blob: b64a6fa75bb436e9bcf76c15a6656dff24ca1407 [file] [log] [blame]
/* Copyright (c) 2019-2020 The Khronos Group Inc.
* Copyright (c) 2019-2020 Valve Corporation
* Copyright (c) 2019-2020 LunarG, Inc.
* Copyright (C) 2019-2020 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* John Zulauf <jzulauf@lunarg.com>
*
*/
#include <cassert>
#include "subresource_adapter.h"
namespace subresource_adapter {
Subresource::Subresource(const RangeEncoder& encoder, const VkImageSubresource& subres)
: VkImageSubresource({0, subres.mipLevel, subres.arrayLayer}), aspect_index() {
aspect_index = encoder.LowerBoundFromMask(subres.aspectMask);
aspectMask = encoder.AspectBit(aspect_index);
}
IndexType RangeEncoder::Encode1AspectArrayOnly(const Subresource& pos) const { return pos.arrayLayer; }
IndexType RangeEncoder::Encode1AspectMipArray(const Subresource& pos) const { return pos.arrayLayer + pos.mipLevel * mip_size_; }
IndexType RangeEncoder::Encode1AspectMipOnly(const Subresource& pos) const { return pos.mipLevel; }
IndexType RangeEncoder::EncodeAspectArrayOnly(const Subresource& pos) const {
return pos.arrayLayer + aspect_base_[pos.aspect_index];
}
IndexType RangeEncoder::EncodeAspectMipArray(const Subresource& pos) const {
return pos.arrayLayer + pos.mipLevel * mip_size_ + aspect_base_[pos.aspect_index];
}
IndexType RangeEncoder::EncodeAspectMipOnly(const Subresource& pos) const { return pos.mipLevel + aspect_base_[pos.aspect_index]; }
uint32_t RangeEncoder::LowerBoundImpl1(VkImageAspectFlags aspect_mask) const {
assert(aspect_mask & aspect_bits_[0]);
return 0;
}
uint32_t RangeEncoder::LowerBoundWithStartImpl1(VkImageAspectFlags aspect_mask, uint32_t start) const {
assert(start == 0);
if (aspect_mask & aspect_bits_[0]) {
return 0;
}
return limits_.aspect_index;
}
uint32_t RangeEncoder::LowerBoundImpl2(VkImageAspectFlags aspect_mask) const {
if (aspect_mask & aspect_bits_[0]) {
return 0;
}
assert(aspect_mask & aspect_bits_[1]);
return 1;
}
uint32_t RangeEncoder::LowerBoundWithStartImpl2(VkImageAspectFlags aspect_mask, uint32_t start) const {
switch (start) {
case 0:
if (aspect_mask & aspect_bits_[0]) {
return 0;
}
// no break
case 1:
if (aspect_mask & aspect_bits_[1]) {
return 1;
}
break;
default:
break;
}
return limits_.aspect_index;
}
uint32_t RangeEncoder::LowerBoundImpl3(VkImageAspectFlags aspect_mask) const {
if (aspect_mask & aspect_bits_[0]) {
return 0;
} else if (aspect_mask & aspect_bits_[1]) {
return 1;
} else {
assert(aspect_mask & aspect_bits_[2]);
return 2;
}
}
uint32_t RangeEncoder::LowerBoundWithStartImpl3(VkImageAspectFlags aspect_mask, uint32_t start) const {
switch (start) {
case 0:
if (aspect_mask & aspect_bits_[0]) {
return 0;
}
// no break
case 1:
if ((aspect_mask & aspect_bits_[1])) {
return 1;
}
// no break
case 2:
if ((aspect_mask & aspect_bits_[2])) {
return 2;
}
break;
default:
break;
}
return limits_.aspect_index;
}
void RangeEncoder::PopulateFunctionPointers() {
// Select the encode/decode specialists
if (limits_.aspect_index == 1) {
// One aspect use simplified encode/decode math
if (limits_.arrayLayer == 1) { // Same as mip_size_ == 1
encode_function_ = &RangeEncoder::Encode1AspectMipOnly;
decode_function_ = &RangeEncoder::DecodeAspectMipOnly<1>;
} else if (limits_.mipLevel == 1) {
encode_function_ = &RangeEncoder::Encode1AspectArrayOnly;
decode_function_ = &RangeEncoder::DecodeAspectArrayOnly<1>;
} else {
encode_function_ = &RangeEncoder::Encode1AspectMipArray;
decode_function_ = &RangeEncoder::DecodeAspectMipArray<1>;
}
lower_bound_function_ = &RangeEncoder::LowerBoundImpl1;
lower_bound_with_start_function_ = &RangeEncoder::LowerBoundWithStartImpl1;
} else if (limits_.aspect_index == 2) {
// Two aspect use simplified encode/decode math
if (limits_.arrayLayer == 1) { // Same as mip_size_ == 1
encode_function_ = &RangeEncoder::EncodeAspectMipOnly;
decode_function_ = &RangeEncoder::DecodeAspectMipOnly<2>;
} else if (limits_.mipLevel == 1) {
encode_function_ = &RangeEncoder::EncodeAspectArrayOnly;
decode_function_ = &RangeEncoder::DecodeAspectArrayOnly<2>;
} else {
encode_function_ = &RangeEncoder::EncodeAspectMipArray;
decode_function_ = &RangeEncoder::DecodeAspectMipArray<2>;
}
lower_bound_function_ = &RangeEncoder::LowerBoundImpl2;
lower_bound_with_start_function_ = &RangeEncoder::LowerBoundWithStartImpl2;
} else {
encode_function_ = &RangeEncoder::EncodeAspectMipArray;
decode_function_ = &RangeEncoder::DecodeAspectMipArray<3>;
lower_bound_function_ = &RangeEncoder::LowerBoundImpl3;
lower_bound_with_start_function_ = &RangeEncoder::LowerBoundWithStartImpl3;
}
// Initialize the offset array
aspect_base_[0] = 0;
for (uint32_t i = 1; i < limits_.aspect_index; ++i) {
aspect_base_[i] = aspect_base_[i - 1] + aspect_size_;
}
}
RangeEncoder::RangeEncoder(const VkImageSubresourceRange& full_range, const AspectParameters* param)
: full_range_(full_range),
limits_(param->AspectMask(), full_range.levelCount, full_range.layerCount, param->AspectCount()),
mip_size_(full_range.layerCount),
aspect_size_(mip_size_ * full_range.levelCount),
aspect_bits_(param->AspectBits()),
mask_index_function_(param->MaskToIndexFunction()),
encode_function_(nullptr),
decode_function_(nullptr) {
// Only valid to create an encoder for a *whole* image (i.e. base must be zero, and the specified limits_.selected_aspects
// *must* be equal to the traits aspect mask. (Encoder range assumes zero bases)
assert(full_range.aspectMask == limits_.aspectMask);
assert(full_range.baseArrayLayer == 0);
assert(full_range.baseMipLevel == 0);
// TODO: should be some static assert
assert(param->AspectCount() <= kMaxSupportedAspect);
PopulateFunctionPointers();
}
// Create an iterator like "generator" that for each increment produces the next index range matching the
// next contiguous (in index space) section of the VkImageSubresourceRange
// Ranges will always span the layerCount layers, and if the layerCount is the full range of the image (as known by
// the encoder) will span the levelCount mip levels as weill.
RangeGenerator::RangeGenerator(const RangeEncoder& encoder, const VkImageSubresourceRange& subres_range)
: encoder_(&encoder), isr_pos_(encoder, subres_range), pos_(), aspect_base_() {
assert((((isr_pos_.Limits()).aspectMask & (encoder.Limits()).aspectMask) == (isr_pos_.Limits()).aspectMask) &&
((isr_pos_.Limits()).baseMipLevel + (isr_pos_.Limits()).levelCount <= (encoder.Limits()).mipLevel) &&
((isr_pos_.Limits()).baseArrayLayer + (isr_pos_.Limits()).layerCount <= (encoder.Limits()).arrayLayer));
// To see if we have a full range special case, need to compare the subres_range against the *encoders* limits
const auto& limits = encoder.Limits();
if ((subres_range.baseArrayLayer == 0 && subres_range.layerCount == limits.arrayLayer)) {
if ((subres_range.baseMipLevel == 0) && (subres_range.levelCount == limits.mipLevel)) {
if (subres_range.aspectMask == limits.aspectMask) {
// Full range
pos_.begin = 0;
pos_.end = encoder.AspectSize() * limits.aspect_index;
aspect_count_ = 1; // Flag this to never advance aspects.
} else {
// All mips all layers but not all aspect
pos_.begin = encoder.AspectBase(isr_pos_.aspect_index);
pos_.end = pos_.begin + encoder.AspectSize();
aspect_count_ = limits.aspect_index;
}
} else {
// All array layers, but not all levels
pos_.begin = encoder.AspectBase(isr_pos_.aspect_index) + subres_range.baseMipLevel * encoder.MipSize();
pos_.end = pos_.begin + subres_range.levelCount * encoder.MipSize();
aspect_count_ = limits.aspect_index;
}
// Full set of array layers at a time, thus we can span across all selected mip levels
mip_count_ = 1; // we don't ever advance across mips, as we do all of then in one range
} else {
// Each range covers all included array_layers for each selected mip_level for each given selected aspect
// so we'll use the general purpose encode and smallest range size
pos_.begin = encoder.Encode(isr_pos_);
pos_.end = pos_.begin + subres_range.layerCount;
// we do have to traverse across mips, though (other than Encode abover), we don't have to know which one we are on.
mip_count_ = subres_range.levelCount;
aspect_count_ = limits.aspect_index;
}
// To get to the next aspect range we offset from the last base
aspect_base_ = pos_;
mip_index_ = 0;
aspect_index_ = isr_pos_.aspect_index;
}
RangeGenerator& RangeGenerator::operator++() {
mip_index_++;
// NOTE: If all selected mip levels are done at once, mip_count_ is set to one, not the number of selected mip_levels
if (mip_index_ >= mip_count_) {
const auto last_aspect_index = aspect_index_;
// Seek the next value aspect (if any)
aspect_index_ = encoder_->LowerBoundFromMask(isr_pos_.Limits().aspectMask, aspect_index_ + 1);
if (aspect_index_ < aspect_count_) {
// Force isr_pos to the beginning of this found aspect
isr_pos_.SeekAspect(aspect_index_);
// SubresourceGenerator should never be at tombstones we we aren't
assert(isr_pos_.aspectMask != 0);
// Offset by the distance between the last start of aspect and *this* start of aspect
aspect_base_ += (encoder_->AspectBase(isr_pos_.aspect_index) - encoder_->AspectBase(last_aspect_index));
pos_ = aspect_base_;
mip_index_ = 0;
} else {
// Tombstone both index range and subresource positions to "At end" convention
pos_ = {0, 0};
isr_pos_.aspectMask = 0;
}
} else {
// Note: for the layerCount < full_range.layerCount case, because the generated ranges per mip_level are discontinuous
// we have to do each individual array of ranges
pos_ += encoder_->MipSize();
isr_pos_.SeekMip(isr_pos_.Limits().baseMipLevel + mip_index_);
}
return *this;
}
template <typename AspectTraits>
class AspectParametersImpl : public AspectParameters {
public:
VkImageAspectFlags AspectMask() const override { return AspectTraits::kAspectMask; }
MaskIndexFunc MaskToIndexFunction() const override { return &AspectTraits::MaskIndex; }
uint32_t AspectCount() const override { return AspectTraits::kAspectCount; };
const VkImageAspectFlagBits* AspectBits() const override { return AspectTraits::AspectBits().data(); }
};
struct NullAspectTraits {
static constexpr uint32_t kAspectCount = 0;
static constexpr VkImageAspectFlags kAspectMask = 0;
static uint32_t MaskIndex(VkImageAspectFlags mask) { return 0; };
static const std::array<VkImageAspectFlagBits, kAspectCount>& AspectBits() {
static std::array<VkImageAspectFlagBits, kAspectCount> kAspectBits{};
return kAspectBits;
}
};
struct ColorAspectTraits {
static constexpr uint32_t kAspectCount = 1;
static constexpr VkImageAspectFlags kAspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
static uint32_t MaskIndex(VkImageAspectFlags mask) { return 0; };
static const std::array<VkImageAspectFlagBits, kAspectCount>& AspectBits() {
static std::array<VkImageAspectFlagBits, kAspectCount> kAspectBits{{VK_IMAGE_ASPECT_COLOR_BIT}};
return kAspectBits;
}
};
struct DepthAspectTraits {
static constexpr uint32_t kAspectCount = 1;
static constexpr VkImageAspectFlags kAspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
static uint32_t MaskIndex(VkImageAspectFlags mask) { return 0; };
static const std::array<VkImageAspectFlagBits, kAspectCount>& AspectBits() {
static std::array<VkImageAspectFlagBits, kAspectCount> kAspectBits{{VK_IMAGE_ASPECT_DEPTH_BIT}};
return kAspectBits;
}
};
struct StencilAspectTraits {
static constexpr uint32_t kAspectCount = 1;
static constexpr VkImageAspectFlags kAspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
static uint32_t MaskIndex(VkImageAspectFlags mask) { return 0; };
static const std::array<VkImageAspectFlagBits, kAspectCount>& AspectBits() {
static std::array<VkImageAspectFlagBits, kAspectCount> kAspectBits{{VK_IMAGE_ASPECT_STENCIL_BIT}};
return kAspectBits;
}
};
struct DepthStencilAspectTraits {
// VK_IMAGE_ASPECT_DEPTH_BIT = 0x00000002, >> 1 -> 1 -1 -> 0
// VK_IMAGE_ASPECT_STENCIL_BIT = 0x00000004, >> 1 -> 2 -1 = 1
static constexpr uint32_t kAspectCount = 2;
static constexpr VkImageAspectFlags kAspectMask = (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT);
static uint32_t MaskIndex(VkImageAspectFlags mask) {
uint32_t index = (mask >> 1) - 1;
assert((index == 0) || (index == 1));
return index;
};
static const std::array<VkImageAspectFlagBits, kAspectCount>& AspectBits() {
static std::array<VkImageAspectFlagBits, kAspectCount> kAspectBits{
{VK_IMAGE_ASPECT_DEPTH_BIT, VK_IMAGE_ASPECT_STENCIL_BIT}};
return kAspectBits;
}
};
struct Multiplane2AspectTraits {
// VK_IMAGE_ASPECT_PLANE_0_BIT = 0x00000010, >> 4 - 1 -> 0
// VK_IMAGE_ASPECT_PLANE_1_BIT = 0x00000020, >> 4 - 1 -> 1
static constexpr uint32_t kAspectCount = 2;
static constexpr VkImageAspectFlags kAspectMask = (VK_IMAGE_ASPECT_PLANE_0_BIT | VK_IMAGE_ASPECT_PLANE_1_BIT);
static uint32_t MaskIndex(VkImageAspectFlags mask) {
uint32_t index = (mask >> 4) - 1;
assert((index == 0) || (index == 1));
return index;
};
static const std::array<VkImageAspectFlagBits, kAspectCount>& AspectBits() {
static std::array<VkImageAspectFlagBits, kAspectCount> kAspectBits{
{VK_IMAGE_ASPECT_PLANE_0_BIT, VK_IMAGE_ASPECT_PLANE_1_BIT}};
return kAspectBits;
}
};
struct Multiplane3AspectTraits {
// VK_IMAGE_ASPECT_PLANE_0_BIT = 0x00000010, >> 4 - 1 -> 0
// VK_IMAGE_ASPECT_PLANE_1_BIT = 0x00000020, >> 4 - 1 -> 1
// VK_IMAGE_ASPECT_PLANE_2_BIT = 0x00000040, >> 4 - 1 -> 3
static constexpr uint32_t kAspectCount = 3;
static constexpr VkImageAspectFlags kAspectMask =
(VK_IMAGE_ASPECT_PLANE_0_BIT | VK_IMAGE_ASPECT_PLANE_1_BIT | VK_IMAGE_ASPECT_PLANE_2_BIT);
static uint32_t MaskIndex(VkImageAspectFlags mask) {
uint32_t index = (mask >> 4) - 1;
index = index > 2 ? 2 : index;
assert((index == 0) || (index == 1) || (index == 2));
return index;
};
static const std::array<VkImageAspectFlagBits, kAspectCount>& AspectBits() {
static std::array<VkImageAspectFlagBits, kAspectCount> kAspectBits{
{VK_IMAGE_ASPECT_PLANE_0_BIT, VK_IMAGE_ASPECT_PLANE_1_BIT, VK_IMAGE_ASPECT_PLANE_2_BIT}};
return kAspectBits;
}
};
// Create the encoder parameter suitable to the full range aspect mask (*must* be canonical)
const AspectParameters* AspectParameters::Get(VkImageAspectFlags aspect_mask) {
// We need a persitent instance of each specialist containing only a VTABLE each
static const AspectParametersImpl<ColorAspectTraits> kColorParam;
static const AspectParametersImpl<DepthAspectTraits> kDepthParam;
static const AspectParametersImpl<StencilAspectTraits> kStencilParam;
static const AspectParametersImpl<DepthStencilAspectTraits> kDepthStencilParam;
static const AspectParametersImpl<Multiplane2AspectTraits> kMutliplane2Param;
static const AspectParametersImpl<Multiplane3AspectTraits> kMutliplane3Param;
static const AspectParametersImpl<NullAspectTraits> kNullAspect;
const AspectParameters* param;
switch (aspect_mask) {
case ColorAspectTraits::kAspectMask:
param = &kColorParam;
break;
case DepthAspectTraits::kAspectMask:
param = &kDepthParam;
break;
case StencilAspectTraits::kAspectMask:
param = &kStencilParam;
break;
case DepthStencilAspectTraits::kAspectMask:
param = &kDepthStencilParam;
break;
case Multiplane2AspectTraits::kAspectMask:
param = &kMutliplane2Param;
break;
case Multiplane3AspectTraits::kAspectMask:
param = &kMutliplane3Param;
break;
default:
assert(false);
param = &kNullAspect;
}
return param;
}
}; // namespace subresource_adapter