blob: dae7283525d5a26d3f71515df2466d4cedd1c360 [file] [log] [blame]
/* Copyright (c) 2015-2021 The Khronos Group Inc.
* Copyright (c) 2015-2021 Valve Corporation
* Copyright (c) 2015-2021 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Camden Stocker <camden@lunarg.com>
*/
#include "best_practices_validation.h"
#include "layer_chassis_dispatch.h"
#include "best_practices_error_enums.h"
#include "shader_validation.h"
#include <string>
#include <bitset>
#include <memory>
struct VendorSpecificInfo {
EnableFlags vendor_id;
std::string name;
};
const std::map<BPVendorFlagBits, VendorSpecificInfo> kVendorInfo = {
{kBPVendorArm, {vendor_specific_arm, "Arm"}},
};
bool BestPractices::VendorCheckEnabled(BPVendorFlags vendors) const {
for (const auto& vendor : kVendorInfo) {
if (vendors & vendor.first && enabled[vendor.second.vendor_id]) {
return true;
}
}
return false;
}
const char* VendorSpecificTag(BPVendorFlags vendors) {
// Cache built vendor tags in a map
static std::unordered_map<BPVendorFlags, std::string> tag_map;
auto res = tag_map.find(vendors);
if (res == tag_map.end()) {
// Build the vendor tag string
std::stringstream vendor_tag;
vendor_tag << "[";
bool first_vendor = true;
for (const auto& vendor : kVendorInfo) {
if (vendors & vendor.first) {
if (!first_vendor) {
vendor_tag << ", ";
}
vendor_tag << vendor.second.name;
first_vendor = false;
}
}
vendor_tag << "]";
tag_map[vendors] = vendor_tag.str();
res = tag_map.find(vendors);
}
return res->second.c_str();
}
const char* DepReasonToString(ExtDeprecationReason reason) {
switch (reason) {
case kExtPromoted:
return "promoted to";
break;
case kExtObsoleted:
return "obsoleted by";
break;
case kExtDeprecated:
return "deprecated by";
break;
default:
return "";
break;
}
}
bool BestPractices::ValidateDeprecatedExtensions(const char* api_name, const char* extension_name, uint32_t version,
const char* vuid) const {
bool skip = false;
auto dep_info_it = deprecated_extensions.find(extension_name);
if (dep_info_it != deprecated_extensions.end()) {
auto dep_info = dep_info_it->second;
if (((dep_info.target.compare("VK_VERSION_1_1") == 0) && (version >= VK_API_VERSION_1_1)) ||
((dep_info.target.compare("VK_VERSION_1_2") == 0) && (version >= VK_API_VERSION_1_2))) {
skip |=
LogWarning(instance, vuid, "%s(): Attempting to enable deprecated extension %s, but this extension has been %s %s.",
api_name, extension_name, DepReasonToString(dep_info.reason), (dep_info.target).c_str());
} else if (dep_info.target.find("VK_VERSION") == std::string::npos) {
if (dep_info.target.length() == 0) {
skip |= LogWarning(instance, vuid,
"%s(): Attempting to enable deprecated extension %s, but this extension has been deprecated "
"without replacement.",
api_name, extension_name);
} else {
skip |= LogWarning(instance, vuid,
"%s(): Attempting to enable deprecated extension %s, but this extension has been %s %s.",
api_name, extension_name, DepReasonToString(dep_info.reason), (dep_info.target).c_str());
}
}
}
return skip;
}
bool BestPractices::ValidateSpecialUseExtensions(const char* api_name, const char* extension_name, const char* vuid) const {
bool skip = false;
auto dep_info_it = special_use_extensions.find(extension_name);
if (dep_info_it != special_use_extensions.end()) {
auto special_uses = dep_info_it->second;
std::string message("is intended to support the following uses: ");
if (special_uses.find("cadsupport") != std::string::npos) {
message.append("specialized functionality used by CAD/CAM applications, ");
}
if (special_uses.find("d3demulation") != std::string::npos) {
message.append("D3D emulation layers, and applications ported from D3D, by adding functionality specific to D3D, ");
}
if (special_uses.find("devtools") != std::string::npos) {
message.append(" developer tools such as capture-replay libraries, ");
}
if (special_uses.find("debugging") != std::string::npos) {
message.append("use by applications when debugging, ");
}
if (special_uses.find("glemulation") != std::string::npos) {
message.append(
"OpenGL and/or OpenGL ES emulation layers, and applications ported from those APIs, by adding functionality "
"specific to those APIs, ");
}
message.append("and it is strongly recommended that they be otherwise avoided");
skip |= LogWarning(instance, vuid, "%s(): Attempting to enable extension %s, but this extension %s.", api_name,
extension_name, message.c_str());
}
return skip;
}
bool BestPractices::PreCallValidateCreateInstance(const VkInstanceCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator,
VkInstance* pInstance) const {
bool skip = false;
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
if (white_list(pCreateInfo->ppEnabledExtensionNames[i], kDeviceExtensionNames)) {
skip |= LogWarning(instance, kVUID_BestPractices_CreateInstance_ExtensionMismatch,
"vkCreateInstance(): Attempting to enable Device Extension %s at CreateInstance time.",
pCreateInfo->ppEnabledExtensionNames[i]);
}
uint32_t specified_version =
(pCreateInfo->pApplicationInfo ? pCreateInfo->pApplicationInfo->apiVersion : VK_API_VERSION_1_0);
skip |= ValidateDeprecatedExtensions("CreateInstance", pCreateInfo->ppEnabledExtensionNames[i], specified_version,
kVUID_BestPractices_CreateInstance_DeprecatedExtension);
skip |= ValidateSpecialUseExtensions("CreateInstance", pCreateInfo->ppEnabledExtensionNames[i],
kVUID_BestPractices_CreateInstance_SpecialUseExtension);
}
return skip;
}
void BestPractices::PreCallRecordCreateInstance(const VkInstanceCreateInfo* pCreateInfo, const VkAllocationCallbacks* pAllocator,
VkInstance* pInstance) {
ValidationStateTracker::PreCallRecordCreateInstance(pCreateInfo, pAllocator, pInstance);
if (pCreateInfo != nullptr && pCreateInfo->pApplicationInfo != nullptr) {
instance_api_version = pCreateInfo->pApplicationInfo->apiVersion;
} else {
instance_api_version = 0;
}
}
bool BestPractices::PreCallValidateCreateDevice(VkPhysicalDevice physicalDevice, const VkDeviceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator, VkDevice* pDevice) const {
bool skip = false;
// get API version of physical device passed when creating device.
VkPhysicalDeviceProperties physical_device_properties{};
DispatchGetPhysicalDeviceProperties(physicalDevice, &physical_device_properties);
auto device_api_version = physical_device_properties.apiVersion;
// check api versions and warn if instance api Version is higher than version on device.
if (instance_api_version > device_api_version) {
std::string inst_api_name = StringAPIVersion(instance_api_version);
std::string dev_api_name = StringAPIVersion(device_api_version);
skip |= LogWarning(device, kVUID_BestPractices_CreateDevice_API_Mismatch,
"vkCreateDevice(): API Version of current instance, %s is higher than API Version on device, %s",
inst_api_name.c_str(), dev_api_name.c_str());
}
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionCount; i++) {
if (white_list(pCreateInfo->ppEnabledExtensionNames[i], kInstanceExtensionNames)) {
skip |= LogWarning(instance, kVUID_BestPractices_CreateDevice_ExtensionMismatch,
"vkCreateDevice(): Attempting to enable Instance Extension %s at CreateDevice time.",
pCreateInfo->ppEnabledExtensionNames[i]);
}
skip |= ValidateDeprecatedExtensions("CreateDevice", pCreateInfo->ppEnabledExtensionNames[i], instance_api_version,
kVUID_BestPractices_CreateDevice_DeprecatedExtension);
skip |= ValidateSpecialUseExtensions("CreateInstance", pCreateInfo->ppEnabledExtensionNames[i],
kVUID_BestPractices_CreateDevice_SpecialUseExtension);
}
const auto bp_pd_state = GetPhysicalDeviceStateBP(physicalDevice);
if ((bp_pd_state->vkGetPhysicalDeviceFeaturesState == UNCALLED) && (pCreateInfo->pEnabledFeatures != NULL)) {
skip |= LogWarning(device, kVUID_BestPractices_CreateDevice_PDFeaturesNotCalled,
"vkCreateDevice() called before getting physical device features from vkGetPhysicalDeviceFeatures().");
}
if ((VendorCheckEnabled(kBPVendorArm)) && (pCreateInfo->pEnabledFeatures != nullptr) &&
(pCreateInfo->pEnabledFeatures->robustBufferAccess == VK_TRUE)) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreateDevice_RobustBufferAccess,
"%s vkCreateDevice() called with enabled robustBufferAccess. Use robustBufferAccess as a debugging tool during "
"development. Enabling it causes loss in performance for accesses to uniform buffers and shader storage "
"buffers. Disable robustBufferAccess in release builds. Only leave it enabled if the application use-case "
"requires the additional level of reliability due to the use of unverified user-supplied draw parameters.",
VendorSpecificTag(kBPVendorArm));
}
return skip;
}
bool BestPractices::PreCallValidateCreateBuffer(VkDevice device, const VkBufferCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator, VkBuffer* pBuffer) const {
bool skip = false;
if ((pCreateInfo->queueFamilyIndexCount > 1) && (pCreateInfo->sharingMode == VK_SHARING_MODE_EXCLUSIVE)) {
std::stringstream buffer_hex;
buffer_hex << "0x" << std::hex << HandleToUint64(pBuffer);
skip |= LogWarning(
device, kVUID_BestPractices_SharingModeExclusive,
"Warning: Buffer (%s) specifies a sharing mode of VK_SHARING_MODE_EXCLUSIVE while specifying multiple queues "
"(queueFamilyIndexCount of %" PRIu32 ").",
buffer_hex.str().c_str(), pCreateInfo->queueFamilyIndexCount);
}
return skip;
}
bool BestPractices::PreCallValidateCreateImage(VkDevice device, const VkImageCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator, VkImage* pImage) const {
bool skip = false;
if ((pCreateInfo->queueFamilyIndexCount > 1) && (pCreateInfo->sharingMode == VK_SHARING_MODE_EXCLUSIVE)) {
std::stringstream image_hex;
image_hex << "0x" << std::hex << HandleToUint64(pImage);
skip |=
LogWarning(device, kVUID_BestPractices_SharingModeExclusive,
"Warning: Image (%s) specifies a sharing mode of VK_SHARING_MODE_EXCLUSIVE while specifying multiple queues "
"(queueFamilyIndexCount of %" PRIu32 ").",
image_hex.str().c_str(), pCreateInfo->queueFamilyIndexCount);
}
if (VendorCheckEnabled(kBPVendorArm)) {
if (pCreateInfo->samples > kMaxEfficientSamplesArm) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreateImage_TooLargeSampleCount,
"%s vkCreateImage(): Trying to create an image with %u samples. "
"The hardware revision may not have full throughput for framebuffers with more than %u samples.",
VendorSpecificTag(kBPVendorArm), static_cast<uint32_t>(pCreateInfo->samples), kMaxEfficientSamplesArm);
}
if (pCreateInfo->samples > VK_SAMPLE_COUNT_1_BIT && !(pCreateInfo->usage & VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT)) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreateImage_NonTransientMSImage,
"%s vkCreateImage(): Trying to create a multisampled image, but createInfo.usage did not have "
"VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT set. Multisampled images may be resolved on-chip, "
"and do not need to be backed by physical storage. "
"TRANSIENT_ATTACHMENT allows tiled GPUs to not back the multisampled image with physical memory.",
VendorSpecificTag(kBPVendorArm));
}
}
return skip;
}
bool BestPractices::PreCallValidateCreateSwapchainKHR(VkDevice device, const VkSwapchainCreateInfoKHR* pCreateInfo,
const VkAllocationCallbacks* pAllocator, VkSwapchainKHR* pSwapchain) const {
bool skip = false;
const auto* bp_pd_state = GetPhysicalDeviceStateBP();
if (bp_pd_state) {
if (bp_pd_state->vkGetPhysicalDeviceSurfaceCapabilitiesKHRState == UNCALLED) {
skip |= LogWarning(device, kVUID_BestPractices_Swapchain_GetSurfaceNotCalled,
"vkCreateSwapchainKHR() called before getting surface capabilities from "
"vkGetPhysicalDeviceSurfaceCapabilitiesKHR().");
}
if (bp_pd_state->vkGetPhysicalDeviceSurfacePresentModesKHRState != QUERY_DETAILS) {
skip |= LogWarning(device, kVUID_BestPractices_Swapchain_GetSurfaceNotCalled,
"vkCreateSwapchainKHR() called before getting surface present mode(s) from "
"vkGetPhysicalDeviceSurfacePresentModesKHR().");
}
if (bp_pd_state->vkGetPhysicalDeviceSurfaceFormatsKHRState != QUERY_DETAILS) {
skip |= LogWarning(
device, kVUID_BestPractices_Swapchain_GetSurfaceNotCalled,
"vkCreateSwapchainKHR() called before getting surface format(s) from vkGetPhysicalDeviceSurfaceFormatsKHR().");
}
}
if ((pCreateInfo->queueFamilyIndexCount > 1) && (pCreateInfo->imageSharingMode == VK_SHARING_MODE_EXCLUSIVE)) {
skip |=
LogWarning(device, kVUID_BestPractices_SharingModeExclusive,
"Warning: A Swapchain is being created which specifies a sharing mode of VK_SHARING_MODE_EXCLUSIVE while "
"specifying multiple queues (queueFamilyIndexCount of %" PRIu32 ").",
pCreateInfo->queueFamilyIndexCount);
}
if (pCreateInfo->minImageCount == 2) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_SuboptimalSwapchainImageCount,
"Warning: A Swapchain is being created with minImageCount set to %" PRIu32
", which means double buffering is going "
"to be used. Using double buffering and vsync locks rendering to an integer fraction of the vsync rate. In turn, "
"reducing the performance of the application if rendering is slower than vsync. Consider setting minImageCount to "
"3 to use triple buffering to maximize performance in such cases.",
pCreateInfo->minImageCount);
}
if (VendorCheckEnabled(kBPVendorArm) && (pCreateInfo->presentMode != VK_PRESENT_MODE_FIFO_KHR)) {
skip |= LogWarning(device, kVUID_BestPractices_CreateSwapchain_PresentMode,
"%s Warning: Swapchain is not being created with presentation mode \"VK_PRESENT_MODE_FIFO_KHR\". "
"Prefer using \"VK_PRESENT_MODE_FIFO_KHR\" to avoid unnecessary CPU and GPU load and save power. "
"Presentation modes which are not FIFO will present the latest available frame and discard other "
"frame(s) if any.",
VendorSpecificTag(kBPVendorArm));
}
return skip;
}
bool BestPractices::PreCallValidateCreateSharedSwapchainsKHR(VkDevice device, uint32_t swapchainCount,
const VkSwapchainCreateInfoKHR* pCreateInfos,
const VkAllocationCallbacks* pAllocator,
VkSwapchainKHR* pSwapchains) const {
bool skip = false;
for (uint32_t i = 0; i < swapchainCount; i++) {
if ((pCreateInfos[i].queueFamilyIndexCount > 1) && (pCreateInfos[i].imageSharingMode == VK_SHARING_MODE_EXCLUSIVE)) {
skip |= LogWarning(
device, kVUID_BestPractices_SharingModeExclusive,
"Warning: A shared swapchain (index %" PRIu32
") is being created which specifies a sharing mode of VK_SHARING_MODE_EXCLUSIVE while specifying multiple "
"queues (queueFamilyIndexCount of %" PRIu32 ").",
i, pCreateInfos[i].queueFamilyIndexCount);
}
}
return skip;
}
bool BestPractices::PreCallValidateCreateRenderPass(VkDevice device, const VkRenderPassCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator, VkRenderPass* pRenderPass) const {
bool skip = false;
for (uint32_t i = 0; i < pCreateInfo->attachmentCount; ++i) {
VkFormat format = pCreateInfo->pAttachments[i].format;
if (pCreateInfo->pAttachments[i].initialLayout == VK_IMAGE_LAYOUT_UNDEFINED) {
if ((FormatIsColor(format) || FormatHasDepth(format)) &&
pCreateInfo->pAttachments[i].loadOp == VK_ATTACHMENT_LOAD_OP_LOAD) {
skip |= LogWarning(device, kVUID_BestPractices_RenderPass_Attatchment,
"Render pass has an attachment with loadOp == VK_ATTACHMENT_LOAD_OP_LOAD and "
"initialLayout == VK_IMAGE_LAYOUT_UNDEFINED. This is probably not what you "
"intended. Consider using VK_ATTACHMENT_LOAD_OP_DONT_CARE instead if the "
"image truely is undefined at the start of the render pass.");
}
if (FormatHasStencil(format) && pCreateInfo->pAttachments[i].stencilLoadOp == VK_ATTACHMENT_LOAD_OP_LOAD) {
skip |= LogWarning(device, kVUID_BestPractices_RenderPass_Attatchment,
"Render pass has an attachment with stencilLoadOp == VK_ATTACHMENT_LOAD_OP_LOAD "
"and initialLayout == VK_IMAGE_LAYOUT_UNDEFINED. This is probably not what you "
"intended. Consider using VK_ATTACHMENT_LOAD_OP_DONT_CARE instead if the "
"image truely is undefined at the start of the render pass.");
}
}
const auto& attachment = pCreateInfo->pAttachments[i];
if (attachment.samples > VK_SAMPLE_COUNT_1_BIT) {
bool access_requires_memory =
attachment.loadOp == VK_ATTACHMENT_LOAD_OP_LOAD || attachment.storeOp == VK_ATTACHMENT_STORE_OP_STORE;
if (FormatHasStencil(format)) {
access_requires_memory |= attachment.stencilLoadOp == VK_ATTACHMENT_LOAD_OP_LOAD ||
attachment.stencilStoreOp == VK_ATTACHMENT_STORE_OP_STORE;
}
if (access_requires_memory) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreateRenderPass_ImageRequiresMemory,
"Attachment %u in the VkRenderPass is a multisampled image with %u samples, but it uses loadOp/storeOp "
"which requires accessing data from memory. Multisampled images should always be loadOp = CLEAR or DONT_CARE, "
"storeOp = DONT_CARE. This allows the implementation to use lazily allocated memory effectively.",
i, static_cast<uint32_t>(attachment.samples));
}
}
}
for (uint32_t dependency = 0; dependency < pCreateInfo->dependencyCount; dependency++) {
skip |= CheckPipelineStageFlags("vkCreateRenderPass", pCreateInfo->pDependencies[dependency].srcStageMask);
skip |= CheckPipelineStageFlags("vkCreateRenderPass", pCreateInfo->pDependencies[dependency].dstStageMask);
}
return skip;
}
bool BestPractices::ValidateAttachments(const VkRenderPassCreateInfo2* rpci, uint32_t attachmentCount,
const VkImageView* image_views) const {
bool skip = false;
// Check for non-transient attachments that should be transient and vice versa
for (uint32_t i = 0; i < attachmentCount; ++i) {
auto& attachment = rpci->pAttachments[i];
bool attachment_should_be_transient =
(attachment.loadOp != VK_ATTACHMENT_LOAD_OP_LOAD && attachment.storeOp != VK_ATTACHMENT_STORE_OP_STORE);
if (FormatHasStencil(attachment.format)) {
attachment_should_be_transient &= (attachment.stencilLoadOp != VK_ATTACHMENT_LOAD_OP_LOAD &&
attachment.stencilStoreOp != VK_ATTACHMENT_STORE_OP_STORE);
}
auto view_state = GetImageViewState(image_views[i]);
if (view_state) {
auto& ivci = view_state->create_info;
auto& ici = GetImageState(ivci.image)->createInfo;
bool image_is_transient = (ici.usage & VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT) != 0;
// The check for an image that should not be transient applies to all GPUs
if (!attachment_should_be_transient && image_is_transient) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreateFramebuffer_AttachmentShouldNotBeTransient,
"Attachment %u in VkFramebuffer uses loadOp/storeOps which need to access physical memory, "
"but the image backing the image view has VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT set. "
"Physical memory will need to be backed lazily to this image, potentially causing stalls.",
i);
}
bool supports_lazy = false;
for (uint32_t j = 0; j < phys_dev_mem_props.memoryTypeCount; j++) {
if (phys_dev_mem_props.memoryTypes[j].propertyFlags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) {
supports_lazy = true;
}
}
// The check for an image that should be transient only applies to GPUs supporting
// lazily allocated memory
if (supports_lazy && attachment_should_be_transient && !image_is_transient) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreateFramebuffer_AttachmentShouldBeTransient,
"Attachment %u in VkFramebuffer uses loadOp/storeOps which never have to be backed by physical memory, "
"but the image backing the image view does not have VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT set. "
"You can save physical memory by using transient attachment backed by lazily allocated memory here.",
i);
}
}
}
return skip;
}
bool BestPractices::PreCallValidateCreateFramebuffer(VkDevice device, const VkFramebufferCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator, VkFramebuffer* pFramebuffer) const {
bool skip = false;
auto rp_state = GetRenderPassState(pCreateInfo->renderPass);
if (rp_state && !(pCreateInfo->flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT)) {
skip = ValidateAttachments(rp_state->createInfo.ptr(), pCreateInfo->attachmentCount, pCreateInfo->pAttachments);
}
return skip;
}
bool BestPractices::PreCallValidateAllocateDescriptorSets(VkDevice device, const VkDescriptorSetAllocateInfo* pAllocateInfo,
VkDescriptorSet* pDescriptorSets, void* ads_state_data) const {
bool skip = false;
skip |= ValidationStateTracker::PreCallValidateAllocateDescriptorSets(device, pAllocateInfo, pDescriptorSets, ads_state_data);
if (!skip) {
const auto& pool_handle = pAllocateInfo->descriptorPool;
auto iter = descriptor_pool_freed_count.find(pool_handle);
// if the number of freed sets > 0, it implies they could be recycled instead if desirable
// this warning is specific to Arm
if (VendorCheckEnabled(kBPVendorArm) && iter != descriptor_pool_freed_count.end() && iter->second > 0) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_AllocateDescriptorSets_SuboptimalReuse,
"%s Descriptor set memory was allocated via vkAllocateDescriptorSets() for sets which were previously freed in the "
"same logical device. On some drivers or architectures it may be most optimal to re-use existing descriptor sets.",
VendorSpecificTag(kBPVendorArm));
}
}
return skip;
}
void BestPractices::ManualPostCallRecordAllocateDescriptorSets(VkDevice device, const VkDescriptorSetAllocateInfo* pAllocateInfo,
VkDescriptorSet* pDescriptorSets, VkResult result, void* ads_state) {
if (result == VK_SUCCESS) {
// find the free count for the pool we allocated into
auto iter = descriptor_pool_freed_count.find(pAllocateInfo->descriptorPool);
if (iter != descriptor_pool_freed_count.end()) {
// we record successful allocations by subtracting the allocation count from the last recorded free count
const auto alloc_count = pAllocateInfo->descriptorSetCount;
// clamp the unsigned subtraction to the range [0, last_free_count]
if (iter->second > alloc_count) {
iter->second -= alloc_count;
} else {
iter->second = 0;
}
}
}
}
void BestPractices::PostCallRecordFreeDescriptorSets(VkDevice device, VkDescriptorPool descriptorPool, uint32_t descriptorSetCount,
const VkDescriptorSet* pDescriptorSets, VkResult result) {
ValidationStateTracker::PostCallRecordFreeDescriptorSets(device, descriptorPool, descriptorSetCount, pDescriptorSets, result);
if (result == VK_SUCCESS) {
// we want to track frees because we're interested in suggesting re-use
auto iter = descriptor_pool_freed_count.find(descriptorPool);
if (iter == descriptor_pool_freed_count.end()) {
descriptor_pool_freed_count.insert(std::make_pair(descriptorPool, descriptorSetCount));
} else {
iter->second += descriptorSetCount;
}
}
}
bool BestPractices::PreCallValidateAllocateMemory(VkDevice device, const VkMemoryAllocateInfo* pAllocateInfo,
const VkAllocationCallbacks* pAllocator, VkDeviceMemory* pMemory) const {
bool skip = false;
if (num_mem_objects + 1 > kMemoryObjectWarningLimit) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_AllocateMemory_TooManyObjects,
"Performance Warning: This app has > %" PRIu32 " memory objects.", kMemoryObjectWarningLimit);
}
if (pAllocateInfo->allocationSize < kMinDeviceAllocationSize) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_AllocateMemory_SmallAllocation,
"vkAllocateMemory(): Allocating a VkDeviceMemory of size %llu. This is a very small allocation (current "
"threshold is %llu bytes). "
"You should make large allocations and sub-allocate from one large VkDeviceMemory.",
pAllocateInfo->allocationSize, kMinDeviceAllocationSize);
}
// TODO: Insert get check for GetPhysicalDeviceMemoryProperties once the state is tracked in the StateTracker
return skip;
}
void BestPractices::ManualPostCallRecordAllocateMemory(VkDevice device, const VkMemoryAllocateInfo* pAllocateInfo,
const VkAllocationCallbacks* pAllocator, VkDeviceMemory* pMemory,
VkResult result) {
if (result != VK_SUCCESS) {
static std::vector<VkResult> error_codes = {VK_ERROR_OUT_OF_HOST_MEMORY, VK_ERROR_OUT_OF_DEVICE_MEMORY,
VK_ERROR_TOO_MANY_OBJECTS, VK_ERROR_INVALID_EXTERNAL_HANDLE,
VK_ERROR_INVALID_OPAQUE_CAPTURE_ADDRESS};
static std::vector<VkResult> success_codes = {};
ValidateReturnCodes("vkReleaseFullScreenExclusiveModeEXT", result, error_codes, success_codes);
return;
}
num_mem_objects++;
}
void BestPractices::ValidateReturnCodes(const char* api_name, VkResult result, const std::vector<VkResult>& error_codes,
const std::vector<VkResult>& success_codes) const {
auto error = std::find(error_codes.begin(), error_codes.end(), result);
if (error != error_codes.end()) {
static const std::vector<VkResult> common_failure_codes = {VK_ERROR_OUT_OF_DATE_KHR,
VK_ERROR_FULL_SCREEN_EXCLUSIVE_MODE_LOST_EXT};
auto common_failure = std::find(common_failure_codes.begin(), common_failure_codes.end(), result);
if (common_failure != common_failure_codes.end()) {
LogInfo(instance, kVUID_BestPractices_Failure_Result, "%s(): Returned error %s.", api_name, string_VkResult(result));
} else {
LogWarning(instance, kVUID_BestPractices_Error_Result, "%s(): Returned error %s.", api_name, string_VkResult(result));
}
return;
}
auto success = std::find(success_codes.begin(), success_codes.end(), result);
if (success != success_codes.end()) {
LogInfo(instance, kVUID_BestPractices_NonSuccess_Result, "%s(): Returned non-success return code %s.", api_name,
string_VkResult(result));
}
}
bool BestPractices::PreCallValidateFreeMemory(VkDevice device, VkDeviceMemory memory,
const VkAllocationCallbacks* pAllocator) const {
if (memory == VK_NULL_HANDLE) return false;
bool skip = false;
const DEVICE_MEMORY_STATE* mem_info = ValidationStateTracker::GetDevMemState(memory);
for (auto& obj : mem_info->obj_bindings) {
LogObjectList objlist(device);
objlist.add(obj);
objlist.add(mem_info->mem);
skip |= LogWarning(objlist, layer_name.c_str(), "VK Object %s still has a reference to mem obj %s.",
report_data->FormatHandle(obj).c_str(), report_data->FormatHandle(mem_info->mem).c_str());
}
return skip;
}
void BestPractices::PreCallRecordFreeMemory(VkDevice device, VkDeviceMemory memory, const VkAllocationCallbacks* pAllocator) {
ValidationStateTracker::PreCallRecordFreeMemory(device, memory, pAllocator);
if (memory != VK_NULL_HANDLE) {
num_mem_objects--;
}
}
bool BestPractices::ValidateBindBufferMemory(VkBuffer buffer, VkDeviceMemory memory, const char* api_name) const {
bool skip = false;
const BUFFER_STATE* buffer_state = GetBufferState(buffer);
if (!buffer_state->memory_requirements_checked && !buffer_state->external_memory_handle) {
skip |= LogWarning(device, kVUID_BestPractices_BufferMemReqNotCalled,
"%s: Binding memory to %s but vkGetBufferMemoryRequirements() has not been called on that buffer.",
api_name, report_data->FormatHandle(buffer).c_str());
}
const DEVICE_MEMORY_STATE* mem_state = GetDevMemState(memory);
if (mem_state->alloc_info.allocationSize == buffer_state->createInfo.size &&
mem_state->alloc_info.allocationSize < kMinDedicatedAllocationSize) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_SmallDedicatedAllocation,
"%s: Trying to bind %s to a memory block which is fully consumed by the buffer. "
"The required size of the allocation is %llu, but smaller buffers like this should be sub-allocated from "
"larger memory blocks. (Current threshold is %llu bytes.)",
api_name, report_data->FormatHandle(buffer).c_str(), mem_state->alloc_info.allocationSize, kMinDedicatedAllocationSize);
}
return skip;
}
bool BestPractices::PreCallValidateBindBufferMemory(VkDevice device, VkBuffer buffer, VkDeviceMemory memory,
VkDeviceSize memoryOffset) const {
bool skip = false;
const char* api_name = "BindBufferMemory()";
skip |= ValidateBindBufferMemory(buffer, memory, api_name);
return skip;
}
bool BestPractices::PreCallValidateBindBufferMemory2(VkDevice device, uint32_t bindInfoCount,
const VkBindBufferMemoryInfo* pBindInfos) const {
char api_name[64];
bool skip = false;
for (uint32_t i = 0; i < bindInfoCount; i++) {
sprintf(api_name, "vkBindBufferMemory2() pBindInfos[%u]", i);
skip |= ValidateBindBufferMemory(pBindInfos[i].buffer, pBindInfos[i].memory, api_name);
}
return skip;
}
bool BestPractices::PreCallValidateBindBufferMemory2KHR(VkDevice device, uint32_t bindInfoCount,
const VkBindBufferMemoryInfo* pBindInfos) const {
char api_name[64];
bool skip = false;
for (uint32_t i = 0; i < bindInfoCount; i++) {
sprintf(api_name, "vkBindBufferMemory2KHR() pBindInfos[%u]", i);
skip |= ValidateBindBufferMemory(pBindInfos[i].buffer, pBindInfos[i].memory, api_name);
}
return skip;
}
bool BestPractices::ValidateBindImageMemory(VkImage image, VkDeviceMemory memory, const char* api_name) const {
bool skip = false;
const IMAGE_STATE* image_state = GetImageState(image);
if (image_state->disjoint == false) {
if (!image_state->memory_requirements_checked && !image_state->external_memory_handle) {
skip |= LogWarning(device, kVUID_BestPractices_ImageMemReqNotCalled,
"%s: Binding memory to %s but vkGetImageMemoryRequirements() has not been called on that image.",
api_name, report_data->FormatHandle(image).c_str());
}
} else {
// TODO If binding disjoint image then this needs to check that VkImagePlaneMemoryRequirementsInfo was called for each
// plane.
}
const DEVICE_MEMORY_STATE* mem_state = GetDevMemState(memory);
if (mem_state->alloc_info.allocationSize == image_state->requirements.size &&
mem_state->alloc_info.allocationSize < kMinDedicatedAllocationSize) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_SmallDedicatedAllocation,
"%s: Trying to bind %s to a memory block which is fully consumed by the image. "
"The required size of the allocation is %llu, but smaller images like this should be sub-allocated from "
"larger memory blocks. (Current threshold is %llu bytes.)",
api_name, report_data->FormatHandle(image).c_str(), mem_state->alloc_info.allocationSize, kMinDedicatedAllocationSize);
}
// If we're binding memory to a image which was created as TRANSIENT and the image supports LAZY allocation,
// make sure this type is actually used.
// This warning will only trigger if this layer is run on a platform that supports LAZILY_ALLOCATED_BIT
// (i.e.most tile - based renderers)
if (image_state->createInfo.usage & VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT) {
bool supports_lazy = false;
uint32_t suggested_type = 0;
for (uint32_t i = 0; i < phys_dev_mem_props.memoryTypeCount; i++) {
if ((1u << i) & image_state->requirements.memoryTypeBits) {
if (phys_dev_mem_props.memoryTypes[i].propertyFlags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) {
supports_lazy = true;
suggested_type = i;
break;
}
}
}
uint32_t allocated_properties = phys_dev_mem_props.memoryTypes[mem_state->alloc_info.memoryTypeIndex].propertyFlags;
if (supports_lazy && (allocated_properties & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT) == 0) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_NonLazyTransientImage,
"%s: Attempting to bind memory type % u to VkImage which was created with TRANSIENT_ATTACHMENT_BIT,"
"but this memory type is not LAZILY_ALLOCATED_BIT. You should use memory type %u here instead to save "
"%llu bytes of physical memory.",
api_name, mem_state->alloc_info.memoryTypeIndex, suggested_type, image_state->requirements.size);
}
}
return skip;
}
bool BestPractices::PreCallValidateBindImageMemory(VkDevice device, VkImage image, VkDeviceMemory memory,
VkDeviceSize memoryOffset) const {
bool skip = false;
const char* api_name = "vkBindImageMemory()";
skip |= ValidateBindImageMemory(image, memory, api_name);
return skip;
}
bool BestPractices::PreCallValidateBindImageMemory2(VkDevice device, uint32_t bindInfoCount,
const VkBindImageMemoryInfo* pBindInfos) const {
char api_name[64];
bool skip = false;
for (uint32_t i = 0; i < bindInfoCount; i++) {
sprintf(api_name, "vkBindImageMemory2() pBindInfos[%u]", i);
if (!LvlFindInChain<VkBindImageMemorySwapchainInfoKHR>(pBindInfos[i].pNext)) {
skip |= ValidateBindImageMemory(pBindInfos[i].image, pBindInfos[i].memory, api_name);
}
}
return skip;
}
bool BestPractices::PreCallValidateBindImageMemory2KHR(VkDevice device, uint32_t bindInfoCount,
const VkBindImageMemoryInfo* pBindInfos) const {
char api_name[64];
bool skip = false;
for (uint32_t i = 0; i < bindInfoCount; i++) {
sprintf(api_name, "vkBindImageMemory2KHR() pBindInfos[%u]", i);
skip |= ValidateBindImageMemory(pBindInfos[i].image, pBindInfos[i].memory, api_name);
}
return skip;
}
static inline bool FormatHasFullThroughputBlendingArm(VkFormat format) {
switch (format) {
case VK_FORMAT_B10G11R11_UFLOAT_PACK32:
case VK_FORMAT_R16_SFLOAT:
case VK_FORMAT_R16G16_SFLOAT:
case VK_FORMAT_R16G16B16_SFLOAT:
case VK_FORMAT_R16G16B16A16_SFLOAT:
case VK_FORMAT_R32_SFLOAT:
case VK_FORMAT_R32G32_SFLOAT:
case VK_FORMAT_R32G32B32_SFLOAT:
case VK_FORMAT_R32G32B32A32_SFLOAT:
return false;
default:
return true;
}
}
bool BestPractices::ValidateMultisampledBlendingArm(uint32_t createInfoCount,
const VkGraphicsPipelineCreateInfo* pCreateInfos) const {
bool skip = false;
for (uint32_t i = 0; i < createInfoCount; i++) {
auto create_info = &pCreateInfos[i];
if (!create_info->pColorBlendState || !create_info->pMultisampleState ||
create_info->pMultisampleState->rasterizationSamples == VK_SAMPLE_COUNT_1_BIT ||
create_info->pMultisampleState->sampleShadingEnable) {
return skip;
}
auto rp_state = GetRenderPassState(create_info->renderPass);
auto& subpass = rp_state->createInfo.pSubpasses[create_info->subpass];
for (uint32_t j = 0; j < create_info->pColorBlendState->attachmentCount; j++) {
auto& blend_att = create_info->pColorBlendState->pAttachments[j];
uint32_t att = subpass.pColorAttachments[j].attachment;
if (att != VK_ATTACHMENT_UNUSED && blend_att.blendEnable && blend_att.colorWriteMask) {
if (!FormatHasFullThroughputBlendingArm(rp_state->createInfo.pAttachments[att].format)) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_CreatePipelines_MultisampledBlending,
"%s vkCreateGraphicsPipelines() - createInfo #%u: Pipeline is multisampled and "
"color attachment #%u makes use "
"of a format which cannot be blended at full throughput when using MSAA.",
VendorSpecificTag(kBPVendorArm), i, j);
}
}
}
}
return skip;
}
bool BestPractices::PreCallValidateCreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount,
const VkGraphicsPipelineCreateInfo* pCreateInfos,
const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines,
void* cgpl_state_data) const {
bool skip = StateTracker::PreCallValidateCreateGraphicsPipelines(device, pipelineCache, createInfoCount, pCreateInfos,
pAllocator, pPipelines, cgpl_state_data);
create_graphics_pipeline_api_state* cgpl_state = reinterpret_cast<create_graphics_pipeline_api_state*>(cgpl_state_data);
if ((createInfoCount > 1) && (!pipelineCache)) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreatePipelines_MultiplePipelines,
"Performance Warning: This vkCreateGraphicsPipelines call is creating multiple pipelines but is not using a "
"pipeline cache, which may help with performance");
}
for (uint32_t i = 0; i < createInfoCount; i++) {
auto& create_info = pCreateInfos[i];
if (!(cgpl_state->pipe_state[i]->active_shaders & VK_SHADER_STAGE_MESH_BIT_NV)) {
auto& vertex_input = *create_info.pVertexInputState;
uint32_t count = 0;
for (uint32_t j = 0; j < vertex_input.vertexBindingDescriptionCount; j++) {
if (vertex_input.pVertexBindingDescriptions[j].inputRate == VK_VERTEX_INPUT_RATE_INSTANCE) {
count++;
}
}
if (count > kMaxInstancedVertexBuffers) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreatePipelines_TooManyInstancedVertexBuffers,
"The pipeline is using %u instanced vertex buffers (current limit: %u), but this can be inefficient on the "
"GPU. If using instanced vertex attributes prefer interleaving them in a single buffer.",
count, kMaxInstancedVertexBuffers);
}
}
if ((pCreateInfos[i].pRasterizationState->depthBiasEnable) &&
(pCreateInfos[i].pRasterizationState->depthBiasConstantFactor == 0.0f) &&
(pCreateInfos[i].pRasterizationState->depthBiasSlopeFactor == 0.0f)) {
skip |= VendorCheckEnabled(kBPVendorArm) &&
LogPerformanceWarning(
device, kVUID_BestPractices_CreatePipelines_DepthBias_Zero,
"%s Performance Warning: This vkCreateGraphicsPipelines call is created with depthBiasEnable set to true "
"and both depthBiasConstantFactor and depthBiasSlopeFactor are set to 0. This can cause reduced "
"efficiency during rasterization. Consider disabling depthBias or increasing either "
"depthBiasConstantFactor or depthBiasSlopeFactor.",
VendorSpecificTag(kBPVendorArm));
}
skip |= VendorCheckEnabled(kBPVendorArm) && ValidateMultisampledBlendingArm(createInfoCount, pCreateInfos);
}
return skip;
}
void BestPractices::ManualPostCallRecordCreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkGraphicsPipelineCreateInfo* pCreateInfos,
const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines,
VkResult result, void* cgpl_state_data) {
for (size_t i = 0; i < count; i++) {
const auto* cgpl_state = reinterpret_cast<create_graphics_pipeline_api_state*>(cgpl_state_data);
const VkPipeline pipeline_handle = pPipelines[i];
// record depth stencil state and color blend states for depth pre-pass tracking purposes
auto gp_cis = graphicsPipelineCIs.find(pipeline_handle);
// add the tracking state if it doesn't exist
if (gp_cis == graphicsPipelineCIs.end()) {
auto result = graphicsPipelineCIs.emplace(std::make_pair(pipeline_handle, GraphicsPipelineCIs{}));
if (!result.second) continue;
gp_cis = result.first;
}
gp_cis->second.colorBlendStateCI =
cgpl_state->pCreateInfos[i].pColorBlendState
? new safe_VkPipelineColorBlendStateCreateInfo(cgpl_state->pCreateInfos[i].pColorBlendState)
: nullptr;
gp_cis->second.depthStencilStateCI =
cgpl_state->pCreateInfos[i].pDepthStencilState
? new safe_VkPipelineDepthStencilStateCreateInfo(cgpl_state->pCreateInfos[i].pDepthStencilState)
: nullptr;
}
}
bool BestPractices::PreCallValidateCreateComputePipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t createInfoCount,
const VkComputePipelineCreateInfo* pCreateInfos,
const VkAllocationCallbacks* pAllocator, VkPipeline* pPipelines,
void* ccpl_state_data) const {
bool skip = StateTracker::PreCallValidateCreateComputePipelines(device, pipelineCache, createInfoCount, pCreateInfos,
pAllocator, pPipelines, ccpl_state_data);
if ((createInfoCount > 1) && (!pipelineCache)) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreatePipelines_MultiplePipelines,
"Performance Warning: This vkCreateComputePipelines call is creating multiple pipelines but is not using a "
"pipeline cache, which may help with performance");
}
if (VendorCheckEnabled(kBPVendorArm)) {
for (size_t i = 0; i < createInfoCount; i++) {
skip |= ValidateCreateComputePipelineArm(pCreateInfos[i]);
}
}
return skip;
}
bool BestPractices::ValidateCreateComputePipelineArm(const VkComputePipelineCreateInfo& createInfo) const {
bool skip = false;
auto* module = GetShaderModuleState(createInfo.stage.module);
uint32_t x = 1, y = 1, z = 1;
FindLocalSize(module, x, y, z);
uint32_t thread_count = x * y * z;
// Generate a priori warnings about work group sizes.
if (thread_count > kMaxEfficientWorkGroupThreadCountArm) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreateComputePipelines_ComputeWorkGroupSize,
"%s vkCreateComputePipelines(): compute shader with work group dimensions (%u, %u, "
"%u) (%u threads total), has more threads than advised in a single work group. It is advised to use work "
"groups with less than %u threads, especially when using barrier() or shared memory.",
VendorSpecificTag(kBPVendorArm), x, y, z, thread_count, kMaxEfficientWorkGroupThreadCountArm);
}
if (thread_count == 1 || ((x > 1) && (x & (kThreadGroupDispatchCountAlignmentArm - 1))) ||
((y > 1) && (y & (kThreadGroupDispatchCountAlignmentArm - 1))) ||
((z > 1) && (z & (kThreadGroupDispatchCountAlignmentArm - 1)))) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_CreateComputePipelines_ComputeThreadGroupAlignment,
"%s vkCreateComputePipelines(): compute shader with work group dimensions (%u, "
"%u, %u) is not aligned to %u "
"threads. On Arm Mali architectures, not aligning work group sizes to %u may "
"leave threads idle on the shader "
"core.",
VendorSpecificTag(kBPVendorArm), x, y, z, kThreadGroupDispatchCountAlignmentArm,
kThreadGroupDispatchCountAlignmentArm);
}
// Generate warnings about work group sizes based on active resources.
auto entrypoint = FindEntrypoint(module, createInfo.stage.pName, createInfo.stage.stage);
if (entrypoint == module->end()) return false;
bool has_writeable_descriptors = false;
bool has_atomic_descriptors = false;
auto accessible_ids = MarkAccessibleIds(module, entrypoint);
auto descriptor_uses =
CollectInterfaceByDescriptorSlot(module, accessible_ids, &has_writeable_descriptors, &has_atomic_descriptors);
unsigned dimensions = 0;
if (x > 1) dimensions++;
if (y > 1) dimensions++;
if (z > 1) dimensions++;
// Here the dimension will really depend on the dispatch grid, but assume it's 1D.
dimensions = std::max(dimensions, 1u);
// If we're accessing images, we almost certainly want to have a 2D workgroup for cache reasons.
// There are some false positives here. We could simply have a shader that does this within a 1D grid,
// or we may have a linearly tiled image, but these cases are quite unlikely in practice.
bool accesses_2d = false;
for (const auto& usage : descriptor_uses) {
auto dim = GetShaderResourceDimensionality(module, usage.second);
if (dim < 0) continue;
auto spvdim = spv::Dim(dim);
if (spvdim != spv::Dim1D && spvdim != spv::DimBuffer) accesses_2d = true;
}
if (accesses_2d && dimensions < 2) {
LogPerformanceWarning(device, kVUID_BestPractices_CreateComputePipelines_ComputeSpatialLocality,
"%s vkCreateComputePipelines(): compute shader has work group dimensions (%u, %u, %u), which "
"suggests a 1D dispatch, but the shader is accessing 2D or 3D images. The shader may be "
"exhibiting poor spatial locality with respect to one or more shader resources.",
VendorSpecificTag(kBPVendorArm), x, y, z);
}
return skip;
}
bool BestPractices::CheckPipelineStageFlags(std::string api_name, const VkPipelineStageFlags flags) const {
bool skip = false;
if (flags & VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT) {
skip |= LogWarning(device, kVUID_BestPractices_PipelineStageFlags,
"You are using VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT when %s is called\n", api_name.c_str());
} else if (flags & VK_PIPELINE_STAGE_ALL_COMMANDS_BIT) {
skip |= LogWarning(device, kVUID_BestPractices_PipelineStageFlags,
"You are using VK_PIPELINE_STAGE_ALL_COMMANDS_BIT when %s is called\n", api_name.c_str());
}
return skip;
}
void BestPractices::ManualPostCallRecordQueuePresentKHR(VkQueue queue, const VkPresentInfoKHR* pPresentInfo, VkResult result) {
for (uint32_t i = 0; i < pPresentInfo->swapchainCount; ++i) {
auto swapchains_result = pPresentInfo->pResults ? pPresentInfo->pResults[i] : result;
if (swapchains_result == VK_SUBOPTIMAL_KHR) {
LogPerformanceWarning(
pPresentInfo->pSwapchains[i], kVUID_BestPractices_SuboptimalSwapchain,
"vkQueuePresentKHR: %s :VK_SUBOPTIMAL_KHR was returned. VK_SUBOPTIMAL_KHR - Presentation will still succeed, "
"subject to the window resize behavior, but the swapchain is no longer configured optimally for the surface it "
"targets. Applications should query updated surface information and recreate their swapchain at the next "
"convenient opportunity.",
report_data->FormatHandle(pPresentInfo->pSwapchains[i]).c_str());
}
}
}
bool BestPractices::PreCallValidateQueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo* pSubmits,
VkFence fence) const {
bool skip = false;
for (uint32_t submit = 0; submit < submitCount; submit++) {
for (uint32_t semaphore = 0; semaphore < pSubmits[submit].waitSemaphoreCount; semaphore++) {
skip |= CheckPipelineStageFlags("vkQueueSubmit", pSubmits[submit].pWaitDstStageMask[semaphore]);
}
}
return skip;
}
bool BestPractices::PreCallValidateCreateCommandPool(VkDevice device, const VkCommandPoolCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator, VkCommandPool* pCommandPool) const {
bool skip = false;
if (pCreateInfo->flags & VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreateCommandPool_CommandBufferReset,
"vkCreateCommandPool(): VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT is set. Consider resetting entire "
"pool instead.");
}
return skip;
}
bool BestPractices::PreCallValidateBeginCommandBuffer(VkCommandBuffer commandBuffer,
const VkCommandBufferBeginInfo* pBeginInfo) const {
bool skip = false;
if (pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_BeginCommandBuffer_SimultaneousUse,
"vkBeginCommandBuffer(): VK_COMMAND_BUFFER_USAGE_SIMULTANEOUS_USE_BIT is set.");
}
if (!(pBeginInfo->flags & VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT)) {
skip |= VendorCheckEnabled(kBPVendorArm) &&
LogPerformanceWarning(device, kVUID_BestPractices_BeginCommandBuffer_OneTimeSubmit,
"%s vkBeginCommandBuffer(): VK_COMMAND_BUFFER_USAGE_ONE_TIME_SUBMIT_BIT is not set. "
"For best performance on Mali GPUs, consider setting ONE_TIME_SUBMIT by default.",
VendorSpecificTag(kBPVendorArm));
}
return skip;
}
bool BestPractices::PreCallValidateCmdSetEvent(VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags stageMask) const {
bool skip = false;
skip |= CheckPipelineStageFlags("vkCmdSetEvent", stageMask);
return skip;
}
bool BestPractices::PreCallValidateCmdResetEvent(VkCommandBuffer commandBuffer, VkEvent event,
VkPipelineStageFlags stageMask) const {
bool skip = false;
skip |= CheckPipelineStageFlags("vkCmdResetEvent", stageMask);
return skip;
}
bool BestPractices::PreCallValidateCmdWaitEvents(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent* pEvents,
VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask,
uint32_t memoryBarrierCount, const VkMemoryBarrier* pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier* pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier* pImageMemoryBarriers) const {
bool skip = false;
skip |= CheckPipelineStageFlags("vkCmdWaitEvents", srcStageMask);
skip |= CheckPipelineStageFlags("vkCmdWaitEvents", dstStageMask);
return skip;
}
bool BestPractices::PreCallValidateCmdPipelineBarrier(VkCommandBuffer commandBuffer, VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask, VkDependencyFlags dependencyFlags,
uint32_t memoryBarrierCount, const VkMemoryBarrier* pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier* pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier* pImageMemoryBarriers) const {
bool skip = false;
skip |= CheckPipelineStageFlags("vkCmdPipelineBarrier", srcStageMask);
skip |= CheckPipelineStageFlags("vkCmdPipelineBarrier", dstStageMask);
return skip;
}
bool BestPractices::PreCallValidateCmdWriteTimestamp(VkCommandBuffer commandBuffer, VkPipelineStageFlagBits pipelineStage,
VkQueryPool queryPool, uint32_t query) const {
bool skip = false;
skip |= CheckPipelineStageFlags("vkCmdWriteTimestamp", pipelineStage);
return skip;
}
void BestPractices::PostCallRecordCmdBindPipeline(VkCommandBuffer commandBuffer, VkPipelineBindPoint pipelineBindPoint,
VkPipeline pipeline) {
StateTracker::PostCallRecordCmdBindPipeline(commandBuffer, pipelineBindPoint, pipeline);
if (pipelineBindPoint == VK_PIPELINE_BIND_POINT_GRAPHICS) {
// check for depth/blend state tracking
auto gp_cis = graphicsPipelineCIs.find(pipeline);
if (gp_cis != graphicsPipelineCIs.end()) {
auto prepass_state = cbDepthPrePassStates.find(commandBuffer);
if (prepass_state == cbDepthPrePassStates.end()) {
auto result = cbDepthPrePassStates.emplace(std::make_pair(commandBuffer, DepthPrePassState{}));
if (!result.second) return;
prepass_state = result.first;
}
const auto* blend_state = gp_cis->second.colorBlendStateCI;
const auto* stencil_state = gp_cis->second.depthStencilStateCI;
if (blend_state) {
// assume the pipeline is depth-only unless any of the attachments have color writes enabled
prepass_state->second.depthOnly = true;
for (size_t i = 0; i < blend_state->attachmentCount; i++) {
if (blend_state->pAttachments[i].colorWriteMask != 0) {
prepass_state->second.depthOnly = false;
}
}
}
// check for depth value usage
prepass_state->second.depthEqualComparison = false;
if (stencil_state && stencil_state->depthTestEnable) {
switch (stencil_state->depthCompareOp) {
case VK_COMPARE_OP_EQUAL:
case VK_COMPARE_OP_GREATER_OR_EQUAL:
case VK_COMPARE_OP_LESS_OR_EQUAL:
prepass_state->second.depthEqualComparison = true;
break;
default:
break;
}
}
} else {
// reset depth pre-pass tracking
cbDepthPrePassStates.emplace(std::make_pair(commandBuffer, DepthPrePassState{}));
}
}
}
static inline bool RenderPassUsesAttachmentOnTile(const safe_VkRenderPassCreateInfo2& createInfo, uint32_t attachment) {
for (uint32_t subpass = 0; subpass < createInfo.subpassCount; subpass++) {
auto& subpass_info = createInfo.pSubpasses[subpass];
// If an attachment is ever used as a color attachment,
// resolve attachment or depth stencil attachment,
// it needs to exist on tile at some point.
for (uint32_t i = 0; i < subpass_info.colorAttachmentCount; i++) {
if (subpass_info.pColorAttachments[i].attachment == attachment) return true;
}
if (subpass_info.pResolveAttachments) {
for (uint32_t i = 0; i < subpass_info.colorAttachmentCount; i++) {
if (subpass_info.pResolveAttachments[i].attachment == attachment) return true;
}
}
if (subpass_info.pDepthStencilAttachment && subpass_info.pDepthStencilAttachment->attachment == attachment) return true;
}
return false;
}
bool BestPractices::ValidateCmdBeginRenderPass(VkCommandBuffer commandBuffer, RenderPassCreateVersion rp_version,
const VkRenderPassBeginInfo* pRenderPassBegin) const {
bool skip = false;
if (!pRenderPassBegin) {
return skip;
}
auto rp_state = GetRenderPassState(pRenderPassBegin->renderPass);
if (rp_state) {
if (rp_state->createInfo.flags & VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT) {
const VkRenderPassAttachmentBeginInfo* rpabi = LvlFindInChain<VkRenderPassAttachmentBeginInfo>(pRenderPassBegin->pNext);
if (rpabi) {
skip = ValidateAttachments(rp_state->createInfo.ptr(), rpabi->attachmentCount, rpabi->pAttachments);
}
}
// Check if any attachments have LOAD operation on them
for (uint32_t att = 0; att < rp_state->createInfo.attachmentCount; att++) {
auto& attachment = rp_state->createInfo.pAttachments[att];
bool attachment_has_readback = false;
if (!FormatHasStencil(attachment.format) && attachment.loadOp == VK_ATTACHMENT_LOAD_OP_LOAD) {
attachment_has_readback = true;
}
if (FormatHasStencil(attachment.format) && attachment.stencilLoadOp == VK_ATTACHMENT_LOAD_OP_LOAD) {
attachment_has_readback = true;
}
bool attachment_needs_readback = false;
// Check if the attachment is actually used in any subpass on-tile
if (attachment_has_readback && RenderPassUsesAttachmentOnTile(rp_state->createInfo, att)) {
attachment_needs_readback = true;
}
// Using LOAD_OP_LOAD is expensive on tiled GPUs, so flag it as a potential improvement
if (attachment_needs_readback) {
skip |= VendorCheckEnabled(kBPVendorArm) &&
LogPerformanceWarning(
device, kVUID_BestPractices_BeginRenderPass_AttachmentNeedsReadback,
"%s Attachment #%u in render pass has begun with VK_ATTACHMENT_LOAD_OP_LOAD.\n"
"Submitting this renderpass will cause the driver to inject a readback of the attachment "
"which will copy in total %u pixels (renderArea = { %d, %d, %u, %u }) to the tile buffer.",
VendorSpecificTag(kBPVendorArm), att,
pRenderPassBegin->renderArea.extent.width * pRenderPassBegin->renderArea.extent.height,
pRenderPassBegin->renderArea.offset.x, pRenderPassBegin->renderArea.offset.y,
pRenderPassBegin->renderArea.extent.width, pRenderPassBegin->renderArea.extent.height);
}
}
}
return skip;
}
bool BestPractices::PreCallValidateCmdBeginRenderPass(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo* pRenderPassBegin,
VkSubpassContents contents) const {
bool skip = StateTracker::PreCallValidateCmdBeginRenderPass(commandBuffer, pRenderPassBegin, contents);
skip |= ValidateCmdBeginRenderPass(commandBuffer, RENDER_PASS_VERSION_1, pRenderPassBegin);
return skip;
}
bool BestPractices::PreCallValidateCmdBeginRenderPass2KHR(VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfo* pRenderPassBegin,
const VkSubpassBeginInfo* pSubpassBeginInfo) const {
bool skip = StateTracker::PreCallValidateCmdBeginRenderPass2KHR(commandBuffer, pRenderPassBegin, pSubpassBeginInfo);
skip |= ValidateCmdBeginRenderPass(commandBuffer, RENDER_PASS_VERSION_2, pRenderPassBegin);
return skip;
}
bool BestPractices::PreCallValidateCmdBeginRenderPass2(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo* pRenderPassBegin,
const VkSubpassBeginInfo* pSubpassBeginInfo) const {
bool skip = StateTracker::PreCallValidateCmdBeginRenderPass2(commandBuffer, pRenderPassBegin, pSubpassBeginInfo);
skip |= ValidateCmdBeginRenderPass(commandBuffer, RENDER_PASS_VERSION_2, pRenderPassBegin);
return skip;
}
void BestPractices::RecordCmdBeginRenderPass(VkCommandBuffer commandBuffer, RenderPassCreateVersion rp_version,
const VkRenderPassBeginInfo* pRenderPassBegin) {
auto prepass_state = cbDepthPrePassStates.find(commandBuffer);
// add the tracking state if it doesn't exist
if (prepass_state == cbDepthPrePassStates.end()) {
auto result = cbDepthPrePassStates.emplace(std::make_pair(commandBuffer, DepthPrePassState{}));
if (!result.second) return;
prepass_state = result.first;
}
// reset the renderpass state
prepass_state->second = {};
const auto* cb_state = GetCBState(commandBuffer);
const auto* rp_state = cb_state->activeRenderPass.get();
// track depth / color attachment usage within the renderpass
for (size_t i = 0; i < rp_state->createInfo.subpassCount; i++) {
// record if depth/color attachments are in use for this renderpass
if (rp_state->createInfo.pSubpasses[i].pDepthStencilAttachment != nullptr) prepass_state->second.depthAttachment = true;
if (rp_state->createInfo.pSubpasses[i].colorAttachmentCount > 0) prepass_state->second.colorAttachment = true;
}
}
void BestPractices::PostCallRecordCmdBeginRenderPass(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo* pRenderPassBegin,
VkSubpassContents contents) {
StateTracker::PostCallRecordCmdBeginRenderPass(commandBuffer, pRenderPassBegin, contents);
RecordCmdBeginRenderPass(commandBuffer, RENDER_PASS_VERSION_1, pRenderPassBegin);
}
void BestPractices::PostCallRecordCmdBeginRenderPass2(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo* pRenderPassBegin,
const VkSubpassBeginInfo* pSubpassBeginInfo) {
StateTracker::PostCallRecordCmdBeginRenderPass2(commandBuffer, pRenderPassBegin, pSubpassBeginInfo);
RecordCmdBeginRenderPass(commandBuffer, RENDER_PASS_VERSION_2, pRenderPassBegin);
}
void BestPractices::PostCallRecordCmdBeginRenderPass2KHR(VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfo* pRenderPassBegin,
const VkSubpassBeginInfo* pSubpassBeginInfo) {
StateTracker::PostCallRecordCmdBeginRenderPass2KHR(commandBuffer, pRenderPassBegin, pSubpassBeginInfo);
RecordCmdBeginRenderPass(commandBuffer, RENDER_PASS_VERSION_2, pRenderPassBegin);
}
// Generic function to handle validation for all CmdDraw* type functions
bool BestPractices::ValidateCmdDrawType(VkCommandBuffer cmd_buffer, const char* caller) const {
bool skip = false;
const CMD_BUFFER_STATE* cb_state = GetCBState(cmd_buffer);
if (cb_state) {
const auto lv_bind_point = ConvertToLvlBindPoint(VK_PIPELINE_BIND_POINT_GRAPHICS);
const auto* pipeline_state = cb_state->lastBound[lv_bind_point].pipeline_state;
const auto& current_vtx_bfr_binding_info = cb_state->current_vertex_buffer_binding_info.vertex_buffer_bindings;
// Verify vertex binding
if (pipeline_state->vertex_binding_descriptions_.size() <= 0) {
if ((!current_vtx_bfr_binding_info.empty()) && (!cb_state->vertex_buffer_used)) {
skip |= LogPerformanceWarning(cb_state->commandBuffer, kVUID_BestPractices_DrawState_VtxIndexOutOfBounds,
"Vertex buffers are bound to %s but no vertex buffers are attached to %s.",
report_data->FormatHandle(cb_state->commandBuffer).c_str(),
report_data->FormatHandle(pipeline_state->pipeline).c_str());
}
}
}
return skip;
}
void BestPractices::RecordCmdDrawType(VkCommandBuffer cmd_buffer, uint32_t draw_count, const char* caller) {
if (VendorCheckEnabled(kBPVendorArm)) {
RecordCmdDrawTypeArm(cmd_buffer, draw_count, caller);
}
}
void BestPractices::RecordCmdDrawTypeArm(VkCommandBuffer cmd_buffer, uint32_t draw_count, const char* caller) {
auto prepass_state = cbDepthPrePassStates.find(cmd_buffer);
if (prepass_state != cbDepthPrePassStates.end() && draw_count >= kDepthPrePassMinDrawCountArm) {
if (prepass_state->second.depthOnly) prepass_state->second.numDrawCallsDepthOnly++;
if (prepass_state->second.depthEqualComparison) prepass_state->second.numDrawCallsDepthEqualCompare++;
}
}
bool BestPractices::PreCallValidateCmdDraw(VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount,
uint32_t firstVertex, uint32_t firstInstance) const {
bool skip = false;
if (instanceCount == 0) {
skip |= LogWarning(device, kVUID_BestPractices_CmdDraw_InstanceCountZero,
"Warning: You are calling vkCmdDraw() with an instanceCount of Zero.");
skip |= ValidateCmdDrawType(commandBuffer, "vkCmdDraw()");
}
return skip;
}
void BestPractices::PostCallRecordCmdDraw(VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount,
uint32_t firstVertex, uint32_t firstInstance) {
StateTracker::PostCallRecordCmdDraw(commandBuffer, vertexCount, instanceCount, firstVertex, firstInstance);
RecordCmdDrawType(commandBuffer, vertexCount * instanceCount, "vkCmdDraw()");
}
bool BestPractices::PreCallValidateCmdDrawIndexed(VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount,
uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) const {
bool skip = false;
if (instanceCount == 0) {
skip |= LogWarning(device, kVUID_BestPractices_CmdDraw_InstanceCountZero,
"Warning: You are calling vkCmdDrawIndexed() with an instanceCount of Zero.");
}
skip |= ValidateCmdDrawType(commandBuffer, "vkCmdDrawIndexed()");
// Check if we reached the limit for small indexed draw calls.
// Note that we cannot update the draw call count here, so we do it in PreCallRecordCmdDrawIndexed.
const CMD_BUFFER_STATE* cmd_state = GetCBState(commandBuffer);
if ((indexCount * instanceCount) <= kSmallIndexedDrawcallIndices &&
(cmd_state->small_indexed_draw_call_count == kMaxSmallIndexedDrawcalls - 1)) {
skip |= VendorCheckEnabled(kBPVendorArm) &&
LogPerformanceWarning(device, kVUID_BestPractices_CmdDrawIndexed_ManySmallIndexedDrawcalls,
"The command buffer contains many small indexed drawcalls "
"(at least %u drawcalls with less than %u indices each). This may cause pipeline bubbles. "
"You can try batching drawcalls or instancing when applicable.",
VendorSpecificTag(kBPVendorArm), kMaxSmallIndexedDrawcalls, kSmallIndexedDrawcallIndices);
}
if (VendorCheckEnabled(kBPVendorArm)) {
ValidateIndexBufferArm(commandBuffer, indexCount, instanceCount, firstIndex, vertexOffset, firstInstance);
}
return skip;
}
bool BestPractices::ValidateIndexBufferArm(VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount,
uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) const {
bool skip = false;
// check for sparse/underutilised index buffer, and post-transform cache thrashing
const auto* cmd_state = GetCBState(commandBuffer);
if (cmd_state == nullptr) return skip;
const auto* ib_state = cmd_state->index_buffer_binding.buffer_state.get();
if (ib_state == nullptr || cmd_state->index_buffer_binding.buffer_state->destroyed) return skip;
const VkIndexType ib_type = cmd_state->index_buffer_binding.index_type;
const auto& ib_mem_state = *ib_state->binding.mem_state;
const VkDeviceSize ib_mem_offset = ib_mem_state.mapped_range.offset;
const void* ib_mem = ib_mem_state.p_driver_data;
bool primitive_restart_enable = false;
const auto lv_bind_point = ConvertToLvlBindPoint(VK_PIPELINE_BIND_POINT_GRAPHICS);
const auto& pipeline_binding_iter = cmd_state->lastBound[lv_bind_point];
const auto* pipeline_state = pipeline_binding_iter.pipeline_state;
if (pipeline_state != nullptr && pipeline_state->graphicsPipelineCI.pInputAssemblyState != nullptr) {
primitive_restart_enable = pipeline_state->graphicsPipelineCI.pInputAssemblyState->primitiveRestartEnable == VK_TRUE;
}
// no point checking index buffer if the memory is nonexistant/unmapped, or if there is no graphics pipeline bound to this CB
if (ib_mem && pipeline_binding_iter.IsUsing()) {
uint32_t scan_stride;
if (ib_type == VK_INDEX_TYPE_UINT8_EXT) {
scan_stride = sizeof(uint8_t);
} else if (ib_type == VK_INDEX_TYPE_UINT16) {
scan_stride = sizeof(uint16_t);
} else {
scan_stride = sizeof(uint32_t);
}
const uint8_t* scan_begin = static_cast<const uint8_t*>(ib_mem) + ib_mem_offset + firstIndex * scan_stride;
const uint8_t* scan_end = scan_begin + indexCount * scan_stride;
// Min and max are important to track for some Mali architectures. In older Mali devices without IDVS, all
// vertices corresponding to indices between the minimum and maximum may be loaded, and possibly shaded,
// irrespective of whether or not they're part of the draw call.
// start with minimum as 0xFFFFFFFF and adjust to indices in the buffer
uint32_t min_index = ~0u;
// start with maximum as 0 and adjust to indices in the buffer
uint32_t max_index = 0u;
// first scan-through, we're looking to simulate a model LRU post-transform cache, estimating the number of vertices shaded
// for the given index buffer
uint32_t vertex_shade_count = 0;
PostTransformLRUCacheModel post_transform_cache;
// The size of the cache being modelled positively correlates with how much behaviour it can capture about
// arbitrary ground-truth hardware/architecture cache behaviour. I.e. it's a good solution when we don't know the
// target architecture.
// However, modelling a post-transform cache with more than 32 elements gives diminishing returns in practice.
// http://eelpi.gotdns.org/papers/fast_vert_cache_opt.html
post_transform_cache.resize(32);
for (const uint8_t* scan_ptr = scan_begin; scan_ptr < scan_end; scan_ptr += scan_stride) {
uint32_t scan_index;
uint32_t primitive_restart_value;
if (ib_type == VK_INDEX_TYPE_UINT8_EXT) {
scan_index = *reinterpret_cast<const uint8_t*>(scan_ptr);
primitive_restart_value = 0xFF;
} else if (ib_type == VK_INDEX_TYPE_UINT16) {
scan_index = *reinterpret_cast<const uint16_t*>(scan_ptr);
primitive_restart_value = 0xFFFF;
} else {
scan_index = *reinterpret_cast<const uint32_t*>(scan_ptr);
primitive_restart_value = 0xFFFFFFFF;
}
max_index = std::max(max_index, scan_index);
min_index = std::min(min_index, scan_index);
if (!primitive_restart_enable || scan_index != primitive_restart_value) {
bool in_cache = post_transform_cache.query_cache(scan_index);
// if the shaded vertex corresponding to the index is not in the PT-cache, we need to shade again
if (!in_cache) vertex_shade_count++;
}
}
// if the max and min values were not set, then we either have no indices, or all primitive restarts, exit...
// if the max and min are the same, then it implies all the indices are the same, then we don't need to do anything
if (max_index < min_index || max_index == min_index) return skip;
if (max_index - min_index >= indexCount) {
skip |=
LogPerformanceWarning(device, kVUID_BestPractices_CmdDrawIndexed_SparseIndexBuffer,
"%s The indices which were specified for the draw call only utilise approximately %.02f%% of "
"index buffer value range. Arm Mali architectures before G71 do not have IDVS (Index-Driven "
"Vertex Shading), meaning all vertices corresponding to indices between the minimum and "
"maximum would be loaded, and possibly shaded, whether or not they are used.",
VendorSpecificTag(kBPVendorArm),
(static_cast<float>(indexCount) / static_cast<float>(max_index - min_index)) * 100.0f);
return skip;
}
// use a dynamic vector of bitsets as a memory-compact representation of which indices are included in the draw call
// each bit of the n-th bucket contains the inclusion information for indices (n*n_buckets) to ((n+1)*n_buckets)
const size_t refs_per_bucket = 64;
std::vector<std::bitset<refs_per_bucket>> vertex_reference_buckets;
const uint32_t n_indices = max_index - min_index + 1;
const uint32_t n_buckets = (n_indices / static_cast<uint32_t>(refs_per_bucket)) +
((n_indices % static_cast<uint32_t>(refs_per_bucket)) != 0 ? 1 : 0);
// there needs to be at least one bitset to store a set of indices smaller than n_buckets
vertex_reference_buckets.resize(std::max(1u, n_buckets));
// To avoid using too much memory, we run over the indices again.
// Knowing the size from the last scan allows us to record index usage with bitsets
for (const uint8_t* scan_ptr = scan_begin; scan_ptr < scan_end; scan_ptr += scan_stride) {
uint32_t scan_index;
if (ib_type == VK_INDEX_TYPE_UINT8_EXT) {
scan_index = *reinterpret_cast<const uint8_t*>(scan_ptr);
} else if (ib_type == VK_INDEX_TYPE_UINT16) {
scan_index = *reinterpret_cast<const uint16_t*>(scan_ptr);
} else {
scan_index = *reinterpret_cast<const uint32_t*>(scan_ptr);
}
// keep track of the set of all indices used to reference vertices in the draw call
size_t index_offset = scan_index - min_index;
size_t bitset_bucket_index = index_offset / refs_per_bucket;
uint64_t used_indices = 1ull << ((index_offset % refs_per_bucket) & 0xFFFFFFFFu);
vertex_reference_buckets[bitset_bucket_index] |= used_indices;
}
uint32_t vertex_reference_count = 0;
for (const auto& bitset : vertex_reference_buckets) {
vertex_reference_count += static_cast<uint32_t>(bitset.count());
}
// low index buffer utilization implies that: of the vertices available to the draw call, not all are utilized
float utilization = static_cast<float>(vertex_reference_count) / static_cast<float>(max_index - min_index + 1);
// low hit rate (high miss rate) implies the order of indices in the draw call may be possible to improve
float cache_hit_rate = static_cast<float>(vertex_reference_count) / static_cast<float>(vertex_shade_count);
if (utilization < 0.5f) {
skip |= LogPerformanceWarning(device, kVUID_BestPractices_CmdDrawIndexed_SparseIndexBuffer,
"%s The indices which were specified for the draw call only utilise approximately "
"%.02f%% of the bound vertex buffer.",
VendorSpecificTag(kBPVendorArm), utilization);
}
if (cache_hit_rate <= 0.5f) {
skip |=
LogPerformanceWarning(device, kVUID_BestPractices_CmdDrawIndexed_PostTransformCacheThrashing,
"%s The indices which were specified for the draw call are estimated to cause thrashing of "
"the post-transform vertex cache, with a hit-rate of %.02f%%. "
"I.e. the ordering of the index buffer may not make optimal use of indices associated with "
"recently shaded vertices.",
VendorSpecificTag(kBPVendorArm), cache_hit_rate * 100.0f);
}
}
return skip;
}
void BestPractices::PreCallRecordCmdDrawIndexed(VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount,
uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) {
ValidationStateTracker::PreCallRecordCmdDrawIndexed(commandBuffer, indexCount, instanceCount, firstIndex, vertexOffset,
firstInstance);
CMD_BUFFER_STATE* cmd_state = GetCBState(commandBuffer);
if ((indexCount * instanceCount) <= kSmallIndexedDrawcallIndices) {
cmd_state->small_indexed_draw_call_count++;
}
}
void BestPractices::PostCallRecordCmdDrawIndexed(VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount,
uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) {
StateTracker::PostCallRecordCmdDrawIndexed(commandBuffer, indexCount, instanceCount, firstIndex, vertexOffset, firstInstance);
RecordCmdDrawType(commandBuffer, indexCount * instanceCount, "vkCmdDrawIndexed()");
}
bool BestPractices::PreCallValidateCmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) const {
bool skip = ValidateCmdDrawType(commandBuffer, "vkCmdDrawIndexedIndirectCount()");
return skip;
}
bool BestPractices::PreCallValidateCmdDrawIndexedIndirectCountKHR(VkCommandBuffer commandBuffer, VkBuffer buffer,
VkDeviceSize offset, VkBuffer countBuffer,
VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride) const {
bool skip = ValidateCmdDrawType(commandBuffer, "vkCmdDrawIndexedIndirectCountKHR()");
return skip;
}
bool BestPractices::PreCallValidateCmdDrawIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t drawCount, uint32_t stride) const {
bool skip = false;
if (drawCount == 0) {
skip |= LogWarning(device, kVUID_BestPractices_CmdDraw_DrawCountZero,
"Warning: You are calling vkCmdDrawIndirect() with a drawCount of Zero.");
skip |= ValidateCmdDrawType(commandBuffer, "vkCmdDrawIndirect()");
}
return skip;
}
void BestPractices::PostCallRecordCmdDrawIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t count, uint32_t stride) {
StateTracker::PostCallRecordCmdDrawIndirect(commandBuffer, buffer, offset, count, stride);
RecordCmdDrawType(commandBuffer, count, "vkCmdDrawIndirect()");
}
bool BestPractices::PreCallValidateCmdDrawIndexedIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t drawCount, uint32_t stride) const {
bool skip = false;
if (drawCount == 0) {
skip |= LogWarning(device, kVUID_BestPractices_CmdDraw_DrawCountZero,
"Warning: You are calling vkCmdDrawIndexedIndirect() with a drawCount of Zero.");
skip |= ValidateCmdDrawType(commandBuffer, "vkCmdDrawIndexedIndirect()");
}
return skip;
}
void BestPractices::PostCallRecordCmdDrawIndexedIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t count, uint32_t stride) {
StateTracker::PostCallRecordCmdDrawIndexedIndirect(commandBuffer, buffer, offset, count, stride);
RecordCmdDrawType(commandBuffer, count, "vkCmdDrawIndexedIndirect()");
}
bool BestPractices::PreCallValidateCmdDispatch(VkCommandBuffer commandBuffer, uint32_t groupCountX, uint32_t groupCountY,
uint32_t groupCountZ) const {
bool skip = false;
if ((groupCountX == 0) || (groupCountY == 0) || (groupCountZ == 0)) {
skip |= LogWarning(device, kVUID_BestPractices_CmdDispatch_GroupCountZero,
"Warning: You are calling vkCmdDispatch() while one or more groupCounts are zero (groupCountX = %" PRIu32
", groupCountY = %" PRIu32 ", groupCountZ = %" PRIu32 ").",
groupCountX, groupCountY, groupCountZ);
}
return skip;
}
bool BestPractices::PreCallValidateCmdEndRenderPass(VkCommandBuffer commandBuffer) const {
bool skip = false;
skip |= StateTracker::PreCallValidateCmdEndRenderPass(commandBuffer);
auto prepass_state = cbDepthPrePassStates.find(commandBuffer);
if (prepass_state == cbDepthPrePassStates.end()) return skip;
bool uses_depth = (prepass_state->second.depthAttachment || prepass_state->second.colorAttachment) &&
prepass_state->second.numDrawCallsDepthEqualCompare >= kDepthPrePassNumDrawCallsArm &&
prepass_state->second.numDrawCallsDepthOnly >= kDepthPrePassNumDrawCallsArm;
if (uses_depth) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_EndRenderPass_DepthPrePassUsage,
"%s Depth pre-passes may be in use. In general, this is not recommended, as in Arm Mali GPUs since "
"Mali-T620, Forward Pixel Killing (FPK) can already perform automatic hidden surface removal; in which "
"case, using depth pre-passes for hidden surface removal may worsen performance.",
VendorSpecificTag(kBPVendorArm));
}
return skip;
}
bool BestPractices::ValidateGetPhysicalDeviceDisplayPlanePropertiesKHRQuery(VkPhysicalDevice physicalDevice,
const char* api_name) const {
bool skip = false;
const auto* bp_pd_state = GetPhysicalDeviceStateBP(physicalDevice);
if (bp_pd_state) {
if (bp_pd_state->vkGetPhysicalDeviceDisplayPlanePropertiesKHRState == UNCALLED) {
skip |= LogWarning(physicalDevice, kVUID_BestPractices_DisplayPlane_PropertiesNotCalled,
"Potential problem with calling %s() without first retrieving properties from "
"vkGetPhysicalDeviceDisplayPlanePropertiesKHR or vkGetPhysicalDeviceDisplayPlaneProperties2KHR.",
api_name);
}
}
return skip;
}
bool BestPractices::PreCallValidateGetDisplayPlaneSupportedDisplaysKHR(VkPhysicalDevice physicalDevice, uint32_t planeIndex,
uint32_t* pDisplayCount, VkDisplayKHR* pDisplays) const {
bool skip = false;
skip |= ValidateGetPhysicalDeviceDisplayPlanePropertiesKHRQuery(physicalDevice, "vkGetDisplayPlaneSupportedDisplaysKHR");
return skip;
}
bool BestPractices::PreCallValidateGetDisplayPlaneCapabilitiesKHR(VkPhysicalDevice physicalDevice, VkDisplayModeKHR mode,
uint32_t planeIndex,
VkDisplayPlaneCapabilitiesKHR* pCapabilities) const {
bool skip = false;
skip |= ValidateGetPhysicalDeviceDisplayPlanePropertiesKHRQuery(physicalDevice, "vkGetDisplayPlaneCapabilitiesKHR");
return skip;
}
bool BestPractices::PreCallValidateGetDisplayPlaneCapabilities2KHR(VkPhysicalDevice physicalDevice,
const VkDisplayPlaneInfo2KHR* pDisplayPlaneInfo,
VkDisplayPlaneCapabilities2KHR* pCapabilities) const {
bool skip = false;
skip |= ValidateGetPhysicalDeviceDisplayPlanePropertiesKHRQuery(physicalDevice, "vkGetDisplayPlaneCapabilities2KHR");
return skip;
}
bool BestPractices::PreCallValidateGetSwapchainImagesKHR(VkDevice device, VkSwapchainKHR swapchain, uint32_t* pSwapchainImageCount,
VkImage* pSwapchainImages) const {
bool skip = false;
auto swapchain_state_itr = swapchain_bp_state_map.find(swapchain);
if ((swapchain_state_itr != swapchain_bp_state_map.cend()) && pSwapchainImages) {
// Compare the preliminary value of *pSwapchainImageCount with the value this time:
if (swapchain_state_itr->second.vkGetSwapchainImagesKHRState == UNCALLED) {
skip |=
LogWarning(device, kVUID_Core_Swapchain_PriorCount,
"vkGetSwapchainImagesKHR() called with non-NULL pSwapchainImageCount; but no prior positive value has "
"been seen for pSwapchainImages.");
}
}
return skip;
}
// Common function to handle validation for GetPhysicalDeviceQueueFamilyProperties & 2KHR version
bool BestPractices::ValidateCommonGetPhysicalDeviceQueueFamilyProperties(const PHYSICAL_DEVICE_STATE* pd_state,
uint32_t requested_queue_family_property_count,
const CALL_STATE call_state,
const char* caller_name) const {
bool skip = false;
// Verify that for each physical device, this command is called first with NULL pQueueFamilyProperties in order to get count
if (UNCALLED == call_state) {
skip |= LogWarning(
pd_state->phys_device, kVUID_Core_DevLimit_MissingQueryCount,
"%s is called with non-NULL pQueueFamilyProperties before obtaining pQueueFamilyPropertyCount. It is "
"recommended "
"to first call %s with NULL pQueueFamilyProperties in order to obtain the maximal pQueueFamilyPropertyCount.",
caller_name, caller_name);
// Then verify that pCount that is passed in on second call matches what was returned
} else if (pd_state->queue_family_known_count != requested_queue_family_property_count) {
skip |= LogWarning(pd_state->phys_device, kVUID_Core_DevLimit_CountMismatch,
"%s is called with non-NULL pQueueFamilyProperties and pQueueFamilyPropertyCount value %" PRIu32
", but the largest previously returned pQueueFamilyPropertyCount for this physicalDevice is %" PRIu32
". It is recommended to instead receive all the properties by calling %s with "
"pQueueFamilyPropertyCount that was "
"previously obtained by calling %s with NULL pQueueFamilyProperties.",
caller_name, requested_queue_family_property_count, pd_state->queue_family_known_count, caller_name,
caller_name);
}
return skip;
}
bool BestPractices::PreCallValidateBindAccelerationStructureMemoryNV(
VkDevice device, uint32_t bindInfoCount, const VkBindAccelerationStructureMemoryInfoNV* pBindInfos) const {
bool skip = false;
for (uint32_t i = 0; i < bindInfoCount; i++) {
const ACCELERATION_STRUCTURE_STATE* as_state = GetAccelerationStructureStateNV(pBindInfos[i].accelerationStructure);
if (!as_state->memory_requirements_checked) {
// There's not an explicit requirement in the spec to call vkGetImageMemoryRequirements() prior to calling
// BindAccelerationStructureMemoryNV but it's implied in that memory being bound must conform with
// VkAccelerationStructureMemoryRequirementsInfoNV from vkGetAccelerationStructureMemoryRequirementsNV
skip |= LogWarning(
device, kVUID_BestPractices_BindAccelNV_NoMemReqQuery,
"vkBindAccelerationStructureMemoryNV(): "
"Binding memory to %s but vkGetAccelerationStructureMemoryRequirementsNV() has not been called on that structure.",
report_data->FormatHandle(pBindInfos[i].accelerationStructure).c_str());
}
}
return skip;
}
bool BestPractices::PreCallValidateGetPhysicalDeviceQueueFamilyProperties(VkPhysicalDevice physicalDevice,
uint32_t* pQueueFamilyPropertyCount,
VkQueueFamilyProperties* pQueueFamilyProperties) const {
const auto physical_device_state = GetPhysicalDeviceState(physicalDevice);
assert(physical_device_state);
const auto* bp_pd_state = GetPhysicalDeviceStateBP(physical_device_state->phys_device);
if (pQueueFamilyProperties && bp_pd_state) {
return ValidateCommonGetPhysicalDeviceQueueFamilyProperties(physical_device_state, *pQueueFamilyPropertyCount,
bp_pd_state->vkGetPhysicalDeviceQueueFamilyPropertiesState,
"vkGetPhysicalDeviceQueueFamilyProperties()");
}
return false;
}
bool BestPractices::PreCallValidateGetPhysicalDeviceQueueFamilyProperties2(VkPhysicalDevice physicalDevice,
uint32_t* pQueueFamilyPropertyCount,
VkQueueFamilyProperties2* pQueueFamilyProperties) const {
const auto physical_device_state = GetPhysicalDeviceState(physicalDevice);
assert(physical_device_state);
const auto* bp_pd_state = GetPhysicalDeviceStateBP(physical_device_state->phys_device);
if (pQueueFamilyProperties && bp_pd_state) {
return ValidateCommonGetPhysicalDeviceQueueFamilyProperties(physical_device_state, *pQueueFamilyPropertyCount,
bp_pd_state->vkGetPhysicalDeviceQueueFamilyProperties2State,
"vkGetPhysicalDeviceQueueFamilyProperties2()");
}
return false;
}
bool BestPractices::PreCallValidateGetPhysicalDeviceQueueFamilyProperties2KHR(
VkPhysicalDevice physicalDevice, uint32_t* pQueueFamilyPropertyCount, VkQueueFamilyProperties2* pQueueFamilyProperties) const {
auto physical_device_state = GetPhysicalDeviceState(physicalDevice);
assert(physical_device_state);
const auto* bp_pd_state = GetPhysicalDeviceStateBP(physical_device_state->phys_device);
if (pQueueFamilyProperties && bp_pd_state) {
return ValidateCommonGetPhysicalDeviceQueueFamilyProperties(physical_device_state, *pQueueFamilyPropertyCount,
bp_pd_state->vkGetPhysicalDeviceQueueFamilyProperties2KHRState,
"vkGetPhysicalDeviceQueueFamilyProperties2KHR()");
}
return false;
}
bool BestPractices::PreCallValidateGetPhysicalDeviceSurfaceFormatsKHR(VkPhysicalDevice physicalDevice, VkSurfaceKHR surface,
uint32_t* pSurfaceFormatCount,
VkSurfaceFormatKHR* pSurfaceFormats) const {
if (!pSurfaceFormats) return false;
const auto physical_device_state = GetPhysicalDeviceState(physicalDevice);
const auto* bp_pd_state = GetPhysicalDeviceStateBP(physicalDevice);
const auto& call_state = bp_pd_state->vkGetPhysicalDeviceSurfaceFormatsKHRState;
bool skip = false;
if (call_state == UNCALLED) {
// Since we haven't recorded a preliminary value of *pSurfaceFormatCount, that likely means that the application didn't
// previously call this function with a NULL value of pSurfaceFormats:
skip |= LogWarning(physicalDevice, kVUID_Core_DevLimit_MustQueryCount,
"vkGetPhysicalDeviceSurfaceFormatsKHR() called with non-NULL pSurfaceFormatCount; but no prior "
"positive value has been seen for pSurfaceFormats.");
} else {
auto prev_format_count = static_cast<uint32_t>(physical_device_state->surface_formats.size());
if (*pSurfaceFormatCount > prev_format_count) {
skip |= LogWarning(physicalDevice, kVUID_Core_DevLimit_CountMismatch,
"vkGetPhysicalDeviceSurfaceFormatsKHR() called with non-NULL pSurfaceFormatCount, and with "
"pSurfaceFormats set to a value (%u) that is greater than the value (%u) that was returned "
"when pSurfaceFormatCount was NULL.",
*pSurfaceFormatCount, prev_format_count);
}
}
return skip;
}
bool BestPractices::PreCallValidateQueueBindSparse(VkQueue queue, uint32_t bindInfoCount, const VkBindSparseInfo* pBindInfo,
VkFence fence) const {
bool skip = false;
for (uint32_t bind_idx = 0; bind_idx < bindInfoCount; bind_idx++) {
const VkBindSparseInfo& bind_info = pBindInfo[bind_idx];
// Store sparse binding image_state and after binding is complete make sure that any requiring metadata have it bound
std::unordered_set<const IMAGE_STATE*> sparse_images;
// Track images getting metadata bound by this call in a set, it'll be recorded into the image_state
// in RecordQueueBindSparse.
std::unordered_set<const IMAGE_STATE*> sparse_images_with_metadata;
// If we're binding sparse image memory make sure reqs were queried and note if metadata is required and bound
for (uint32_t i = 0; i < bind_info.imageBindCount; ++i) {
const auto& image_bind = bind_info.pImageBinds[i];
auto image_state = GetImageState(image_bind.image);
if (!image_state) {
continue; // Param/Object validation should report image_bind.image handles being invalid, so just skip here.
}
sparse_images.insert(image_state);
if (image_state->createInfo.flags & VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT) {
if (!image_state->get_sparse_reqs_called || image_state->sparse_requirements.empty()) {
// For now just warning if sparse image binding occurs without calling to get reqs first
skip |= LogWarning(image_state->image, kVUID_Core_MemTrack_InvalidState,
"vkQueueBindSparse(): Binding sparse memory to %s without first calling "
"vkGetImageSparseMemoryRequirements[2KHR]() to retrieve requirements.",
report_data->FormatHandle(image_state->image).c_str());
}
}
if (!image_state->memory_requirements_checked) {
// For now just warning if sparse image binding occurs without calling to get reqs first
skip |= LogWarning(image_state->image, kVUID_Core_MemTrack_InvalidState,
"vkQueueBindSparse(): Binding sparse memory to %s without first calling "
"vkGetImageMemoryRequirements() to retrieve requirements.",
report_data->FormatHandle(image_state->image).c_str());
}
}
for (uint32_t i = 0; i < bind_info.imageOpaqueBindCount; ++i) {
const auto& image_opaque_bind = bind_info.pImageOpaqueBinds[i];
auto image_state = GetImageState(bind_info.pImageOpaqueBinds[i].image);
if (!image_state) {
continue; // Param/Object validation should report image_bind.image handles being invalid, so just skip here.
}
sparse_images.insert(image_state);
if (image_state->createInfo.flags & VK_IMAGE_CREATE_SPARSE_RESIDENCY_BIT) {
if (!image_state->get_sparse_reqs_called || image_state->sparse_requirements.empty()) {
// For now just warning if sparse image binding occurs without calling to get reqs first
skip |= LogWarning(image_state->image, kVUID_Core_MemTrack_InvalidState,
"vkQueueBindSparse(): Binding opaque sparse memory to %s without first calling "
"vkGetImageSparseMemoryRequirements[2KHR]() to retrieve requirements.",
report_data->FormatHandle(image_state->image).c_str());
}
}
if (!image_state->memory_requirements_checked) {
// For now just warning if sparse image binding occurs without calling to get reqs first
skip |= LogWarning(image_state->image, kVUID_Core_MemTrack_InvalidState,
"vkQueueBindSparse(): Binding opaque sparse memory to %s without first calling "
"vkGetImageMemoryRequirements() to retrieve requirements.",
report_data->FormatHandle(image_state->image).c_str());
}
for (uint32_t j = 0; j < image_opaque_bind.bindCount; ++j) {
if (image_opaque_bind.pBinds[j].flags & VK_SPARSE_MEMORY_BIND_METADATA_BIT) {
sparse_images_with_metadata.insert(image_state);
}
}
}
for (const auto& sparse_image_state : sparse_images) {
if (sparse_image_state->sparse_metadata_required && !sparse_image_state->sparse_metadata_bound &&
sparse_images_with_metadata.find(sparse_image_state) == sparse_images_with_metadata.end()) {
// Warn if sparse image binding metadata required for image with sparse binding, but metadata not bound
skip |= LogWarning(sparse_image_state->image, kVUID_Core_MemTrack_InvalidState,
"vkQueueBindSparse(): Binding sparse memory to %s which requires a metadata aspect but no "
"binding with VK_SPARSE_MEMORY_BIND_METADATA_BIT set was made.",
report_data->FormatHandle(sparse_image_state->image).c_str());
}
}
}
return skip;
}
void BestPractices::ManualPostCallRecordQueueBindSparse(VkQueue queue, uint32_t bindInfoCount, const VkBindSparseInfo* pBindInfo,
VkFence fence, VkResult result) {
if (result != VK_SUCCESS) {
return;
}
for (uint32_t bind_idx = 0; bind_idx < bindInfoCount; bind_idx++) {
const VkBindSparseInfo& bind_info = pBindInfo[bind_idx];
for (uint32_t i = 0; i < bind_info.imageOpaqueBindCount; ++i) {
const auto& image_opaque_bind = bind_info.pImageOpaqueBinds[i];
auto image_state = GetImageState(bind_info.pImageOpaqueBinds[i].image);
if (!image_state) {
continue; // Param/Object validation should report image_bind.image handles being invalid, so just skip here.
}
for (uint32_t j = 0; j < image_opaque_bind.bindCount; ++j) {
if (image_opaque_bind.pBinds[j].flags & VK_SPARSE_MEMORY_BIND_METADATA_BIT) {
image_state->sparse_metadata_bound = true;
}
}
}
}
}
bool BestPractices::PreCallValidateCmdClearAttachments(VkCommandBuffer commandBuffer, uint32_t attachmentCount,
const VkClearAttachment* pAttachments, uint32_t rectCount,
const VkClearRect* pRects) const {
bool skip = false;
const CMD_BUFFER_STATE* cb_node = GetCBState(commandBuffer);
if (!cb_node) return skip;
// Warn if this is issued prior to Draw Cmd and clearing the entire attachment
if (!cb_node->hasDrawCmd && (cb_node->activeRenderPassBeginInfo.renderArea.extent.width == pRects[0].rect.extent.width) &&
(cb_node->activeRenderPassBeginInfo.renderArea.extent.height == pRects[0].rect.extent.height)) {
// There are times where app needs to use ClearAttachments (generally when reusing a buffer inside of a render pass)
// This warning should be made more specific. It'd be best to avoid triggering this test if it's a use that must call
// CmdClearAttachments.
skip |= LogPerformanceWarning(commandBuffer, kVUID_BestPractices_DrawState_ClearCmdBeforeDraw,
"vkCmdClearAttachments() issued on %s prior to any Draw Cmds. It is recommended you "
"use RenderPass LOAD_OP_CLEAR on Attachments prior to any Draw.",
report_data->FormatHandle(commandBuffer).c_str());
}
// Check for uses of ClearAttachments along with LOAD_OP_LOAD,
// as it can be more efficient to just use LOAD_OP_CLEAR
const RENDER_PASS_STATE* rp = cb_node->activeRenderPass.get();
if (rp) {
const auto& subpass = rp->createInfo.pSubpasses[cb_node->activeSubpass];
for (uint32_t i = 0; i < attachmentCount; i++) {
auto& attachment = pAttachments[i];
if (attachment.aspectMask & VK_IMAGE_ASPECT_COLOR_BIT) {
uint32_t color_attachment = attachment.colorAttachment;
uint32_t fb_attachment = subpass.pColorAttachments[color_attachment].attachment;
if (fb_attachment != VK_ATTACHMENT_UNUSED) {
if (rp->createInfo.pAttachments[fb_attachment].loadOp == VK_ATTACHMENT_LOAD_OP_LOAD) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_ClearAttachments_ClearAfterLoad,
"vkCmdClearAttachments() issued on %s for color attachment #%u in this subpass, "
"but LOAD_OP_LOAD was used. If you need to clear the framebuffer, always use LOAD_OP_CLEAR as "
"it is more efficient.",
report_data->FormatHandle(commandBuffer).c_str(), color_attachment);
}
}
}
if (subpass.pDepthStencilAttachment && attachment.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT) {
uint32_t fb_attachment = subpass.pDepthStencilAttachment->attachment;
if (fb_attachment != VK_ATTACHMENT_UNUSED) {
if (rp->createInfo.pAttachments[fb_attachment].loadOp == VK_ATTACHMENT_LOAD_OP_LOAD) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_ClearAttachments_ClearAfterLoad,
"vkCmdClearAttachments() issued on %s for the depth attachment in this subpass, "
"but LOAD_OP_LOAD was used. If you need to clear the framebuffer, always use LOAD_OP_CLEAR as "
"it is more efficient.",
report_data->FormatHandle(commandBuffer).c_str());
}
}
}
if (subpass.pDepthStencilAttachment && attachment.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT) {
uint32_t fb_attachment = subpass.pDepthStencilAttachment->attachment;
if (fb_attachment != VK_ATTACHMENT_UNUSED) {
if (rp->createInfo.pAttachments[fb_attachment].stencilLoadOp == VK_ATTACHMENT_LOAD_OP_LOAD) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_ClearAttachments_ClearAfterLoad,
"vkCmdClearAttachments() issued on %s for the stencil attachment in this subpass, "
"but LOAD_OP_LOAD was used. If you need to clear the framebuffer, always use LOAD_OP_CLEAR as "
"it is more efficient.",
report_data->FormatHandle(commandBuffer).c_str());
}
}
}
}
}
return skip;
}
bool BestPractices::PreCallValidateCmdResolveImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount,
const VkImageResolve* pRegions) const {
bool skip = false;
skip |= VendorCheckEnabled(kBPVendorArm) &&
LogPerformanceWarning(device, kVUID_BestPractices_CmdResolveImage_ResolvingImage,
"%s Attempting to use vkCmdResolveImage to resolve a multisampled image. "
"This is a very slow and extremely bandwidth intensive path. "
"You should always resolve multisampled images on-tile with pResolveAttachments in VkRenderPass.",
VendorSpecificTag(kBPVendorArm));
return skip;
}
bool BestPractices::PreCallValidateCmdResolveImage2KHR(VkCommandBuffer commandBuffer,
const VkResolveImageInfo2KHR* pResolveImageInfo) const {
bool skip = false;
skip |= VendorCheckEnabled(kBPVendorArm) &&
LogPerformanceWarning(device, kVUID_BestPractices_CmdResolveImage2KHR_ResolvingImage,
"%s Attempting to use vkCmdResolveImage2KHR to resolve a multisampled image. "
"This is a very slow and extremely bandwidth intensive path. "
"You should always resolve multisampled images on-tile with pResolveAttachments in VkRenderPass.",
VendorSpecificTag(kBPVendorArm));
return skip;
}
bool BestPractices::PreCallValidateCreateSampler(VkDevice device, const VkSamplerCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator, VkSampler* pSampler) const {
bool skip = false;
if (VendorCheckEnabled(kBPVendorArm)) {
if ((pCreateInfo->addressModeU != pCreateInfo->addressModeV) || (pCreateInfo->addressModeV != pCreateInfo->addressModeW)) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreateSampler_DifferentWrappingModes,
"%s Creating a sampler object with wrapping modes which do not match (U = %u, V = %u, W = %u). "
"This may cause reduced performance even if only U (1D image) or U/V wrapping modes (2D "
"image) are actually used. If you need different wrapping modes, disregard this warning.",
VendorSpecificTag(kBPVendorArm));
}
if ((pCreateInfo->minLod != 0.0f) || (pCreateInfo->maxLod < VK_LOD_CLAMP_NONE)) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreateSampler_LodClamping,
"%s Creating a sampler object with LOD clamping (minLod = %f, maxLod = %f). This may cause reduced performance. "
"Instead of clamping LOD in the sampler, consider using an VkImageView which restricts the mip-levels, set minLod "
"to 0.0, and maxLod to VK_LOD_CLAMP_NONE.",
VendorSpecificTag(kBPVendorArm), pCreateInfo->minLod, pCreateInfo->maxLod);
}
if (pCreateInfo->mipLodBias != 0.0f) {
skip |=
LogPerformanceWarning(device, kVUID_BestPractices_CreateSampler_LodBias,
"%s Creating a sampler object with LOD bias != 0.0 (%f). This will lead to less efficient "
"descriptors being created and may cause reduced performance.",
VendorSpecificTag(kBPVendorArm), pCreateInfo->mipLodBias);
}
if ((pCreateInfo->addressModeU == VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER ||
pCreateInfo->addressModeV == VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER ||
pCreateInfo->addressModeW == VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_BORDER) &&
(pCreateInfo->borderColor != VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK)) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreateSampler_BorderClampColor,
"%s Creating a sampler object with border clamping and borderColor != VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK. "
"This will lead to less efficient descriptors being created and may cause reduced performance. "
"If possible, use VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK as the border color.",
VendorSpecificTag(kBPVendorArm));
}
if (pCreateInfo->unnormalizedCoordinates) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreateSampler_UnnormalizedCoordinates,
"%s Creating a sampler object with unnormalized coordinates. This will lead to less efficient "
"descriptors being created and may cause reduced performance.",
VendorSpecificTag(kBPVendorArm));
}
if (pCreateInfo->anisotropyEnable) {
skip |= LogPerformanceWarning(
device, kVUID_BestPractices_CreateSampler_Anisotropy,
"%s Creating a sampler object with anisotropy. This will lead to less efficient descriptors being created "
"and may cause reduced performance.",
VendorSpecificTag(kBPVendorArm));
}
}
return skip;
}
void BestPractices::PostTransformLRUCacheModel::resize(size_t size) { _entries.resize(size); }
bool BestPractices::PostTransformLRUCacheModel::query_cache(uint32_t value) {
// look for a cache hit
auto hit = std::find_if(_entries.begin(), _entries.end(), [value](const CacheEntry& entry) { return entry.value == value; });
if (hit != _entries.end()) {
// mark the cache hit as being most recently used
hit->age = iteration++;
return true;
}
// if there's no cache hit, we need to model the entry being inserted into the cache
CacheEntry new_entry = {value, iteration};
if (iteration < static_cast<uint32_t>(std::distance(_entries.begin(), _entries.end()))) {
// if there is still space left in the cache, use the next available slot
*(_entries.begin() + iteration) = new_entry;
} else {
// otherwise replace the least recently used cache entry
auto lru = std::min_element(_entries.begin(), hit, [](const CacheEntry& a, const CacheEntry& b) { return a.age < b.age; });
*lru = new_entry;
}
iteration++;
return false;
}
bool BestPractices::PreCallValidateAcquireNextImageKHR(VkDevice device, VkSwapchainKHR swapchain, uint64_t timeout,
VkSemaphore semaphore, VkFence fence, uint32_t* pImageIndex) const {
const auto swapchain_data = GetSwapchainState(swapchain);
bool skip = false;
if (swapchain_data && swapchain_data->images.size() == 0) {
skip |= LogWarning(swapchain, kVUID_Core_DrawState_SwapchainImagesNotFound,
"vkAcquireNextImageKHR: No images found to acquire from. Application probably did not call "
"vkGetSwapchainImagesKHR after swapchain creation.");
}
return skip;
}
void BestPractices::CommonPostCallRecordGetPhysicalDeviceQueueFamilyProperties(CALL_STATE& call_state, bool no_pointer) {
if (no_pointer) {
if (UNCALLED == call_state) {
call_state = QUERY_COUNT;
}
} else { // Save queue family properties
call_state = QUERY_DETAILS;
}
}
void BestPractices::PostCallRecordGetPhysicalDeviceQueueFamilyProperties(VkPhysicalDevice physicalDevice,
uint32_t* pQueueFamilyPropertyCount,
VkQueueFamilyProperties* pQueueFamilyProperties) {
ValidationStateTracker::PostCallRecordGetPhysicalDeviceQueueFamilyProperties(physicalDevice, pQueueFamilyPropertyCount,
pQueueFamilyProperties);
auto* bp_pd_state = GetPhysicalDeviceStateBP(physicalDevice);
if (bp_pd_state) {
CommonPostCallRecordGetPhysicalDeviceQueueFamilyProperties(bp_pd_state->vkGetPhysicalDeviceQueueFamilyPropertiesState,
nullptr == pQueueFamilyProperties);
}
}
void BestPractices::PostCallRecordGetPhysicalDeviceQueueFamilyProperties2(VkPhysicalDevice physicalDevice,
uint32_t* pQueueFamilyPropertyCount,
VkQueueFamilyProperties2* pQueueFamilyProperties) {
ValidationStateTracker::PostCallRecordGetPhysicalDeviceQueueFamilyProperties2(physicalDevice, pQueueFamilyPropertyCount,
pQueueFamilyProperties);
auto* bp_pd_state = GetPhysicalDeviceStateBP(physicalDevice);
if (bp_pd_state) {
CommonPostCallRecordGetPhysicalDeviceQueueFamilyProperties(bp_pd_state->vkGetPhysicalDeviceQueueFamilyProperties2State,
nullptr == pQueueFamilyProperties);
}
}
void BestPractices::PostCallRecordGetPhysicalDeviceQueueFamilyProperties2KHR(VkPhysicalDevice physicalDevice,
uint32_t* pQueueFamilyPropertyCount,
VkQueueFamilyProperties2* pQueueFamilyProperties) {
ValidationStateTracker::PostCallRecordGetPhysicalDeviceQueueFamilyProperties2KHR(physicalDevice, pQueueFamilyPropertyCount,
pQueueFamilyProperties);
auto* bp_pd_state = GetPhysicalDeviceStateBP(physicalDevice);
if (bp_pd_state) {
CommonPostCallRecordGetPhysicalDeviceQueueFamilyProperties(bp_pd_state->vkGetPhysicalDeviceQueueFamilyProperties2KHRState,
nullptr == pQueueFamilyProperties);
}
}
void BestPractices::PostCallRecordGetPhysicalDeviceFeatures(VkPhysicalDevice physicalDevice, VkPhysicalDeviceFeatures* pFeatures) {
ValidationStateTracker::PostCallRecordGetPhysicalDeviceFeatures(physicalDevice, pFeatures);
auto* bp_pd_state = GetPhysicalDeviceStateBP(physicalDevice);
if (bp_pd_state) {
bp_pd_state->vkGetPhysicalDeviceFeaturesState = QUERY_DETAILS;
}
}
void BestPractices::PostCallRecordGetPhysicalDeviceFeatures2(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceFeatures2* pFeatures) {
ValidationStateTracker::PostCallRecordGetPhysicalDeviceFeatures2(physicalDevice, pFeatures);
auto* bp_pd_state = GetPhysicalDeviceStateBP(physicalDevice);
if (bp_pd_state) {
bp_pd_state->vkGetPhysicalDeviceFeaturesState = QUERY_DETAILS;
}
}
void BestPractices::PostCallRecordGetPhysicalDeviceFeatures2KHR(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceFeatures2* pFeatures) {
ValidationStateTracker::PostCallRecordGetPhysicalDeviceFeatures2KHR(physicalDevice, pFeatures);
auto* bp_pd_state = GetPhysicalDeviceStateBP(physicalDevice);
if (bp_pd_state) {
bp_pd_state->vkGetPhysicalDeviceFeaturesState = QUERY_DETAILS;
}
}
void BestPractices::ManualPostCallRecordGetPhysicalDeviceSurfaceCapabilitiesKHR(VkPhysicalDevice physicalDevice,
VkSurfaceKHR surface,
VkSurfaceCapabilitiesKHR* pSurfaceCapabilities,
VkResult result) {
auto* bp_pd_state = GetPhysicalDeviceStateBP(physicalDevice);
if (bp_pd_state) {
bp_pd_state->vkGetPhysicalDeviceSurfaceCapabilitiesKHRState = QUERY_DETAILS;
}
}
void BestPractices::ManualPostCallRecordGetPhysicalDeviceSurfaceCapabilities2KHR(
VkPhysicalDevice physicalDevice, const VkPhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo,
VkSurfaceCapabilities2KHR* pSurfaceCapabilities, VkResult result) {
auto* bp_pd_state = GetPhysicalDeviceStateBP(physicalDevice);
if (bp_pd_state) {
bp_pd_state->vkGetPhysicalDeviceSurfaceCapabilitiesKHRState = QUERY_DETAILS;
}
}
void BestPractices::ManualPostCallRecordGetPhysicalDeviceSurfaceCapabilities2EXT(VkPhysicalDevice physicalDevice,
VkSurfaceKHR surface,
VkSurfaceCapabilities2EXT* pSurfaceCapabilities,
VkResult result) {
auto* bp_pd_state = GetPhysicalDeviceStateBP(physicalDevice);
if (bp_pd_state) {
bp_pd_state->vkGetPhysicalDeviceSurfaceCapabilitiesKHRState = QUERY_DETAILS;
}
}
void BestPractices::ManualPostCallRecordGetPhysicalDeviceSurfacePresentModesKHR(VkPhysicalDevice physicalDevice,
VkSurfaceKHR surface, uint32_t* pPresentModeCount,
VkPresentModeKHR* pPresentModes, VkResult result) {
auto* bp_pd_data = GetPhysicalDeviceStateBP(physicalDevice);
if (bp_pd_data) {
auto& call_state = bp_pd_data->vkGetPhysicalDeviceSurfacePresentModesKHRState;
if (*pPresentModeCount) {
if (call_state < QUERY_COUNT) {
call_state = QUERY_COUNT;
}
}
if (pPresentModes) {
if (call_state < QUERY_DETAILS) {
call_state = QUERY_DETAILS;
}
}
}
}
void BestPractices::ManualPostCallRecordGetPhysicalDeviceSurfaceFormatsKHR(VkPhysicalDevice physicalDevice, VkSurfaceKHR surface,
uint32_t* pSurfaceFormatCount,
VkSurfaceFormatKHR* pSurfaceFormats, VkResult result) {
auto* bp_pd_data = GetPhysicalDeviceStateBP(physicalDevice);
if (bp_pd_data) {
auto& call_state = bp_pd_data->vkGetPhysicalDeviceSurfaceFormatsKHRState;
if (*pSurfaceFormatCount) {
if (call_state < QUERY_COUNT) {
call_state = QUERY_COUNT;
}
}
if (pSurfaceFormats) {
if (call_state < QUERY_DETAILS) {
call_state = QUERY_DETAILS;
}
}
}
}
void BestPractices::ManualPostCallRecordGetPhysicalDeviceSurfaceFormats2KHR(VkPhysicalDevice physicalDevice,
const VkPhysicalDeviceSurfaceInfo2KHR* pSurfaceInfo,
uint32_t* pSurfaceFormatCount,
VkSurfaceFormat2KHR* pSurfaceFormats, VkResult result) {
auto* bp_pd_data = GetPhysicalDeviceStateBP(physicalDevice);
if (bp_pd_data) {
if (*pSurfaceFormatCount) {
if (bp_pd_data->vkGetPhysicalDeviceSurfaceFormatsKHRState < QUERY_COUNT) {
bp_pd_data->vkGetPhysicalDeviceSurfaceFormatsKHRState = QUERY_COUNT;
}
}
if (pSurfaceFormats) {
if (bp_pd_data->vkGetPhysicalDeviceSurfaceFormatsKHRState < QUERY_DETAILS) {
bp_pd_data->vkGetPhysicalDeviceSurfaceFormatsKHRState = QUERY_DETAILS;
}
}
}
}
void BestPractices::ManualPostCallRecordGetPhysicalDeviceDisplayPlanePropertiesKHR(VkPhysicalDevice physicalDevice,
uint32_t* pPropertyCount,
VkDisplayPlanePropertiesKHR* pProperties,
VkResult result) {
auto* bp_pd_data = GetPhysicalDeviceStateBP(physicalDevice);
if (bp_pd_data) {
if (*pPropertyCount) {
if (bp_pd_data->vkGetPhysicalDeviceDisplayPlanePropertiesKHRState < QUERY_COUNT) {
bp_pd_data->vkGetPhysicalDeviceDisplayPlanePropertiesKHRState = QUERY_COUNT;
}
}
if (pProperties) {
if (bp_pd_data->vkGetPhysicalDeviceDisplayPlanePropertiesKHRState < QUERY_DETAILS) {
bp_pd_data->vkGetPhysicalDeviceDisplayPlanePropertiesKHRState = QUERY_DETAILS;
}
}
}
}
void BestPractices::ManualPostCallRecordCreateSwapchainKHR(VkDevice device, const VkSwapchainCreateInfoKHR* pCreateInfo,
const VkAllocationCallbacks* pAllocator, VkSwapchainKHR* pSwapchain,
VkResult result) {
if (VK_SUCCESS == result) {
swapchain_bp_state_map.emplace(*pSwapchain, SWAPCHAIN_STATE_BP{});
}
}
void BestPractices::PostCallRecordDestroySwapchainKHR(VkDevice device, VkSwapchainKHR swapchain,
const VkAllocationCallbacks* pAllocator) {
ValidationStateTracker::PostCallRecordDestroySwapchainKHR(device, swapchain, pAllocator);
auto swapchain_state_itr = swapchain_bp_state_map.find(swapchain);
if (swapchain_state_itr != swapchain_bp_state_map.cend()) {
swapchain_bp_state_map.erase(swapchain_state_itr);
}
}
void BestPractices::ManualPostCallRecordGetSwapchainImagesKHR(VkDevice device, VkSwapchainKHR swapchain,
uint32_t* pSwapchainImageCount, VkImage* pSwapchainImages,
VkResult result) {
auto swapchain_state_itr = swapchain_bp_state_map.find(swapchain);
assert(swapchain_state_itr != swapchain_bp_state_map.cend());
auto& swapchain_state = swapchain_state_itr->second;
if (pSwapchainImages || *pSwapchainImageCount) {
if (swapchain_state.vkGetSwapchainImagesKHRState < QUERY_DETAILS) {
swapchain_state.vkGetSwapchainImagesKHRState = QUERY_DETAILS;
}
}
}
void BestPractices::ManualPostCallRecordEnumeratePhysicalDevices(VkInstance instance, uint32_t* pPhysicalDeviceCount,
VkPhysicalDevice* pPhysicalDevices, VkResult result) {
if ((nullptr != pPhysicalDevices) && ((result == VK_SUCCESS || result == VK_INCOMPLETE))) {
for (uint32_t i = 0; i < *pPhysicalDeviceCount; i++) {
phys_device_bp_state_map.emplace(pPhysicalDevices[i], PHYSICAL_DEVICE_STATE_BP{});
}
}
}
void BestPractices::ManualPostCallRecordCreateDevice(VkPhysicalDevice gpu, const VkDeviceCreateInfo*, const VkAllocationCallbacks*,
VkDevice*, VkResult result) {
if (VK_SUCCESS == result) {
instance_device_bp_state = &phys_device_bp_state_map[gpu];
}
}
PHYSICAL_DEVICE_STATE_BP* BestPractices::GetPhysicalDeviceStateBP(const VkPhysicalDevice& phys_device) {
if (phys_device_bp_state_map.count(phys_device) > 0) {
return &phys_device_bp_state_map.at(phys_device);
} else {
return nullptr;
}
}
const PHYSICAL_DEVICE_STATE_BP* BestPractices::GetPhysicalDeviceStateBP(const VkPhysicalDevice& phys_device) const {
if (phys_device_bp_state_map.count(phys_device) > 0) {
return &phys_device_bp_state_map.at(phys_device);
} else {
return nullptr;
}
}
PHYSICAL_DEVICE_STATE_BP* BestPractices::GetPhysicalDeviceStateBP() {
auto bp_state = (reinterpret_cast<BestPractices*>(instance_state))->instance_device_bp_state;
if (bp_state) {
return bp_state;
} else if (!bp_state && phys_device_bp_state_map.count(physical_device_state->phys_device) > 0) {
return &phys_device_bp_state_map.at(physical_device_state->phys_device);
} else {
return nullptr;
}
}
const PHYSICAL_DEVICE_STATE_BP* BestPractices::GetPhysicalDeviceStateBP() const {
auto bp_state = (reinterpret_cast<BestPractices*>(instance_state))->instance_device_bp_state;
if (bp_state) {
return bp_state;
} else if (!bp_state && phys_device_bp_state_map.count(physical_device_state->phys_device) > 0) {
return &phys_device_bp_state_map.at(physical_device_state->phys_device);
} else {
return nullptr;
}
}