiveFragmentShadingRateWithMultipleViewports-04503",
"vkCreateGraphicsPipelines: %s shader statically writes to PrimitiveShadingRateKHR built-in, but "
"multiple viewports "
"are used and the primitiveFragmentShadingRateWithMultipleViewports limit is not supported.",
string_VkShaderStageFlagBits(stage));
}
if (primitiverate_written && viewportindex_written) {
skip |= LogError(pipeline->pipeline,
"VUID-VkGraphicsPipelineCreateInfo-primitiveFragmentShadingRateWithMultipleViewports-04504",
"vkCreateGraphicsPipelines: %s shader statically writes to both PrimitiveShadingRateKHR and "
"ViewportIndex built-ins,"
"but the primitiveFragmentShadingRateWithMultipleViewports limit is not supported.",
string_VkShaderStageFlagBits(stage));
}
if (primitiverate_written && viewportmask_written) {
skip |= LogError(pipeline->pipeline,
"VUID-VkGraphicsPipelineCreateInfo-primitiveFragmentShadingRateWithMultipleViewports-04505",
"vkCreateGraphicsPipelines: %s shader statically writes to both PrimitiveShadingRateKHR and "
"ViewportMaskNV built-ins,"
"but the primitiveFragmentShadingRateWithMultipleViewports limit is not supported.",
string_VkShaderStageFlagBits(stage));
}
}
return skip;
}
// Validate runtime usage of various opcodes that depends on what Vulkan properties or features are exposed
bool CoreChecks::ValidatePropertiesAndFeatures(SHADER_MODULE_STATE const *module) const {
bool skip = false;
for (auto insn : *module) {
switch (insn.opcode()) {
case spv::OpReadClockKHR: {
auto scope_id = module->get_def(insn.word(3));
auto scope_type = scope_id.word(3);
// if scope isn't Subgroup or Device, spirv-val will catch
if ((scope_type == spv::ScopeSubgroup) && (enabled_features.shader_clock_feature.shaderSubgroupClock == VK_FALSE)) {
skip |= LogError(device, "UNASSIGNED-spirv-shaderClock-shaderSubgroupClock",
"%s: OpReadClockKHR is used with a Subgroup scope but shaderSubgroupClock was not enabled.",
report_data->FormatHandle(module->vk_shader_module).c_str());
} else if ((scope_type == spv::ScopeDevice) &&
(enabled_features.shader_clock_feature.shaderDeviceClock == VK_FALSE)) {
skip |= LogError(device, "UNASSIGNED-spirv-shaderClock-shaderDeviceClock",
"%s: OpReadClockKHR is used with a Device scope but shaderDeviceClock was not enabled.",
report_data->FormatHandle(module->vk_shader_module).c_str());
}
break;
}
}
}
return skip;
}
bool CoreChecks::ValidatePipelineShaderStage(VkPipelineShaderStageCreateInfo const *pStage, const PIPELINE_STATE *pipeline,
const PIPELINE_STATE::StageState &stage_state, const SHADER_MODULE_STATE *module,
const spirv_inst_iter &entrypoint, bool check_point_size) const {
bool skip = false;
// Check the module
if (!module->has_valid_spirv) {
skip |= LogError(device, "VUID-VkPipelineShaderStageCreateInfo-module-parameter",
"%s does not contain valid spirv for stage %s.",
report_data->FormatHandle(module->vk_shader_module).c_str(), string_VkShaderStageFlagBits(pStage->stage));
}
// If specialization-constant values are given and specialization-constant instructions are present in the shader, the
// specializations should be applied and validated.
if (pStage->pSpecializationInfo != nullptr && pStage->pSpecializationInfo->mapEntryCount > 0 &&
pStage->pSpecializationInfo->pMapEntries != nullptr && module->has_specialization_constants) {
// Gather the specialization-constant values.
auto const &specialization_info = pStage->pSpecializationInfo;
auto const &specialization_data = reinterpret_cast<uint8_t const *>(specialization_info->pData);
std::unordered_map<uint32_t, std::vector<uint32_t>> id_value_map;
id_value_map.reserve(specialization_info->mapEntryCount);
for (auto i = 0u; i < specialization_info->mapEntryCount; ++i) {
auto const &map_entry = specialization_info->pMapEntries[i];
// Expect only scalar types.
assert(map_entry.size == 1 || map_entry.size == 2 || map_entry.size == 4 || map_entry.size == 8);
auto entry = id_value_map.emplace(map_entry.constantID, std::vector<uint32_t>(map_entry.size > 4 ? 2 : 1));
memcpy(entry.first->second.data(), specialization_data + map_entry.offset, map_entry.size);
}
// Apply the specialization-constant values and revalidate the shader module.
spv_target_env spirv_environment = PickSpirvEnv(api_version, (device_extensions.vk_khr_spirv_1_4 != kNotEnabled));
spvtools::Optimizer optimizer(spirv_environment);
spvtools::MessageConsumer consumer = [&skip, &module, &pStage, this](spv_message_level_t level, const char *source,
const spv_position_t &position, const char *message) {
skip |= LogError(
device, "VUID-VkPipelineShaderStageCreateInfo-module-parameter", "%s does not contain valid spirv for stage %s. %s",
report_data->FormatHandle(module->vk_shader_module).c_str(), string_VkShaderStageFlagBits(pStage->stage), message);
};
optimizer.SetMessageConsumer(consumer);
optimizer.RegisterPass(spvtools::CreateSetSpecConstantDefaultValuePass(id_value_map));
optimizer.RegisterPass(spvtools::CreateFreezeSpecConstantValuePass());
std::vector<uint32_t> specialized_spirv;
auto const optimized =
optimizer.Run(module->words.data(), module->words.size(), &specialized_spirv, spvtools::ValidatorOptions(), true);
assert(optimized == true);
if (optimized) {
spv_context ctx = spvContextCreate(spirv_environment);
spv_const_binary_t binary{specialized_spirv.data(), specialized_spirv.size()};
spv_diagnostic diag = nullptr;
spvtools::ValidatorOptions options;
AdjustValidatorOptions(device_extensions, enabled_features, options);
auto const spv_valid = spvValidateWithOptions(ctx, options, &binary, &diag);
if (spv_valid != SPV_SUCCESS) {
skip |= LogError(device, "VUID-VkPipelineShaderStageCreateInfo-module-04145",
"After specialization was applied, %s does not contain valid spirv for stage %s.",
report_data->FormatHandle(module->vk_shader_module).c_str(),
string_VkShaderStageFlagBits(pStage->stage));
}
spvDiagnosticDestroy(diag);
spvContextDestroy(ctx);
}
}
// Check the entrypoint
if (entrypoint == module->end()) {
skip |=
LogError(device, "VUID-VkPipelineShaderStageCreateInfo-pName-00707", "No entrypoint found named `%s` for stage %s..",
pStage->pName, string_VkShaderStageFlagBits(pStage->stage));
}
if (skip) return true; // no point continuing beyond here, any analysis is just going to be garbage.
// Mark accessible ids
auto &accessible_ids = stage_state.accessible_ids;
// Validate descriptor set layout against what the entrypoint actually uses
bool has_writable_descriptor = stage_state.has_writable_descriptor;
auto &descriptor_uses = stage_state.descriptor_uses;
// Validate shader capabilities against enabled device features
skip |= ValidateShaderCapabilitiesAndExtensions(module);
skip |=
ValidateShaderStageWritableOrAtomicDescriptor(pStage->stage, has_writable_descriptor, stage_state.has_atomic_descriptor);
skip |= ValidateShaderStageInputOutputLimits(module, pStage, pipeline, entrypoint);
skip |= ValidateShaderStageMaxResources(pStage->stage, pipeline);
skip |= ValidateShaderStageGroupNonUniform(module, pStage->stage);
skip |= ValidateExecutionModes(module, entrypoint);
skip |= ValidateSpecializationOffsets(pStage);
skip |= ValidatePushConstantUsage(*pipeline, module, pStage);
if (check_point_size && !pipeline->graphicsPipelineCI.pRasterizationState->rasterizerDiscardEnable) {
skip |= ValidatePointListShaderState(pipeline, module, entrypoint, pStage->stage);
}
skip |= ValidateBuiltinLimits(module, accessible_ids, pStage->stage);
skip |= ValidateCooperativeMatrix(module, pStage, pipeline);
if (enabled_features.fragment_shading_rate_features.primitiveFragmentShadingRate) {
skip |= ValidatePrimitiveRateShaderState(pipeline, module, entrypoint, pStage->stage);
}
skip |= ValidatePropertiesAndFeatures(module);
std::string vuid_layout_mismatch;
if (pipeline->graphicsPipelineCI.sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO) {
vuid_layout_mismatch = "VUID-VkGraphicsPipelineCreateInfo-layout-00756";
} else if (pipeline->computePipelineCI.sType == VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO) {
vuid_layout_mismatch = "VUID-VkComputePipelineCreateInfo-layout-00703";
} else if (pipeline->raytracingPipelineCI.sType == VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_CREATE_INFO_KHR) {
vuid_layout_mismatch = "VUID-VkRayTracingPipelineCreateInfoKHR-layout-03427";
} else if (pipeline->raytracingPipelineCI.sType == VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_CREATE_INFO_NV) {
vuid_layout_mismatch = "VUID-VkRayTracingPipelineCreateInfoNV-layout-03427";
}
// Validate descriptor use
for (auto use : descriptor_uses) {
// Verify given pipelineLayout has requested setLayout with requested binding
const auto &binding = GetDescriptorBinding(pipeline->pipeline_layout.get(), use.first);
unsigned required_descriptor_count;
bool is_khr = binding && binding->descriptorType == VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR;
std::set<uint32_t> descriptor_types =
TypeToDescriptorTypeSet(module, use.second.type_id, required_descriptor_count, is_khr);
if (!binding) {
skip |= LogError(device, vuid_layout_mismatch,
"Shader uses descriptor slot %u.%u (expected `%s`) but not declared in pipeline layout",
use.first.first, use.first.second, string_descriptorTypes(descriptor_types).c_str());
} else if (~binding->stageFlags & pStage->stage) {
skip |= LogError(device, vuid_layout_mismatch,
"Shader uses descriptor slot %u.%u but descriptor not accessible from stage %s", use.first.first,
use.first.second, string_VkShaderStageFlagBits(pStage->stage));
} else if (descriptor_types.find(binding->descriptorType) == descriptor_types.end()) {
skip |= LogError(device, vuid_layout_mismatch,
"Type mismatch on descriptor slot %u.%u (expected `%s`) but descriptor of type %s", use.first.first,
use.first.second, string_descriptorTypes(descriptor_types).c_str(),
string_VkDescriptorType(binding->descriptorType));
} else if (binding->descriptorCount < required_descriptor_count) {
skip |= LogError(device, vuid_layout_mismatch,
"Shader expects at least %u descriptors for binding %u.%u but only %u provided",
required_descriptor_count, use.first.first, use.first.second, binding->descriptorCount);
}
}
// Validate use of input attachments against subpass structure
if (pStage->stage == VK_SHADER_STAGE_FRAGMENT_BIT) {
auto input_attachment_uses = CollectInterfaceByInputAttachmentIndex(module, accessible_ids);
auto rpci = pipeline->rp_state->createInfo.ptr();
auto subpass = pipeline->graphicsPipelineCI.subpass;
for (auto use : input_attachment_uses) {
auto input_attachments = rpci->pSubpasses[subpass].pInputAttachments;
auto index = (input_attachments && use.first < rpci->pSubpasses[subpass].inputAttachmentCount)
? input_attachments[use.first].attachment
: VK_ATTACHMENT_UNUSED;
if (index == VK_ATTACHMENT_UNUSED) {
skip |= LogError(device, kVUID_Core_Shader_MissingInputAttachment,
"Shader consumes input attachment index %d but not provided in subpass", use.first);
} else if (!(GetFormatType(rpci->pAttachments[index].format) & GetFundamentalType(module, use.second.type_id))) {
skip |=
LogError(device, kVUID_Core_Shader_InputAttachmentTypeMismatch,
"Subpass input attachment %u format of %s does not match type used in shader `%s`", use.first,
string_VkFormat(rpci->pAttachments[index].format), DescribeType(module, use.second.type_id).c_str());
}
}
}
if (pStage->stage == VK_SHADER_STAGE_COMPUTE_BIT) {
skip |= ValidateComputeWorkGroupSizes(module);
}
return skip;
}
bool CoreChecks::ValidateInterfaceBetweenStages(SHADER_MODULE_STATE const *producer, spirv_inst_iter producer_entrypoint,
shader_stage_attributes const *producer_stage, SHADER_MODULE_STATE const *consumer,
spirv_inst_iter consumer_entrypoint,
shader_stage_attributes const *consumer_stage) const {
bool skip = false;
auto outputs =
CollectInterfaceByLocation(producer, producer_entrypoint, spv::StorageClassOutput, producer_stage->arrayed_output);
auto inputs = CollectInterfaceByLocation(consumer, consumer_entrypoint, spv::StorageClassInput, consumer_stage->arrayed_input);
auto a_it = outputs.begin();
auto b_it = inputs.begin();
// Maps sorted by key (location); walk them together to find mismatches
while ((outputs.size() > 0 && a_it != outputs.end()) || (inputs.size() && b_it != inputs.end())) {
bool a_at_end = outputs.size() == 0 || a_it == outputs.end();
bool b_at_end = inputs.size() == 0 || b_it == inputs.end();
auto a_first = a_at_end ? std::make_pair(0u, 0u) : a_it->first;
auto b_first = b_at_end ? std::make_pair(0u, 0u) : b_it->first;
if (b_at_end || ((!a_at_end) && (a_first < b_first))) {
skip |= LogPerformanceWarning(producer->vk_shader_module, kVUID_Core_Shader_OutputNotConsumed,
"%s writes to output location %u.%u which is not consumed by %s", producer_stage->name,
a_first.first, a_first.second, consumer_stage->name);
a_it++;
} else if (a_at_end || a_first > b_first) {
skip |= LogError(consumer->vk_shader_module, kVUID_Core_Shader_InputNotProduced,
"%s consumes input location %u.%u which is not written by %s", consumer_stage->name, b_first.first,
b_first.second, producer_stage->name);
b_it++;
} else {
// subtleties of arrayed interfaces:
// - if is_patch, then the member is not arrayed, even though the interface may be.
// - if is_block_member, then the extra array level of an arrayed interface is not
// expressed in the member type -- it's expressed in the block type.
if (!TypesMatch(producer, consumer, a_it->second.type_id, b_it->second.type_id,
producer_stage->arrayed_output && !a_it->second.is_patch && !a_it->second.is_block_member,
consumer_stage->arrayed_input && !b_it->second.is_patch && !b_it->second.is_block_member, true)) {
skip |= LogError(producer->vk_shader_module, kVUID_Core_Shader_InterfaceTypeMismatch,
"Type mismatch on location %u.%u: '%s' vs '%s'", a_first.first, a_first.second,
DescribeType(producer, a_it->second.type_id).c_str(),
DescribeType(consumer, b_it->second.type_id).c_str());
}
if (a_it->second.is_patch != b_it->second.is_patch) {
skip |= LogError(producer->vk_shader_module, kVUID_Core_Shader_InterfaceTypeMismatch,
"Decoration mismatch on location %u.%u: is per-%s in %s stage but per-%s in %s stage",
a_first.first, a_first.second, a_it->second.is_patch ? "patch" : "vertex", producer_stage->name,
b_it->second.is_patch ? "patch" : "vertex", consumer_stage->name);
}
if (a_it->second.is_relaxed_precision != b_it->second.is_relaxed_precision) {
skip |= LogError(producer->vk_shader_module, kVUID_Core_Shader_InterfaceTypeMismatch,
"Decoration mismatch on location %u.%u: %s and %s stages differ in precision", a_first.first,
a_first.second, producer_stage->name, consumer_stage->name);
}
a_it++;
b_it++;
}
}
if (consumer_stage->stage != VK_SHADER_STAGE_FRAGMENT_BIT) {
auto builtins_producer = CollectBuiltinBlockMembers(producer, producer_entrypoint, spv::StorageClassOutput);
auto builtins_consumer = CollectBuiltinBlockMembers(consumer, consumer_entrypoint, spv::StorageClassInput);
if (!builtins_producer.empty() && !builtins_consumer.empty()) {
if (builtins_producer.size() != builtins_consumer.size()) {
skip |= LogError(producer->vk_shader_module, kVUID_Core_Shader_InterfaceTypeMismatch,
"Number of elements inside builtin block differ between stages (%s %d vs %s %d).",
producer_stage->name, static_cast<int>(builtins_producer.size()), consumer_stage->name,
static_cast<int>(builtins_consumer.size()));
} else {
auto it_producer = builtins_producer.begin();
auto it_consumer = builtins_consumer.begin();
while (it_producer != builtins_producer.end() && it_consumer != builtins_consumer.end()) {
if (*it_producer != *it_consumer) {
skip |= LogError(producer->vk_shader_module, kVUID_Core_Shader_InterfaceTypeMismatch,
"Builtin variable inside block doesn't match between %s and %s.", producer_stage->name,
consumer_stage->name);
break;
}
it_producer++;
it_consumer++;
}
}
}
}
return skip;
}
static inline uint32_t DetermineFinalGeomStage(const PIPELINE_STATE *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) {
uint32_t stage_mask = 0;
if (pipeline->topology_at_rasterizer == VK_PRIMITIVE_TOPOLOGY_POINT_LIST) {
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
stage_mask |= pCreateInfo->pStages[i].stage;
}
// Determine which shader in which PointSize should be written (the final geometry stage)
if (stage_mask & VK_SHADER_STAGE_MESH_BIT_NV) {
stage_mask = VK_SHADER_STAGE_MESH_BIT_NV;
} else if (stage_mask & VK_SHADER_STAGE_GEOMETRY_BIT) {
stage_mask = VK_SHADER_STAGE_GEOMETRY_BIT;
} else if (stage_mask & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) {
stage_mask = VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT;
} else if (stage_mask & VK_SHADER_STAGE_VERTEX_BIT) {
stage_mask = VK_SHADER_STAGE_VERTEX_BIT;
}
}
return stage_mask;
}
// Validate that the shaders used by the given pipeline and store the active_slots
// that are actually used by the pipeline into pPipeline->active_slots
bool CoreChecks::ValidateGraphicsPipelineShaderState(const PIPELINE_STATE *pipeline) const {
auto create_info = pipeline->graphicsPipelineCI.ptr();
int vertex_stage = GetShaderStageId(VK_SHADER_STAGE_VERTEX_BIT);
int fragment_stage = GetShaderStageId(VK_SHADER_STAGE_FRAGMENT_BIT);
const SHADER_MODULE_STATE *shaders[32];
memset(shaders, 0, sizeof(shaders));
spirv_inst_iter entrypoints[32];
bool skip = false;
uint32_t pointlist_stage_mask = DetermineFinalGeomStage(pipeline, create_info);
for (uint32_t i = 0; i < create_info->stageCount; i++) {
auto stage = &create_info->pStages[i];
auto stage_id = GetShaderStageId(stage->stage);
shaders[stage_id] = GetShaderModuleState(stage->module);
entrypoints[stage_id] = FindEntrypoint(shaders[stage_id], stage->pName, stage->stage);
skip |= ValidatePipelineShaderStage(stage, pipeline, pipeline->stage_state[i], shaders[stage_id], entrypoints[stage_id],
(pointlist_stage_mask == stage->stage));
}
// if the shader stages are no good individually, cross-stage validation is pointless.
if (skip) return true;
auto vi = create_info->pVertexInputState;
if (vi) {
skip |= ValidateViConsistency(vi);
}
if (shaders[vertex_stage] && shaders[vertex_stage]->has_valid_spirv) {
skip |= ValidateViAgainstVsInputs(vi, shaders[vertex_stage], entrypoints[vertex_stage]);
}
int producer = GetShaderStageId(VK_SHADER_STAGE_VERTEX_BIT);
int consumer = GetShaderStageId(VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT);
while (!shaders[producer] && producer != fragment_stage) {
producer++;
consumer++;
}
for (; producer != fragment_stage && consumer <= fragment_stage; consumer++) {
assert(shaders[producer]);
if (shaders[consumer]) {
if (shaders[consumer]->has_valid_spirv && shaders[producer]->has_valid_spirv) {
skip |= ValidateInterfaceBetweenStages(shaders[producer], entrypoints[producer], &shader_stage_attribs[producer],
shaders[consumer], entrypoints[consumer], &shader_stage_attribs[consumer]);
}
producer = consumer;
}
}
if (shaders[fragment_stage] && shaders[fragment_stage]->has_valid_spirv) {
skip |= ValidateFsOutputsAgainstRenderPass(shaders[fragment_stage], entrypoints[fragment_stage], pipeline,
create_info->subpass);
}
return skip;
}
void CoreChecks::RecordGraphicsPipelineShaderDynamicState(PIPELINE_STATE *pipeline_state) {
auto create_info = pipeline_state->graphicsPipelineCI.ptr();
if (phys_dev_ext_props.fragment_shading_rate_props.primitiveFragmentShadingRateWithMultipleViewports ||
!IsDynamic(pipeline_state, VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT_EXT)) {
return;
}
std::array<const SHADER_MODULE_STATE *, 32> shaders;
std::fill(shaders.begin(), shaders.end(), nullptr);
spirv_inst_iter entrypoints[32];
for (uint32_t i = 0; i < create_info->stageCount; i++) {
auto stage = &create_info->pStages[i];
auto stage_id = GetShaderStageId(stage->stage);
shaders[stage_id] = GetShaderModuleState(stage->module);
entrypoints[stage_id] = FindEntrypoint(shaders[stage_id], stage->pName, stage->stage);
if (stage->stage == VK_SHADER_STAGE_VERTEX_BIT || stage->stage == VK_SHADER_STAGE_GEOMETRY_BIT ||
stage->stage == VK_SHADER_STAGE_MESH_BIT_NV) {
spirv_inst_iter insn = entrypoints[stage_id];
bool primitiverate_written = false;
while (!primitiverate_written && (insn.opcode() != spv::OpFunction)) {
if (insn.opcode() == spv::OpMemberDecorate) {
if (insn.word(3) == spv::DecorationBuiltIn) {
if (insn.word(4) == spv::BuiltInPrimitiveShadingRateKHR) {
primitiverate_written = IsBuiltInWritten(shaders[stage_id], insn, entrypoints[stage_id]);
}
}
} else if (insn.opcode() == spv::OpDecorate) {
if (insn.word(2) == spv::DecorationBuiltIn) {
if (insn.word(3) == spv::BuiltInPrimitiveShadingRateKHR) {
primitiverate_written = IsBuiltInWritten(shaders[stage_id], insn, entrypoints[stage_id]);
}
}
}
insn++;
}
if (primitiverate_written) {
pipeline_state->wrote_primitive_shading_rate.insert(stage->stage);
}
}
}
}
bool CoreChecks::ValidateGraphicsPipelineShaderDynamicState(const PIPELINE_STATE *pipeline, const CMD_BUFFER_STATE *pCB,
const char *caller, const DrawDispatchVuid &vuid) const {
auto create_info = pipeline->graphicsPipelineCI.ptr();
bool skip = false;
for (uint32_t i = 0; i < create_info->stageCount; i++) {
auto stage = &create_info->pStages[i];
if (stage->stage == VK_SHADER_STAGE_VERTEX_BIT || stage->stage == VK_SHADER_STAGE_GEOMETRY_BIT ||
stage->stage == VK_SHADER_STAGE_MESH_BIT_NV) {
if (!phys_dev_ext_props.fragment_shading_rate_props.primitiveFragmentShadingRateWithMultipleViewports &&
IsDynamic(pipeline, VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT_EXT) && pCB->viewportWithCountCount != 1) {
if (pipeline->wrote_primitive_shading_rate.find(stage->stage) != pipeline->wrote_primitive_shading_rate.end()) {
skip |=
LogError(pipeline->pipeline, vuid.viewport_count_primitive_shading_rate,
"%s: %s shader of currently bound pipeline statically writes to PrimitiveShadingRateKHR built-in"
"but multiple viewports are set by the last call to vkCmdSetViewportWithCountEXT,"
"and the primitiveFragmentShadingRateWithMultipleViewports limit is not supported.",
caller, string_VkShaderStageFlagBits(stage->stage));
}
}
}
}
return skip;
}
bool CoreChecks::ValidateComputePipelineShaderState(PIPELINE_STATE *pipeline) const {
const auto &stage = *pipeline->computePipelineCI.stage.ptr();
const SHADER_MODULE_STATE *module = GetShaderModuleState(stage.module);
const spirv_inst_iter entrypoint = FindEntrypoint(module, stage.pName, stage.stage);
return ValidatePipelineShaderStage(&stage, pipeline, pipeline->stage_state[0], module, entrypoint, false);
}
uint32_t CoreChecks::CalcShaderStageCount(const PIPELINE_STATE *pipeline, VkShaderStageFlagBits stageBit) const {
uint32_t total = 0;
const auto *stages = pipeline->raytracingPipelineCI.ptr()->pStages;
for (uint32_t stage_index = 0; stage_index < pipeline->raytracingPipelineCI.stageCount; stage_index++) {
if (stages[stage_index].stage == stageBit) {
total++;
}
}
if (pipeline->raytracingPipelineCI.pLibraryInfo) {
for (uint32_t i = 0; i < pipeline->raytracingPipelineCI.pLibraryInfo->libraryCount; ++i) {
const PIPELINE_STATE *library_pipeline = GetPipelineState(pipeline->raytracingPipelineCI.pLibraryInfo->pLibraries[i]);
total += CalcShaderStageCount(library_pipeline, stageBit);
}
}
return total;
}
bool CoreChecks::ValidateRayTracingPipeline(PIPELINE_STATE *pipeline, VkPipelineCreateFlags flags, bool isKHR) const {
bool skip = false;
if (isKHR) {
if (pipeline->raytracingPipelineCI.maxPipelineRayRecursionDepth >
phys_dev_ext_props.ray_tracing_propsKHR.maxRayRecursionDepth) {
skip |= LogError(device, "VUID-VkRayTracingPipelineCreateInfoKHR-maxPipelineRayRecursionDepth-03589",
"vkCreateRayTracingPipelinesKHR: maxPipelineRayRecursionDepth (%d ) must be less than or equal to "
"VkPhysicalDeviceRayTracingPipelinePropertiesKHR::maxRayRecursionDepth %d",
pipeline->raytracingPipelineCI.maxPipelineRayRecursionDepth,
phys_dev_ext_props.ray_tracing_propsKHR.maxRayRecursionDepth);
}
if (pipeline->raytracingPipelineCI.pLibraryInfo) {
for (uint32_t i = 0; i < pipeline->raytracingPipelineCI.pLibraryInfo->libraryCount; ++i) {
const PIPELINE_STATE *library_pipelinestate =
GetPipelineState(pipeline->raytracingPipelineCI.pLibraryInfo->pLibraries[i]);
if (library_pipelinestate->raytracingPipelineCI.maxPipelineRayRecursionDepth !=
pipeline->raytracingPipelineCI.maxPipelineRayRecursionDepth) {
skip |= LogError(
device, "VUID-VkRayTracingPipelineCreateInfoKHR-pLibraries-03591",
"vkCreateRayTracingPipelinesKHR: Each element (%d) of the pLibraries member of libraries must have been"
"created with the value of maxPipelineRayRecursionDepth (%d) equal to that in this pipeline (%d) .",
i, library_pipelinestate->raytracingPipelineCI.maxPipelineRayRecursionDepth,
pipeline->raytracingPipelineCI.maxPipelineRayRecursionDepth);
}
if (library_pipelinestate->raytracingPipelineCI.pLibraryInfo &&
(library_pipelinestate->raytracingPipelineCI.pLibraryInterface->maxPipelineRayHitAttributeSize !=
pipeline->raytracingPipelineCI.pLibraryInterface->maxPipelineRayHitAttributeSize ||
library_pipelinestate->raytracingPipelineCI.pLibraryInterface->maxPipelineRayPayloadSize !=
pipeline->raytracingPipelineCI.pLibraryInterface->maxPipelineRayPayloadSize)) {
skip |= LogError(device, "VUID-VkRayTracingPipelineCreateInfoKHR-pLibraryInfo-03593",
"vkCreateRayTracingPipelinesKHR: If pLibraryInfo is not NULL, each element of its pLibraries "
"member must have been created with values of the maxPipelineRayPayloadSize and "
"maxPipelineRayHitAttributeSize members of pLibraryInterface equal to those in this pipeline");
}
if ((flags & VK_PIPELINE_CREATE_RAY_TRACING_SHADER_GROUP_HANDLE_CAPTURE_REPLAY_BIT_KHR) &&
!(library_pipelinestate->raytracingPipelineCI.flags &
VK_PIPELINE_CREATE_RAY_TRACING_SHADER_GROUP_HANDLE_CAPTURE_REPLAY_BIT_KHR)) {
skip |= LogError(device, "VUID-VkRayTracingPipelineCreateInfoKHR-flags-03594",
"vkCreateRayTracingPipelinesKHR: If flags includes "
"VK_PIPELINE_CREATE_RAY_TRACING_SHADER_GROUP_HANDLE_CAPTURE_REPLAY_BIT_KHR, each element of "
"the pLibraries member of libraries must have been created with the "
"VK_PIPELINE_CREATE_RAY_TRACING_SHADER_GROUP_HANDLE_CAPTURE_REPLAY_BIT_KHR bit set");
}
}
}
} else {
if (pipeline->raytracingPipelineCI.maxRecursionDepth > phys_dev_ext_props.ray_tracing_propsNV.maxRecursionDepth) {
skip |= LogError(device, "VUID-VkRayTracingPipelineCreateInfoNV-maxRecursionDepth-03457",
"vkCreateRayTracingPipelinesNV: maxRecursionDepth (%d) must be less than or equal to "
"VkPhysicalDeviceRayTracingPropertiesNV::maxRecursionDepth (%d)",
pipeline->raytracingPipelineCI.maxRecursionDepth,
phys_dev_ext_props.ray_tracing_propsNV.maxRecursionDepth);
}
}
const auto *stages = pipeline->raytracingPipelineCI.ptr()->pStages;
const auto *groups = pipeline->raytracingPipelineCI.ptr()->pGroups;
for (uint32_t stage_index = 0; stage_index < pipeline->raytracingPipelineCI.stageCount; stage_index++) {
const auto &stage = stages[stage_index];
const SHADER_MODULE_STATE *module = GetShaderModuleState(stage.module);
const spirv_inst_iter entrypoint = FindEntrypoint(module, stage.pName, stage.stage);
skip |= ValidatePipelineShaderStage(&stage, pipeline, pipeline->stage_state[stage_index], module, entrypoint, false);
}
if ((pipeline->raytracingPipelineCI.flags & VK_PIPELINE_CREATE_LIBRARY_BIT_KHR) == 0) {
const uint32_t raygen_stages_count = CalcShaderStageCount(pipeline, VK_SHADER_STAGE_RAYGEN_BIT_KHR);
if (raygen_stages_count == 0) {
skip |= LogError(
device,
isKHR ? "VUID-VkRayTracingPipelineCreateInfoKHR-stage-03425" : "VUID-VkRayTracingPipelineCreateInfoNV-stage-03425",
" : The stage member of at least one element of pStages must be VK_SHADER_STAGE_RAYGEN_BIT_KHR.");
}
}
for (uint32_t group_index = 0; group_index < pipeline->raytracingPipelineCI.groupCount; group_index++) {
const auto &group = groups[group_index];
if (group.type == VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_NV) {
if (group.generalShader >= pipeline->raytracingPipelineCI.stageCount ||
(stages[group.generalShader].stage != VK_SHADER_STAGE_RAYGEN_BIT_NV &&
stages[group.generalShader].stage != VK_SHADER_STAGE_MISS_BIT_NV &&
stages[group.generalShader].stage != VK_SHADER_STAGE_CALLABLE_BIT_NV)) {
skip |= LogError(device,
isKHR ? "VUID-VkRayTracingShaderGroupCreateInfoKHR-type-03474"
: "VUID-VkRayTracingShaderGroupCreateInfoNV-type-02413",
": pGroups[%d]", group_index);
}
if (group.anyHitShader != VK_SHADER_UNUSED_NV || group.closestHitShader != VK_SHADER_UNUSED_NV ||
group.intersectionShader != VK_SHADER_UNUSED_NV) {
skip |= LogError(device,
isKHR ? "VUID-VkRayTracingShaderGroupCreateInfoKHR-type-03475"
: "VUID-VkRayTracingShaderGroupCreateInfoNV-type-02414",
": pGroups[%d]", group_index);
}
} else if (group.type == VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_NV) {
if (group.intersectionShader >= pipeline->raytracingPipelineCI.stageCount ||
stages[group.intersectionShader].stage != VK_SHADER_STAGE_INTERSECTION_BIT_NV) {
skip |= LogError(device,
isKHR ? "VUID-VkRayTracingShaderGroupCreateInfoKHR-type-03476"
: "VUID-VkRayTracingShaderGroupCreateInfoNV-type-02415",
": pGroups[%d]", group_index);
}
} else if (group.type == VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_NV) {
if (group.intersectionShader != VK_SHADER_UNUSED_NV) {
skip |= LogError(device,
isKHR ? "VUID-VkRayTracingShaderGroupCreateInfoKHR-type-03477"
: "VUID-VkRayTracingShaderGroupCreateInfoNV-type-02416",
": pGroups[%d]", group_index);
}
}
if (group.type == VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_NV ||
group.type == VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_NV) {
if (group.anyHitShader != VK_SHADER_UNUSED_NV && (group.anyHitShader >= pipeline->raytracingPipelineCI.stageCount ||
stages[group.anyHitShader].stage != VK_SHADER_STAGE_ANY_HIT_BIT_NV)) {
skip |= LogError(device,
isKHR ? "VUID-VkRayTracingShaderGroupCreateInfoKHR-anyHitShader-03479"
: "VUID-VkRayTracingShaderGroupCreateInfoNV-anyHitShader-02418",
": pGroups[%d]", group_index);
}
if (group.closestHitShader != VK_SHADER_UNUSED_NV &&
(group.closestHitShader >= pipeline->raytracingPipelineCI.stageCount ||
stages[group.closestHitShader].stage != VK_SHADER_STAGE_CLOSEST_HIT_BIT_NV)) {
skip |= LogError(device,
isKHR ? "VUID-VkRayTracingShaderGroupCreateInfoKHR-closestHitShader-03478"
: "VUID-VkRayTracingShaderGroupCreateInfoNV-closestHitShader-02417",
": pGroups[%d]", group_index);
}
}
}
return skip;
}
uint32_t ValidationCache::MakeShaderHash(VkShaderModuleCreateInfo const *smci) { return XXH32(smci->pCode, smci->codeSize, 0); }
static ValidationCache *GetValidationCacheInfo(VkShaderModuleCreateInfo const *pCreateInfo) {
const auto validation_cache_ci = LvlFindInChain<VkShaderModuleValidationCacheCreateInfoEXT>(pCreateInfo->pNext);
if (validation_cache_ci) {
return CastFromHandle<ValidationCache *>(validation_cache_ci->validationCache);
}
return nullptr;
}
bool CoreChecks::PreCallValidateCreateShaderModule(VkDevice device, const VkShaderModuleCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkShaderModule *pShaderModule) const {
bool skip = false;
spv_result_t spv_valid = SPV_SUCCESS;
if (disabled[shader_validation]) {
return false;
}
auto have_glsl_shader = device_extensions.vk_nv_glsl_shader;
if (!have_glsl_shader && (pCreateInfo->codeSize % 4)) {
skip |= LogError(device, "VUID-VkShaderModuleCreateInfo-pCode-01376",
"SPIR-V module not valid: Codesize must be a multiple of 4 but is " PRINTF_SIZE_T_SPECIFIER ".",
pCreateInfo->codeSize);
} else {
auto cache = GetValidationCacheInfo(pCreateInfo);
uint32_t hash = 0;
if (cache) {
hash = ValidationCache::MakeShaderHash(pCreateInfo);
if (cache->Contains(hash)) return false;
}
// Use SPIRV-Tools validator to try and catch any issues with the module itself. If specialization constants are present,
// the default values will be used during validation.
spv_target_env spirv_environment = PickSpirvEnv(api_version, (device_extensions.vk_khr_spirv_1_4 != kNotEnabled));
spv_context ctx = spvContextCreate(spirv_environment);
spv_const_binary_t binary{pCreateInfo->pCode, pCreateInfo->codeSize / sizeof(uint32_t)};
spv_diagnostic diag = nullptr;
spvtools::ValidatorOptions options;
AdjustValidatorOptions(device_extensions, enabled_features, options);
spv_valid = spvValidateWithOptions(ctx, options, &binary, &diag);
if (spv_valid != SPV_SUCCESS) {
if (!have_glsl_shader || (pCreateInfo->pCode[0] == spv::MagicNumber)) {
if (spv_valid == SPV_WARNING) {
skip |= LogWarning(device, kVUID_Core_Shader_InconsistentSpirv, "SPIR-V module not valid: %s",
diag && diag->error ? diag->error : "(no error text)");
} else {
skip |= LogError(device, kVUID_Core_Shader_InconsistentSpirv, "SPIR-V module not valid: %s",
diag && diag->error ? diag->error : "(no error text)");
}
}
} else {
if (cache) {
cache->Insert(hash);
}
}
spvDiagnosticDestroy(diag);
spvContextDestroy(ctx);
}
return skip;
}
bool CoreChecks::ValidateComputeWorkGroupSizes(const SHADER_MODULE_STATE *shader) const {
bool skip = false;
uint32_t local_size_x = 0;
uint32_t local_size_y = 0;
uint32_t local_size_z = 0;
if (FindLocalSize(shader, local_size_x, local_size_y, local_size_z)) {
if (local_size_x > phys_dev_props.limits.maxComputeWorkGroupSize[0]) {
skip |= LogError(shader->vk_shader_module, "UNASSIGNED-features-limits-maxComputeWorkGroupSize",
"%s local_size_x (%" PRIu32 ") exceeds device limit maxComputeWorkGroupSize[0] (%" PRIu32 ").",
report_data->FormatHandle(shader->vk_shader_module).c_str(), local_size_x,
phys_dev_props.limits.maxComputeWorkGroupSize[0]);
}
if (local_size_y > phys_dev_props.limits.maxComputeWorkGroupSize[1]) {
skip |= LogError(shader->vk_shader_module, "UNASSIGNED-features-limits-maxComputeWorkGroupSize",
"%s local_size_y (%" PRIu32 ") exceeds device limit maxComputeWorkGroupSize[1] (%" PRIu32 ").",
report_data->FormatHandle(shader->vk_shader_module).c_str(), local_size_x,
phys_dev_props.limits.maxComputeWorkGroupSize[1]);
}
if (local_size_z > phys_dev_props.limits.maxComputeWorkGroupSize[2]) {
skip |= LogError(shader->vk_shader_module, "UNASSIGNED-features-limits-maxComputeWorkGroupSize",
"%s local_size_z (%" PRIu32 ") exceeds device limit maxComputeWorkGroupSize[2] (%" PRIu32 ").",
report_data->FormatHandle(shader->vk_shader_module).c_str(), local_size_x,
phys_dev_props.limits.maxComputeWorkGroupSize[2]);
}
uint32_t limit = phys_dev_props.limits.maxComputeWorkGroupInvocations;
uint64_t invocations = local_size_x * local_size_y;
// Prevent overflow.
bool fail = false;
if (invocations > UINT32_MAX || invocations > limit) {
fail = true;
}
if (!fail) {
invocations *= local_size_z;
if (invocations > UINT32_MAX || invocations > limit) {
fail = true;
}
}
if (fail) {
skip |= LogError(shader->vk_shader_module, "UNASSIGNED-features-limits-maxComputeWorkGroupInvocations",
"%s local_size (%" PRIu32 ", %" PRIu32 ", %" PRIu32
") exceeds device limit maxComputeWorkGroupInvocations (%" PRIu32 ").",
report_data->FormatHandle(shader->vk_shader_module).c_str(), local_size_x, local_size_y, local_size_z,
limit);
}
}
return skip;
}
spv_target_env PickSpirvEnv(uint32_t api_version, bool spirv_1_4) {
if (api_version >= VK_API_VERSION_1_2) {
return SPV_ENV_VULKAN_1_2;
} else if (api_version >= VK_API_VERSION_1_1) {
if (spirv_1_4) {
return SPV_ENV_VULKAN_1_1_SPIRV_1_4;
} else {
return SPV_ENV_VULKAN_1_1;
}
}
return SPV_ENV_VULKAN_1_0;
}
void AdjustValidatorOptions(const DeviceExtensions device_extensions, const DeviceFeatures enabled_features,
spvtools::ValidatorOptions &options) {
if (device_extensions.vk_khr_relaxed_block_layout) {
options.SetRelaxBlockLayout(true);
}
if (device_extensions.vk_khr_uniform_buffer_standard_layout && enabled_features.core12.uniformBufferStandardLayout == VK_TRUE) {
options.SetUniformBufferStandardLayout(true);
}
if (device_extensions.vk_ext_scalar_block_layout && enabled_features.core12.scalarBlockLayout == VK_TRUE) {
options.SetScalarBlockLayout(true);
}
}