blob: 77efeed2bce63f724099f0e52e80ea0b0039c310 [file] [log] [blame]
/* Copyright (c) 2019-2022 The Khronos Group Inc.
* Copyright (c) 2019-2022 Valve Corporation
* Copyright (c) 2019-2022 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: John Zulauf <jzulauf@lunarg.com>
* Author: Locke Lin <locke@lunarg.com>
* Author: Jeremy Gebben <jeremyg@lunarg.com>
*/
#include <limits>
#include <vector>
#include <memory>
#include <bitset>
#include "synchronization_validation.h"
#include "sync_utils.h"
static bool SimpleBinding(const BINDABLE &bindable) { return !bindable.sparse && bindable.Binding(); }
static bool SimpleBinding(const IMAGE_STATE &image_state) {
bool simple =
SimpleBinding(static_cast<const BINDABLE &>(image_state)) || image_state.IsSwapchainImage() || image_state.bind_swapchain;
// If it's not simple we must have an encoder.
assert(!simple || image_state.fragment_encoder.get());
return simple;
}
static const ResourceAccessRange kFullRange(std::numeric_limits<VkDeviceSize>::min(), std::numeric_limits<VkDeviceSize>::max());
static const std::array<AccessAddressType, static_cast<size_t>(AccessAddressType::kTypeCount)> kAddressTypes = {
AccessAddressType::kLinear, AccessAddressType::kIdealized};
static constexpr AccessAddressType GetAccessAddressType(const BUFFER_STATE &) { return AccessAddressType::kLinear; };
static AccessAddressType GetAccessAddressType(const IMAGE_STATE &image) {
return SimpleBinding(image) ? AccessContext::ImageAddressType(image) : AccessAddressType::kIdealized;
}
static const char *string_SyncHazardVUID(SyncHazard hazard) {
switch (hazard) {
case SyncHazard::NONE:
return "SYNC-HAZARD-NONE";
break;
case SyncHazard::READ_AFTER_WRITE:
return "SYNC-HAZARD-READ_AFTER_WRITE";
break;
case SyncHazard::WRITE_AFTER_READ:
return "SYNC-HAZARD-WRITE_AFTER_READ";
break;
case SyncHazard::WRITE_AFTER_WRITE:
return "SYNC-HAZARD-WRITE_AFTER_WRITE";
break;
case SyncHazard::READ_RACING_WRITE:
return "SYNC-HAZARD-READ-RACING-WRITE";
break;
case SyncHazard::WRITE_RACING_WRITE:
return "SYNC-HAZARD-WRITE-RACING-WRITE";
break;
case SyncHazard::WRITE_RACING_READ:
return "SYNC-HAZARD-WRITE-RACING-READ";
break;
default:
assert(0);
}
return "SYNC-HAZARD-INVALID";
}
static bool IsHazardVsRead(SyncHazard hazard) {
switch (hazard) {
case SyncHazard::NONE:
return false;
break;
case SyncHazard::READ_AFTER_WRITE:
return false;
break;
case SyncHazard::WRITE_AFTER_READ:
return true;
break;
case SyncHazard::WRITE_AFTER_WRITE:
return false;
break;
case SyncHazard::READ_RACING_WRITE:
return false;
break;
case SyncHazard::WRITE_RACING_WRITE:
return false;
break;
case SyncHazard::WRITE_RACING_READ:
return true;
break;
default:
assert(0);
}
return false;
}
static const char *string_SyncHazard(SyncHazard hazard) {
switch (hazard) {
case SyncHazard::NONE:
return "NONR";
break;
case SyncHazard::READ_AFTER_WRITE:
return "READ_AFTER_WRITE";
break;
case SyncHazard::WRITE_AFTER_READ:
return "WRITE_AFTER_READ";
break;
case SyncHazard::WRITE_AFTER_WRITE:
return "WRITE_AFTER_WRITE";
break;
case SyncHazard::READ_RACING_WRITE:
return "READ_RACING_WRITE";
break;
case SyncHazard::WRITE_RACING_WRITE:
return "WRITE_RACING_WRITE";
break;
case SyncHazard::WRITE_RACING_READ:
return "WRITE_RACING_READ";
break;
default:
assert(0);
}
return "INVALID HAZARD";
}
static const SyncStageAccessInfoType *SyncStageAccessInfoFromMask(SyncStageAccessFlags flags) {
// Return the info for the first bit found
const SyncStageAccessInfoType *info = nullptr;
for (size_t i = 0; i < flags.size(); i++) {
if (flags.test(i)) {
info = &syncStageAccessInfoByStageAccessIndex[i];
break;
}
}
return info;
}
static std::string string_SyncStageAccessFlags(const SyncStageAccessFlags &flags, const char *sep = "|") {
std::string out_str;
if (flags.none()) {
out_str = "0";
} else {
for (size_t i = 0; i < syncStageAccessInfoByStageAccessIndex.size(); i++) {
const auto &info = syncStageAccessInfoByStageAccessIndex[i];
if ((flags & info.stage_access_bit).any()) {
if (!out_str.empty()) {
out_str.append(sep);
}
out_str.append(info.name);
}
}
if (out_str.length() == 0) {
out_str.append("Unhandled SyncStageAccess");
}
}
return out_str;
}
static std::string string_UsageTag(const ResourceUsageRecord &tag) {
std::stringstream out;
out << "command: " << CommandTypeString(tag.command);
out << ", seq_no: " << tag.seq_num;
if (tag.sub_command != 0) {
out << ", subcmd: " << tag.sub_command;
}
return out.str();
}
static std::string string_UsageIndex(SyncStageAccessIndex usage_index) {
const char *stage_access_name = "INVALID_STAGE_ACCESS";
if (usage_index < static_cast<SyncStageAccessIndex>(syncStageAccessInfoByStageAccessIndex.size())) {
stage_access_name = syncStageAccessInfoByStageAccessIndex[usage_index].name;
}
return std::string(stage_access_name);
}
struct NoopBarrierAction {
explicit NoopBarrierAction() {}
void operator()(ResourceAccessState *access) const {}
const bool layout_transition = false;
};
// NOTE: Make sure the proxy doesn't outlive from, as the proxy is pointing directly to access contexts owned by from.
CommandBufferAccessContext::CommandBufferAccessContext(const CommandBufferAccessContext &from, AsProxyContext dummy)
: CommandBufferAccessContext(from.sync_state_) {
// Copy only the needed fields out of from for a temporary, proxy command buffer context
cb_state_ = from.cb_state_;
queue_flags_ = from.queue_flags_;
destroyed_ = from.destroyed_;
access_log_ = from.access_log_; // potentially large, but no choice given tagging lookup.
command_number_ = from.command_number_;
subcommand_number_ = from.subcommand_number_;
reset_count_ = from.reset_count_;
const auto *from_context = from.GetCurrentAccessContext();
assert(from_context);
// Construct a fully resolved single access context out of from
const NoopBarrierAction noop_barrier;
for (AccessAddressType address_type : kAddressTypes) {
from_context->ResolveAccessRange(address_type, kFullRange, noop_barrier,
&cb_access_context_.GetAccessStateMap(address_type), nullptr);
}
// The proxy has flatten the current render pass context (if any), but the async contexts are needed for hazard detection
cb_access_context_.ImportAsyncContexts(*from_context);
events_context_ = from.events_context_;
// We don't want to copy the full render_pass_context_ history just for the proxy.
}
std::string CommandBufferAccessContext::FormatUsage(const ResourceUsageTag tag) const {
std::stringstream out;
assert(tag < access_log_.size());
const auto &record = access_log_[tag];
out << string_UsageTag(record);
if (record.cb_state != cb_state_.get()) {
out << ", command_buffer: " << sync_state_->report_data->FormatHandle(record.cb_state->commandBuffer()).c_str();
if (record.cb_state->Destroyed()) {
out << " (destroyed)";
}
out << ", reset_no: " << std::to_string(record.reset_count);
} else {
out << ", reset_no: " << std::to_string(reset_count_);
}
return out.str();
}
std::string CommandBufferAccessContext::FormatUsage(const ResourceFirstAccess &access) const {
std::stringstream out;
out << "(recorded_usage: " << string_UsageIndex(access.usage_index);
out << ", " << FormatUsage(access.tag) << ")";
return out.str();
}
std::string CommandBufferAccessContext::FormatUsage(const HazardResult &hazard) const {
const auto &tag = hazard.tag;
assert(hazard.usage_index < static_cast<SyncStageAccessIndex>(syncStageAccessInfoByStageAccessIndex.size()));
const auto &usage_info = syncStageAccessInfoByStageAccessIndex[hazard.usage_index];
std::stringstream out;
const auto *info = SyncStageAccessInfoFromMask(hazard.prior_access);
const char *stage_access_name = info ? info->name : "INVALID_STAGE_ACCESS";
out << "(";
if (!hazard.recorded_access.get()) {
// if we have a recorded usage the usage is reported from the recorded contexts point of view
out << "usage: " << usage_info.name << ", ";
}
out << "prior_usage: " << stage_access_name;
if (IsHazardVsRead(hazard.hazard)) {
const auto barriers = hazard.access_state->GetReadBarriers(hazard.prior_access);
out << ", read_barriers: " << string_VkPipelineStageFlags2KHR(barriers);
} else {
SyncStageAccessFlags write_barrier = hazard.access_state->GetWriteBarriers();
out << ", write_barriers: " << string_SyncStageAccessFlags(write_barrier);
}
assert(tag < access_log_.size());
out << ", " << FormatUsage(tag) << ")";
return out.str();
}
// NOTE: the attachement read flag is put *only* in the access scope and not in the exect scope, since the ordering
// rules apply only to this specific access for this stage, and not the stage as a whole. The ordering detection
// also reflects this special case for read hazard detection (using access instead of exec scope)
static constexpr VkPipelineStageFlags2KHR kColorAttachmentExecScope = VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT_KHR;
static const SyncStageAccessFlags kColorAttachmentAccessScope =
SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_READ_BIT |
SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT |
SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE_BIT |
SYNC_FRAGMENT_SHADER_INPUT_ATTACHMENT_READ_BIT; // Note: this is intentionally not in the exec scope
static constexpr VkPipelineStageFlags2KHR kDepthStencilAttachmentExecScope =
VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT_KHR | VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT_KHR;
static const SyncStageAccessFlags kDepthStencilAttachmentAccessScope =
SYNC_EARLY_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | SYNC_EARLY_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
SYNC_FRAGMENT_SHADER_INPUT_ATTACHMENT_READ_BIT; // Note: this is intentionally not in the exec scope
static constexpr VkPipelineStageFlags2KHR kRasterAttachmentExecScope = kDepthStencilAttachmentExecScope | kColorAttachmentExecScope;
static const SyncStageAccessFlags kRasterAttachmentAccessScope = kDepthStencilAttachmentAccessScope | kColorAttachmentAccessScope;
ResourceAccessState::OrderingBarriers ResourceAccessState::kOrderingRules = {
{{VK_PIPELINE_STAGE_2_NONE_KHR, SyncStageAccessFlags()},
{kColorAttachmentExecScope, kColorAttachmentAccessScope},
{kDepthStencilAttachmentExecScope, kDepthStencilAttachmentAccessScope},
{kRasterAttachmentExecScope, kRasterAttachmentAccessScope}}};
// Sometimes we have an internal access conflict, and we using the kCurrentCommandTag to set and detect in temporary/proxy contexts
static const ResourceUsageTag kCurrentCommandTag(ResourceUsageRecord::kMaxIndex);
static VkDeviceSize ResourceBaseAddress(const BINDABLE &bindable) { return bindable.GetFakeBaseAddress(); }
inline VkDeviceSize GetRealWholeSize(VkDeviceSize offset, VkDeviceSize size, VkDeviceSize whole_size) {
if (size == VK_WHOLE_SIZE) {
return (whole_size - offset);
}
return size;
}
static inline VkDeviceSize GetBufferWholeSize(const BUFFER_STATE &buf_state, VkDeviceSize offset, VkDeviceSize size) {
return GetRealWholeSize(offset, size, buf_state.createInfo.size);
}
template <typename T>
static ResourceAccessRange MakeRange(const T &has_offset_and_size) {
return ResourceAccessRange(has_offset_and_size.offset, (has_offset_and_size.offset + has_offset_and_size.size));
}
static ResourceAccessRange MakeRange(VkDeviceSize start, VkDeviceSize size) { return ResourceAccessRange(start, (start + size)); }
static inline ResourceAccessRange MakeRange(const BUFFER_STATE &buffer, VkDeviceSize offset, VkDeviceSize size) {
return MakeRange(offset, GetBufferWholeSize(buffer, offset, size));
}
static inline ResourceAccessRange MakeRange(const BUFFER_VIEW_STATE &buf_view_state) {
return MakeRange(*buf_view_state.buffer_state.get(), buf_view_state.create_info.offset, buf_view_state.create_info.range);
}
// Range generators for to allow event scope filtration to be limited to the top of the resource access traversal pipeline
//
// Note: there is no "begin/end" or reset facility. These are each written as "one time through" generators.
//
// Usage:
// Constructor() -- initializes the generator to point to the begin of the space declared.
// * -- the current range of the generator empty signfies end
// ++ -- advance to the next non-empty range (or end)
// A wrapper for a single range with the same semantics as the actual generators below
template <typename KeyType>
class SingleRangeGenerator {
public:
SingleRangeGenerator(const KeyType &range) : current_(range) {}
const KeyType &operator*() const { return current_; }
const KeyType *operator->() const { return &current_; }
SingleRangeGenerator &operator++() {
current_ = KeyType(); // just one real range
return *this;
}
bool operator==(const SingleRangeGenerator &other) const { return current_ == other.current_; }
private:
SingleRangeGenerator() = default;
const KeyType range_;
KeyType current_;
};
// Generate the ranges that are the intersection of range and the entries in the RangeMap
template <typename RangeMap, typename KeyType = typename RangeMap::key_type>
class MapRangesRangeGenerator {
public:
// Default constructed is safe to dereference for "empty" test, but for no other operation.
MapRangesRangeGenerator() : range_(), map_(nullptr), map_pos_(), current_() {
// Default construction for KeyType *must* be empty range
assert(current_.empty());
}
MapRangesRangeGenerator(const RangeMap &filter, const KeyType &range) : range_(range), map_(&filter), map_pos_(), current_() {
SeekBegin();
}
MapRangesRangeGenerator(const MapRangesRangeGenerator &from) = default;
const KeyType &operator*() const { return current_; }
const KeyType *operator->() const { return &current_; }
MapRangesRangeGenerator &operator++() {
++map_pos_;
UpdateCurrent();
return *this;
}
bool operator==(const MapRangesRangeGenerator &other) const { return current_ == other.current_; }
protected:
void UpdateCurrent() {
if (map_pos_ != map_->cend()) {
current_ = range_ & map_pos_->first;
} else {
current_ = KeyType();
}
}
void SeekBegin() {
map_pos_ = map_->lower_bound(range_);
UpdateCurrent();
}
// Adding this functionality here, to avoid gratuitous Base:: qualifiers in the derived class
// Note: Not exposed in this classes public interface to encourage using a consistent ++/empty generator semantic
template <typename Pred>
MapRangesRangeGenerator &PredicatedIncrement(Pred &pred) {
do {
++map_pos_;
} while (map_pos_ != map_->cend() && map_pos_->first.intersects(range_) && !pred(map_pos_));
UpdateCurrent();
return *this;
}
const KeyType range_;
const RangeMap *map_;
typename RangeMap::const_iterator map_pos_;
KeyType current_;
};
using SingleAccessRangeGenerator = SingleRangeGenerator<ResourceAccessRange>;
using EventSimpleRangeGenerator = MapRangesRangeGenerator<SyncEventState::ScopeMap>;
// Generate the ranges for entries meeting the predicate that are the intersection of range and the entries in the RangeMap
template <typename RangeMap, typename Predicate, typename KeyType = typename RangeMap::key_type>
class PredicatedMapRangesRangeGenerator : public MapRangesRangeGenerator<RangeMap, KeyType> {
public:
using Base = MapRangesRangeGenerator<RangeMap, KeyType>;
// Default constructed is safe to dereference for "empty" test, but for no other operation.
PredicatedMapRangesRangeGenerator() : Base(), pred_() {}
PredicatedMapRangesRangeGenerator(const RangeMap &filter, const KeyType &range, Predicate pred)
: Base(filter, range), pred_(pred) {}
PredicatedMapRangesRangeGenerator(const PredicatedMapRangesRangeGenerator &from) = default;
PredicatedMapRangesRangeGenerator &operator++() {
Base::PredicatedIncrement(pred_);
return *this;
}
protected:
Predicate pred_;
};
// Generate the ranges that are the intersection of the RangeGen ranges and the entries in the FilterMap
// Templated to allow for different Range generators or map sources...
template <typename RangeMap, typename RangeGen, typename KeyType = typename RangeMap::key_type>
class FilteredGeneratorGenerator {
public:
// Default constructed is safe to dereference for "empty" test, but for no other operation.
FilteredGeneratorGenerator() : filter_(nullptr), gen_(), filter_pos_(), current_() {
// Default construction for KeyType *must* be empty range
assert(current_.empty());
}
FilteredGeneratorGenerator(const RangeMap &filter, RangeGen &gen) : filter_(&filter), gen_(gen), filter_pos_(), current_() {
SeekBegin();
}
FilteredGeneratorGenerator(const FilteredGeneratorGenerator &from) = default;
const KeyType &operator*() const { return current_; }
const KeyType *operator->() const { return &current_; }
FilteredGeneratorGenerator &operator++() {
KeyType gen_range = GenRange();
KeyType filter_range = FilterRange();
current_ = KeyType();
while (gen_range.non_empty() && filter_range.non_empty() && current_.empty()) {
if (gen_range.end > filter_range.end) {
// if the generated range is beyond the filter_range, advance the filter range
filter_range = AdvanceFilter();
} else {
gen_range = AdvanceGen();
}
current_ = gen_range & filter_range;
}
return *this;
}
bool operator==(const FilteredGeneratorGenerator &other) const { return current_ == other.current_; }
private:
KeyType AdvanceFilter() {
++filter_pos_;
auto filter_range = FilterRange();
if (filter_range.valid()) {
FastForwardGen(filter_range);
}
return filter_range;
}
KeyType AdvanceGen() {
++gen_;
auto gen_range = GenRange();
if (gen_range.valid()) {
FastForwardFilter(gen_range);
}
return gen_range;
}
KeyType FilterRange() const { return (filter_pos_ != filter_->cend()) ? filter_pos_->first : KeyType(); }
KeyType GenRange() const { return *gen_; }
KeyType FastForwardFilter(const KeyType &range) {
auto filter_range = FilterRange();
int retry_count = 0;
const static int kRetryLimit = 2; // TODO -- determine whether this limit is optimal
while (!filter_range.empty() && (filter_range.end <= range.begin)) {
if (retry_count < kRetryLimit) {
++filter_pos_;
filter_range = FilterRange();
retry_count++;
} else {
// Okay we've tried walking, do a seek.
filter_pos_ = filter_->lower_bound(range);
break;
}
}
return FilterRange();
}
// TODO: Consider adding "seek" (or an absolute bound "get" to range generators to make this walk
// faster.
KeyType FastForwardGen(const KeyType &range) {
auto gen_range = GenRange();
while (!gen_range.empty() && (gen_range.end <= range.begin)) {
++gen_;
gen_range = GenRange();
}
return gen_range;
}
void SeekBegin() {
auto gen_range = GenRange();
if (gen_range.empty()) {
current_ = KeyType();
filter_pos_ = filter_->cend();
} else {
filter_pos_ = filter_->lower_bound(gen_range);
current_ = gen_range & FilterRange();
}
}
const RangeMap *filter_;
RangeGen gen_;
typename RangeMap::const_iterator filter_pos_;
KeyType current_;
};
using EventImageRangeGenerator = FilteredGeneratorGenerator<SyncEventState::ScopeMap, subresource_adapter::ImageRangeGenerator>;
ResourceAccessRange GetBufferRange(VkDeviceSize offset, VkDeviceSize buf_whole_size, uint32_t first_index, uint32_t count,
VkDeviceSize stride) {
VkDeviceSize range_start = offset + first_index * stride;
VkDeviceSize range_size = 0;
if (count == UINT32_MAX) {
range_size = buf_whole_size - range_start;
} else {
range_size = count * stride;
}
return MakeRange(range_start, range_size);
}
SyncStageAccessIndex GetSyncStageAccessIndexsByDescriptorSet(VkDescriptorType descriptor_type, const interface_var &descriptor_data,
VkShaderStageFlagBits stage_flag) {
if (descriptor_type == VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT) {
assert(stage_flag == VK_SHADER_STAGE_FRAGMENT_BIT);
return SYNC_FRAGMENT_SHADER_INPUT_ATTACHMENT_READ;
}
auto stage_access = syncStageAccessMaskByShaderStage.find(stage_flag);
if (stage_access == syncStageAccessMaskByShaderStage.end()) {
assert(0);
}
if (descriptor_type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER || descriptor_type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC) {
return stage_access->second.uniform_read;
}
// If the desriptorSet is writable, we don't need to care SHADER_READ. SHADER_WRITE is enough.
// Because if write hazard happens, read hazard might or might not happen.
// But if write hazard doesn't happen, read hazard is impossible to happen.
if (descriptor_data.is_writable) {
return stage_access->second.storage_write;
}
// TODO: sampled_read
return stage_access->second.storage_read;
}
bool IsImageLayoutDepthWritable(VkImageLayout image_layout) {
return (image_layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
image_layout == VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL ||
image_layout == VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL)
? true
: false;
}
bool IsImageLayoutStencilWritable(VkImageLayout image_layout) {
return (image_layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
image_layout == VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL ||
image_layout == VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL)
? true
: false;
}
// Class AccessContext stores the state of accesses specific to a Command, Subpass, or Queue
template <typename Action>
static void ApplyOverImageRange(const IMAGE_STATE &image_state, const VkImageSubresourceRange &subresource_range_arg,
Action &action) {
// At this point the "apply over range" logic only supports a single memory binding
if (!SimpleBinding(image_state)) return;
auto subresource_range = NormalizeSubresourceRange(image_state.createInfo, subresource_range_arg);
const auto base_address = ResourceBaseAddress(image_state);
subresource_adapter::ImageRangeGenerator range_gen(*image_state.fragment_encoder.get(), subresource_range, {0, 0, 0},
image_state.createInfo.extent, base_address);
for (; range_gen->non_empty(); ++range_gen) {
action(*range_gen);
}
}
// Tranverse the attachment resolves for this a specific subpass, and do action() to them.
// Used by both validation and record operations
//
// The signature for Action() reflect the needs of both uses.
template <typename Action>
void ResolveOperation(Action &action, const RENDER_PASS_STATE &rp_state, const AttachmentViewGenVector &attachment_views,
uint32_t subpass) {
const auto &rp_ci = rp_state.createInfo;
const auto *attachment_ci = rp_ci.pAttachments;
const auto &subpass_ci = rp_ci.pSubpasses[subpass];
// Color resolves -- require an inuse color attachment and a matching inuse resolve attachment
const auto *color_attachments = subpass_ci.pColorAttachments;
const auto *color_resolve = subpass_ci.pResolveAttachments;
if (color_resolve && color_attachments) {
for (uint32_t i = 0; i < subpass_ci.colorAttachmentCount; i++) {
const auto &color_attach = color_attachments[i].attachment;
const auto &resolve_attach = subpass_ci.pResolveAttachments[i].attachment;
if ((color_attach != VK_ATTACHMENT_UNUSED) && (resolve_attach != VK_ATTACHMENT_UNUSED)) {
action("color", "resolve read", color_attach, resolve_attach, attachment_views[color_attach],
AttachmentViewGen::Gen::kRenderArea, SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_READ,
SyncOrdering::kColorAttachment);
action("color", "resolve write", color_attach, resolve_attach, attachment_views[resolve_attach],
AttachmentViewGen::Gen::kRenderArea, SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE,
SyncOrdering::kColorAttachment);
}
}
}
// Depth stencil resolve only if the extension is present
const auto ds_resolve = LvlFindInChain<VkSubpassDescriptionDepthStencilResolve>(subpass_ci.pNext);
if (ds_resolve && ds_resolve->pDepthStencilResolveAttachment &&
(ds_resolve->pDepthStencilResolveAttachment->attachment != VK_ATTACHMENT_UNUSED) && subpass_ci.pDepthStencilAttachment &&
(subpass_ci.pDepthStencilAttachment->attachment != VK_ATTACHMENT_UNUSED)) {
const auto src_at = subpass_ci.pDepthStencilAttachment->attachment;
const auto src_ci = attachment_ci[src_at];
// The formats are required to match so we can pick either
const bool resolve_depth = (ds_resolve->depthResolveMode != VK_RESOLVE_MODE_NONE) && FormatHasDepth(src_ci.format);
const bool resolve_stencil = (ds_resolve->stencilResolveMode != VK_RESOLVE_MODE_NONE) && FormatHasStencil(src_ci.format);
const auto dst_at = ds_resolve->pDepthStencilResolveAttachment->attachment;
// Figure out which aspects are actually touched during resolve operations
const char *aspect_string = nullptr;
AttachmentViewGen::Gen gen_type = AttachmentViewGen::Gen::kRenderArea;
if (resolve_depth && resolve_stencil) {
aspect_string = "depth/stencil";
} else if (resolve_depth) {
// Validate depth only
gen_type = AttachmentViewGen::Gen::kDepthOnlyRenderArea;
aspect_string = "depth";
} else if (resolve_stencil) {
// Validate all stencil only
gen_type = AttachmentViewGen::Gen::kStencilOnlyRenderArea;
aspect_string = "stencil";
}
if (aspect_string) {
action(aspect_string, "resolve read", src_at, dst_at, attachment_views[src_at], gen_type,
SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_READ, SyncOrdering::kRaster);
action(aspect_string, "resolve write", src_at, dst_at, attachment_views[dst_at], gen_type,
SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE, SyncOrdering::kRaster);
}
}
}
// Action for validating resolve operations
class ValidateResolveAction {
public:
ValidateResolveAction(VkRenderPass render_pass, uint32_t subpass, const AccessContext &context,
const CommandExecutionContext &ex_context, const char *func_name)
: render_pass_(render_pass),
subpass_(subpass),
context_(context),
ex_context_(ex_context),
func_name_(func_name),
skip_(false) {}
void operator()(const char *aspect_name, const char *attachment_name, uint32_t src_at, uint32_t dst_at,
const AttachmentViewGen &view_gen, AttachmentViewGen::Gen gen_type, SyncStageAccessIndex current_usage,
SyncOrdering ordering_rule) {
HazardResult hazard;
hazard = context_.DetectHazard(view_gen, gen_type, current_usage, ordering_rule);
if (hazard.hazard) {
skip_ |=
ex_context_.GetSyncState().LogError(render_pass_, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s in subpass %" PRIu32 "during %s %s, from attachment %" PRIu32
" to resolve attachment %" PRIu32 ". Access info %s.",
func_name_, string_SyncHazard(hazard.hazard), subpass_, aspect_name,
attachment_name, src_at, dst_at, ex_context_.FormatUsage(hazard).c_str());
}
}
// Providing a mechanism for the constructing caller to get the result of the validation
bool GetSkip() const { return skip_; }
private:
VkRenderPass render_pass_;
const uint32_t subpass_;
const AccessContext &context_;
const CommandExecutionContext &ex_context_;
const char *func_name_;
bool skip_;
};
// Update action for resolve operations
class UpdateStateResolveAction {
public:
UpdateStateResolveAction(AccessContext &context, ResourceUsageTag tag) : context_(context), tag_(tag) {}
void operator()(const char *, const char *, uint32_t, uint32_t, const AttachmentViewGen &view_gen,
AttachmentViewGen::Gen gen_type, SyncStageAccessIndex current_usage, SyncOrdering ordering_rule) {
// Ignores validation only arguments...
context_.UpdateAccessState(view_gen, gen_type, current_usage, ordering_rule, tag_);
}
private:
AccessContext &context_;
const ResourceUsageTag tag_;
};
void HazardResult::Set(const ResourceAccessState *access_state_, SyncStageAccessIndex usage_index_, SyncHazard hazard_,
const SyncStageAccessFlags &prior_, const ResourceUsageTag tag_) {
access_state = layer_data::make_unique<const ResourceAccessState>(*access_state_);
usage_index = usage_index_;
hazard = hazard_;
prior_access = prior_;
tag = tag_;
}
void HazardResult::AddRecordedAccess(const ResourceFirstAccess &first_access) {
recorded_access = layer_data::make_unique<const ResourceFirstAccess>(first_access);
}
AccessContext::AccessContext(uint32_t subpass, VkQueueFlags queue_flags,
const std::vector<SubpassDependencyGraphNode> &dependencies,
const std::vector<AccessContext> &contexts, const AccessContext *external_context) {
Reset();
const auto &subpass_dep = dependencies[subpass];
bool has_barrier_from_external = subpass_dep.barrier_from_external.size() > 0U;
prev_.reserve(subpass_dep.prev.size() + (has_barrier_from_external ? 1U : 0U));
prev_by_subpass_.resize(subpass, nullptr); // Can't be more prevs than the subpass we're on
for (const auto &prev_dep : subpass_dep.prev) {
const auto prev_pass = prev_dep.first->pass;
const auto &prev_barriers = prev_dep.second;
assert(prev_dep.second.size());
prev_.emplace_back(&contexts[prev_pass], queue_flags, prev_barriers);
prev_by_subpass_[prev_pass] = &prev_.back();
}
async_.reserve(subpass_dep.async.size());
for (const auto async_subpass : subpass_dep.async) {
async_.emplace_back(&contexts[async_subpass]);
}
if (has_barrier_from_external) {
// Store the barrier from external with the reat, but save pointer for "by subpass" lookups.
prev_.emplace_back(external_context, queue_flags, subpass_dep.barrier_from_external);
src_external_ = &prev_.back();
}
if (subpass_dep.barrier_to_external.size()) {
dst_external_ = TrackBack(this, queue_flags, subpass_dep.barrier_to_external);
}
}
template <typename Detector>
HazardResult AccessContext::DetectPreviousHazard(AccessAddressType type, const Detector &detector,
const ResourceAccessRange &range) const {
ResourceAccessRangeMap descent_map;
ResolvePreviousAccess(type, range, &descent_map, nullptr);
HazardResult hazard;
for (auto prev = descent_map.begin(); prev != descent_map.end() && !hazard.hazard; ++prev) {
hazard = detector.Detect(prev);
}
return hazard;
}
template <typename Action>
void AccessContext::ForAll(Action &&action) {
for (const auto address_type : kAddressTypes) {
auto &accesses = GetAccessStateMap(address_type);
for (const auto &access : accesses) {
action(address_type, access);
}
}
}
// A recursive range walker for hazard detection, first for the current context and the (DetectHazardRecur) to walk
// the DAG of the contexts (for example subpasses)
template <typename Detector>
HazardResult AccessContext::DetectHazard(AccessAddressType type, const Detector &detector, const ResourceAccessRange &range,
DetectOptions options) const {
HazardResult hazard;
if (static_cast<uint32_t>(options) & DetectOptions::kDetectAsync) {
// Async checks don't require recursive lookups, as the async lists are exhaustive for the top-level context
// so we'll check these first
for (const auto &async_context : async_) {
hazard = async_context->DetectAsyncHazard(type, detector, range);
if (hazard.hazard) return hazard;
}
}
const bool detect_prev = (static_cast<uint32_t>(options) & DetectOptions::kDetectPrevious) != 0;
const auto &accesses = GetAccessStateMap(type);
const auto the_end = accesses.cend(); // End is not invalidated
auto pos = accesses.lower_bound(range);
ResourceAccessRange gap = {range.begin, range.begin};
while (pos != the_end && pos->first.begin < range.end) {
// Cover any leading gap, or gap between entries
if (detect_prev) {
// TODO: After profiling we may want to change the descent logic such that we don't recur per gap...
// Cover any leading gap, or gap between entries
gap.end = pos->first.begin; // We know this begin is < range.end
if (gap.non_empty()) {
// Recur on all gaps
hazard = DetectPreviousHazard(type, detector, gap);
if (hazard.hazard) return hazard;
}
// Set up for the next gap. If pos..end is >= range.end, loop will exit, and trailing gap will be empty
gap.begin = pos->first.end;
}
hazard = detector.Detect(pos);
if (hazard.hazard) return hazard;
++pos;
}
if (detect_prev) {
// Detect in the trailing empty as needed
gap.end = range.end;
if (gap.non_empty()) {
hazard = DetectPreviousHazard(type, detector, gap);
}
}
return hazard;
}
// A non recursive range walker for the asynchronous contexts (those we have no barriers with)
template <typename Detector>
HazardResult AccessContext::DetectAsyncHazard(AccessAddressType type, const Detector &detector,
const ResourceAccessRange &range) const {
auto &accesses = GetAccessStateMap(type);
auto pos = accesses.lower_bound(range);
const auto the_end = accesses.end();
HazardResult hazard;
while (pos != the_end && pos->first.begin < range.end) {
hazard = detector.DetectAsync(pos, start_tag_);
if (hazard.hazard) break;
++pos;
}
return hazard;
}
struct ApplySubpassTransitionBarriersAction {
explicit ApplySubpassTransitionBarriersAction(const std::vector<SyncBarrier> &barriers_) : barriers(barriers_) {}
void operator()(ResourceAccessState *access) const {
assert(access);
access->ApplyBarriers(barriers, true);
}
const std::vector<SyncBarrier> &barriers;
};
struct ApplyTrackbackStackAction {
explicit ApplyTrackbackStackAction(const std::vector<SyncBarrier> &barriers_,
const ResourceAccessStateFunction *previous_barrier_ = nullptr)
: barriers(barriers_), previous_barrier(previous_barrier_) {}
void operator()(ResourceAccessState *access) const {
assert(access);
assert(!access->HasPendingState());
access->ApplyBarriers(barriers, false);
access->ApplyPendingBarriers(kCurrentCommandTag);
if (previous_barrier) {
assert(bool(*previous_barrier));
(*previous_barrier)(access);
}
}
const std::vector<SyncBarrier> &barriers;
const ResourceAccessStateFunction *previous_barrier;
};
// Splits a single map entry into piece matching the entries in [first, last) the total range over [first, last) must be
// contained with entry. Entry must be an iterator pointing to dest, first and last must be iterators pointing to a
// *different* map from dest.
// Returns the position past the last resolved range -- the entry covering the remainder of entry->first not included in the
// range [first, last)
template <typename BarrierAction>
static void ResolveMapToEntry(ResourceAccessRangeMap *dest, ResourceAccessRangeMap::iterator entry,
ResourceAccessRangeMap::const_iterator first, ResourceAccessRangeMap::const_iterator last,
BarrierAction &barrier_action) {
auto at = entry;
for (auto pos = first; pos != last; ++pos) {
// Every member of the input iterator range must fit within the remaining portion of entry
assert(at->first.includes(pos->first));
assert(at != dest->end());
// Trim up at to the same size as the entry to resolve
at = sparse_container::split(at, *dest, pos->first);
auto access = pos->second; // intentional copy
barrier_action(&access);
at->second.Resolve(access);
++at; // Go to the remaining unused section of entry
}
}
static SyncBarrier MergeBarriers(const std::vector<SyncBarrier> &barriers) {
SyncBarrier merged = {};
for (const auto &barrier : barriers) {
merged.Merge(barrier);
}
return merged;
}
template <typename BarrierAction>
void AccessContext::ResolveAccessRange(AccessAddressType type, const ResourceAccessRange &range, BarrierAction &barrier_action,
ResourceAccessRangeMap *resolve_map, const ResourceAccessState *infill_state,
bool recur_to_infill) const {
if (!range.non_empty()) return;
ResourceRangeMergeIterator current(*resolve_map, GetAccessStateMap(type), range.begin);
while (current->range.non_empty() && range.includes(current->range.begin)) {
const auto current_range = current->range & range;
if (current->pos_B->valid) {
const auto &src_pos = current->pos_B->lower_bound;
auto access = src_pos->second; // intentional copy
barrier_action(&access);
if (current->pos_A->valid) {
const auto trimmed = sparse_container::split(current->pos_A->lower_bound, *resolve_map, current_range);
trimmed->second.Resolve(access);
current.invalidate_A(trimmed);
} else {
auto inserted = resolve_map->insert(current->pos_A->lower_bound, std::make_pair(current_range, access));
current.invalidate_A(inserted); // Update the parallel iterator to point at the insert segment
}
} else {
// we have to descend to fill this gap
if (recur_to_infill) {
ResourceAccessRange recurrence_range = current_range;
// The current context is empty for the current range, so recur to fill the gap.
// Since we will be recurring back up the DAG, expand the gap descent to cover the full range for which B
// is not valid, to minimize that recurrence
if (current->pos_B.at_end()) {
// Do the remainder here....
recurrence_range.end = range.end;
} else {
// Recur only over the range until B becomes valid (within the limits of range).
recurrence_range.end = std::min(range.end, current->pos_B->lower_bound->first.begin);
}
ResolvePreviousAccessStack(type, recurrence_range, resolve_map, infill_state, barrier_action);
// Given that there could be gaps we need to seek carefully to not repeatedly search the same gaps in the next
// iterator of the outer while.
// Set the parallel iterator to the end of this range s.t. ++ will move us to the next range whether or
// not the end of the range is a gap. For the seek to work, first we need to warn the parallel iterator
// we stepped on the dest map
const auto seek_to = recurrence_range.end - 1; // The subtraction is safe as range can't be empty (loop condition)
current.invalidate_A(); // Changes current->range
current.seek(seek_to);
} else if (!current->pos_A->valid && infill_state) {
// If we didn't find anything in the current range, and we aren't reccuring... we infill if required
auto inserted = resolve_map->insert(current->pos_A->lower_bound, std::make_pair(current->range, *infill_state));
current.invalidate_A(inserted); // Update the parallel iterator to point at the correct segment after insert
}
}
++current;
}
// Infill if range goes passed both the current and resolve map prior contents
if (recur_to_infill && (current->range.end < range.end)) {
ResourceAccessRange trailing_fill_range = {current->range.end, range.end};
ResolvePreviousAccessStack<BarrierAction>(type, trailing_fill_range, resolve_map, infill_state, barrier_action);
}
}
template <typename BarrierAction>
void AccessContext::ResolvePreviousAccessStack(AccessAddressType type, const ResourceAccessRange &range,
ResourceAccessRangeMap *descent_map, const ResourceAccessState *infill_state,
const BarrierAction &previous_barrier) const {
ResourceAccessStateFunction stacked_barrier(std::ref(previous_barrier));
ResolvePreviousAccess(type, range, descent_map, infill_state, &stacked_barrier);
}
void AccessContext::ResolvePreviousAccess(AccessAddressType type, const ResourceAccessRange &range,
ResourceAccessRangeMap *descent_map, const ResourceAccessState *infill_state,
const ResourceAccessStateFunction *previous_barrier) const {
if (prev_.size() == 0) {
if (range.non_empty() && infill_state) {
// Fill the empty poritions of descent_map with the default_state with the barrier function applied (iff present)
ResourceAccessState state_copy;
if (previous_barrier) {
assert(bool(*previous_barrier));
state_copy = *infill_state;
(*previous_barrier)(&state_copy);
infill_state = &state_copy;
}
sparse_container::update_range_value(*descent_map, range, *infill_state,
sparse_container::value_precedence::prefer_dest);
}
} else {
// Look for something to fill the gap further along.
for (const auto &prev_dep : prev_) {
const ApplyTrackbackStackAction barrier_action(prev_dep.barriers, previous_barrier);
prev_dep.context->ResolveAccessRange(type, range, barrier_action, descent_map, infill_state);
}
}
}
// Non-lazy import of all accesses, WaitEvents needs this.
void AccessContext::ResolvePreviousAccesses() {
ResourceAccessState default_state;
if (!prev_.size()) return; // If no previous contexts, nothing to do
for (const auto address_type : kAddressTypes) {
ResolvePreviousAccess(address_type, kFullRange, &GetAccessStateMap(address_type), &default_state);
}
}
AccessAddressType AccessContext::ImageAddressType(const IMAGE_STATE &image) {
return (image.fragment_encoder->IsLinearImage()) ? AccessAddressType::kLinear : AccessAddressType::kIdealized;
}
static SyncStageAccessIndex ColorLoadUsage(VkAttachmentLoadOp load_op) {
const auto stage_access = (load_op == VK_ATTACHMENT_LOAD_OP_NONE_EXT)
? SYNC_ACCESS_INDEX_NONE
: ((load_op == VK_ATTACHMENT_LOAD_OP_LOAD) ? SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_READ
: SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE);
return stage_access;
}
static SyncStageAccessIndex DepthStencilLoadUsage(VkAttachmentLoadOp load_op) {
const auto stage_access =
(load_op == VK_ATTACHMENT_LOAD_OP_NONE_EXT)
? SYNC_ACCESS_INDEX_NONE
: ((load_op == VK_ATTACHMENT_LOAD_OP_LOAD) ? SYNC_EARLY_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_READ
: SYNC_EARLY_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE);
return stage_access;
}
// Caller must manage returned pointer
static AccessContext *CreateStoreResolveProxyContext(const AccessContext &context, const RENDER_PASS_STATE &rp_state,
uint32_t subpass, const AttachmentViewGenVector &attachment_views) {
auto *proxy = new AccessContext(context);
proxy->UpdateAttachmentResolveAccess(rp_state, attachment_views, subpass, kCurrentCommandTag);
proxy->UpdateAttachmentStoreAccess(rp_state, attachment_views, subpass, kCurrentCommandTag);
return proxy;
}
template <typename BarrierAction>
void AccessContext::ResolveAccessRange(const AttachmentViewGen &view_gen, AttachmentViewGen::Gen gen_type,
BarrierAction &barrier_action, ResourceAccessRangeMap *descent_map,
const ResourceAccessState *infill_state) const {
const auto *attachment_gen = view_gen.GetRangeGen(gen_type);
if (!attachment_gen) return;
subresource_adapter::ImageRangeGenerator range_gen(*attachment_gen);
const AccessAddressType address_type = view_gen.GetAddressType();
for (; range_gen->non_empty(); ++range_gen) {
ResolveAccessRange(address_type, *range_gen, barrier_action, descent_map, infill_state);
}
}
// Layout transitions are handled as if the were occuring in the beginning of the next subpass
bool AccessContext::ValidateLayoutTransitions(const CommandExecutionContext &ex_context, const RENDER_PASS_STATE &rp_state,
const VkRect2D &render_area, uint32_t subpass,
const AttachmentViewGenVector &attachment_views, const char *func_name) const {
bool skip = false;
// As validation methods are const and precede the record/update phase, for any tranistions from the immediately
// previous subpass, we have to validate them against a copy of the AccessContext, with resolve operations applied, as
// those affects have not been recorded yet.
//
// Note: we could be more efficient by tracking whether or not we actually *have* any changes (e.g. attachment resolve)
// to apply and only copy then, if this proves a hot spot.
std::unique_ptr<AccessContext> proxy_for_prev;
TrackBack proxy_track_back;
const auto &transitions = rp_state.subpass_transitions[subpass];
for (const auto &transition : transitions) {
const bool prev_needs_proxy = transition.prev_pass != VK_SUBPASS_EXTERNAL && (transition.prev_pass + 1 == subpass);
const auto *track_back = GetTrackBackFromSubpass(transition.prev_pass);
assert(track_back);
if (prev_needs_proxy) {
if (!proxy_for_prev) {
proxy_for_prev.reset(
CreateStoreResolveProxyContext(*track_back->context, rp_state, transition.prev_pass, attachment_views));
proxy_track_back = *track_back;
proxy_track_back.context = proxy_for_prev.get();
}
track_back = &proxy_track_back;
}
auto hazard = DetectSubpassTransitionHazard(*track_back, attachment_views[transition.attachment]);
if (hazard.hazard) {
skip |= ex_context.GetSyncState().LogError(rp_state.renderPass(), string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s in subpass %" PRIu32 " for attachment %" PRIu32
" image layout transition (old_layout: %s, new_layout: %s). Access info %s.",
func_name, string_SyncHazard(hazard.hazard), subpass, transition.attachment,
string_VkImageLayout(transition.old_layout),
string_VkImageLayout(transition.new_layout),
ex_context.FormatUsage(hazard).c_str());
}
}
return skip;
}
bool AccessContext::ValidateLoadOperation(const CommandExecutionContext &ex_context, const RENDER_PASS_STATE &rp_state,
const VkRect2D &render_area, uint32_t subpass,
const AttachmentViewGenVector &attachment_views, const char *func_name) const {
bool skip = false;
const auto *attachment_ci = rp_state.createInfo.pAttachments;
for (uint32_t i = 0; i < rp_state.createInfo.attachmentCount; i++) {
if (subpass == rp_state.attachment_first_subpass[i]) {
const auto &view_gen = attachment_views[i];
if (!view_gen.IsValid()) continue;
const auto &ci = attachment_ci[i];
// Need check in the following way
// 1) if the usage bit isn't in the dest_access_scope, and there is layout traniition for initial use, report hazard
// vs. transition
// 2) if there isn't a layout transition, we need to look at the external context with a "detect hazard" operation
// for each aspect loaded.
const bool has_depth = FormatHasDepth(ci.format);
const bool has_stencil = FormatHasStencil(ci.format);
const bool is_color = !(has_depth || has_stencil);
const SyncStageAccessIndex load_index = has_depth ? DepthStencilLoadUsage(ci.loadOp) : ColorLoadUsage(ci.loadOp);
const SyncStageAccessIndex stencil_load_index = has_stencil ? DepthStencilLoadUsage(ci.stencilLoadOp) : load_index;
HazardResult hazard;
const char *aspect = nullptr;
bool checked_stencil = false;
if (is_color && (load_index != SYNC_ACCESS_INDEX_NONE)) {
hazard = DetectHazard(view_gen, AttachmentViewGen::Gen::kRenderArea, load_index, SyncOrdering::kColorAttachment);
aspect = "color";
} else {
if (has_depth && (load_index != SYNC_ACCESS_INDEX_NONE)) {
hazard = DetectHazard(view_gen, AttachmentViewGen::Gen::kDepthOnlyRenderArea, load_index,
SyncOrdering::kDepthStencilAttachment);
aspect = "depth";
}
if (!hazard.hazard && has_stencil && (stencil_load_index != SYNC_ACCESS_INDEX_NONE)) {
hazard = DetectHazard(view_gen, AttachmentViewGen::Gen::kStencilOnlyRenderArea, stencil_load_index,
SyncOrdering::kDepthStencilAttachment);
aspect = "stencil";
checked_stencil = true;
}
}
if (hazard.hazard) {
auto load_op_string = string_VkAttachmentLoadOp(checked_stencil ? ci.stencilLoadOp : ci.loadOp);
const auto &sync_state = ex_context.GetSyncState();
if (hazard.tag == kCurrentCommandTag) {
// Hazard vs. ILT
skip |= sync_state.LogError(rp_state.renderPass(), string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s vs. layout transition in subpass %" PRIu32 " for attachment %" PRIu32
" aspect %s during load with loadOp %s.",
func_name, string_SyncHazard(hazard.hazard), subpass, i, aspect, load_op_string);
} else {
skip |= sync_state.LogError(rp_state.renderPass(), string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s in subpass %" PRIu32 " for attachment %" PRIu32
" aspect %s during load with loadOp %s. Access info %s.",
func_name, string_SyncHazard(hazard.hazard), subpass, i, aspect, load_op_string,
ex_context.FormatUsage(hazard).c_str());
}
}
}
}
return skip;
}
// Store operation validation can ignore resolve (before it) and layout tranistions after it. The first is ignored
// because of the ordering guarantees w.r.t. sample access and that the resolve validation hasn't altered the state, because
// store is part of the same Next/End operation.
// The latter is handled in layout transistion validation directly
bool AccessContext::ValidateStoreOperation(const CommandExecutionContext &ex_context, const RENDER_PASS_STATE &rp_state,
const VkRect2D &render_area, uint32_t subpass,
const AttachmentViewGenVector &attachment_views, const char *func_name) const {
bool skip = false;
const auto *attachment_ci = rp_state.createInfo.pAttachments;
for (uint32_t i = 0; i < rp_state.createInfo.attachmentCount; i++) {
if (subpass == rp_state.attachment_last_subpass[i]) {
const AttachmentViewGen &view_gen = attachment_views[i];
if (!view_gen.IsValid()) continue;
const auto &ci = attachment_ci[i];
// The spec states that "don't care" is an operation with VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
// so we assume that an implementation is *free* to write in that case, meaning that for correctness
// sake, we treat DONT_CARE as writing.
const bool has_depth = FormatHasDepth(ci.format);
const bool has_stencil = FormatHasStencil(ci.format);
const bool is_color = !(has_depth || has_stencil);
const bool store_op_stores = ci.storeOp != VK_ATTACHMENT_STORE_OP_NONE_EXT;
if (!has_stencil && !store_op_stores) continue;
HazardResult hazard;
const char *aspect = nullptr;
bool checked_stencil = false;
if (is_color) {
hazard = DetectHazard(view_gen, AttachmentViewGen::Gen::kRenderArea,
SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE, SyncOrdering::kRaster);
aspect = "color";
} else {
const bool stencil_op_stores = ci.stencilStoreOp != VK_ATTACHMENT_STORE_OP_NONE_EXT;
if (has_depth && store_op_stores) {
hazard = DetectHazard(view_gen, AttachmentViewGen::Gen::kDepthOnlyRenderArea,
SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE, SyncOrdering::kRaster);
aspect = "depth";
}
if (!hazard.hazard && has_stencil && stencil_op_stores) {
hazard = DetectHazard(view_gen, AttachmentViewGen::Gen::kStencilOnlyRenderArea,
SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE, SyncOrdering::kRaster);
aspect = "stencil";
checked_stencil = true;
}
}
if (hazard.hazard) {
const char *const op_type_string = checked_stencil ? "stencilStoreOp" : "storeOp";
const char *const store_op_string = string_VkAttachmentStoreOp(checked_stencil ? ci.stencilStoreOp : ci.storeOp);
skip |= ex_context.GetSyncState().LogError(rp_state.renderPass(), string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s in subpass %" PRIu32 " for attachment %" PRIu32
" %s aspect during store with %s %s. Access info %s",
func_name, string_SyncHazard(hazard.hazard), subpass, i, aspect,
op_type_string, store_op_string, ex_context.FormatUsage(hazard).c_str());
}
}
}
return skip;
}
bool AccessContext::ValidateResolveOperations(const CommandExecutionContext &ex_context, const RENDER_PASS_STATE &rp_state,
const VkRect2D &render_area, const AttachmentViewGenVector &attachment_views,
const char *func_name, uint32_t subpass) const {
ValidateResolveAction validate_action(rp_state.renderPass(), subpass, *this, ex_context, func_name);
ResolveOperation(validate_action, rp_state, attachment_views, subpass);
return validate_action.GetSkip();
}
class HazardDetector {
SyncStageAccessIndex usage_index_;
public:
HazardResult Detect(const ResourceAccessRangeMap::const_iterator &pos) const { return pos->second.DetectHazard(usage_index_); }
HazardResult DetectAsync(const ResourceAccessRangeMap::const_iterator &pos, ResourceUsageTag start_tag) const {
return pos->second.DetectAsyncHazard(usage_index_, start_tag);
}
explicit HazardDetector(SyncStageAccessIndex usage) : usage_index_(usage) {}
};
class HazardDetectorWithOrdering {
const SyncStageAccessIndex usage_index_;
const SyncOrdering ordering_rule_;
public:
HazardResult Detect(const ResourceAccessRangeMap::const_iterator &pos) const {
return pos->second.DetectHazard(usage_index_, ordering_rule_);
}
HazardResult DetectAsync(const ResourceAccessRangeMap::const_iterator &pos, ResourceUsageTag start_tag) const {
return pos->second.DetectAsyncHazard(usage_index_, start_tag);
}
HazardDetectorWithOrdering(SyncStageAccessIndex usage, SyncOrdering ordering) : usage_index_(usage), ordering_rule_(ordering) {}
};
HazardResult AccessContext::DetectHazard(const BUFFER_STATE &buffer, SyncStageAccessIndex usage_index,
const ResourceAccessRange &range) const {
if (!SimpleBinding(buffer)) return HazardResult();
const auto base_address = ResourceBaseAddress(buffer);
HazardDetector detector(usage_index);
return DetectHazard(AccessAddressType::kLinear, detector, (range + base_address), DetectOptions::kDetectAll);
}
template <typename Detector>
HazardResult AccessContext::DetectHazard(Detector &detector, const AttachmentViewGen &view_gen, AttachmentViewGen::Gen gen_type,
DetectOptions options) const {
const auto *attachment_gen = view_gen.GetRangeGen(gen_type);
if (!attachment_gen) return HazardResult();
subresource_adapter::ImageRangeGenerator range_gen(*attachment_gen);
const auto address_type = view_gen.GetAddressType();
for (; range_gen->non_empty(); ++range_gen) {
HazardResult hazard = DetectHazard(address_type, detector, *range_gen, options);
if (hazard.hazard) return hazard;
}
return HazardResult();
}
template <typename Detector>
HazardResult AccessContext::DetectHazard(Detector &detector, const IMAGE_STATE &image,
const VkImageSubresourceRange &subresource_range, const VkOffset3D &offset,
const VkExtent3D &extent, DetectOptions options) const {
if (!SimpleBinding(image)) return HazardResult();
const auto base_address = ResourceBaseAddress(image);
subresource_adapter::ImageRangeGenerator range_gen(*image.fragment_encoder.get(), subresource_range, offset, extent,
base_address);
const auto address_type = ImageAddressType(image);
for (; range_gen->non_empty(); ++range_gen) {
HazardResult hazard = DetectHazard(address_type, detector, *range_gen, options);
if (hazard.hazard) return hazard;
}
return HazardResult();
}
template <typename Detector>
HazardResult AccessContext::DetectHazard(Detector &detector, const IMAGE_STATE &image,
const VkImageSubresourceRange &subresource_range, DetectOptions options) const {
if (!SimpleBinding(image)) return HazardResult();
const auto base_address = ResourceBaseAddress(image);
subresource_adapter::ImageRangeGenerator range_gen(*image.fragment_encoder.get(), subresource_range, base_address);
const auto address_type = ImageAddressType(image);
for (; range_gen->non_empty(); ++range_gen) {
HazardResult hazard = DetectHazard(address_type, detector, *range_gen, options);
if (hazard.hazard) return hazard;
}
return HazardResult();
}
HazardResult AccessContext::DetectHazard(const IMAGE_STATE &image, SyncStageAccessIndex current_usage,
const VkImageSubresourceLayers &subresource, const VkOffset3D &offset,
const VkExtent3D &extent) const {
VkImageSubresourceRange subresource_range = {subresource.aspectMask, subresource.mipLevel, 1, subresource.baseArrayLayer,
subresource.layerCount};
HazardDetector detector(current_usage);
return DetectHazard(detector, image, subresource_range, offset, extent, DetectOptions::kDetectAll);
}
HazardResult AccessContext::DetectHazard(const IMAGE_STATE &image, SyncStageAccessIndex current_usage,
const VkImageSubresourceRange &subresource_range) const {
HazardDetector detector(current_usage);
return DetectHazard(detector, image, subresource_range, DetectOptions::kDetectAll);
}
HazardResult AccessContext::DetectHazard(const AttachmentViewGen &view_gen, AttachmentViewGen::Gen gen_type,
SyncStageAccessIndex current_usage, SyncOrdering ordering_rule) const {
HazardDetectorWithOrdering detector(current_usage, ordering_rule);
return DetectHazard(detector, view_gen, gen_type, DetectOptions::kDetectAll);
}
HazardResult AccessContext::DetectHazard(const IMAGE_STATE &image, SyncStageAccessIndex current_usage,
const VkImageSubresourceRange &subresource_range, SyncOrdering ordering_rule,
const VkOffset3D &offset, const VkExtent3D &extent) const {
HazardDetectorWithOrdering detector(current_usage, ordering_rule);
return DetectHazard(detector, image, subresource_range, offset, extent, DetectOptions::kDetectAll);
}
class BarrierHazardDetector {
public:
BarrierHazardDetector(SyncStageAccessIndex usage_index, VkPipelineStageFlags2KHR src_exec_scope,
SyncStageAccessFlags src_access_scope)
: usage_index_(usage_index), src_exec_scope_(src_exec_scope), src_access_scope_(src_access_scope) {}
HazardResult Detect(const ResourceAccessRangeMap::const_iterator &pos) const {
return pos->second.DetectBarrierHazard(usage_index_, src_exec_scope_, src_access_scope_);
}
HazardResult DetectAsync(const ResourceAccessRangeMap::const_iterator &pos, ResourceUsageTag start_tag) const {
// Async barrier hazard detection can use the same path as the usage index is not IsRead, but is IsWrite
return pos->second.DetectAsyncHazard(usage_index_, start_tag);
}
private:
SyncStageAccessIndex usage_index_;
VkPipelineStageFlags2KHR src_exec_scope_;
SyncStageAccessFlags src_access_scope_;
};
class EventBarrierHazardDetector {
public:
EventBarrierHazardDetector(SyncStageAccessIndex usage_index, VkPipelineStageFlags2KHR src_exec_scope,
SyncStageAccessFlags src_access_scope, const SyncEventState::ScopeMap &event_scope,
ResourceUsageTag scope_tag)
: usage_index_(usage_index),
src_exec_scope_(src_exec_scope),
src_access_scope_(src_access_scope),
event_scope_(event_scope),
scope_pos_(event_scope.cbegin()),
scope_end_(event_scope.cend()),
scope_tag_(scope_tag) {}
HazardResult Detect(const ResourceAccessRangeMap::const_iterator &pos) const {
// TODO NOTE: This is almost the slowest way to do this... need to intelligently walk this...
// Need to find a more efficient sync, since we know pos->first is strictly increasing call to call
// NOTE: "cached_lower_bound_impl" with upgrades could do this.
if (scope_pos_ == scope_end_) return HazardResult();
if (!scope_pos_->first.intersects(pos->first)) {
event_scope_.lower_bound(pos->first);
if ((scope_pos_ == scope_end_) || !scope_pos_->first.intersects(pos->first)) return HazardResult();
}
// Some portion of this pos is in the event_scope, so check for a barrier hazard
return pos->second.DetectBarrierHazard(usage_index_, src_exec_scope_, src_access_scope_, scope_tag_);
}
HazardResult DetectAsync(const ResourceAccessRangeMap::const_iterator &pos, ResourceUsageTag start_tag) const {
// Async barrier hazard detection can use the same path as the usage index is not IsRead, but is IsWrite
return pos->second.DetectAsyncHazard(usage_index_, start_tag);
}
private:
SyncStageAccessIndex usage_index_;
VkPipelineStageFlags2KHR src_exec_scope_;
SyncStageAccessFlags src_access_scope_;
const SyncEventState::ScopeMap &event_scope_;
SyncEventState::ScopeMap::const_iterator scope_pos_;
SyncEventState::ScopeMap::const_iterator scope_end_;
const ResourceUsageTag scope_tag_;
};
HazardResult AccessContext::DetectImageBarrierHazard(const IMAGE_STATE &image, VkPipelineStageFlags2KHR src_exec_scope,
const SyncStageAccessFlags &src_access_scope,
const VkImageSubresourceRange &subresource_range,
const SyncEventState &sync_event, DetectOptions options) const {
// It's not particularly DRY to get the address type in this function as well as lower down, but we have to select the
// first access scope map to use, and there's no easy way to plumb it in below.
const auto address_type = ImageAddressType(image);
const auto &event_scope = sync_event.FirstScope(address_type);
EventBarrierHazardDetector detector(SyncStageAccessIndex::SYNC_IMAGE_LAYOUT_TRANSITION, src_exec_scope, src_access_scope,
event_scope, sync_event.first_scope_tag);
return DetectHazard(detector, image, subresource_range, options);
}
HazardResult AccessContext::DetectImageBarrierHazard(const AttachmentViewGen &view_gen, const SyncBarrier &barrier,
DetectOptions options) const {
BarrierHazardDetector detector(SyncStageAccessIndex::SYNC_IMAGE_LAYOUT_TRANSITION, barrier.src_exec_scope.exec_scope,
barrier.src_access_scope);
return DetectHazard(detector, view_gen, AttachmentViewGen::Gen::kViewSubresource, options);
}
HazardResult AccessContext::DetectImageBarrierHazard(const IMAGE_STATE &image, VkPipelineStageFlags2KHR src_exec_scope,
const SyncStageAccessFlags &src_access_scope,
const VkImageSubresourceRange &subresource_range,
const DetectOptions options) const {
BarrierHazardDetector detector(SyncStageAccessIndex::SYNC_IMAGE_LAYOUT_TRANSITION, src_exec_scope, src_access_scope);
return DetectHazard(detector, image, subresource_range, options);
}
HazardResult AccessContext::DetectImageBarrierHazard(const IMAGE_STATE &image, VkPipelineStageFlags2KHR src_exec_scope,
const SyncStageAccessFlags &src_stage_accesses,
const VkImageMemoryBarrier &barrier) const {
auto subresource_range = NormalizeSubresourceRange(image.createInfo, barrier.subresourceRange);
const auto src_access_scope = SyncStageAccess::AccessScope(src_stage_accesses, barrier.srcAccessMask);
return DetectImageBarrierHazard(image, src_exec_scope, src_access_scope, subresource_range, kDetectAll);
}
HazardResult AccessContext::DetectImageBarrierHazard(const SyncImageMemoryBarrier &image_barrier) const {
return DetectImageBarrierHazard(*image_barrier.image.get(), image_barrier.barrier.src_exec_scope.exec_scope,
image_barrier.barrier.src_access_scope, image_barrier.range, kDetectAll);
}
template <typename Flags, typename Map>
SyncStageAccessFlags AccessScopeImpl(Flags flag_mask, const Map &map) {
SyncStageAccessFlags scope = 0;
for (const auto &bit_scope : map) {
if (flag_mask < bit_scope.first) break;
if (flag_mask & bit_scope.first) {
scope |= bit_scope.second;
}
}
return scope;
}
SyncStageAccessFlags SyncStageAccess::AccessScopeByStage(VkPipelineStageFlags2KHR stages) {
return AccessScopeImpl(stages, syncStageAccessMaskByStageBit);
}
SyncStageAccessFlags SyncStageAccess::AccessScopeByAccess(VkAccessFlags2KHR accesses) {
return AccessScopeImpl(sync_utils::ExpandAccessFlags(accesses), syncStageAccessMaskByAccessBit);
}
// Getting from stage mask and access mask to stage/access masks is something we need to be good at...
SyncStageAccessFlags SyncStageAccess::AccessScope(VkPipelineStageFlags2KHR stages, VkAccessFlags2KHR accesses) {
// The access scope is the intersection of all stage/access types possible for the enabled stages and the enables
// accesses (after doing a couple factoring of common terms the union of stage/access intersections is the intersections
// of the union of all stage/access types for all the stages and the same unions for the access mask...
return AccessScopeByStage(stages) & AccessScopeByAccess(accesses);
}
template <typename Action>
void UpdateMemoryAccessState(ResourceAccessRangeMap *accesses, const ResourceAccessRange &range, const Action &action) {
// TODO: Optimization for operations that do a pure overwrite (i.e. WRITE usages which rewrite the state, vs READ usages
// that do incrementalupdates
assert(accesses);
auto pos = accesses->lower_bound(range);
if (pos == accesses->end() || !pos->first.intersects(range)) {
// The range is empty, fill it with a default value.
pos = action.Infill(accesses, pos, range);
} else if (range.begin < pos->first.begin) {
// Leading empty space, infill
pos = action.Infill(accesses, pos, ResourceAccessRange(range.begin, pos->first.begin));
} else if (pos->first.begin < range.begin) {
// Trim the beginning if needed
pos = accesses->split(pos, range.begin, sparse_container::split_op_keep_both());
++pos;
}
const auto the_end = accesses->end();
while ((pos != the_end) && pos->first.intersects(range)) {
if (pos->first.end > range.end) {
pos = accesses->split(pos, range.end, sparse_container::split_op_keep_both());
}
pos = action(accesses, pos);
if (pos == the_end) break;
auto next = pos;
++next;
if ((pos->first.end < range.end) && (next != the_end) && !next->first.is_subsequent_to(pos->first)) {
// Need to infill if next is disjoint
VkDeviceSize limit = (next == the_end) ? range.end : std::min(range.end, next->first.begin);
ResourceAccessRange new_range(pos->first.end, limit);
next = action.Infill(accesses, next, new_range);
}
pos = next;
}
}
// Give a comparable interface for range generators and ranges
template <typename Action>
inline void UpdateMemoryAccessState(ResourceAccessRangeMap *accesses, const Action &action, ResourceAccessRange *range) {
assert(range);
UpdateMemoryAccessState(accesses, *range, action);
}
template <typename Action, typename RangeGen>
void UpdateMemoryAccessState(ResourceAccessRangeMap *accesses, const Action &action, RangeGen *range_gen_arg) {
assert(range_gen_arg);
RangeGen &range_gen = *range_gen_arg; // Non-const references must be * by style requirement but deref-ing * iterator is a pain
for (; range_gen->non_empty(); ++range_gen) {
UpdateMemoryAccessState(accesses, *range_gen, action);
}
}
template <typename Action, typename RangeGen>
void UpdateMemoryAccessState(ResourceAccessRangeMap *accesses, const Action &action, const RangeGen &range_gen_prebuilt) {
RangeGen range_gen(range_gen_prebuilt); // RangeGenerators can be expensive to create from scratch... initialize from built
for (; range_gen->non_empty(); ++range_gen) {
UpdateMemoryAccessState(accesses, *range_gen, action);
}
}
struct UpdateMemoryAccessStateFunctor {
using Iterator = ResourceAccessRangeMap::iterator;
Iterator Infill(ResourceAccessRangeMap *accesses, Iterator pos, ResourceAccessRange range) const {
// this is only called on gaps, and never returns a gap.
ResourceAccessState default_state;
context.ResolvePreviousAccess(type, range, accesses, &default_state);
return accesses->lower_bound(range);
}
Iterator operator()(ResourceAccessRangeMap *accesses, Iterator pos) const {
auto &access_state = pos->second;
access_state.Update(usage, ordering_rule, tag);
return pos;
}
UpdateMemoryAccessStateFunctor(AccessAddressType type_, const AccessContext &context_, SyncStageAccessIndex usage_,
SyncOrdering ordering_rule_, ResourceUsageTag tag_)
: type(type_), context(context_), usage(usage_), ordering_rule(ordering_rule_), tag(tag_) {}
const AccessAddressType type;
const AccessContext &context;
const SyncStageAccessIndex usage;
const SyncOrdering ordering_rule;
const ResourceUsageTag tag;
};
// The barrier operation for pipeline and subpass dependencies`
struct PipelineBarrierOp {
SyncBarrier barrier;
bool layout_transition;
PipelineBarrierOp(const SyncBarrier &barrier_, bool layout_transition_)
: barrier(barrier_), layout_transition(layout_transition_) {}
PipelineBarrierOp() = default;
PipelineBarrierOp(const PipelineBarrierOp &) = default;
void operator()(ResourceAccessState *access_state) const { access_state->ApplyBarrier(barrier, layout_transition); }
};
// The barrier operation for wait events
struct WaitEventBarrierOp {
ResourceUsageTag scope_tag;
SyncBarrier barrier;
bool layout_transition;
WaitEventBarrierOp(const ResourceUsageTag scope_tag_, const SyncBarrier &barrier_, bool layout_transition_)
: scope_tag(scope_tag_), barrier(barrier_), layout_transition(layout_transition_) {}
WaitEventBarrierOp() = default;
void operator()(ResourceAccessState *access_state) const { access_state->ApplyBarrier(scope_tag, barrier, layout_transition); }
};
// This functor applies a collection of barriers, updating the "pending state" in each touched memory range, and optionally
// resolves the pending state. Suitable for processing Global memory barriers, or Subpass Barriers when the "final" barrier
// of a collection is known/present.
template <typename BarrierOp, typename OpVector = std::vector<BarrierOp>>
class ApplyBarrierOpsFunctor {
public:
using Iterator = ResourceAccessRangeMap::iterator;
// Only called with a gap, and pos at the lower_bound(range)
inline Iterator Infill(ResourceAccessRangeMap *accesses, const Iterator &pos, const ResourceAccessRange &range) const {
if (!infill_default_) {
return pos;
}
ResourceAccessState default_state;
auto inserted = accesses->insert(pos, std::make_pair(range, default_state));
return inserted;
}
Iterator operator()(ResourceAccessRangeMap *accesses, const Iterator &pos) const {
auto &access_state = pos->second;
for (const auto &op : barrier_ops_) {
op(&access_state);
}
if (resolve_) {
// If this is the last (or only) batch, we can do the pending resolve as the last step in this operation to avoid
// another walk
access_state.ApplyPendingBarriers(tag_);
}
return pos;
}
// A valid tag is required IFF layout_transition is true, as transitions are write ops
ApplyBarrierOpsFunctor(bool resolve, typename OpVector::size_type size_hint, ResourceUsageTag tag)
: resolve_(resolve), infill_default_(false), barrier_ops_(), tag_(tag) {
barrier_ops_.reserve(size_hint);
}
void EmplaceBack(const BarrierOp &op) {
barrier_ops_.emplace_back(op);
infill_default_ |= op.layout_transition;
}
private:
bool resolve_;
bool infill_default_;
OpVector barrier_ops_;
const ResourceUsageTag tag_;
};
// This functor applies a single barrier, updating the "pending state" in each touched memory range, but does not
// resolve the pendinging state. Suitable for processing Image and Buffer barriers from PipelineBarriers or Events
template <typename BarrierOp>
class ApplyBarrierFunctor : public ApplyBarrierOpsFunctor<BarrierOp, small_vector<BarrierOp, 1>> {
using Base = ApplyBarrierOpsFunctor<BarrierOp, small_vector<BarrierOp, 1>>;
public:
ApplyBarrierFunctor(const BarrierOp &barrier_op) : Base(false, 1, kCurrentCommandTag) { Base::EmplaceBack(barrier_op); }
};
// This functor resolves the pendinging state.
class ResolvePendingBarrierFunctor : public ApplyBarrierOpsFunctor<NoopBarrierAction, small_vector<NoopBarrierAction, 1>> {
using Base = ApplyBarrierOpsFunctor<NoopBarrierAction, small_vector<NoopBarrierAction, 1>>;
public:
ResolvePendingBarrierFunctor(ResourceUsageTag tag) : Base(true, 0, tag) {}
};
void AccessContext::UpdateAccessState(AccessAddressType type, SyncStageAccessIndex current_usage, SyncOrdering ordering_rule,
const ResourceAccessRange &range, const ResourceUsageTag tag) {
UpdateMemoryAccessStateFunctor action(type, *this, current_usage, ordering_rule, tag);
UpdateMemoryAccessState(&GetAccessStateMap(type), range, action);
}
void AccessContext::UpdateAccessState(const BUFFER_STATE &buffer, SyncStageAccessIndex current_usage, SyncOrdering ordering_rule,
const ResourceAccessRange &range, const ResourceUsageTag tag) {
if (!SimpleBinding(buffer)) return;
const auto base_address = ResourceBaseAddress(buffer);
UpdateAccessState(AccessAddressType::kLinear, current_usage, ordering_rule, range + base_address, tag);
}
void AccessContext::UpdateAccessState(const IMAGE_STATE &image, SyncStageAccessIndex current_usage, SyncOrdering ordering_rule,
const VkImageSubresourceRange &subresource_range, const ResourceUsageTag &tag) {
if (!SimpleBinding(image)) return;
const auto base_address = ResourceBaseAddress(image);
subresource_adapter::ImageRangeGenerator range_gen(*image.fragment_encoder.get(), subresource_range, base_address);
const auto address_type = ImageAddressType(image);
UpdateMemoryAccessStateFunctor action(address_type, *this, current_usage, ordering_rule, tag);
UpdateMemoryAccessState(&GetAccessStateMap(address_type), action, &range_gen);
}
void AccessContext::UpdateAccessState(const IMAGE_STATE &image, SyncStageAccessIndex current_usage, SyncOrdering ordering_rule,
const VkImageSubresourceRange &subresource_range, const VkOffset3D &offset,
const VkExtent3D &extent, const ResourceUsageTag tag) {
if (!SimpleBinding(image)) return;
const auto base_address = ResourceBaseAddress(image);
subresource_adapter::ImageRangeGenerator range_gen(*image.fragment_encoder.get(), subresource_range, offset, extent,
base_address);
const auto address_type = ImageAddressType(image);
UpdateMemoryAccessStateFunctor action(address_type, *this, current_usage, ordering_rule, tag);
UpdateMemoryAccessState(&GetAccessStateMap(address_type), action, &range_gen);
}
void AccessContext::UpdateAccessState(const AttachmentViewGen &view_gen, AttachmentViewGen::Gen gen_type,
SyncStageAccessIndex current_usage, SyncOrdering ordering_rule, const ResourceUsageTag tag) {
const ImageRangeGen *gen = view_gen.GetRangeGen(gen_type);
if (!gen) return;
subresource_adapter::ImageRangeGenerator range_gen(*gen);
const auto address_type = view_gen.GetAddressType();
UpdateMemoryAccessStateFunctor action(address_type, *this, current_usage, ordering_rule, tag);
ApplyUpdateAction(address_type, action, &range_gen);
}
void AccessContext::UpdateAccessState(const IMAGE_STATE &image, SyncStageAccessIndex current_usage, SyncOrdering ordering_rule,
const VkImageSubresourceLayers &subresource, const VkOffset3D &offset,
const VkExtent3D &extent, const ResourceUsageTag tag) {
VkImageSubresourceRange subresource_range = {subresource.aspectMask, subresource.mipLevel, 1, subresource.baseArrayLayer,
subresource.layerCount};
UpdateAccessState(image, current_usage, ordering_rule, subresource_range, offset, extent, tag);
}
template <typename Action, typename RangeGen>
void AccessContext::ApplyUpdateAction(AccessAddressType address_type, const Action &action, RangeGen *range_gen_arg) {
assert(range_gen_arg); // Old Google C++ styleguide require non-const object pass by * not &, but this isn't an optional arg.
UpdateMemoryAccessState(&GetAccessStateMap(address_type), action, range_gen_arg);
}
template <typename Action>
void AccessContext::ApplyUpdateAction(const AttachmentViewGen &view_gen, AttachmentViewGen::Gen gen_type, const Action &action) {
const ImageRangeGen *gen = view_gen.GetRangeGen(gen_type);
if (!gen) return;
UpdateMemoryAccessState(&GetAccessStateMap(view_gen.GetAddressType()), action, *gen);
}
void AccessContext::UpdateAttachmentResolveAccess(const RENDER_PASS_STATE &rp_state,
const AttachmentViewGenVector &attachment_views, uint32_t subpass,
const ResourceUsageTag tag) {
UpdateStateResolveAction update(*this, tag);
ResolveOperation(update, rp_state, attachment_views, subpass);
}
void AccessContext::UpdateAttachmentStoreAccess(const RENDER_PASS_STATE &rp_state, const AttachmentViewGenVector &attachment_views,
uint32_t subpass, const ResourceUsageTag tag) {
const auto *attachment_ci = rp_state.createInfo.pAttachments;
for (uint32_t i = 0; i < rp_state.createInfo.attachmentCount; i++) {
if (rp_state.attachment_last_subpass[i] == subpass) {
const auto &view_gen = attachment_views[i];
if (!view_gen.IsValid()) continue; // UNUSED
const auto &ci = attachment_ci[i];
const bool has_depth = FormatHasDepth(ci.format);
const bool has_stencil = FormatHasStencil(ci.format);
const bool is_color = !(has_depth || has_stencil);
const bool store_op_stores = ci.storeOp != VK_ATTACHMENT_STORE_OP_NONE_EXT;
if (is_color && store_op_stores) {
UpdateAccessState(view_gen, AttachmentViewGen::Gen::kRenderArea,
SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE, SyncOrdering::kRaster, tag);
} else {
if (has_depth && store_op_stores) {
UpdateAccessState(view_gen, AttachmentViewGen::Gen::kDepthOnlyRenderArea,
SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE, SyncOrdering::kRaster, tag);
}
const bool stencil_op_stores = ci.stencilStoreOp != VK_ATTACHMENT_STORE_OP_NONE_EXT;
if (has_stencil && stencil_op_stores) {
UpdateAccessState(view_gen, AttachmentViewGen::Gen::kStencilOnlyRenderArea,
SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE, SyncOrdering::kRaster, tag);
}
}
}
}
}
template <typename Action>
void AccessContext::ApplyToContext(const Action &barrier_action) {
// Note: Barriers do *not* cross context boundaries, applying to accessess within.... (at least for renderpass subpasses)
for (const auto address_type : kAddressTypes) {
UpdateMemoryAccessState(&GetAccessStateMap(address_type), kFullRange, barrier_action);
}
}
void AccessContext::ResolveChildContexts(const std::vector<AccessContext> &contexts) {
for (uint32_t subpass_index = 0; subpass_index < contexts.size(); subpass_index++) {
auto &context = contexts[subpass_index];
ApplyTrackbackStackAction barrier_action(context.GetDstExternalTrackBack().barriers);
for (const auto address_type : kAddressTypes) {
context.ResolveAccessRange(address_type, kFullRange, barrier_action, &GetAccessStateMap(address_type), nullptr, false);
}
}
}
// Caller must ensure that lifespan of this is less than from
void AccessContext::ImportAsyncContexts(const AccessContext &from) { async_ = from.async_; }
// Suitable only for *subpass* access contexts
HazardResult AccessContext::DetectSubpassTransitionHazard(const TrackBack &track_back, const AttachmentViewGen &attach_view) const {
if (!attach_view.IsValid()) return HazardResult();
// We should never ask for a transition from a context we don't have
assert(track_back.context);
// Do the detection against the specific prior context independent of other contexts. (Synchronous only)
// Hazard detection for the transition can be against the merged of the barriers (it only uses src_...)
const auto merged_barrier = MergeBarriers(track_back.barriers);
HazardResult hazard = track_back.context->DetectImageBarrierHazard(attach_view, merged_barrier, kDetectPrevious);
if (!hazard.hazard) {
// The Async hazard check is against the current context's async set.
hazard = DetectImageBarrierHazard(attach_view, merged_barrier, kDetectAsync);
}
return hazard;
}
void AccessContext::RecordLayoutTransitions(const RENDER_PASS_STATE &rp_state, uint32_t subpass,
const AttachmentViewGenVector &attachment_views, const ResourceUsageTag tag) {
const auto &transitions = rp_state.subpass_transitions[subpass];
const ResourceAccessState empty_infill;
for (const auto &transition : transitions) {
const auto prev_pass = transition.prev_pass;
const auto &view_gen = attachment_views[transition.attachment];
if (!view_gen.IsValid()) continue;
const auto *trackback = GetTrackBackFromSubpass(prev_pass);
assert(trackback);
// Import the attachments into the current context
const auto *prev_context = trackback->context;
assert(prev_context);
const auto address_type = view_gen.GetAddressType();
auto &target_map = GetAccessStateMap(address_type);
ApplySubpassTransitionBarriersAction barrier_action(trackback->barriers);
prev_context->ResolveAccessRange(view_gen, AttachmentViewGen::Gen::kViewSubresource, barrier_action, &target_map,
&empty_infill);
}
// If there were no transitions skip this global map walk
if (transitions.size()) {
ResolvePendingBarrierFunctor apply_pending_action(tag);
ApplyToContext(apply_pending_action);
}
}
void CommandBufferAccessContext::ApplyGlobalBarriersToEvents(const SyncExecScope &src, const SyncExecScope &dst) {
auto *events_context = GetCurrentEventsContext();
assert(events_context);
events_context->ApplyBarrier(src, dst);
}
bool CommandBufferAccessContext::ValidateDispatchDrawDescriptorSet(VkPipelineBindPoint pipelineBindPoint,
const char *func_name) const {
bool skip = false;
const PIPELINE_STATE *pipe = nullptr;
const std::vector<LAST_BOUND_STATE::PER_SET> *per_sets = nullptr;
cb_state_->GetCurrentPipelineAndDesriptorSets(pipelineBindPoint, &pipe, &per_sets);
if (!pipe || !per_sets) {
return skip;
}
using DescriptorClass = cvdescriptorset::DescriptorClass;
using BufferDescriptor = cvdescriptorset::BufferDescriptor;
using ImageDescriptor = cvdescriptorset::ImageDescriptor;
using ImageSamplerDescriptor = cvdescriptorset::ImageSamplerDescriptor;
using TexelDescriptor = cvdescriptorset::TexelDescriptor;
for (const auto &stage_state : pipe->stage_state) {
if (stage_state.stage_flag == VK_SHADER_STAGE_FRAGMENT_BIT && pipe->create_info.graphics.pRasterizationState &&
pipe->create_info.graphics.pRasterizationState->rasterizerDiscardEnable) {
continue;
}
for (const auto &set_binding : stage_state.descriptor_uses) {
const auto *descriptor_set = (*per_sets)[set_binding.first.set].bound_descriptor_set.get();
cvdescriptorset::DescriptorSetLayout::ConstBindingIterator binding_it(descriptor_set->GetLayout().get(),
set_binding.first.binding);
const auto descriptor_type = binding_it.GetType();
cvdescriptorset::IndexRange index_range = binding_it.GetGlobalIndexRange();
auto array_idx = 0;
if (binding_it.IsVariableDescriptorCount()) {
index_range.end = index_range.start + descriptor_set->GetVariableDescriptorCount();
}
SyncStageAccessIndex sync_index =
GetSyncStageAccessIndexsByDescriptorSet(descriptor_type, set_binding.second, stage_state.stage_flag);
for (uint32_t i = index_range.start; i < index_range.end; ++i, ++array_idx) {
uint32_t index = i - index_range.start;
const auto *descriptor = descriptor_set->GetDescriptorFromGlobalIndex(i);
switch (descriptor->GetClass()) {
case DescriptorClass::ImageSampler:
case DescriptorClass::Image: {
const IMAGE_VIEW_STATE *img_view_state = nullptr;
VkImageLayout image_layout;
if (descriptor->GetClass() == DescriptorClass::ImageSampler) {
const auto image_sampler_descriptor = static_cast<const ImageSamplerDescriptor *>(descriptor);
img_view_state = image_sampler_descriptor->GetImageViewState();
image_layout = image_sampler_descriptor->GetImageLayout();
} else {
const auto image_descriptor = static_cast<const ImageDescriptor *>(descriptor);
img_view_state = image_descriptor->GetImageViewState();
image_layout = image_descriptor->GetImageLayout();
}
if (!img_view_state) continue;
HazardResult hazard;
// NOTE: 2D ImageViews of VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT Images are not allowed in
// Descriptors, so we do not have to worry about depth slicing here.
// See: VUID 00343
assert(!img_view_state->IsDepthSliced());
const IMAGE_STATE *img_state = img_view_state->image_state.get();
const auto &subresource_range = img_view_state->normalized_subresource_range;
if (sync_index == SYNC_FRAGMENT_SHADER_INPUT_ATTACHMENT_READ) {
const VkExtent3D extent = CastTo3D(cb_state_->activeRenderPassBeginInfo.renderArea.extent);
const VkOffset3D offset = CastTo3D(cb_state_->activeRenderPassBeginInfo.renderArea.offset);
// Input attachments are subject to raster ordering rules
hazard = current_context_->DetectHazard(*img_state, sync_index, subresource_range,
SyncOrdering::kRaster, offset, extent);
} else {
hazard = current_context_->DetectHazard(*img_state, sync_index, subresource_range);
}
if (hazard.hazard && !sync_state_->SupressedBoundDescriptorWAW(hazard)) {
skip |= sync_state_->LogError(
img_view_state->image_view(), string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for %s, in %s, and %s, %s, type: %s, imageLayout: %s, binding #%" PRIu32
", index %" PRIu32 ". Access info %s.",
func_name, string_SyncHazard(hazard.hazard),
sync_state_->report_data->FormatHandle(img_view_state->image_view()).c_str(),
sync_state_->report_data->FormatHandle(cb_state_->commandBuffer()).c_str(),
sync_state_->report_data->FormatHandle(pipe->pipeline()).c_str(),
sync_state_->report_data->FormatHandle(descriptor_set->GetSet()).c_str(),
string_VkDescriptorType(descriptor_type), string_VkImageLayout(image_layout),
set_binding.first.binding, index, FormatUsage(hazard).c_str());
}
break;
}
case DescriptorClass::TexelBuffer: {
auto buf_view_state = static_cast<const TexelDescriptor *>(descriptor)->GetBufferViewState();
if (!buf_view_state) continue;
const BUFFER_STATE *buf_state = buf_view_state->buffer_state.get();
const ResourceAccessRange range = MakeRange(*buf_view_state);
auto hazard = current_context_->DetectHazard(*buf_state, sync_index, range);
if (hazard.hazard && !sync_state_->SupressedBoundDescriptorWAW(hazard)) {
skip |= sync_state_->LogError(
buf_view_state->buffer_view(), string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for %s in %s, %s, and %s, type: %s, binding #%d index %d. Access info %s.",
func_name, string_SyncHazard(hazard.hazard),
sync_state_->report_data->FormatHandle(buf_view_state->buffer_view()).c_str(),
sync_state_->report_data->FormatHandle(cb_state_->commandBuffer()).c_str(),
sync_state_->report_data->FormatHandle(pipe->pipeline()).c_str(),
sync_state_->report_data->FormatHandle(descriptor_set->GetSet()).c_str(),
string_VkDescriptorType(descriptor_type), set_binding.first.binding, index,
FormatUsage(hazard).c_str());
}
break;
}
case DescriptorClass::GeneralBuffer: {
const auto *buffer_descriptor = static_cast<const BufferDescriptor *>(descriptor);
auto buf_state = buffer_descriptor->GetBufferState();
if (!buf_state) continue;
const ResourceAccessRange range =
MakeRange(*buf_state, buffer_descriptor->GetOffset(), buffer_descriptor->GetRange());
auto hazard = current_context_->DetectHazard(*buf_state, sync_index, range);
if (hazard.hazard && !sync_state_->SupressedBoundDescriptorWAW(hazard)) {
skip |= sync_state_->LogError(
buf_state->buffer(), string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for %s in %s, %s, and %s, type: %s, binding #%d index %d. Access info %s.",
func_name, string_SyncHazard(hazard.hazard),
sync_state_->report_data->FormatHandle(buf_state->buffer()).c_str(),
sync_state_->report_data->FormatHandle(cb_state_->commandBuffer()).c_str(),
sync_state_->report_data->FormatHandle(pipe->pipeline()).c_str(),
sync_state_->report_data->FormatHandle(descriptor_set->GetSet()).c_str(),
string_VkDescriptorType(descriptor_type), set_binding.first.binding, index,
FormatUsage(hazard).c_str());
}
break;
}
// TODO: INLINE_UNIFORM_BLOCK_EXT, ACCELERATION_STRUCTURE_KHR
default:
break;
}
}
}
}
return skip;
}
void CommandBufferAccessContext::RecordDispatchDrawDescriptorSet(VkPipelineBindPoint pipelineBindPoint,
const ResourceUsageTag tag) {
const PIPELINE_STATE *pipe = nullptr;
const std::vector<LAST_BOUND_STATE::PER_SET> *per_sets = nullptr;
cb_state_->GetCurrentPipelineAndDesriptorSets(pipelineBindPoint, &pipe, &per_sets);
if (!pipe || !per_sets) {
return;
}
using DescriptorClass = cvdescriptorset::DescriptorClass;
using BufferDescriptor = cvdescriptorset::BufferDescriptor;
using ImageDescriptor = cvdescriptorset::ImageDescriptor;
using ImageSamplerDescriptor = cvdescriptorset::ImageSamplerDescriptor;
using TexelDescriptor = cvdescriptorset::TexelDescriptor;
for (const auto &stage_state : pipe->stage_state) {
if (stage_state.stage_flag == VK_SHADER_STAGE_FRAGMENT_BIT && pipe->create_info.graphics.pRasterizationState &&
pipe->create_info.graphics.pRasterizationState->rasterizerDiscardEnable) {
continue;
}
for (const auto &set_binding : stage_state.descriptor_uses) {
const auto *descriptor_set = (*per_sets)[set_binding.first.set].bound_descriptor_set.get();
cvdescriptorset::DescriptorSetLayout::ConstBindingIterator binding_it(descriptor_set->GetLayout().get(),
set_binding.first.binding);
const auto descriptor_type = binding_it.GetType();
cvdescriptorset::IndexRange index_range = binding_it.GetGlobalIndexRange();
auto array_idx = 0;
if (binding_it.IsVariableDescriptorCount()) {
index_range.end = index_range.start + descriptor_set->GetVariableDescriptorCount();
}
SyncStageAccessIndex sync_index =
GetSyncStageAccessIndexsByDescriptorSet(descriptor_type, set_binding.second, stage_state.stage_flag);
for (uint32_t i = index_range.start; i < index_range.end; ++i, ++array_idx) {
const auto *descriptor = descriptor_set->GetDescriptorFromGlobalIndex(i);
switch (descriptor->GetClass()) {
case DescriptorClass::ImageSampler:
case DescriptorClass::Image: {
const IMAGE_VIEW_STATE *img_view_state = nullptr;
if (descriptor->GetClass() == DescriptorClass::ImageSampler) {
img_view_state = static_cast<const ImageSamplerDescriptor *>(descriptor)->GetImageViewState();
} else {
img_view_state = static_cast<const ImageDescriptor *>(descriptor)->GetImageViewState();
}
if (!img_view_state) continue;
// NOTE: 2D ImageViews of VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT Images are not allowed in
// Descriptors, so we do not have to worry about depth slicing here.
// See: VUID 00343
assert(!img_view_state->IsDepthSliced());
const IMAGE_STATE *img_state = img_view_state->image_state.get();
if (sync_index == SYNC_FRAGMENT_SHADER_INPUT_ATTACHMENT_READ) {
const VkExtent3D extent = CastTo3D(cb_state_->activeRenderPassBeginInfo.renderArea.extent);
const VkOffset3D offset = CastTo3D(cb_state_->activeRenderPassBeginInfo.renderArea.offset);
current_context_->UpdateAccessState(*img_state, sync_index, SyncOrdering::kRaster,
img_view_state->normalized_subresource_range, offset, extent, tag);
} else {
current_context_->UpdateAccessState(*img_state, sync_index, SyncOrdering::kNonAttachment,
img_view_state->normalized_subresource_range, tag);
}
break;
}
case DescriptorClass::TexelBuffer: {
auto buf_view_state = static_cast<const TexelDescriptor *>(descriptor)->GetBufferViewState();
if (!buf_view_state) continue;
const BUFFER_STATE *buf_state = buf_view_state->buffer_state.get();
const ResourceAccessRange range = MakeRange(*buf_view_state);
current_context_->UpdateAccessState(*buf_state, sync_index, SyncOrdering::kNonAttachment, range, tag);
break;
}
case DescriptorClass::GeneralBuffer: {
const auto *buffer_descriptor = static_cast<const BufferDescriptor *>(descriptor);
auto buf_state = buffer_descriptor->GetBufferState();
if (!buf_state) continue;
const ResourceAccessRange range =
MakeRange(*buf_state, buffer_descriptor->GetOffset(), buffer_descriptor->GetRange());
current_context_->UpdateAccessState(*buf_state, sync_index, SyncOrdering::kNonAttachment, range, tag);
break;
}
// TODO: INLINE_UNIFORM_BLOCK_EXT, ACCELERATION_STRUCTURE_KHR
default:
break;
}
}
}
}
}
bool CommandBufferAccessContext::ValidateDrawVertex(uint32_t vertexCount, uint32_t firstVertex, const char *func_name) const {
bool skip = false;
const auto *pipe = cb_state_->GetCurrentPipeline(VK_PIPELINE_BIND_POINT_GRAPHICS);
if (!pipe) {
return skip;
}
const auto &binding_buffers = cb_state_->current_vertex_buffer_binding_info.vertex_buffer_bindings;
const auto &binding_buffers_size = binding_buffers.size();
const auto &binding_descriptions_size = pipe->vertex_binding_descriptions_.size();
for (size_t i = 0; i < binding_descriptions_size; ++i) {
const auto &binding_description = pipe->vertex_binding_descriptions_[i];
if (binding_description.binding < binding_buffers_size) {
const auto &binding_buffer = binding_buffers[binding_description.binding];
if (binding_buffer.buffer_state == nullptr || binding_buffer.buffer_state->Destroyed()) continue;
auto *buf_state = binding_buffer.buffer_state.get();
const ResourceAccessRange range = GetBufferRange(binding_buffer.offset, buf_state->createInfo.size, firstVertex,
vertexCount, binding_description.stride);
auto hazard = current_context_->DetectHazard(*buf_state, SYNC_VERTEX_ATTRIBUTE_INPUT_VERTEX_ATTRIBUTE_READ, range);
if (hazard.hazard) {
skip |= sync_state_->LogError(
buf_state->buffer(), string_SyncHazardVUID(hazard.hazard), "%s: Hazard %s for vertex %s in %s. Access info %s.",
func_name, string_SyncHazard(hazard.hazard), sync_state_->report_data->FormatHandle(buf_state->buffer()).c_str(),
sync_state_->report_data->FormatHandle(cb_state_->commandBuffer()).c_str(), FormatUsage(hazard).c_str());
}
}
}
return skip;
}
void CommandBufferAccessContext::RecordDrawVertex(uint32_t vertexCount, uint32_t firstVertex, const ResourceUsageTag tag) {
const auto *pipe = cb_state_->GetCurrentPipeline(VK_PIPELINE_BIND_POINT_GRAPHICS);
if (!pipe) {
return;
}
const auto &binding_buffers = cb_state_->current_vertex_buffer_binding_info.vertex_buffer_bindings;
const auto &binding_buffers_size = binding_buffers.size();
const auto &binding_descriptions_size = pipe->vertex_binding_descriptions_.size();
for (size_t i = 0; i < binding_descriptions_size; ++i) {
const auto &binding_description = pipe->vertex_binding_descriptions_[i];
if (binding_description.binding < binding_buffers_size) {
const auto &binding_buffer = binding_buffers[binding_description.binding];
if (binding_buffer.buffer_state == nullptr || binding_buffer.buffer_state->Destroyed()) continue;
auto *buf_state = binding_buffer.buffer_state.get();
const ResourceAccessRange range = GetBufferRange(binding_buffer.offset, buf_state->createInfo.size, firstVertex,
vertexCount, binding_description.stride);
current_context_->UpdateAccessState(*buf_state, SYNC_VERTEX_ATTRIBUTE_INPUT_VERTEX_ATTRIBUTE_READ,
SyncOrdering::kNonAttachment, range, tag);
}
}
}
bool CommandBufferAccessContext::ValidateDrawVertexIndex(uint32_t indexCount, uint32_t firstIndex, const char *func_name) const {
bool skip = false;
if (cb_state_->index_buffer_binding.buffer_state == nullptr || cb_state_->index_buffer_binding.buffer_state->Destroyed()) {
return skip;
}
auto *index_buf_state = cb_state_->index_buffer_binding.buffer_state.get();
const auto index_size = GetIndexAlignment(cb_state_->index_buffer_binding.index_type);
const ResourceAccessRange range = GetBufferRange(cb_state_->index_buffer_binding.offset, index_buf_state->createInfo.size,
firstIndex, indexCount, index_size);
auto hazard = current_context_->DetectHazard(*index_buf_state, SYNC_INDEX_INPUT_INDEX_READ, range);
if (hazard.hazard) {
skip |= sync_state_->LogError(
index_buf_state->buffer(), string_SyncHazardVUID(hazard.hazard), "%s: Hazard %s for index %s in %s. Access info %s.",
func_name, string_SyncHazard(hazard.hazard), sync_state_->report_data->FormatHandle(index_buf_state->buffer()).c_str(),
sync_state_->report_data->FormatHandle(cb_state_->commandBuffer()).c_str(), FormatUsage(hazard).c_str());
}
// TODO: For now, we detect the whole vertex buffer. Index buffer could be changed until SubmitQueue.
// We will detect more accurate range in the future.
skip |= ValidateDrawVertex(UINT32_MAX, 0, func_name);
return skip;
}
void CommandBufferAccessContext::RecordDrawVertexIndex(uint32_t indexCount, uint32_t firstIndex, const ResourceUsageTag tag) {
if (cb_state_->index_buffer_binding.buffer_state == nullptr || cb_state_->index_buffer_binding.buffer_state->Destroyed()) return;
auto *index_buf_state = cb_state_->index_buffer_binding.buffer_state.get();
const auto index_size = GetIndexAlignment(cb_state_->index_buffer_binding.index_type);
const ResourceAccessRange range = GetBufferRange(cb_state_->index_buffer_binding.offset, index_buf_state->createInfo.size,
firstIndex, indexCount, index_size);
current_context_->UpdateAccessState(*index_buf_state, SYNC_INDEX_INPUT_INDEX_READ, SyncOrdering::kNonAttachment, range, tag);
// TODO: For now, we detect the whole vertex buffer. Index buffer could be changed until SubmitQueue.
// We will detect more accurate range in the future.
RecordDrawVertex(UINT32_MAX, 0, tag);
}
bool CommandBufferAccessContext::ValidateDrawSubpassAttachment(const char *func_name) const {
bool skip = false;
if (!current_renderpass_context_) return skip;
skip |= current_renderpass_context_->ValidateDrawSubpassAttachment(GetExecutionContext(), *cb_state_.get(), func_name);
return skip;
}
void CommandBufferAccessContext::RecordDrawSubpassAttachment(const ResourceUsageTag tag) {
if (current_renderpass_context_) {
current_renderpass_context_->RecordDrawSubpassAttachment(*cb_state_.get(), tag);
}
}
void CommandBufferAccessContext::RecordBeginRenderPass(const RENDER_PASS_STATE &rp_state, const VkRect2D &render_area,
const std::vector<const IMAGE_VIEW_STATE *> &attachment_views,
const ResourceUsageTag tag) {
// Create an access context the current renderpass.
render_pass_contexts_.emplace_back(rp_state, render_area, GetQueueFlags(), attachment_views, &cb_access_context_);
current_renderpass_context_ = &render_pass_contexts_.back();
current_renderpass_context_->RecordBeginRenderPass(tag);
current_context_ = &current_renderpass_context_->CurrentContext();
}
void CommandBufferAccessContext::RecordNextSubpass(ResourceUsageTag prev_tag, ResourceUsageTag next_tag) {
assert(current_renderpass_context_);
current_renderpass_context_->RecordNextSubpass(prev_tag, next_tag);
current_context_ = &current_renderpass_context_->CurrentContext();
}
void CommandBufferAccessContext::RecordEndRenderPass(const ResourceUsageTag tag) {
assert(current_renderpass_context_);
if (!current_renderpass_context_) return;
current_renderpass_context_->RecordEndRenderPass(&cb_access_context_, tag);
current_context_ = &cb_access_context_;
current_renderpass_context_ = nullptr;
}
void CommandBufferAccessContext::RecordDestroyEvent(VkEvent event) {
// Erase is okay with the key not being
auto event_state = sync_state_->Get<EVENT_STATE>(event);
if (event_state) {
GetCurrentEventsContext()->Destroy(event_state.get());
}
}
// The is the recorded cb context
bool CommandBufferAccessContext::ValidateFirstUse(CommandBufferAccessContext *proxy_context, const char *func_name,
uint32_t index) const {
assert(proxy_context);
auto *events_context = proxy_context->GetCurrentEventsContext();
auto *access_context = proxy_context->GetCurrentAccessContext();
const ResourceUsageTag base_tag = proxy_context->GetTagLimit();
bool skip = false;
ResourceUsageRange tag_range = {0, 0};
const AccessContext *recorded_context = GetCurrentAccessContext();
assert(recorded_context);
HazardResult hazard;
auto log_msg = [this](const HazardResult &hazard, const CommandBufferAccessContext &active_context, const char *func_name,
uint32_t index) {
const auto cb_handle = active_context.cb_state_->commandBuffer();
const auto recorded_handle = cb_state_->commandBuffer();
const auto *report_data = sync_state_->report_data;
return sync_state_->LogError(cb_handle, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for entry %" PRIu32 ", %s, Recorded access info %s. Access info %s.", func_name,
string_SyncHazard(hazard.hazard), index, report_data->FormatHandle(recorded_handle).c_str(),
FormatUsage(*hazard.recorded_access).c_str(), active_context.FormatUsage(hazard).c_str());
};
for (const auto &sync_op : sync_ops_) {
// we update the range to any include layout transition first use writes,
// as they are stored along with the source scope (as effective barrier) when recorded
tag_range.end = sync_op.tag + 1;
skip |= sync_op.sync_op->ReplayValidate(sync_op.tag, *this, base_tag, proxy_context);
hazard = recorded_context->DetectFirstUseHazard(tag_range, *access_context);
if (hazard.hazard) {
skip |= log_msg(hazard, *proxy_context, func_name, index);
}
// NOTE: Add call to replay validate here when we add support for syncop with non-trivial replay
// Record the barrier into the proxy context.
sync_op.sync_op->DoRecord(base_tag + sync_op.tag, access_context, events_context);
tag_range.begin = tag_range.end;
}
// and anything after the last syncop
tag_range.end = ResourceUsageRecord::kMaxIndex;
hazard = recorded_context->DetectFirstUseHazard(tag_range, *access_context);
if (hazard.hazard) {
skip |= log_msg(hazard, *proxy_context, func_name, index);
}
return skip;
}
void CommandBufferAccessContext::RecordExecutedCommandBuffer(const CommandBufferAccessContext &recorded_cb_context, CMD_TYPE cmd) {
auto *events_context = GetCurrentEventsContext();
auto *access_context = GetCurrentAccessContext();
const AccessContext *recorded_context = recorded_cb_context.GetCurrentAccessContext();
assert(recorded_context);
// Just run through the barriers ignoring the usage from the recorded context, as Resolve will overwrite outdated state
const ResourceUsageTag base_tag = GetTagLimit();
for (const auto &sync_op : recorded_cb_context.sync_ops_) {
// we update the range to any include layout transition first use writes,
// as they are stored along with the source scope (as effective barrier) when recorded
sync_op.sync_op->DoRecord(base_tag + sync_op.tag, access_context, events_context);
}
ResourceUsageRange tag_range = ImportRecordedAccessLog(recorded_cb_context);
assert(base_tag == tag_range.begin); // to ensure the to offset calculation agree
ResolveRecordedContext(*recorded_context, tag_range.begin);
}
void CommandBufferAccessContext::ResolveRecordedContext(const AccessContext &recorded_context, ResourceUsageTag offset) {
auto tag_offset = [offset](ResourceAccessState *access) { access->OffsetTag(offset); };
auto *access_context = GetCurrentAccessContext();
for (auto address_type : kAddressTypes) {
recorded_context.ResolveAccessRange(address_type, kFullRange, tag_offset, &access_context->GetAccessStateMap(address_type),
nullptr, false);
}
}
ResourceUsageRange CommandBufferAccessContext::ImportRecordedAccessLog(const CommandBufferAccessContext &recorded_context) {
// The execution references ensure lifespan for the referenced child CB's...
ResourceUsageRange tag_range(GetTagLimit(), 0);
cbs_referenced_.emplace(recorded_context.cb_state_);
access_log_.insert(access_log_.end(), recorded_context.access_log_.cbegin(), recorded_context.access_log_.end());
tag_range.end = access_log_.size();
return tag_range;
}
class HazardDetectFirstUse {
public:
HazardDetectFirstUse(const ResourceAccessState &recorded_use, const ResourceUsageRange &tag_range)
: recorded_use_(recorded_use), tag_range_(tag_range) {}
HazardResult Detect(const ResourceAccessRangeMap::const_iterator &pos) const {
return pos->second.DetectHazard(recorded_use_, tag_range_);
}
HazardResult DetectAsync(const ResourceAccessRangeMap::const_iterator &pos, ResourceUsageTag start_tag) const {
return pos->second.DetectAsyncHazard(recorded_use_, tag_range_, start_tag);
}
private:
const ResourceAccessState &recorded_use_;
const ResourceUsageRange &tag_range_;
};
// This is called with the *recorded* command buffers access context, with the *active* access context pass in, againsts which
// hazards will be detected
HazardResult AccessContext::DetectFirstUseHazard(const ResourceUsageRange &tag_range, const AccessContext &access_context) const {
HazardResult hazard;
for (const auto address_type : kAddressTypes) {
const auto &recorded_access_map = GetAccessStateMap(address_type);
for (const auto &recorded_access : recorded_access_map) {
// Cull any entries not in the current tag range
if (!recorded_access.second.FirstAccessInTagRange(tag_range)) continue;
HazardDetectFirstUse detector(recorded_access.second, tag_range);
hazard = access_context.DetectHazard(address_type, detector, recorded_access.first, DetectOptions::kDetectAll);
if (hazard.hazard) break;
}
}
return hazard;
}
bool RenderPassAccessContext::ValidateDrawSubpassAttachment(const CommandExecutionContext &ex_context, const CMD_BUFFER_STATE &cmd,
const char *func_name) const {
bool skip = false;
const auto &sync_state = ex_context.GetSyncState();
const auto *pipe = cmd.GetCurrentPipeline(VK_PIPELINE_BIND_POINT_GRAPHICS);
if (!pipe) {
return skip;
}
const auto &create_info = pipe->create_info.graphics;
if (create_info.pRasterizationState && create_info.pRasterizationState->rasterizerDiscardEnable) {
return skip;
}
const auto &list = pipe->fragmentShader_writable_output_location_list;
const auto &subpass = rp_state_->createInfo.pSubpasses[current_subpass_];
const auto &current_context = CurrentContext();
// Subpass's inputAttachment has been done in ValidateDispatchDrawDescriptorSet
if (subpass.pColorAttachments && subpass.colorAttachmentCount && !list.empty()) {
for (const auto location : list) {
if (location >= subpass.colorAttachmentCount ||
subpass.pColorAttachments[location].attachment == VK_ATTACHMENT_UNUSED) {
continue;
}
const AttachmentViewGen &view_gen = attachment_views_[subpass.pColorAttachments[location].attachment];
if (!view_gen.IsValid()) continue;
HazardResult hazard =
current_context.DetectHazard(view_gen, AttachmentViewGen::Gen::kRenderArea,
SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE, SyncOrdering::kColorAttachment);
if (hazard.hazard) {
const VkImageView view_handle = view_gen.GetViewState()->image_view();
skip |= sync_state.LogError(view_handle, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for %s in %s, Subpass #%d, and pColorAttachments #%d. Access info %s.",
func_name, string_SyncHazard(hazard.hazard),
sync_state.report_data->FormatHandle(view_handle).c_str(),
sync_state.report_data->FormatHandle(cmd.commandBuffer()).c_str(), cmd.activeSubpass,
location, ex_context.FormatUsage(hazard).c_str());
}
}
}
// PHASE1 TODO: Add layout based read/vs. write selection.
// PHASE1 TODO: Read operations for both depth and stencil are possible in the future.
const uint32_t depth_stencil_attachment =
GetSubpassDepthStencilAttachmentIndex(pipe->create_info.graphics.pDepthStencilState, subpass.pDepthStencilAttachment);
if ((depth_stencil_attachment != VK_ATTACHMENT_UNUSED) && attachment_views_[depth_stencil_attachment].IsValid()) {
const AttachmentViewGen &view_gen = attachment_views_[depth_stencil_attachment];
const IMAGE_VIEW_STATE &view_state = *view_gen.GetViewState();
bool depth_write = false, stencil_write = false;
// PHASE1 TODO: These validation should be in core_checks.
if (!FormatIsStencilOnly(view_state.create_info.format) && create_info.pDepthStencilState->depthTestEnable &&
create_info.pDepthStencilState->depthWriteEnable &&
IsImageLayoutDepthWritable(subpass.pDepthStencilAttachment->layout)) {
depth_write = true;
}
// PHASE1 TODO: It needs to check if stencil is writable.
// If failOp, passOp, or depthFailOp are not KEEP, and writeMask isn't 0, it's writable.
// If depth test is disable, it's considered depth test passes, and then depthFailOp doesn't run.
// PHASE1 TODO: These validation should be in core_checks.
if (!FormatIsDepthOnly(view_state.create_info.format) && create_info.pDepthStencilState->stencilTestEnable &&
IsImageLayoutStencilWritable(subpass.pDepthStencilAttachment->layout)) {
stencil_write = true;
}
// PHASE1 TODO: Add EARLY stage detection based on ExecutionMode.
if (depth_write) {
HazardResult hazard = current_context.DetectHazard(view_gen, AttachmentViewGen::Gen::kDepthOnlyRenderArea,
SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE,
SyncOrdering::kDepthStencilAttachment);
if (hazard.hazard) {
skip |= sync_state.LogError(
view_state.image_view(), string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for %s in %s, Subpass #%d, and depth part of pDepthStencilAttachment. Access info %s.",
func_name, string_SyncHazard(hazard.hazard),
sync_state.report_data->FormatHandle(view_state.image_view()).c_str(),
sync_state.report_data->FormatHandle(cmd.commandBuffer()).c_str(), cmd.activeSubpass,
ex_context.FormatUsage(hazard).c_str());
}
}
if (stencil_write) {
HazardResult hazard = current_context.DetectHazard(view_gen, AttachmentViewGen::Gen::kStencilOnlyRenderArea,
SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE,
SyncOrdering::kDepthStencilAttachment);
if (hazard.hazard) {
skip |= sync_state.LogError(
view_state.image_view(), string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for %s in %s, Subpass #%d, and stencil part of pDepthStencilAttachment. Access info %s.",
func_name, string_SyncHazard(hazard.hazard),
sync_state.report_data->FormatHandle(view_state.image_view()).c_str(),
sync_state.report_data->FormatHandle(cmd.commandBuffer()).c_str(), cmd.activeSubpass,
ex_context.FormatUsage(hazard).c_str());
}
}
}
return skip;
}
void RenderPassAccessContext::RecordDrawSubpassAttachment(const CMD_BUFFER_STATE &cmd, const ResourceUsageTag tag) {
const auto *pipe = cmd.GetCurrentPipeline(VK_PIPELINE_BIND_POINT_GRAPHICS);
if (!pipe) {
return;
}
const auto &create_info = pipe->create_info.graphics;
if (create_info.pRasterizationState && create_info.pRasterizationState->rasterizerDiscardEnable) {
return;
}
const auto &list = pipe->fragmentShader_writable_output_location_list;
const auto &subpass = rp_state_->createInfo.pSubpasses[current_subpass_];
auto &current_context = CurrentContext();
// Subpass's inputAttachment has been done in RecordDispatchDrawDescriptorSet
if (subpass.pColorAttachments && subpass.colorAttachmentCount && !list.empty()) {
for (const auto location : list) {
if (location >= subpass.colorAttachmentCount ||
subpass.pColorAttachments[location].attachment == VK_ATTACHMENT_UNUSED) {
continue;
}
const AttachmentViewGen &view_gen = attachment_views_[subpass.pColorAttachments[location].attachment];
current_context.UpdateAccessState(view_gen, AttachmentViewGen::Gen::kRenderArea,
SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE, SyncOrdering::kColorAttachment,
tag);
}
}
// PHASE1 TODO: Add layout based read/vs. write selection.
// PHASE1 TODO: Read operations for both depth and stencil are possible in the future.
const uint32_t depth_stencil_attachment =
GetSubpassDepthStencilAttachmentIndex(create_info.pDepthStencilState, subpass.pDepthStencilAttachment);
if ((depth_stencil_attachment != VK_ATTACHMENT_UNUSED) && attachment_views_[depth_stencil_attachment].IsValid()) {
const AttachmentViewGen &view_gen = attachment_views_[depth_stencil_attachment];
const IMAGE_VIEW_STATE &view_state = *view_gen.GetViewState();
bool depth_write = false, stencil_write = false;
const bool has_depth = 0 != (view_state.normalized_subresource_range.aspectMask & VK_IMAGE_ASPECT_DEPTH_BIT);
const bool has_stencil = 0 != (view_state.normalized_subresource_range.aspectMask & VK_IMAGE_ASPECT_STENCIL_BIT);
// PHASE1 TODO: These validation should be in core_checks.
if (has_depth && !FormatIsStencilOnly(view_state.create_info.format) && create_info.pDepthStencilState->depthTestEnable &&
create_info.pDepthStencilState->depthWriteEnable &&
IsImageLayoutDepthWritable(subpass.pDepthStencilAttachment->layout)) {
depth_write = true;
}
// PHASE1 TODO: It needs to check if stencil is writable.
// If failOp, passOp, or depthFailOp are not KEEP, and writeMask isn't 0, it's writable.
// If depth test is disable, it's considered depth test passes, and then depthFailOp doesn't run.
// PHASE1 TODO: These validation should be in core_checks.
if (has_stencil && !FormatIsDepthOnly(view_state.create_info.format) && create_info.pDepthStencilState->stencilTestEnable &&
IsImageLayoutStencilWritable(subpass.pDepthStencilAttachment->layout)) {
stencil_write = true;
}
if (depth_write || stencil_write) {
const auto ds_gentype = view_gen.GetDepthStencilRenderAreaGenType(depth_write, stencil_write);
// PHASE1 TODO: Add EARLY stage detection based on ExecutionMode.
current_context.UpdateAccessState(view_gen, ds_gentype, SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE,
SyncOrdering::kDepthStencilAttachment, tag);
}
}
}
bool RenderPassAccessContext::ValidateNextSubpass(const CommandExecutionContext &ex_context, const char *func_name) const {
// PHASE1 TODO: Add Validate Preserve attachments
bool skip = false;
skip |= CurrentContext().ValidateResolveOperations(ex_context, *rp_state_, render_area_, attachment_views_, func_name,
current_subpass_);
skip |= CurrentContext().ValidateStoreOperation(ex_context, *rp_state_, render_area_, current_subpass_, attachment_views_,
func_name);
const auto next_subpass = current_subpass_ + 1;
const auto &next_context = subpass_contexts_[next_subpass];
skip |=
next_context.ValidateLayoutTransitions(ex_context, *rp_state_, render_area_, next_subpass, attachment_views_, func_name);
if (!skip) {
// To avoid complex (and buggy) duplication of the affect of layout transitions on load operations, we'll record them
// on a copy of the (empty) next context.
// Note: The resource access map should be empty so hopefully this copy isn't too horrible from a perf POV.
AccessContext temp_context(next_context);
temp_context.RecordLayoutTransitions(*rp_state_, next_subpass, attachment_views_, kCurrentCommandTag);
skip |=
temp_context.ValidateLoadOperation(ex_context, *rp_state_, render_area_, next_subpass, attachment_views_, func_name);
}
return skip;
}
bool RenderPassAccessContext::ValidateEndRenderPass(const CommandExecutionContext &ex_context, const char *func_name) const {
// PHASE1 TODO: Validate Preserve
bool skip = false;
skip |= CurrentContext().ValidateResolveOperations(ex_context, *rp_state_, render_area_, attachment_views_, func_name,
current_subpass_);
skip |= CurrentContext().ValidateStoreOperation(ex_context, *rp_state_, render_area_, current_subpass_,
attachment_views_, func_name);
skip |= ValidateFinalSubpassLayoutTransitions(ex_context, func_name);
return skip;
}
AccessContext *RenderPassAccessContext::CreateStoreResolveProxy() const {
return CreateStoreResolveProxyContext(CurrentContext(), *rp_state_, current_subpass_, attachment_views_);
}
bool RenderPassAccessContext::ValidateFinalSubpassLayoutTransitions(const CommandExecutionContext &ex_context,
const char *func_name) const {
bool skip = false;
// As validation methods are const and precede the record/update phase, for any tranistions from the current (last)
// subpass, we have to validate them against a copy of the current AccessContext, with resolve operations applied.
// Note: we could be more efficient by tracking whether or not we actually *have* any changes (e.g. attachment resolve)
// to apply and only copy then, if this proves a hot spot.
std::unique_ptr<AccessContext> proxy_for_current;
// Validate the "finalLayout" transitions to external
// Get them from where there we're hidding in the extra entry.
const auto &final_transitions = rp_state_->subpass_transitions.back();
for (const auto &transition : final_transitions) {
const auto &view_gen = attachment_views_[transition.attachment];
const auto &trackback = subpass_contexts_[transition.prev_pass].GetDstExternalTrackBack();
assert(trackback.context); // Transitions are given implicit transitions if the StateTracker is working correctly
auto *context = trackback.context;
if (transition.prev_pass == current_subpass_) {
if (!proxy_for_current) {
// We haven't recorded resolve ofor the current_subpass, so we need to copy current and update it *as if*
proxy_for_current.reset(CreateStoreResolveProxy());
}
context = proxy_for_current.get();
}
// Use the merged barrier for the hazard check (safe since it just considers the src (first) scope.
const auto merged_barrier = MergeBarriers(trackback.barriers);
auto hazard = context->DetectImageBarrierHazard(view_gen, merged_barrier, AccessContext::DetectOptions::kDetectPrevious);
if (hazard.hazard) {
skip |= ex_context.GetSyncState().LogError(
rp_state_->renderPass(), string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s with last use subpass %" PRIu32 " for attachment %" PRIu32
" final image layout transition (old_layout: %s, new_layout: %s). Access info %s.",
func_name, string_SyncHazard(hazard.hazard), transition.prev_pass, transition.attachment,
string_VkImageLayout(transition.old_layout), string_VkImageLayout(transition.new_layout),
ex_context.FormatUsage(hazard).c_str());
}
}
return skip;
}
void RenderPassAccessContext::RecordLayoutTransitions(const ResourceUsageTag tag) {
// Add layout transitions...
subpass_contexts_[current_subpass_].RecordLayoutTransitions(*rp_state_, current_subpass_, attachment_views_, tag);
}
void RenderPassAccessContext::RecordLoadOperations(const ResourceUsageTag tag) {
const auto *attachment_ci = rp_state_->createInfo.pAttachments;
auto &subpass_context = subpass_contexts_[current_subpass_];
for (uint32_t i = 0; i < rp_state_->createInfo.attachmentCount; i++) {
if (rp_state_->attachment_first_subpass[i] == current_subpass_) {
const AttachmentViewGen &view_gen = attachment_views_[i];
if (!view_gen.IsValid()) continue; // UNUSED
const auto &ci = attachment_ci[i];
const bool has_depth = FormatHasDepth(ci.format);
const bool has_stencil = FormatHasStencil(ci.format);
const bool is_color = !(has_depth || has_stencil);
if (is_color) {
const SyncStageAccessIndex load_op = ColorLoadUsage(ci.loadOp);
if (load_op != SYNC_ACCESS_INDEX_NONE) {
subpass_context.UpdateAccessState(view_gen, AttachmentViewGen::Gen::kRenderArea, load_op,
SyncOrdering::kColorAttachment, tag);
}
} else {
if (has_depth) {
const SyncStageAccessIndex load_op = DepthStencilLoadUsage(ci.loadOp);
if (load_op != SYNC_ACCESS_INDEX_NONE) {
subpass_context.UpdateAccessState(view_gen, AttachmentViewGen::Gen::kDepthOnlyRenderArea, load_op,
SyncOrdering::kDepthStencilAttachment, tag);
}
}
if (has_stencil) {
const SyncStageAccessIndex load_op = DepthStencilLoadUsage(ci.stencilLoadOp);
if (load_op != SYNC_ACCESS_INDEX_NONE) {
subpass_context.UpdateAccessState(view_gen, AttachmentViewGen::Gen::kStencilOnlyRenderArea, load_op,
SyncOrdering::kDepthStencilAttachment, tag);
}
}
}
}
}
}
AttachmentViewGenVector RenderPassAccessContext::CreateAttachmentViewGen(
const VkRect2D &render_area, const std::vector<const IMAGE_VIEW_STATE *> &attachment_views) {
AttachmentViewGenVector view_gens;
VkExtent3D extent = CastTo3D(render_area.extent);
VkOffset3D offset = CastTo3D(render_area.offset);
view_gens.reserve(attachment_views.size());
for (const auto *view : attachment_views) {
view_gens.emplace_back(view, offset, extent);
}
return view_gens;
}
RenderPassAccessContext::RenderPassAccessContext(const RENDER_PASS_STATE &rp_state, const VkRect2D &render_area,
VkQueueFlags queue_flags,
const std::vector<const IMAGE_VIEW_STATE *> &attachment_views,
const AccessContext *external_context)
: rp_state_(&rp_state), render_area_(render_area), current_subpass_(0U), attachment_views_() {
// Add this for all subpasses here so that they exsist during next subpass validation
subpass_contexts_.reserve(rp_state_->createInfo.subpassCount);
for (uint32_t pass = 0; pass < rp_state_->createInfo.subpassCount; pass++) {
subpass_contexts_.emplace_back(pass, queue_flags, rp_state_->subpass_dependencies, subpass_contexts_, external_context);
}
attachment_views_ = CreateAttachmentViewGen(render_area, attachment_views);
}
void RenderPassAccessContext::RecordBeginRenderPass(const ResourceUsageTag tag) {
assert(0 == current_subpass_);
subpass_contexts_[current_subpass_].SetStartTag(tag);
RecordLayoutTransitions(tag);
RecordLoadOperations(tag);
}
void RenderPassAccessContext::RecordNextSubpass(const ResourceUsageTag prev_subpass_tag, const ResourceUsageTag next_subpass_tag) {
// Resolves are against *prior* subpass context and thus *before* the subpass increment
CurrentContext().UpdateAttachmentResolveAccess(*rp_state_, attachment_views_, current_subpass_, prev_subpass_tag);
CurrentContext().UpdateAttachmentStoreAccess(*rp_state_, attachment_views_, current_subpass_, prev_subpass_tag);
// Move to the next sub-command for the new subpass. The resolve and store are logically part of the previous
// subpass, so their tag needs to be different from the layout and load operations below.
current_subpass_++;
assert(current_subpass_ < subpass_contexts_.size());
subpass_contexts_[current_subpass_].SetStartTag(next_subpass_tag);
RecordLayoutTransitions(next_subpass_tag);
RecordLoadOperations(next_subpass_tag);
}
void RenderPassAccessContext::RecordEndRenderPass(AccessContext *external_context, const ResourceUsageTag tag) {
// Add the resolve and store accesses
CurrentContext().UpdateAttachmentResolveAccess(*rp_state_, attachment_views_, current_subpass_, tag);
CurrentContext().UpdateAttachmentStoreAccess(*rp_state_, attachment_views_, current_subpass_, tag);
// Export the accesses from the renderpass...
external_context->ResolveChildContexts(subpass_contexts_);
// Add the "finalLayout" transitions to external
// Get them from where there we're hidding in the extra entry.
// Not that since *final* always comes from *one* subpass per view, we don't have to accumulate the barriers
// TODO Aliasing we may need to reconsider barrier accumulation... though I don't know that it would be valid for aliasing
// that had mulitple final layout transistions from mulitple final subpasses.
const auto &final_transitions = rp_state_->subpass_transitions.back();
for (const auto &transition : final_transitions) {
const AttachmentViewGen &view_gen = attachment_views_[transition.attachment];
const auto &last_trackback = subpass_contexts_[transition.prev_pass].GetDstExternalTrackBack();
assert(&subpass_contexts_[transition.prev_pass] == last_trackback.context);
ApplyBarrierOpsFunctor<PipelineBarrierOp> barrier_action(true /* resolve */, last_trackback.barriers.size(), tag);
for (const auto &barrier : last_trackback.barriers) {
barrier_action.EmplaceBack(PipelineBarrierOp(barrier, true));
}
external_context->ApplyUpdateAction(view_gen, AttachmentViewGen::Gen::kViewSubresource, barrier_action);
}
}
SyncExecScope SyncExecScope::MakeSrc(VkQueueFlags queue_flags, VkPipelineStageFlags2KHR mask_param) {
SyncExecScope result;
result.mask_param = mask_param;
result.expanded_mask = sync_utils::ExpandPipelineStages(mask_param, queue_flags);
result.exec_scope = sync_utils::WithEarlierPipelineStages(result.expanded_mask);
result.valid_accesses = SyncStageAccess::AccessScopeByStage(result.exec_scope);
return result;
}
SyncExecScope SyncExecScope::MakeDst(VkQueueFlags queue_flags, VkPipelineStageFlags2KHR mask_param) {
SyncExecScope result;
result.mask_param = mask_param;
result.expanded_mask = sync_utils::ExpandPipelineStages(mask_param, queue_flags);
result.exec_scope = sync_utils::WithLaterPipelineStages(result.expanded_mask);
result.valid_accesses = SyncStageAccess::AccessScopeByStage(result.exec_scope);
return result;
}
SyncBarrier::SyncBarrier(const SyncExecScope &src, const SyncExecScope &dst) {
src_exec_scope = src;
src_access_scope = 0;
dst_exec_scope = dst;
dst_access_scope = 0;
}
template <typename Barrier>
SyncBarrier::SyncBarrier(const Barrier &barrier, const SyncExecScope &src, const SyncExecScope &dst) {
src_exec_scope = src;
src_access_scope = SyncStageAccess::AccessScope(src.valid_accesses, barrier.srcAccessMask);
dst_exec_scope = dst;
dst_access_scope = SyncStageAccess::AccessScope(dst.valid_accesses, barrier.dstAccessMask);
}
SyncBarrier::SyncBarrier(VkQueueFlags queue_flags, const VkSubpassDependency2 &subpass) {
const auto barrier = lvl_find_in_chain<VkMemoryBarrier2KHR>(subpass.pNext);
if (barrier) {
auto src = SyncExecScope::MakeSrc(queue_flags, barrier->srcStageMask);
src_exec_scope = src;
src_access_scope = SyncStageAccess::AccessScope(src.valid_accesses, barrier->srcAccessMask);
auto dst = SyncExecScope::MakeDst(queue_flags, barrier->dstStageMask);
dst_exec_scope = dst;
dst_access_scope = SyncStageAccess::AccessScope(dst.valid_accesses, barrier->dstAccessMask);
} else {
auto src = SyncExecScope::MakeSrc(queue_flags, subpass.srcStageMask);
src_exec_scope = src;
src_access_scope = SyncStageAccess::AccessScope(src.valid_accesses, subpass.srcAccessMask);
auto dst = SyncExecScope::MakeDst(queue_flags, subpass.dstStageMask);
dst_exec_scope = dst;
dst_access_scope = SyncStageAccess::AccessScope(dst.valid_accesses, subpass.dstAccessMask);
}
}
template <typename Barrier>
SyncBarrier::SyncBarrier(VkQueueFlags queue_flags, const Barrier &barrier) {
auto src = SyncExecScope::MakeSrc(queue_flags, barrier.srcStageMask);
src_exec_scope = src.exec_scope;
src_access_scope = SyncStageAccess::AccessScope(src.valid_accesses, barrier.srcAccessMask);
auto dst = SyncExecScope::MakeDst(queue_flags, barrier.dstStageMask);
dst_exec_scope = dst.exec_scope;
dst_access_scope = SyncStageAccess::AccessScope(dst.valid_accesses, barrier.dstAccessMask);
}
// Apply a list of barriers, without resolving pending state, useful for subpass layout transitions
void ResourceAccessState::ApplyBarriers(const std::vector<SyncBarrier> &barriers, bool layout_transition) {
for (const auto &barrier : barriers) {
ApplyBarrier(barrier, layout_transition);
}
}
// ApplyBarriers is design for *fully* inclusive barrier lists without layout tranistions. Designed use was for
// inter-subpass barriers for lazy-evaluation of parent context memory ranges. Subpass layout transistions are *not* done
// lazily, s.t. no previous access reports should need layout transitions.
void ResourceAccessState::ApplyBarriers(const std::vector<SyncBarrier> &barriers, const ResourceUsageTag tag) {
assert(!pending_layout_transition); // This should never be call in the middle of another barrier application
assert(pending_write_barriers.none());
assert(!pending_write_dep_chain);
for (const auto &barrier : barriers) {
ApplyBarrier(barrier, false);
}
ApplyPendingBarriers(tag);
}
HazardResult ResourceAccessState::DetectHazard(SyncStageAccessIndex usage_index) const {
HazardResult hazard;
auto usage = FlagBit(usage_index);
const auto usage_stage = PipelineStageBit(usage_index);
if (IsRead(usage)) {
if (IsRAWHazard(usage_stage, usage)) {
hazard.Set(this, usage_index, READ_AFTER_WRITE, last_write, write_tag);
}
} else {
// Write operation:
// Check for read operations more recent than last_write (as setting last_write clears reads, that would be *any*
// If reads exists -- test only against them because either:
// * the reads were hazards, and we've reported the hazard, so just test the current write vs. the read operations
// * the read weren't hazards, and thus if the write is safe w.r.t. the reads, no hazard vs. last_write is possible if
// the current write happens after the reads, so just test the write against the reades
// Otherwise test against last_write
//
// Look for casus belli for WAR
if (last_reads.size()) {
for (const auto &read_access : last_reads) {
if (IsReadHazard(usage_stage, read_access)) {
hazard.Set(this, usage_index, WRITE_AFTER_READ, read_access.access, read_access.tag);
break;
}
}
} else if (last_write.any() && IsWriteHazard(usage)) {
// Write-After-Write check -- if we have a previous write to test against
hazard.Set(this, usage_index, WRITE_AFTER_WRITE, last_write, write_tag);
}
}
return hazard;
}
HazardResult ResourceAccessState::DetectHazard(SyncStageAccessIndex usage_index, const SyncOrdering ordering_rule) const {
const auto &ordering = GetOrderingRules(ordering_rule);
return DetectHazard(usage_index, ordering);
}
HazardResult ResourceAccessState::DetectHazard(SyncStageAccessIndex usage_index, const OrderingBarrier &ordering) const {
// The ordering guarantees act as barriers to the last accesses, independent of synchronization operations
HazardResult hazard;
const auto usage_bit = FlagBit(usage_index);
const auto usage_stage = PipelineStageBit(usage_index);
const bool input_attachment_ordering = (ordering.access_scope & SYNC_FRAGMENT_SHADER_INPUT_ATTACHMENT_READ_BIT).any();
const bool last_write_is_ordered = (last_write & ordering.access_scope).any();
if (IsRead(usage_bit)) {
// Exclude RAW if no write, or write not most "most recent" operation w.r.t. usage;
bool is_raw_hazard = IsRAWHazard(usage_stage, usage_bit);
if (is_raw_hazard) {
// NOTE: we know last_write is non-zero
// See if the ordering rules save us from the simple RAW check above
// First check to see if the current usage is covered by the ordering rules
const bool usage_is_input_attachment = (usage_index == SYNC_FRAGMENT_SHADER_INPUT_ATTACHMENT_READ);
const bool usage_is_ordered =
(input_attachment_ordering && usage_is_input_attachment) || (0 != (usage_stage & ordering.exec_scope));
if (usage_is_ordered) {
// Now see of the most recent write (or a subsequent read) are ordered
const bool most_recent_is_ordered = last_write_is_ordered || (0 != GetOrderedStages(ordering));
is_raw_hazard = !most_recent_is_ordered;
}
}
if (is_raw_hazard) {
hazard.Set(this, usage_index, READ_AFTER_WRITE, last_write, write_tag);
}
} else if (usage_index == SyncStageAccessIndex::SYNC_IMAGE_LAYOUT_TRANSITION) {
// For Image layout transitions, the barrier represents the first synchronization/access scope of the layout transition
return DetectBarrierHazard(usage_index, ordering.exec_scope, ordering.access_scope);
} else {
// Only check for WAW if there are no reads since last_write
bool usage_write_is_ordered = (usage_bit & ordering.access_scope).any();
if (last_reads.size()) {
// Look for any WAR hazards outside the ordered set of stages
VkPipelineStageFlags2KHR ordered_stages = 0;
if (usage_write_is_ordered) {
// If the usage is ordered, we can ignore all ordered read stages w.r.t. WAR)
ordered_stages = GetOrderedStages(ordering);
}
// If we're tracking any reads that aren't ordered against the current write, got to check 'em all.
if ((ordered_stages & last_read_stages) != last_read_stages) {
for (const auto &read_access : last_reads) {
if (read_access.stage & ordered_stages) continue; // but we can skip the ordered ones
if (IsReadHazard(usage_stage, read_access)) {
hazard.Set(this, usage_index, WRITE_AFTER_READ, read_access.access, read_access.tag);
break;
}
}
}
} else if (last_write.any() && !(last_write_is_ordered && usage_write_is_ordered)) {
bool ilt_ilt_hazard = false;
if ((usage_index == SYNC_IMAGE_LAYOUT_TRANSITION) && (usage_bit == last_write)) {
// ILT after ILT is a special case where we check the 2nd access scope of the first ILT against the first access
// scope of the second ILT, which has been passed (smuggled?) in the ordering barrier
ilt_ilt_hazard = !(write_barriers & ordering.access_scope).any();
}
if (ilt_ilt_hazard || IsWriteHazard(usage_bit)) {
hazard.Set(this, usage_index, WRITE_AFTER_WRITE, last_write, write_tag);
}
}
}
return hazard;
}
HazardResult ResourceAccessState::DetectHazard(const ResourceAccessState &recorded_use, const ResourceUsageRange &tag_range) const {
HazardResult hazard;
using Size = FirstAccesses::size_type;
const auto &recorded_accesses = recorded_use.first_accesses_;
Size count = recorded_accesses.size();
if (count) {
const auto &last_access = recorded_accesses.back();
bool do_write_last = IsWrite(last_access.usage_index);
if (do_write_last) --count;
for (Size i = 0; i < count; ++count) {
const auto &first = recorded_accesses[i];
// Skip and quit logic
if (first.tag < tag_range.begin) continue;
if (first.tag >= tag_range.end) {
do_write_last = false; // ignore last since we know it can't be in tag_range
break;
}
hazard = DetectHazard(first.usage_index, first.ordering_rule);
if (hazard.hazard) {
hazard.AddRecordedAccess(first);
break;
}
}
if (do_write_last && tag_range.includes(last_access.tag)) {
// Writes are a bit special... both for the "most recent" access logic, and layout transition specific logic
OrderingBarrier barrier = GetOrderingRules(last_access.ordering_rule);
if (last_access.usage_index == SyncStageAccessIndex::SYNC_IMAGE_LAYOUT_TRANSITION) {
// Or in the layout first access scope as a barrier... IFF the usage is an ILT
// this was saved off in the "apply barriers" logic to simplify ILT access checks as they straddle
// the barrier that applies them
barrier |= recorded_use.first_write_layout_ordering_;
}
// Any read stages present in the recorded context (this) are most recent to the write, and thus mask those stages in
// the active context
if (recorded_use.first_read_stages_) {
// we need to ignore the first use read stage in the active context (so we add them to the ordering rule),
// reads in the active context are not "most recent" as all recorded context operations are *after* them
// This supresses only RAW checks for stages present in the recorded context, but not those only present in the
// active context.
barrier.exec_scope |= recorded_use.first_read_stages_;
// if there are any first use reads, we suppress WAW by injecting the active context write in the ordering rule
barrier.access_scope |= FlagBit(last_access.usage_index);
}
hazard = DetectHazard(last_access.usage_index, barrier);
if (hazard.hazard) {
hazard.AddRecordedAccess(last_access);
}
}
}
return hazard;
}
// Asynchronous Hazards occur between subpasses with no connection through the DAG
HazardResult ResourceAccessState::DetectAsyncHazard(SyncStageAccessIndex usage_index, const ResourceUsageTag start_tag) const {
HazardResult hazard;
auto usage = FlagBit(usage_index);
// Async checks need to not go back further than the start of the subpass, as we only want to find hazards between the async
// subpasses. Anything older than that should have been checked at the start of each subpass, taking into account all of
// the raster ordering rules.
if (IsRead(usage)) {
if (last_write.any() && (write_tag >= start_tag)) {
hazard.Set(this, usage_index, READ_RACING_WRITE, last_write, write_tag);
}
} else {
if (last_write.any() && (write_tag >= start_tag)) {
hazard.Set(this, usage_index, WRITE_RACING_WRITE, last_write, write_tag);
} else if (last_reads.size() > 0) {
// Any reads during the other subpass will conflict with this write, so we need to check them all.
for (const auto &read_access : last_reads) {
if (read_access.tag >= start_tag) {
hazard.Set(this, usage_index, WRITE_RACING_READ, read_access.access, read_access.tag);
break;
}
}
}
}
return hazard;
}
HazardResult ResourceAccessState::DetectAsyncHazard(const ResourceAccessState &recorded_use, const ResourceUsageRange &tag_range,
ResourceUsageTag start_tag) const {
HazardResult hazard;
for (const auto &first : recorded_use.first_accesses_) {
// Skip and quit logic
if (first.tag < tag_range.begin) continue;
if (first.tag >= tag_range.end) break;
hazard = DetectAsyncHazard(first.usage_index, start_tag);
if (hazard.hazard) {
hazard.AddRecordedAccess(first);
break;
}
}
return hazard;
}
HazardResult ResourceAccessState::DetectBarrierHazard(SyncStageAccessIndex usage_index, VkPipelineStageFlags2KHR src_exec_scope,
const SyncStageAccessFlags &src_access_scope) const {
// Only supporting image layout transitions for now
assert(usage_index == SyncStageAccessIndex::SYNC_IMAGE_LAYOUT_TRANSITION);
HazardResult hazard;
// only test for WAW if there no intervening read operations.
// See DetectHazard(SyncStagetAccessIndex) above for more details.
if (last_reads.size()) {
// Look at the reads if any
for (const auto &read_access : last_reads) {
if (read_access.IsReadBarrierHazard(src_exec_scope)) {
hazard.Set(this, usage_index, WRITE_AFTER_READ, read_access.access, read_access.tag);
break;
}
}
} else if (last_write.any() && IsWriteBarrierHazard(src_exec_scope, src_access_scope)) {
hazard.Set(this, usage_index, WRITE_AFTER_WRITE, last_write, write_tag);
}
return hazard;
}
HazardResult ResourceAccessState::DetectBarrierHazard(SyncStageAccessIndex usage_index, VkPipelineStageFlags2KHR src_exec_scope,
const SyncStageAccessFlags &src_access_scope,
const ResourceUsageTag event_tag) const {
// Only supporting image layout transitions for now
assert(usage_index == SyncStageAccessIndex::SYNC_IMAGE_LAYOUT_TRANSITION);
HazardResult hazard;
// only test for WAW if there no intervening read operations.
// See DetectHazard(SyncStagetAccessIndex) above for more details.
if (last_reads.size()) {
// Look at the reads if any... if reads exist, they are either the resaon the access is in the event
// first scope, or they are a hazard.
for (const auto &read_access : last_reads) {
if (read_access.tag < event_tag) {
// The read is in the events first synchronization scope, so we use a barrier hazard check
// If the read stage is not in the src sync scope
// *AND* not execution chained with an existing sync barrier (that's the or)
// then the barrier access is unsafe (R/W after R)
if (read_access.IsReadBarrierHazard(src_exec_scope)) {
hazard.Set(this, usage_index, WRITE_AFTER_READ, read_access.access, read_access.tag);
break;
}
} else {
// The read not in the event first sync scope and so is a hazard vs. the layout transition
hazard.Set(this, usage_index, WRITE_AFTER_READ, read_access.access, read_access.tag);
}
}
} else if (last_write.any()) {
// if there are no reads, the write is either the reason the access is in the event scope... they are a hazard
if (write_tag < event_tag) {
// The write is in the first sync scope of the event (sync their aren't any reads to be the reason)
// So do a normal barrier hazard check
if (IsWriteBarrierHazard(src_exec_scope, src_access_scope)) {
hazard.Set(this, usage_index, WRITE_AFTER_WRITE, last_write, write_tag);
}
} else {
// The write isn't in scope, and is thus a hazard to the layout transistion for wait
hazard.Set(this, usage_index, WRITE_AFTER_WRITE, last_write, write_tag);
}
}
return hazard;
}
// The logic behind resolves is the same as update, we assume that earlier hazards have be reported, and that no
// tranistive hazard can exists with a hazard between the earlier operations. Yes, an early hazard can mask that another
// exists, but if you fix *that* hazard it either fixes or unmasks the subsequent ones.
void ResourceAccessState::Resolve(const ResourceAccessState &other) {
if (write_tag < other.write_tag) {
// If this is a later write, we've reported any exsiting hazard, and we can just overwrite as the more recent
// operation
*this = other;
} else if (other.write_tag == write_tag) {
// In the *equals* case for write operations, we merged the write barriers and the read state (but without the
// dependency chaining logic or any stage expansion)
write_barriers |= other.write_barriers;
pending_write_barriers |= other.pending_write_barriers;
pending_layout_transition |= other.pending_layout_transition;
pending_write_dep_chain |= other.pending_write_dep_chain;
pending_layout_ordering_ |= other.pending_layout_ordering_;
// Merge the read states
const auto pre_merge_count = last_reads.size();
const auto pre_merge_stages = last_read_stages;
for (uint32_t other_read_index = 0; other_read_index < other.last_reads.size(); other_read_index++) {
auto &other_read = other.last_reads[other_read_index];
if (pre_merge_stages & other_read.stage) {
// Merge in the barriers for read stages that exist in *both* this and other
// TODO: This is N^2 with stages... perhaps the ReadStates should be sorted by stage index.
// but we should wait on profiling data for that.
for (uint32_t my_read_index = 0; my_read_index < pre_merge_count; my_read_index++) {
auto &my_read = last_reads[my_read_index];
if (other_read.stage == my_read.stage) {
if (my_read.tag < other_read.tag) {
// Other is more recent, copy in the state
my_read.access = other_read.access;
my_read.tag = other_read.tag;
my_read.pending_dep_chain = other_read.pending_dep_chain;
// TODO: Phase 2 -- review the state merge logic to avoid false positive from overwriting the barriers
// May require tracking more than one access per stage.
my_read.barriers = other_read.barriers;
if (my_read.stage == VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT_KHR) {
// Since I'm overwriting the fragement stage read, also update the input attachment info
// as this is the only stage that affects it.
input_attachment_read = other.input_attachment_read;
}
} else if (other_read.tag == my_read.tag) {
// The read tags match so merge the barriers
my_read.barriers |= other_read.barriers;
my_read.pending_dep_chain |= other_read.pending_dep_chain;
}
break;
}
}
} else {
// The other read stage doesn't exist in this, so add it.
last_reads.emplace_back(other_read);
last_read_stages |= other_read.stage;
if (other_read.stage == VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT_KHR) {
input_attachment_read = other.input_attachment_read;
}
}
}
read_execution_barriers |= other.read_execution_barriers;
} // the else clause would be that other write is before this write... in which case we supercede the other state and
// ignore it.
// Merge first access information by making a copy of this first_access and reconstructing with a shuffle
// of the copy and other into this using the update first logic.
// NOTE: All sorts of additional cleverness could be put into short circuts. (for example back is write and is before front
// of the other first_accesses... )
if (!(first_accesses_ == other.first_accesses_) && !other.first_accesses_.empty()) {
FirstAccesses firsts(std::move(first_accesses_));
first_accesses_.clear();
first_read_stages_ = 0U;
auto a = firsts.begin();
auto a_end = firsts.end();
for (auto &b : other.first_accesses_) {
// TODO: Determine whether some tag offset will be needed for PHASE II
while ((a != a_end) && (a->tag < b.tag)) {
UpdateFirst(a->tag, a->usage_index, a->ordering_rule);
++a;
}
UpdateFirst(b.tag, b.usage_index, b.ordering_rule);
}
for (; a != a_end; ++a) {
UpdateFirst(a->tag, a->usage_index, a->ordering_rule);
}
}
}
void ResourceAccessState::Update(SyncStageAccessIndex usage_index, SyncOrdering ordering_rule, const ResourceUsageTag tag) {
// Move this logic in the ResourceStateTracker as methods, thereof (or we'll repeat it for every flavor of resource...
const auto usage_bit = FlagBit(usage_index);
if (IsRead(usage_index)) {
// Mulitple outstanding reads may be of interest and do dependency chains independently
// However, for purposes of barrier tracking, only one read per pipeline stage matters
const auto usage_stage = PipelineStageBit(usage_index);
if (usage_stage & last_read_stages) {
for (auto &read_access : last_reads) {
if (read_access.stage == usage_stage) {
read_access.Set(usage_stage, usage_bit, 0, tag);
break;
}
}
} else {
last_reads.emplace_back(usage_stage, usage_bit, 0, tag);
last_read_stages |= usage_stage;
}
// Fragment shader reads come in two flavors, and we need to track if the one we're tracking is the special one.
if (usage_stage == VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT_KHR) {
// TODO Revisit re: multiple reads for a given stage
input_attachment_read = (usage_bit == SYNC_FRAGMENT_SHADER_INPUT_ATTACHMENT_READ_BIT);
}
} else {
// Assume write
// TODO determine what to do with READ-WRITE operations if any
SetWrite(usage_bit, tag);
}
UpdateFirst(tag, usage_index, ordering_rule);
}
// Clobber last read and all barriers... because all we have is DANGER, DANGER, WILL ROBINSON!!!
// if the last_reads/last_write were unsafe, we've reported them, in either case the prior access is irrelevant.
// We can overwrite them as *this* write is now after them.
//
// Note: intentionally ignore pending barriers and chains (i.e. don't apply or clear them), let ApplyPendingBarriers handle them.
void ResourceAccessState::SetWrite(const SyncStageAccessFlags &usage_bit, const ResourceUsageTag tag) {
last_reads.clear();
last_read_stages = 0;
read_execution_barriers = 0;
input_attachment_read = false; // Denotes no outstanding input attachment read after the last write.
write_barriers = 0;
write_dependency_chain = 0;
write_tag = tag;
last_write = usage_bit;
}
// Apply the memory barrier without updating the existing barriers. The execution barrier
// changes the "chaining" state, but to keep barriers independent, we defer this until all barriers
// of the batch have been processed. Also, depending on whether layout transition happens, we'll either
// replace the current write barriers or add to them, so accumulate to pending as well.
void ResourceAccessState::ApplyBarrier(const SyncBarrier &barrier, bool layout_transition) {
// For independent barriers we need to track what the new barriers and dependency chain *will* be when we're done
// applying the memory barriers
// NOTE: We update the write barrier if the write is in the first access scope or if there is a layout
// transistion, under the theory of "most recent access". If the read/write *isn't* safe
// vs. this layout transition DetectBarrierHazard should report it. We treat the layout
// transistion *as* a write and in scope with the barrier (it's before visibility).
if (layout_transition || WriteInSourceScopeOrChain(barrier.src_exec_scope.exec_scope, barrier.src_access_scope)) {
pending_write_barriers |= barrier.dst_access_scope;
pending_write_dep_chain |= barrier.dst_exec_scope.exec_scope;
if (layout_transition) {
pending_layout_ordering_ |= OrderingBarrier(barrier.src_exec_scope.exec_scope, barrier.src_access_scope);
}
}
// Track layout transistion as pending as we can't modify last_write until all barriers processed
pending_layout_transition |= layout_transition;
if (!pending_layout_transition) {
// Once we're dealing with a layout transition (which is modelled as a *write*) then the last reads/writes/chains
// don't need to be tracked as we're just going to zero them.
for (auto &read_access : last_reads) {
// The | implements the "dependency chain" logic for this access, as the barriers field stores the second sync scope
if (barrier.src_exec_scope.exec_scope & (read_access.stage | read_access.barriers)) {
read_access.pending_dep_chain |= barrier.dst_exec_scope.exec_scope;
}
}
}
}
// Apply the tag scoped memory barrier without updating the existing barriers. The execution barrier
// changes the "chaining" state, but to keep barriers independent. See discussion above.
void ResourceAccessState::ApplyBarrier(const ResourceUsageTag scope_tag, const SyncBarrier &barrier, bool layout_transition) {
// The scope logic for events is, if we're here, the resource usage was flagged as "in the first execution scope" at
// the time of the SetEvent, thus all we need check is whether the access is the same one (i.e. before the scope tag
// in order to know if it's in the excecution scope
// Notice that the layout transition sets the pending barriers *regardless*, as any lack of src_access_scope to
// guard against the layout transition should be reported in the detect barrier hazard phase, and we only report
// errors w.r.t. "most recent" accesses.
if (layout_transition || ((write_tag < scope_tag) && (barrier.src_access_scope & last_write).any())) {
pending_write_barriers |= barrier.dst_access_scope;
pending_write_dep_chain |= barrier.dst_exec_scope.exec_scope;
if (layout_transition) {
pending_layout_ordering_ |= OrderingBarrier(barrier.src_exec_scope.exec_scope, barrier.src_access_scope);
}
}
// Track layout transistion as pending as we can't modify last_write until all barriers processed
pending_layout_transition |= layout_transition;
if (!pending_layout_transition) {
// Once we're dealing with a layout transition (which is modelled as a *write*) then the last reads/writes/chains
// don't need to be tracked as we're just going to zero them.
for (auto &read_access : last_reads) {
// If this read is the same one we included in the set event and in scope, then apply the execution barrier...
// NOTE: That's not really correct... this read stage might *not* have been included in the setevent, and the barriers
// representing the chain might have changed since then (that would be an odd usage), so as a first approximation
// we'll assume the barriers *haven't* been changed since (if the tag hasn't), and while this could be a false
// positive in the case of Set; SomeBarrier; Wait; we'll live with it until we can add more state to the first scope
// capture (the specific write and read stages that *were* in scope at the moment of SetEvents.
// TODO: eliminate the false positive by including write/read-stages "in scope" information in SetEvents first_scope
if ((read_access.tag < scope_tag) && (barrier.src_exec_scope.exec_scope & (read_access.stage | read_access.barriers))) {
read_access.pending_dep_chain |= barrier.dst_exec_scope.exec_scope;
}
}
}
}
void ResourceAccessState::ApplyPendingBarriers(const ResourceUsageTag tag) {
if (pending_layout_transition) {
// SetWrite clobbers the last_reads array, and thus we don't have to clear the read_state out.
SetWrite(SYNC_IMAGE_LAYOUT_TRANSITION_BIT, tag); // Side effect notes below
UpdateFirst(tag, SYNC_IMAGE_LAYOUT_TRANSITION, SyncOrdering::kNonAttachment);
TouchupFirstForLayoutTransition(tag, pending_layout_ordering_);
pending_layout_ordering_ = OrderingBarrier();
pending_layout_transition = false;
}
// Apply the accumulate execution barriers (and thus update chaining information)
// for layout transition, last_reads is reset by SetWrite, so this will be skipped.
for (auto &read_access : last_reads) {
read_access.barriers |= read_access.pending_dep_chain;
read_execution_barriers |= read_access.barriers;
read_access.pending_dep_chain = 0;
}
// We OR in the accumulated write chain and barriers even in the case of a layout transition as SetWrite zeros them.
write_dependency_chain |= pending_write_dep_chain;
write_barriers |= pending_write_barriers;
pending_write_dep_chain = 0;
pending_write_barriers = 0;
}
bool ResourceAccessState::FirstAccessInTagRange(const ResourceUsageRange &tag_range) const {
if (!first_accesses_.size()) return false;
const ResourceUsageRange first_access_range = {first_accesses_.front().tag, first_accesses_.back().tag + 1};
return tag_range.intersects(first_access_range);
}
// This should be just Bits or Index, but we don't have an invalid state for Index
VkPipelineStageFlags2KHR ResourceAccessState::GetReadBarriers(const SyncStageAccessFlags &usage_bit) const {
VkPipelineStageFlags2KHR barriers = 0U;
for (const auto &read_access : last_reads) {
if ((read_access.access & usage_bit).any()) {
barriers = read_access.barriers;
break;
}
}
return barriers;
}
inline bool ResourceAccessState::IsRAWHazard(VkPipelineStageFlags2KHR usage_stage, const SyncStageAccessFlags &usage) const {
assert(IsRead(usage));
// Only RAW vs. last_write if it doesn't happen-after any other read because either:
// * the previous reads are not hazards, and thus last_write must be visible and available to
// any reads that happen after.
// * the previous reads *are* hazards to last_write, have been reported, and if that hazard is fixed
// the current read will be also not be a hazard, thus reporting a hazard here adds no needed information.
return last_write.any() && (0 == (read_execution_barriers & usage_stage)) && IsWriteHazard(usage);
}
VkPipelineStageFlags2KHR ResourceAccessState::GetOrderedStages(const OrderingBarrier &ordering) const {
// Whether the stage are in the ordering scope only matters if the current write is ordered
VkPipelineStageFlags2KHR ordered_stages = last_read_stages & ordering.exec_scope;
// Special input attachment handling as always (not encoded in exec_scop)
const bool input_attachment_ordering = (ordering.access_scope & SYNC_FRAGMENT_SHADER_INPUT_ATTACHMENT_READ_BIT).any();
if (input_attachment_ordering && input_attachment_read) {
// If we have an input attachment in last_reads and input attachments are ordered we all that stage
ordered_stages |= VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT_KHR;
}
return ordered_stages;
}
void ResourceAccessState::UpdateFirst(const ResourceUsageTag tag, SyncStageAccessIndex usage_index, SyncOrdering ordering_rule) {
// Only record until we record a write.
if (first_accesses_.empty() || IsRead(first_accesses_.back().usage_index)) {
const VkPipelineStageFlags2KHR usage_stage = IsRead(usage_index) ? PipelineStageBit(usage_index) : 0U;
if (0 == (usage_stage & first_read_stages_)) {
// If this is a read we haven't seen or a write, record.
// We always need to know what stages were found prior to write
first_read_stages_ |= usage_stage;
if (0 == (read_execution_barriers & usage_stage)) {
// If this stage isn't masked then we add it (since writes map to usage_stage 0, this also records writes)
first_accesses_.emplace_back(tag, usage_index, ordering_rule);
}
}
}
}
void ResourceAccessState::TouchupFirstForLayoutTransition(ResourceUsageTag tag, const OrderingBarrier &layout_ordering) {
// Only call this after recording an image layout transition
assert(first_accesses_.size());
if (first_accesses_.back().tag == tag) {
// If this layout transition is the the first write, add the additional ordering rules that guard the ILT
assert(first_accesses_.back().usage_index == SyncStageAccessIndex::SYNC_IMAGE_LAYOUT_TRANSITION);
first_write_layout_ordering_ = layout_ordering;
}
}
void SyncValidator::ResetCommandBufferCallback(VkCommandBuffer command_buffer) {
auto *access_context = GetAccessContextNoInsert(command_buffer);
if (access_context) {
access_context->Reset();
}
}
void SyncValidator::FreeCommandBufferCallback(VkCommandBuffer command_buffer) {
auto access_found = cb_access_state.find(command_buffer);
if (access_found != cb_access_state.end()) {
access_found->second->Reset();
access_found->second->MarkDestroyed();
cb_access_state.erase(access_found);
}
}
bool SyncValidator::PreCallValidateCmdCopyBuffer(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkBuffer dstBuffer,
uint32_t regionCount, const VkBufferCopy *pRegions) const {
bool skip = false;
const auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context) return skip;
const auto *context = cb_context->GetCurrentAccessContext();
// If we have no previous accesses, we have no hazards
auto src_buffer = Get<BUFFER_STATE>(srcBuffer);
auto dst_buffer = Get<BUFFER_STATE>(dstBuffer);
for (uint32_t region = 0; region < regionCount; region++) {
const auto &copy_region = pRegions[region];
if (src_buffer) {
const ResourceAccessRange src_range = MakeRange(*src_buffer, copy_region.srcOffset, copy_region.size);
auto hazard = context->DetectHazard(*src_buffer, SYNC_COPY_TRANSFER_READ, src_range);
if (hazard.hazard) {
skip |= LogError(srcBuffer, string_SyncHazardVUID(hazard.hazard),
"vkCmdCopyBuffer: Hazard %s for srcBuffer %s, region %" PRIu32 ". Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(srcBuffer).c_str(), region,
cb_context->FormatUsage(hazard).c_str());
}
}
if (dst_buffer && !skip) {
const ResourceAccessRange dst_range = MakeRange(*dst_buffer, copy_region.dstOffset, copy_region.size);
auto hazard = context->DetectHazard(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, dst_range);
if (hazard.hazard) {
skip |= LogError(dstBuffer, string_SyncHazardVUID(hazard.hazard),
"vkCmdCopyBuffer: Hazard %s for dstBuffer %s, region %" PRIu32 ". Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(dstBuffer).c_str(), region,
cb_context->FormatUsage(hazard).c_str());
}
}
if (skip) break;
}
return skip;
}
void SyncValidator::PreCallRecordCmdCopyBuffer(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkBuffer dstBuffer,
uint32_t regionCount, const VkBufferCopy *pRegions) {
auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
const auto tag = cb_context->NextCommandTag(CMD_COPYBUFFER);
auto *context = cb_context->GetCurrentAccessContext();
auto src_buffer = Get<BUFFER_STATE>(srcBuffer);
auto dst_buffer = Get<BUFFER_STATE>(dstBuffer);
for (uint32_t region = 0; region < regionCount; region++) {
const auto &copy_region = pRegions[region];
if (src_buffer) {
const ResourceAccessRange src_range = MakeRange(*src_buffer, copy_region.srcOffset, copy_region.size);
context->UpdateAccessState(*src_buffer, SYNC_COPY_TRANSFER_READ, SyncOrdering::kNonAttachment, src_range, tag);
}
if (dst_buffer) {
const ResourceAccessRange dst_range = MakeRange(*dst_buffer, copy_region.dstOffset, copy_region.size);
context->UpdateAccessState(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, SyncOrdering::kNonAttachment, dst_range, tag);
}
}
}
void SyncValidator::PreCallRecordDestroyEvent(VkDevice device, VkEvent event, const VkAllocationCallbacks *pAllocator) {
// Clear out events from the command buffer contexts
for (auto &cb_context : cb_access_state) {
cb_context.second->RecordDestroyEvent(event);
}
}
bool SyncValidator::ValidateCmdCopyBuffer2(VkCommandBuffer commandBuffer, const VkCopyBufferInfo2 *pCopyBufferInfos,
CMD_TYPE cmd_type) const {
bool skip = false;
const auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context) return skip;
const auto *context = cb_context->GetCurrentAccessContext();
const char *func_name = CommandTypeString(cmd_type);
// If we have no previous accesses, we have no hazards
auto src_buffer = Get<BUFFER_STATE>(pCopyBufferInfos->srcBuffer);
auto dst_buffer = Get<BUFFER_STATE>(pCopyBufferInfos->dstBuffer);
for (uint32_t region = 0; region < pCopyBufferInfos->regionCount; region++) {
const auto &copy_region = pCopyBufferInfos->pRegions[region];
if (src_buffer) {
const ResourceAccessRange src_range = MakeRange(*src_buffer, copy_region.srcOffset, copy_region.size);
auto hazard = context->DetectHazard(*src_buffer, SYNC_COPY_TRANSFER_READ, src_range);
if (hazard.hazard) {
// TODO -- add tag information to log msg when useful.
skip |= LogError(pCopyBufferInfos->srcBuffer, string_SyncHazardVUID(hazard.hazard),
"%s(): Hazard %s for srcBuffer %s, region %" PRIu32 ". Access info %s.", func_name,
string_SyncHazard(hazard.hazard), report_data->FormatHandle(pCopyBufferInfos->srcBuffer).c_str(),
region, cb_context->FormatUsage(hazard).c_str());
}
}
if (dst_buffer && !skip) {
const ResourceAccessRange dst_range = MakeRange(*dst_buffer, copy_region.dstOffset, copy_region.size);
auto hazard = context->DetectHazard(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, dst_range);
if (hazard.hazard) {
skip |= LogError(pCopyBufferInfos->dstBuffer, string_SyncHazardVUID(hazard.hazard),
"%s(): Hazard %s for dstBuffer %s, region %" PRIu32 ". Access info %s.", func_name,
string_SyncHazard(hazard.hazard), report_data->FormatHandle(pCopyBufferInfos->dstBuffer).c_str(),
region, cb_context->FormatUsage(hazard).c_str());
}
}
if (skip) break;
}
return skip;
}
bool SyncValidator::PreCallValidateCmdCopyBuffer2KHR(VkCommandBuffer commandBuffer,
const VkCopyBufferInfo2KHR *pCopyBufferInfos) const {
return ValidateCmdCopyBuffer2(commandBuffer, pCopyBufferInfos, CMD_COPYBUFFER2KHR);
}
bool SyncValidator::PreCallValidateCmdCopyBuffer2(VkCommandBuffer commandBuffer, const VkCopyBufferInfo2 *pCopyBufferInfos) const {
return ValidateCmdCopyBuffer2(commandBuffer, pCopyBufferInfos, CMD_COPYBUFFER2);
}
void SyncValidator::RecordCmdCopyBuffer2(VkCommandBuffer commandBuffer, const VkCopyBufferInfo2KHR *pCopyBufferInfos, CMD_TYPE cmd_type) {
auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
const auto tag = cb_context->NextCommandTag(cmd_type);
auto *context = cb_context->GetCurrentAccessContext();
auto src_buffer = Get<BUFFER_STATE>(pCopyBufferInfos->srcBuffer);
auto dst_buffer = Get<BUFFER_STATE>(pCopyBufferInfos->dstBuffer);
for (uint32_t region = 0; region < pCopyBufferInfos->regionCount; region++) {
const auto &copy_region = pCopyBufferInfos->pRegions[region];
if (src_buffer) {
const ResourceAccessRange src_range = MakeRange(*src_buffer, copy_region.srcOffset, copy_region.size);
context->UpdateAccessState(*src_buffer, SYNC_COPY_TRANSFER_READ, SyncOrdering::kNonAttachment, src_range, tag);
}
if (dst_buffer) {
const ResourceAccessRange dst_range = MakeRange(*dst_buffer, copy_region.dstOffset, copy_region.size);
context->UpdateAccessState(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, SyncOrdering::kNonAttachment, dst_range, tag);
}
}
}
void SyncValidator::PreCallRecordCmdCopyBuffer2KHR(VkCommandBuffer commandBuffer, const VkCopyBufferInfo2KHR *pCopyBufferInfos) {
RecordCmdCopyBuffer2(commandBuffer, pCopyBufferInfos, CMD_COPYBUFFER2KHR);
}
void SyncValidator::PreCallRecordCmdCopyBuffer2(VkCommandBuffer commandBuffer, const VkCopyBufferInfo2 *pCopyBufferInfos) {
RecordCmdCopyBuffer2(commandBuffer, pCopyBufferInfos, CMD_COPYBUFFER2);
}
bool SyncValidator::PreCallValidateCmdCopyImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount,
const VkImageCopy *pRegions) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
auto src_image = Get<IMAGE_STATE>(srcImage);
auto dst_image = Get<IMAGE_STATE>(dstImage);
for (uint32_t region = 0; region < regionCount; region++) {
const auto &copy_region = pRegions[region];
if (src_image) {
auto hazard = context->DetectHazard(*src_image, SYNC_COPY_TRANSFER_READ, copy_region.srcSubresource,
copy_region.srcOffset, copy_region.extent);
if (hazard.hazard) {
skip |= LogError(srcImage, string_SyncHazardVUID(hazard.hazard),
"vkCmdCopyImage: Hazard %s for srcImage %s, region %" PRIu32 ". Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(srcImage).c_str(), region,
cb_access_context->FormatUsage(hazard).c_str());
}
}
if (dst_image) {
VkExtent3D dst_copy_extent =
GetAdjustedDestImageExtent(src_image->createInfo.format, dst_image->createInfo.format, copy_region.extent);
auto hazard = context->DetectHazard(*dst_image, SYNC_COPY_TRANSFER_WRITE, copy_region.dstSubresource,
copy_region.dstOffset, dst_copy_extent);
if (hazard.hazard) {
skip |= LogError(dstImage, string_SyncHazardVUID(hazard.hazard),
"vkCmdCopyImage: Hazard %s for dstImage %s, region %" PRIu32 ". Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(dstImage).c_str(), region,
cb_access_context->FormatUsage(hazard).c_str());
}
if (skip) break;
}
}
return skip;
}
void SyncValidator::PreCallRecordCmdCopyImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount,
const VkImageCopy *pRegions) {
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_COPYIMAGE);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto src_image = Get<IMAGE_STATE>(srcImage);
auto dst_image = Get<IMAGE_STATE>(dstImage);
for (uint32_t region = 0; region < regionCount; region++) {
const auto &copy_region = pRegions[region];
if (src_image) {
context->UpdateAccessState(*src_image, SYNC_COPY_TRANSFER_READ, SyncOrdering::kNonAttachment,
copy_region.srcSubresource, copy_region.srcOffset, copy_region.extent, tag);
}
if (dst_image) {
VkExtent3D dst_copy_extent =
GetAdjustedDestImageExtent(src_image->createInfo.format, dst_image->createInfo.format, copy_region.extent);
context->UpdateAccessState(*dst_image, SYNC_COPY_TRANSFER_WRITE, SyncOrdering::kNonAttachment,
copy_region.dstSubresource, copy_region.dstOffset, dst_copy_extent, tag);
}
}
}
bool SyncValidator::ValidateCmdCopyImage2(VkCommandBuffer commandBuffer, const VkCopyImageInfo2 *pCopyImageInfo,
CMD_TYPE cmd_type) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
const char *func_name = CommandTypeString(cmd_type);
auto src_image = Get<IMAGE_STATE>(pCopyImageInfo->srcImage);
auto dst_image = Get<IMAGE_STATE>(pCopyImageInfo->dstImage);
for (uint32_t region = 0; region < pCopyImageInfo->regionCount; region++) {
const auto &copy_region = pCopyImageInfo->pRegions[region];
if (src_image) {
auto hazard = context->DetectHazard(*src_image, SYNC_COPY_TRANSFER_READ, copy_region.srcSubresource,
copy_region.srcOffset, copy_region.extent);
if (hazard.hazard) {
skip |= LogError(pCopyImageInfo->srcImage, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for srcImage %s, region %" PRIu32 ". Access info %s.", func_name,
string_SyncHazard(hazard.hazard), report_data->FormatHandle(pCopyImageInfo->srcImage).c_str(),
region, cb_access_context->FormatUsage(hazard).c_str());
}
}
if (dst_image) {
VkExtent3D dst_copy_extent =
GetAdjustedDestImageExtent(src_image->createInfo.format, dst_image->createInfo.format, copy_region.extent);
auto hazard = context->DetectHazard(*dst_image, SYNC_COPY_TRANSFER_WRITE, copy_region.dstSubresource,
copy_region.dstOffset, dst_copy_extent);
if (hazard.hazard) {
skip |= LogError(pCopyImageInfo->dstImage, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for dstImage %s, region %" PRIu32 ". Access info %s.", func_name,
string_SyncHazard(hazard.hazard), report_data->FormatHandle(pCopyImageInfo->dstImage).c_str(),
region, cb_access_context->FormatUsage(hazard).c_str());
}
if (skip) break;
}
}
return skip;
}
bool SyncValidator::PreCallValidateCmdCopyImage2KHR(VkCommandBuffer commandBuffer,
const VkCopyImageInfo2KHR *pCopyImageInfo) const {
return ValidateCmdCopyImage2(commandBuffer, pCopyImageInfo, CMD_COPYIMAGE2KHR);
}
bool SyncValidator::PreCallValidateCmdCopyImage2(VkCommandBuffer commandBuffer, const VkCopyImageInfo2 *pCopyImageInfo) const {
return ValidateCmdCopyImage2(commandBuffer, pCopyImageInfo, CMD_COPYIMAGE2);
}
void SyncValidator::RecordCmdCopyImage2(VkCommandBuffer commandBuffer, const VkCopyImageInfo2KHR *pCopyImageInfo, CMD_TYPE cmd_type) {
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(cmd_type);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto src_image = Get<IMAGE_STATE>(pCopyImageInfo->srcImage);
auto dst_image = Get<IMAGE_STATE>(pCopyImageInfo->dstImage);
for (uint32_t region = 0; region < pCopyImageInfo->regionCount; region++) {
const auto &copy_region = pCopyImageInfo->pRegions[region];
if (src_image) {
context->UpdateAccessState(*src_image, SYNC_COPY_TRANSFER_READ, SyncOrdering::kNonAttachment,
copy_region.srcSubresource, copy_region.srcOffset, copy_region.extent, tag);
}
if (dst_image) {
VkExtent3D dst_copy_extent =
GetAdjustedDestImageExtent(src_image->createInfo.format, dst_image->createInfo.format, copy_region.extent);
context->UpdateAccessState(*dst_image, SYNC_COPY_TRANSFER_WRITE, SyncOrdering::kNonAttachment,
copy_region.dstSubresource, copy_region.dstOffset, dst_copy_extent, tag);
}
}
}
void SyncValidator::PreCallRecordCmdCopyImage2KHR(VkCommandBuffer commandBuffer, const VkCopyImageInfo2KHR *pCopyImageInfo) {
RecordCmdCopyImage2(commandBuffer, pCopyImageInfo, CMD_COPYIMAGE2KHR);
}
void SyncValidator::PreCallRecordCmdCopyImage2(VkCommandBuffer commandBuffer, const VkCopyImageInfo2 *pCopyImageInfo) {
RecordCmdCopyImage2(commandBuffer, pCopyImageInfo, CMD_COPYIMAGE2);
}
bool SyncValidator::PreCallValidateCmdPipelineBarrier(VkCommandBuffer commandBuffer, VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask, VkDependencyFlags dependencyFlags,
uint32_t memoryBarrierCount, const VkMemoryBarrier *pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
SyncOpPipelineBarrier pipeline_barrier(CMD_PIPELINEBARRIER, *this, cb_access_context->GetQueueFlags(), srcStageMask,
dstStageMask, dependencyFlags, memoryBarrierCount, pMemoryBarriers,
bufferMemoryBarrierCount, pBufferMemoryBarriers, imageMemoryBarrierCount,
pImageMemoryBarriers);
skip = pipeline_barrier.Validate(*cb_access_context);
return skip;
}
void SyncValidator::PreCallRecordCmdPipelineBarrier(VkCommandBuffer commandBuffer, VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask, VkDependencyFlags dependencyFlags,
uint32_t memoryBarrierCount, const VkMemoryBarrier *pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers) {
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return;
cb_access_context->RecordSyncOp<SyncOpPipelineBarrier>(CMD_PIPELINEBARRIER, *this, cb_access_context->GetQueueFlags(),
srcStageMask, dstStageMask, dependencyFlags, memoryBarrierCount,
pMemoryBarriers, bufferMemoryBarrierCount, pBufferMemoryBarriers,
imageMemoryBarrierCount, pImageMemoryBarriers);
}
bool SyncValidator::PreCallValidateCmdPipelineBarrier2KHR(VkCommandBuffer commandBuffer,
const VkDependencyInfoKHR *pDependencyInfo) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
SyncOpPipelineBarrier pipeline_barrier(CMD_PIPELINEBARRIER2KHR, *this, cb_access_context->GetQueueFlags(), *pDependencyInfo);
skip = pipeline_barrier.Validate(*cb_access_context);
return skip;
}
bool SyncValidator::PreCallValidateCmdPipelineBarrier2(VkCommandBuffer commandBuffer,
const VkDependencyInfo *pDependencyInfo) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
SyncOpPipelineBarrier pipeline_barrier(CMD_PIPELINEBARRIER2, *this, cb_access_context->GetQueueFlags(), *pDependencyInfo);
skip = pipeline_barrier.Validate(*cb_access_context);
return skip;
}
void SyncValidator::PreCallRecordCmdPipelineBarrier2KHR(VkCommandBuffer commandBuffer, const VkDependencyInfoKHR *pDependencyInfo) {
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return;
cb_access_context->RecordSyncOp<SyncOpPipelineBarrier>(CMD_PIPELINEBARRIER2KHR, *this, cb_access_context->GetQueueFlags(),
*pDependencyInfo);
}
void SyncValidator::PreCallRecordCmdPipelineBarrier2(VkCommandBuffer commandBuffer, const VkDependencyInfo *pDependencyInfo) {
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return;
cb_access_context->RecordSyncOp<SyncOpPipelineBarrier>(CMD_PIPELINEBARRIER2, *this, cb_access_context->GetQueueFlags(),
*pDependencyInfo);
}
void SyncValidator::PostCallRecordCreateDevice(VkPhysicalDevice gpu, const VkDeviceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkDevice *pDevice, VkResult result) {
// The state tracker sets up the device state
StateTracker::PostCallRecordCreateDevice(gpu, pCreateInfo, pAllocator, pDevice, result);
// Add the callback hooks for the functions that are either broadly or deeply used and that the ValidationStateTracker
// refactor would be messier without.
// TODO: Find a good way to do this hooklessly.
ValidationObject *device_object = GetLayerDataPtr(get_dispatch_key(*pDevice), layer_data_map);
ValidationObject *validation_data = GetValidationObject(device_object->object_dispatch, LayerObjectTypeSyncValidation);
SyncValidator *sync_device_state = static_cast<SyncValidator *>(validation_data);
sync_device_state->SetCommandBufferResetCallback([sync_device_state](VkCommandBuffer command_buffer) -> void {
sync_device_state->ResetCommandBufferCallback(command_buffer);
});
sync_device_state->SetCommandBufferFreeCallback([sync_device_state](VkCommandBuffer command_buffer) -> void {
sync_device_state->FreeCommandBufferCallback(command_buffer);
});
}
bool SyncValidator::ValidateBeginRenderPass(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo *pRenderPassBegin,
const VkSubpassBeginInfo *pSubpassBeginInfo, CMD_TYPE cmd) const {
bool skip = false;
auto cb_context = GetAccessContext(commandBuffer);
if (cb_context) {
SyncOpBeginRenderPass sync_op(cmd, *this, pRenderPassBegin, pSubpassBeginInfo);
skip = sync_op.Validate(*cb_context);
}
return skip;
}
bool SyncValidator::PreCallValidateCmdBeginRenderPass(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo *pRenderPassBegin,
VkSubpassContents contents) const {
bool skip = StateTracker::PreCallValidateCmdBeginRenderPass(commandBuffer, pRenderPassBegin, contents);
auto subpass_begin_info = LvlInitStruct<VkSubpassBeginInfo>();
subpass_begin_info.contents = contents;
skip |= ValidateBeginRenderPass(commandBuffer, pRenderPassBegin, &subpass_begin_info, CMD_BEGINRENDERPASS);
return skip;
}
bool SyncValidator::PreCallValidateCmdBeginRenderPass2(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo *pRenderPassBegin,
const VkSubpassBeginInfo *pSubpassBeginInfo) const {
bool skip = StateTracker::PreCallValidateCmdBeginRenderPass2(commandBuffer, pRenderPassBegin, pSubpassBeginInfo);
skip |= ValidateBeginRenderPass(commandBuffer, pRenderPassBegin, pSubpassBeginInfo, CMD_BEGINRENDERPASS2);
return skip;
}
bool SyncValidator::PreCallValidateCmdBeginRenderPass2KHR(VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfo *pRenderPassBegin,
const VkSubpassBeginInfo *pSubpassBeginInfo) const {
bool skip = StateTracker::PreCallValidateCmdBeginRenderPass2KHR(commandBuffer, pRenderPassBegin, pSubpassBeginInfo);
skip |= ValidateBeginRenderPass(commandBuffer, pRenderPassBegin, pSubpassBeginInfo, CMD_BEGINRENDERPASS2KHR);
return skip;
}
void SyncValidator::PostCallRecordBeginCommandBuffer(VkCommandBuffer commandBuffer, const VkCommandBufferBeginInfo *pBeginInfo,
VkResult result) {
// The state tracker sets up the command buffer state
StateTracker::PostCallRecordBeginCommandBuffer(commandBuffer, pBeginInfo, result);
// Create/initialize the structure that trackers accesses at the command buffer scope.
auto cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
cb_access_context->Reset();
}
void SyncValidator::RecordCmdBeginRenderPass(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo *pRenderPassBegin,
const VkSubpassBeginInfo *pSubpassBeginInfo, CMD_TYPE cmd) {
auto cb_context = GetAccessContext(commandBuffer);
if (cb_context) {
SyncOpBeginRenderPass sync_op(cmd, *this, pRenderPassBegin, pSubpassBeginInfo);
sync_op.Record(cb_context);
}
}
void SyncValidator::PostCallRecordCmdBeginRenderPass(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo *pRenderPassBegin,
VkSubpassContents contents) {
StateTracker::PostCallRecordCmdBeginRenderPass(commandBuffer, pRenderPassBegin, contents);
auto subpass_begin_info = LvlInitStruct<VkSubpassBeginInfo>();
subpass_begin_info.contents = contents;
RecordCmdBeginRenderPass(commandBuffer, pRenderPassBegin, &subpass_begin_info, CMD_BEGINRENDERPASS);
}
void SyncValidator::PostCallRecordCmdBeginRenderPass2(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo *pRenderPassBegin,
const VkSubpassBeginInfo *pSubpassBeginInfo) {
StateTracker::PostCallRecordCmdBeginRenderPass2(commandBuffer, pRenderPassBegin, pSubpassBeginInfo);
RecordCmdBeginRenderPass(commandBuffer, pRenderPassBegin, pSubpassBeginInfo, CMD_BEGINRENDERPASS2);
}
void SyncValidator::PostCallRecordCmdBeginRenderPass2KHR(VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfo *pRenderPassBegin,
const VkSubpassBeginInfo *pSubpassBeginInfo) {
StateTracker::PostCallRecordCmdBeginRenderPass2KHR(commandBuffer, pRenderPassBegin, pSubpassBeginInfo);
RecordCmdBeginRenderPass(commandBuffer, pRenderPassBegin, pSubpassBeginInfo, CMD_BEGINRENDERPASS2KHR);
}
bool SyncValidator::ValidateCmdNextSubpass(VkCommandBuffer commandBuffer, const VkSubpassBeginInfo *pSubpassBeginInfo,
const VkSubpassEndInfo *pSubpassEndInfo, CMD_TYPE cmd) const {
bool skip = false;
auto cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context) return skip;
SyncOpNextSubpass sync_op(cmd, *this, pSubpassBeginInfo, pSubpassEndInfo);
return sync_op.Validate(*cb_context);
}
bool SyncValidator::PreCallValidateCmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents) const {
bool skip = StateTracker::PreCallValidateCmdNextSubpass(commandBuffer, contents);
// Convert to a NextSubpass2
auto subpass_begin_info = LvlInitStruct<VkSubpassBeginInfo>();
subpass_begin_info.contents = contents;
auto subpass_end_info = LvlInitStruct<VkSubpassEndInfo>();
skip |= ValidateCmdNextSubpass(commandBuffer, &subpass_begin_info, &subpass_end_info, CMD_NEXTSUBPASS);
return skip;
}
bool SyncValidator::PreCallValidateCmdNextSubpass2KHR(VkCommandBuffer commandBuffer, const VkSubpassBeginInfo *pSubpassBeginInfo,
const VkSubpassEndInfo *pSubpassEndInfo) const {
bool skip = StateTracker::PreCallValidateCmdNextSubpass2KHR(commandBuffer, pSubpassBeginInfo, pSubpassEndInfo);
skip |= ValidateCmdNextSubpass(commandBuffer, pSubpassBeginInfo, pSubpassEndInfo, CMD_NEXTSUBPASS2KHR);
return skip;
}
bool SyncValidator::PreCallValidateCmdNextSubpass2(VkCommandBuffer commandBuffer, const VkSubpassBeginInfo *pSubpassBeginInfo,
const VkSubpassEndInfo *pSubpassEndInfo) const {
bool skip = StateTracker::PreCallValidateCmdNextSubpass2(commandBuffer, pSubpassBeginInfo, pSubpassEndInfo);
skip |= ValidateCmdNextSubpass(commandBuffer, pSubpassBeginInfo, pSubpassEndInfo, CMD_NEXTSUBPASS2);
return skip;
}
void SyncValidator::RecordCmdNextSubpass(VkCommandBuffer commandBuffer, const VkSubpassBeginInfo *pSubpassBeginInfo,
const VkSubpassEndInfo *pSubpassEndInfo, CMD_TYPE cmd) {
auto cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context) return;
SyncOpNextSubpass sync_op(cmd, *this, pSubpassBeginInfo, pSubpassEndInfo);
sync_op.Record(cb_context);
}
void SyncValidator::PostCallRecordCmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents) {
StateTracker::PostCallRecordCmdNextSubpass(commandBuffer, contents);
auto subpass_begin_info = LvlInitStruct<VkSubpassBeginInfo>();
subpass_begin_info.contents = contents;
RecordCmdNextSubpass(commandBuffer, &subpass_begin_info, nullptr, CMD_NEXTSUBPASS);
}
void SyncValidator::PostCallRecordCmdNextSubpass2(VkCommandBuffer commandBuffer, const VkSubpassBeginInfo *pSubpassBeginInfo,
const VkSubpassEndInfo *pSubpassEndInfo) {
StateTracker::PostCallRecordCmdNextSubpass2(commandBuffer, pSubpassBeginInfo, pSubpassEndInfo);
RecordCmdNextSubpass(commandBuffer, pSubpassBeginInfo, pSubpassEndInfo, CMD_NEXTSUBPASS2);
}
void SyncValidator::PostCallRecordCmdNextSubpass2KHR(VkCommandBuffer commandBuffer, const VkSubpassBeginInfo *pSubpassBeginInfo,
const VkSubpassEndInfo *pSubpassEndInfo) {
StateTracker::PostCallRecordCmdNextSubpass2KHR(commandBuffer, pSubpassBeginInfo, pSubpassEndInfo);
RecordCmdNextSubpass(commandBuffer, pSubpassBeginInfo, pSubpassEndInfo, CMD_NEXTSUBPASS2KHR);
}
bool SyncValidator::ValidateCmdEndRenderPass(VkCommandBuffer commandBuffer, const VkSubpassEndInfo *pSubpassEndInfo,
CMD_TYPE cmd) const {
bool skip = false;
auto cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context) return skip;
SyncOpEndRenderPass sync_op(cmd, *this, pSubpassEndInfo);
skip |= sync_op.Validate(*cb_context);
return skip;
}
bool SyncValidator::PreCallValidateCmdEndRenderPass(VkCommandBuffer commandBuffer) const {
bool skip = StateTracker::PreCallValidateCmdEndRenderPass(commandBuffer);
skip |= ValidateCmdEndRenderPass(commandBuffer, nullptr, CMD_ENDRENDERPASS);
return skip;
}
bool SyncValidator::PreCallValidateCmdEndRenderPass2(VkCommandBuffer commandBuffer, const VkSubpassEndInfo *pSubpassEndInfo) const {
bool skip = StateTracker::PreCallValidateCmdEndRenderPass2(commandBuffer, pSubpassEndInfo);
skip |= ValidateCmdEndRenderPass(commandBuffer, pSubpassEndInfo, CMD_ENDRENDERPASS2);
return skip;
}
bool SyncValidator::PreCallValidateCmdEndRenderPass2KHR(VkCommandBuffer commandBuffer,
const VkSubpassEndInfo *pSubpassEndInfo) const {
bool skip = StateTracker::PreCallValidateCmdEndRenderPass2KHR(commandBuffer, pSubpassEndInfo);
skip |= ValidateCmdEndRenderPass(commandBuffer, pSubpassEndInfo, CMD_ENDRENDERPASS2KHR);
return skip;
}
void SyncValidator::RecordCmdEndRenderPass(VkCommandBuffer commandBuffer, const VkSubpassEndInfo *pSubpassEndInfo, CMD_TYPE cmd) {
// Resolve the all subpass contexts to the command buffer contexts
auto cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context) return;
SyncOpEndRenderPass sync_op(cmd, *this, pSubpassEndInfo);
sync_op.Record(cb_context);
return;
}
// Simple heuristic rule to detect WAW operations representing algorithmically safe or increment
// updates to a resource which do not conflict at the byte level.
// TODO: Revisit this rule to see if it needs to be tighter or looser
// TODO: Add programatic control over suppression heuristics
bool SyncValidator::SupressedBoundDescriptorWAW(const HazardResult &hazard) const {
return (hazard.hazard == WRITE_AFTER_WRITE) && (FlagBit(hazard.usage_index) == hazard.prior_access);
}
void SyncValidator::PostCallRecordCmdEndRenderPass(VkCommandBuffer commandBuffer) {
RecordCmdEndRenderPass(commandBuffer, nullptr, CMD_ENDRENDERPASS);
StateTracker::PostCallRecordCmdEndRenderPass(commandBuffer);
}
void SyncValidator::PostCallRecordCmdEndRenderPass2(VkCommandBuffer commandBuffer, const VkSubpassEndInfo *pSubpassEndInfo) {
RecordCmdEndRenderPass(commandBuffer, pSubpassEndInfo, CMD_ENDRENDERPASS2);
StateTracker::PostCallRecordCmdEndRenderPass2(commandBuffer, pSubpassEndInfo);
}
void SyncValidator::PostCallRecordCmdEndRenderPass2KHR(VkCommandBuffer commandBuffer, const VkSubpassEndInfo *pSubpassEndInfo) {
RecordCmdEndRenderPass(commandBuffer, pSubpassEndInfo, CMD_ENDRENDERPASS2KHR);
StateTracker::PostCallRecordCmdEndRenderPass2KHR(commandBuffer, pSubpassEndInfo);
}
template <typename BufferImageCopyRegionType>
bool SyncValidator::ValidateCmdCopyBufferToImage(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkImage dstImage,
VkImageLayout dstImageLayout, uint32_t regionCount,
const BufferImageCopyRegionType *pRegions, CMD_TYPE cmd_type) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const char *func_name = CommandTypeString(cmd_type);
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
auto src_buffer = Get<BUFFER_STATE>(srcBuffer);
auto dst_image = Get<IMAGE_STATE>(dstImage);
for (uint32_t region = 0; region < regionCount; region++) {
const auto &copy_region = pRegions[region];
HazardResult hazard;
if (dst_image) {
if (src_buffer) {
ResourceAccessRange src_range =
MakeRange(copy_region.bufferOffset, GetBufferSizeFromCopyImage(copy_region, dst_image->createInfo.format));
hazard = context->DetectHazard(*src_buffer, SYNC_COPY_TRANSFER_READ, src_range);
if (hazard.hazard) {
// PHASE1 TODO -- add tag information to log msg when useful.
skip |= LogError(srcBuffer, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for srcBuffer %s, region %" PRIu32 ". Access info %s.", func_name,
string_SyncHazard(hazard.hazard), report_data->FormatHandle(srcBuffer).c_str(), region,
cb_access_context->FormatUsage(hazard).c_str());
}
}
hazard = context->DetectHazard(*dst_image, SYNC_COPY_TRANSFER_WRITE, copy_region.imageSubresource,
copy_region.imageOffset, copy_region.imageExtent);
if (hazard.hazard) {
skip |= LogError(dstImage, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for dstImage %s, region %" PRIu32 ". Access info %s.", func_name,
string_SyncHazard(hazard.hazard), report_data->FormatHandle(dstImage).c_str(), region,
cb_access_context->FormatUsage(hazard).c_str());
}
if (skip) break;
}
if (skip) break;
}
return skip;
}
bool SyncValidator::PreCallValidateCmdCopyBufferToImage(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkImage dstImage,
VkImageLayout dstImageLayout, uint32_t regionCount,
const VkBufferImageCopy *pRegions) const {
return ValidateCmdCopyBufferToImage(commandBuffer, srcBuffer, dstImage, dstImageLayout, regionCount, pRegions,
CMD_COPYBUFFERTOIMAGE);
}
bool SyncValidator::PreCallValidateCmdCopyBufferToImage2KHR(VkCommandBuffer commandBuffer,
const VkCopyBufferToImageInfo2KHR *pCopyBufferToImageInfo) const {
return ValidateCmdCopyBufferToImage(commandBuffer, pCopyBufferToImageInfo->srcBuffer, pCopyBufferToImageInfo->dstImage,
pCopyBufferToImageInfo->dstImageLayout, pCopyBufferToImageInfo->regionCount,
pCopyBufferToImageInfo->pRegions, CMD_COPYBUFFERTOIMAGE2KHR);
}
bool SyncValidator::PreCallValidateCmdCopyBufferToImage2(VkCommandBuffer commandBuffer,
const VkCopyBufferToImageInfo2 *pCopyBufferToImageInfo) const {
return ValidateCmdCopyBufferToImage(commandBuffer, pCopyBufferToImageInfo->srcBuffer, pCopyBufferToImageInfo->dstImage,
pCopyBufferToImageInfo->dstImageLayout, pCopyBufferToImageInfo->regionCount,
pCopyBufferToImageInfo->pRegions, CMD_COPYBUFFERTOIMAGE2);
}
template <typename BufferImageCopyRegionType>
void SyncValidator::RecordCmdCopyBufferToImage(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkImage dstImage,
VkImageLayout dstImageLayout, uint32_t regionCount,
const BufferImageCopyRegionType *pRegions, CMD_TYPE cmd_type) {
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(cmd_type);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto src_buffer = Get<BUFFER_STATE>(srcBuffer);
auto dst_image = Get<IMAGE_STATE>(dstImage);
for (uint32_t region = 0; region < regionCount; region++) {
const auto &copy_region = pRegions[region];
if (dst_image) {
if (src_buffer) {
ResourceAccessRange src_range =
MakeRange(copy_region.bufferOffset, GetBufferSizeFromCopyImage(copy_region, dst_image->createInfo.format));
context->UpdateAccessState(*src_buffer, SYNC_COPY_TRANSFER_READ, SyncOrdering::kNonAttachment, src_range, tag);
}
context->UpdateAccessState(*dst_image, SYNC_COPY_TRANSFER_WRITE, SyncOrdering::kNonAttachment,
copy_region.imageSubresource, copy_region.imageOffset, copy_region.imageExtent, tag);
}
}
}
void SyncValidator::PreCallRecordCmdCopyBufferToImage(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkImage dstImage,
VkImageLayout dstImageLayout, uint32_t regionCount,
const VkBufferImageCopy *pRegions) {
StateTracker::PreCallRecordCmdCopyBufferToImage(commandBuffer, srcBuffer, dstImage, dstImageLayout, regionCount, pRegions);
RecordCmdCopyBufferToImage(commandBuffer, srcBuffer, dstImage, dstImageLayout, regionCount, pRegions, CMD_COPYBUFFERTOIMAGE);
}
void SyncValidator::PreCallRecordCmdCopyBufferToImage2KHR(VkCommandBuffer commandBuffer,
const VkCopyBufferToImageInfo2KHR *pCopyBufferToImageInfo) {
StateTracker::PreCallRecordCmdCopyBufferToImage2KHR(commandBuffer, pCopyBufferToImageInfo);
RecordCmdCopyBufferToImage(commandBuffer, pCopyBufferToImageInfo->srcBuffer, pCopyBufferToImageInfo->dstImage,
pCopyBufferToImageInfo->dstImageLayout, pCopyBufferToImageInfo->regionCount,
pCopyBufferToImageInfo->pRegions, CMD_COPYBUFFERTOIMAGE2KHR);
}
void SyncValidator::PreCallRecordCmdCopyBufferToImage2(VkCommandBuffer commandBuffer,
const VkCopyBufferToImageInfo2 *pCopyBufferToImageInfo) {
StateTracker::PreCallRecordCmdCopyBufferToImage2(commandBuffer, pCopyBufferToImageInfo);
RecordCmdCopyBufferToImage(commandBuffer, pCopyBufferToImageInfo->srcBuffer, pCopyBufferToImageInfo->dstImage,
pCopyBufferToImageInfo->dstImageLayout, pCopyBufferToImageInfo->regionCount,
pCopyBufferToImageInfo->pRegions, CMD_COPYBUFFERTOIMAGE2);
}
template <typename BufferImageCopyRegionType>
bool SyncValidator::ValidateCmdCopyImageToBuffer(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkBuffer dstBuffer, uint32_t regionCount,
const BufferImageCopyRegionType *pRegions, CMD_TYPE cmd_type) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const char *func_name = CommandTypeString(cmd_type);
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
auto src_image = Get<IMAGE_STATE>(srcImage);
auto dst_buffer = Get<BUFFER_STATE>(dstBuffer);
const auto dst_mem = (dst_buffer && !dst_buffer->sparse) ? dst_buffer->MemState()->mem() : VK_NULL_HANDLE;
for (uint32_t region = 0; region < regionCount; region++) {
const auto &copy_region = pRegions[region];
if (src_image) {
auto hazard = context->DetectHazard(*src_image, SYNC_COPY_TRANSFER_READ, copy_region.imageSubresource,
copy_region.imageOffset, copy_region.imageExtent);
if (hazard.hazard) {
skip |= LogError(srcImage, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for srcImage %s, region %" PRIu32 ". Access info %s.", func_name,
string_SyncHazard(hazard.hazard), report_data->FormatHandle(srcImage).c_str(), region,
cb_access_context->FormatUsage(hazard).c_str());
}
if (dst_mem) {
ResourceAccessRange dst_range =
MakeRange(copy_region.bufferOffset, GetBufferSizeFromCopyImage(copy_region, src_image->createInfo.format));
hazard = context->DetectHazard(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, dst_range);
if (hazard.hazard) {
skip |= LogError(dstBuffer, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for dstBuffer %s, region %" PRIu32 ". Access info %s.", func_name,
string_SyncHazard(hazard.hazard), report_data->FormatHandle(dstBuffer).c_str(), region,
cb_access_context->FormatUsage(hazard).c_str());
}
}
}
if (skip) break;
}
return skip;
}
bool SyncValidator::PreCallValidateCmdCopyImageToBuffer(VkCommandBuffer commandBuffer, VkImage srcImage,
VkImageLayout srcImageLayout, VkBuffer dstBuffer, uint32_t regionCount,
const VkBufferImageCopy *pRegions) const {
return ValidateCmdCopyImageToBuffer(commandBuffer, srcImage, srcImageLayout, dstBuffer, regionCount, pRegions,
CMD_COPYIMAGETOBUFFER);
}
bool SyncValidator::PreCallValidateCmdCopyImageToBuffer2KHR(VkCommandBuffer commandBuffer,
const VkCopyImageToBufferInfo2KHR *pCopyImageToBufferInfo) const {
return ValidateCmdCopyImageToBuffer(commandBuffer, pCopyImageToBufferInfo->srcImage, pCopyImageToBufferInfo->srcImageLayout,
pCopyImageToBufferInfo->dstBuffer, pCopyImageToBufferInfo->regionCount,
pCopyImageToBufferInfo->pRegions, CMD_COPYIMAGETOBUFFER2KHR);
}
bool SyncValidator::PreCallValidateCmdCopyImageToBuffer2(VkCommandBuffer commandBuffer,
const VkCopyImageToBufferInfo2 *pCopyImageToBufferInfo) const {
return ValidateCmdCopyImageToBuffer(commandBuffer, pCopyImageToBufferInfo->srcImage, pCopyImageToBufferInfo->srcImageLayout,
pCopyImageToBufferInfo->dstBuffer, pCopyImageToBufferInfo->regionCount,
pCopyImageToBufferInfo->pRegions, CMD_COPYIMAGETOBUFFER2);
}
template <typename BufferImageCopyRegionType>
void SyncValidator::RecordCmdCopyImageToBuffer(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkBuffer dstBuffer, uint32_t regionCount, const BufferImageCopyRegionType *pRegions,
CMD_TYPE cmd_type) {
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(cmd_type);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto src_image = Get<IMAGE_STATE>(srcImage);
auto dst_buffer = Get<BUFFER_STATE>(dstBuffer);
const auto dst_mem = (dst_buffer && !dst_buffer->sparse) ? dst_buffer->MemState()->mem() : VK_NULL_HANDLE;
const VulkanTypedHandle dst_handle(dst_mem, kVulkanObjectTypeDeviceMemory);
for (uint32_t region = 0; region < regionCount; region++) {
const auto &copy_region = pRegions[region];
if (src_image) {
context->UpdateAccessState(*src_image, SYNC_COPY_TRANSFER_READ, SyncOrdering::kNonAttachment,
copy_region.imageSubresource, copy_region.imageOffset, copy_region.imageExtent, tag);
if (dst_buffer) {
ResourceAccessRange dst_range =
MakeRange(copy_region.bufferOffset, GetBufferSizeFromCopyImage(copy_region, src_image->createInfo.format));
context->UpdateAccessState(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, SyncOrdering::kNonAttachment, dst_range, tag);
}
}
}
}
void SyncValidator::PreCallRecordCmdCopyImageToBuffer(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkBuffer dstBuffer, uint32_t regionCount, const VkBufferImageCopy *pRegions) {
StateTracker::PreCallRecordCmdCopyImageToBuffer(commandBuffer, srcImage, srcImageLayout, dstBuffer, regionCount, pRegions);
RecordCmdCopyImageToBuffer(commandBuffer, srcImage, srcImageLayout, dstBuffer, regionCount, pRegions, CMD_COPYIMAGETOBUFFER);
}
void SyncValidator::PreCallRecordCmdCopyImageToBuffer2KHR(VkCommandBuffer commandBuffer,
const VkCopyImageToBufferInfo2KHR *pCopyImageToBufferInfo) {
StateTracker::PreCallRecordCmdCopyImageToBuffer2KHR(commandBuffer, pCopyImageToBufferInfo);
RecordCmdCopyImageToBuffer(commandBuffer, pCopyImageToBufferInfo->srcImage, pCopyImageToBufferInfo->srcImageLayout,
pCopyImageToBufferInfo->dstBuffer, pCopyImageToBufferInfo->regionCount,
pCopyImageToBufferInfo->pRegions, CMD_COPYIMAGETOBUFFER2KHR);
}
void SyncValidator::PreCallRecordCmdCopyImageToBuffer2(VkCommandBuffer commandBuffer,
const VkCopyImageToBufferInfo2 *pCopyImageToBufferInfo) {
StateTracker::PreCallRecordCmdCopyImageToBuffer2(commandBuffer, pCopyImageToBufferInfo);
RecordCmdCopyImageToBuffer(commandBuffer, pCopyImageToBufferInfo->srcImage, pCopyImageToBufferInfo->srcImageLayout,
pCopyImageToBufferInfo->dstBuffer, pCopyImageToBufferInfo->regionCount,
pCopyImageToBufferInfo->pRegions, CMD_COPYIMAGETOBUFFER2);
}
template <typename RegionType>
bool SyncValidator::ValidateCmdBlitImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount,
const RegionType *pRegions, VkFilter filter, const char *apiName) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
auto src_image = Get<IMAGE_STATE>(srcImage);
auto dst_image = Get<IMAGE_STATE>(dstImage);
for (uint32_t region = 0; region < regionCount; region++) {
const auto &blit_region = pRegions[region];
if (src_image) {
VkOffset3D offset = {std::min(blit_region.srcOffsets[0].x, blit_region.srcOffsets[1].x),
std::min(blit_region.srcOffsets[0].y, blit_region.srcOffsets[1].y),
std::min(blit_region.srcOffsets[0].z, blit_region.srcOffsets[1].z)};
VkExtent3D extent = {static_cast<uint32_t>(abs(blit_region.srcOffsets[1].x - blit_region.srcOffsets[0].x)),
static_cast<uint32_t>(abs(blit_region.srcOffsets[1].y - blit_region.srcOffsets[0].y)),
static_cast<uint32_t>(abs(blit_region.srcOffsets[1].z - blit_region.srcOffsets[0].z))};
auto hazard = context->DetectHazard(*src_image, SYNC_BLIT_TRANSFER_READ, blit_region.srcSubresource, offset, extent);
if (hazard.hazard) {
skip |= LogError(srcImage, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for srcImage %s, region %" PRIu32 ". Access info %s.", apiName,
string_SyncHazard(hazard.hazard), report_data->FormatHandle(srcImage).c_str(), region,
cb_access_context->FormatUsage(hazard).c_str());
}
}
if (dst_image) {
VkOffset3D offset = {std::min(blit_region.dstOffsets[0].x, blit_region.dstOffsets[1].x),
std::min(blit_region.dstOffsets[0].y, blit_region.dstOffsets[1].y),
std::min(blit_region.dstOffsets[0].z, blit_region.dstOffsets[1].z)};
VkExtent3D extent = {static_cast<uint32_t>(abs(blit_region.dstOffsets[1].x - blit_region.dstOffsets[0].x)),
static_cast<uint32_t>(abs(blit_region.dstOffsets[1].y - blit_region.dstOffsets[0].y)),
static_cast<uint32_t>(abs(blit_region.dstOffsets[1].z - blit_region.dstOffsets[0].z))};
auto hazard = context->DetectHazard(*dst_image, SYNC_BLIT_TRANSFER_WRITE, blit_region.dstSubresource, offset, extent);
if (hazard.hazard) {
skip |= LogError(dstImage, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for dstImage %s, region %" PRIu32 ". Access info %s.", apiName,
string_SyncHazard(hazard.hazard), report_data->FormatHandle(dstImage).c_str(), region,
cb_access_context->FormatUsage(hazard).c_str());
}
if (skip) break;
}
}
return skip;
}
bool SyncValidator::PreCallValidateCmdBlitImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount,
const VkImageBlit *pRegions, VkFilter filter) const {
return ValidateCmdBlitImage(commandBuffer, srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions, filter,
"vkCmdBlitImage");
}
bool SyncValidator::PreCallValidateCmdBlitImage2KHR(VkCommandBuffer commandBuffer,
const VkBlitImageInfo2KHR *pBlitImageInfo) const {
return ValidateCmdBlitImage(commandBuffer, pBlitImageInfo->srcImage, pBlitImageInfo->srcImageLayout, pBlitImageInfo->dstImage,
pBlitImageInfo->dstImageLayout, pBlitImageInfo->regionCount, pBlitImageInfo->pRegions,
pBlitImageInfo->filter, "vkCmdBlitImage2KHR");
}
bool SyncValidator::PreCallValidateCmdBlitImage2(VkCommandBuffer commandBuffer,
const VkBlitImageInfo2 *pBlitImageInfo) const {
return ValidateCmdBlitImage(commandBuffer, pBlitImageInfo->srcImage, pBlitImageInfo->srcImageLayout, pBlitImageInfo->dstImage,
pBlitImageInfo->dstImageLayout, pBlitImageInfo->regionCount, pBlitImageInfo->pRegions,
pBlitImageInfo->filter, "vkCmdBlitImage2");
}
template <typename RegionType>
void SyncValidator::RecordCmdBlitImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount,
const RegionType *pRegions, VkFilter filter, ResourceUsageTag tag) {
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto src_image = Get<IMAGE_STATE>(srcImage);
auto dst_image = Get<IMAGE_STATE>(dstImage);
for (uint32_t region = 0; region < regionCount; region++) {
const auto &blit_region = pRegions[region];
if (src_image) {
VkOffset3D offset = {std::min(blit_region.srcOffsets[0].x, blit_region.srcOffsets[1].x),
std::min(blit_region.srcOffsets[0].y, blit_region.srcOffsets[1].y),
std::min(blit_region.srcOffsets[0].z, blit_region.srcOffsets[1].z)};
VkExtent3D extent = {static_cast<uint32_t>(abs(blit_region.srcOffsets[1].x - blit_region.srcOffsets[0].x)),
static_cast<uint32_t>(abs(blit_region.srcOffsets[1].y - blit_region.srcOffsets[0].y)),
static_cast<uint32_t>(abs(blit_region.srcOffsets[1].z - blit_region.srcOffsets[0].z))};
context->UpdateAccessState(*src_image, SYNC_BLIT_TRANSFER_READ, SyncOrdering::kNonAttachment,
blit_region.srcSubresource, offset, extent, tag);
}
if (dst_image) {
VkOffset3D offset = {std::min(blit_region.dstOffsets[0].x, blit_region.dstOffsets[1].x),
std::min(blit_region.dstOffsets[0].y, blit_region.dstOffsets[1].y),
std::min(blit_region.dstOffsets[0].z, blit_region.dstOffsets[1].z)};
VkExtent3D extent = {static_cast<uint32_t>(abs(blit_region.dstOffsets[1].x - blit_region.dstOffsets[0].x)),
static_cast<uint32_t>(abs(blit_region.dstOffsets[1].y - blit_region.dstOffsets[0].y)),
static_cast<uint32_t>(abs(blit_region.dstOffsets[1].z - blit_region.dstOffsets[0].z))};
context->UpdateAccessState(*dst_image, SYNC_BLIT_TRANSFER_WRITE, SyncOrdering::kNonAttachment,
blit_region.dstSubresource, offset, extent, tag);
}
}
}
void SyncValidator::PreCallRecordCmdBlitImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount,
const VkImageBlit *pRegions, VkFilter filter) {
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_BLITIMAGE);
StateTracker::PreCallRecordCmdBlitImage(commandBuffer, srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount,
pRegions, filter);
RecordCmdBlitImage(commandBuffer, srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions, filter, tag);
}
void SyncValidator::PreCallRecordCmdBlitImage2KHR(VkCommandBuffer commandBuffer, const VkBlitImageInfo2KHR *pBlitImageInfo) {
StateTracker::PreCallRecordCmdBlitImage2KHR(commandBuffer, pBlitImageInfo);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_BLITIMAGE2KHR);
RecordCmdBlitImage(commandBuffer, pBlitImageInfo->srcImage, pBlitImageInfo->srcImageLayout, pBlitImageInfo->dstImage,
pBlitImageInfo->dstImageLayout, pBlitImageInfo->regionCount, pBlitImageInfo->pRegions,
pBlitImageInfo->filter, tag);
}
void SyncValidator::PreCallRecordCmdBlitImage2(VkCommandBuffer commandBuffer, const VkBlitImageInfo2 *pBlitImageInfo) {
StateTracker::PreCallRecordCmdBlitImage2KHR(commandBuffer, pBlitImageInfo);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_BLITIMAGE2);
RecordCmdBlitImage(commandBuffer, pBlitImageInfo->srcImage, pBlitImageInfo->srcImageLayout, pBlitImageInfo->dstImage,
pBlitImageInfo->dstImageLayout, pBlitImageInfo->regionCount, pBlitImageInfo->pRegions,
pBlitImageInfo->filter, tag);
}
bool SyncValidator::ValidateIndirectBuffer(const CommandBufferAccessContext &cb_context, const AccessContext &context,
VkCommandBuffer commandBuffer, const VkDeviceSize struct_size, const VkBuffer buffer,
const VkDeviceSize offset, const uint32_t drawCount, const uint32_t stride,
const char *function) const {
bool skip = false;
if (drawCount == 0) return skip;
auto buf_state = Get<BUFFER_STATE>(buffer);
VkDeviceSize size = struct_size;
if (drawCount == 1 || stride == size) {
if (drawCount > 1) size *= drawCount;
const ResourceAccessRange range = MakeRange(offset, size);
auto hazard = context.DetectHazard(*buf_state, SYNC_DRAW_INDIRECT_INDIRECT_COMMAND_READ, range);
if (hazard.hazard) {
skip |= LogError(buf_state->buffer(), string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for indirect %s in %s. Access info %s.", function, string_SyncHazard(hazard.hazard),
report_data->FormatHandle(buffer).c_str(), report_data->FormatHandle(commandBuffer).c_str(),
cb_context.FormatUsage(hazard).c_str());
}
} else {
for (uint32_t i = 0; i < drawCount; ++i) {
const ResourceAccessRange range = MakeRange(offset + i * stride, size);
auto hazard = context.DetectHazard(*buf_state, SYNC_DRAW_INDIRECT_INDIRECT_COMMAND_READ, range);
if (hazard.hazard) {
skip |= LogError(buf_state->buffer(), string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for indirect %s in %s. Access info %s.", function, string_SyncHazard(hazard.hazard),
report_data->FormatHandle(buffer).c_str(), report_data->FormatHandle(commandBuffer).c_str(),
cb_context.FormatUsage(hazard).c_str());
break;
}
}
}
return skip;
}
void SyncValidator::RecordIndirectBuffer(AccessContext &context, const ResourceUsageTag tag, const VkDeviceSize struct_size,
const VkBuffer buffer, const VkDeviceSize offset, const uint32_t drawCount,
uint32_t stride) {
auto buf_state = Get<BUFFER_STATE>(buffer);
VkDeviceSize size = struct_size;
if (drawCount == 1 || stride == size) {
if (drawCount > 1) size *= drawCount;
const ResourceAccessRange range = MakeRange(offset, size);
context.UpdateAccessState(*buf_state, SYNC_DRAW_INDIRECT_INDIRECT_COMMAND_READ, SyncOrdering::kNonAttachment, range, tag);
} else {
for (uint32_t i = 0; i < drawCount; ++i) {
const ResourceAccessRange range = MakeRange(offset + i * stride, size);
context.UpdateAccessState(*buf_state, SYNC_DRAW_INDIRECT_INDIRECT_COMMAND_READ, SyncOrdering::kNonAttachment, range,
tag);
}
}
}
bool SyncValidator::ValidateCountBuffer(const CommandBufferAccessContext &cb_context, const AccessContext &context,
VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
const char *function) const {
bool skip = false;
auto count_buf_state = Get<BUFFER_STATE>(buffer);
const ResourceAccessRange range = MakeRange(offset, 4);
auto hazard = context.DetectHazard(*count_buf_state, SYNC_DRAW_INDIRECT_INDIRECT_COMMAND_READ, range);
if (hazard.hazard) {
skip |= LogError(count_buf_state->buffer(), string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for countBuffer %s in %s. Access info %s.", function, string_SyncHazard(hazard.hazard),
report_data->FormatHandle(buffer).c_str(), report_data->FormatHandle(commandBuffer).c_str(),
cb_context.FormatUsage(hazard).c_str());
}
return skip;
}
void SyncValidator::RecordCountBuffer(AccessContext &context, const ResourceUsageTag tag, VkBuffer buffer, VkDeviceSize offset) {
auto count_buf_state = Get<BUFFER_STATE>(buffer);
const ResourceAccessRange range = MakeRange(offset, 4);
context.UpdateAccessState(*count_buf_state, SYNC_DRAW_INDIRECT_INDIRECT_COMMAND_READ, SyncOrdering::kNonAttachment, range, tag);
}
bool SyncValidator::PreCallValidateCmdDispatch(VkCommandBuffer commandBuffer, uint32_t x, uint32_t y, uint32_t z) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
skip |= cb_access_context->ValidateDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_COMPUTE, "vkCmdDispatch");
return skip;
}
void SyncValidator::PreCallRecordCmdDispatch(VkCommandBuffer commandBuffer, uint32_t x, uint32_t y, uint32_t z) {
StateTracker::PreCallRecordCmdDispatch(commandBuffer, x, y, z);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_DISPATCH);
cb_access_context->RecordDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_COMPUTE, tag);
}
bool SyncValidator::PreCallValidateCmdDispatchIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
skip |= cb_access_context->ValidateDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_COMPUTE, "vkCmdDispatchIndirect");
skip |= ValidateIndirectBuffer(*cb_access_context, *context, commandBuffer, sizeof(VkDispatchIndirectCommand), buffer, offset,
1, sizeof(VkDispatchIndirectCommand), "vkCmdDispatchIndirect");
return skip;
}
void SyncValidator::PreCallRecordCmdDispatchIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset) {
StateTracker::PreCallRecordCmdDispatchIndirect(commandBuffer, buffer, offset);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_DISPATCHINDIRECT);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
cb_access_context->RecordDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_COMPUTE, tag);
RecordIndirectBuffer(*context, tag, sizeof(VkDispatchIndirectCommand), buffer, offset, 1, sizeof(VkDispatchIndirectCommand));
}
bool SyncValidator::PreCallValidateCmdDraw(VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount,
uint32_t firstVertex, uint32_t firstInstance) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
skip |= cb_access_context->ValidateDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, "vkCmdDraw");
skip |= cb_access_context->ValidateDrawVertex(vertexCount, firstVertex, "vkCmdDraw");
skip |= cb_access_context->ValidateDrawSubpassAttachment("vkCmdDraw");
return skip;
}
void SyncValidator::PreCallRecordCmdDraw(VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount,
uint32_t firstVertex, uint32_t firstInstance) {
StateTracker::PreCallRecordCmdDraw(commandBuffer, vertexCount, instanceCount, firstVertex, firstInstance);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_DRAW);
cb_access_context->RecordDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, tag);
cb_access_context->RecordDrawVertex(vertexCount, firstVertex, tag);
cb_access_context->RecordDrawSubpassAttachment(tag);
}
bool SyncValidator::PreCallValidateCmdDrawIndexed(VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount,
uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
skip |= cb_access_context->ValidateDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, "vkCmdDrawIndexed");
skip |= cb_access_context->ValidateDrawVertexIndex(indexCount, firstIndex, "vkCmdDrawIndexed");
skip |= cb_access_context->ValidateDrawSubpassAttachment("vkCmdDrawIndexed");
return skip;
}
void SyncValidator::PreCallRecordCmdDrawIndexed(VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount,
uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) {
StateTracker::PreCallRecordCmdDrawIndexed(commandBuffer, indexCount, instanceCount, firstIndex, vertexOffset, firstInstance);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_DRAWINDEXED);
cb_access_context->RecordDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, tag);
cb_access_context->RecordDrawVertexIndex(indexCount, firstIndex, tag);
cb_access_context->RecordDrawSubpassAttachment(tag);
}
bool SyncValidator::PreCallValidateCmdDrawIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t drawCount, uint32_t stride) const {
bool skip = false;
if (drawCount == 0) return skip;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
skip |= cb_access_context->ValidateDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, "vkCmdDrawIndirect");
skip |= cb_access_context->ValidateDrawSubpassAttachment("vkCmdDrawIndirect");
skip |= ValidateIndirectBuffer(*cb_access_context, *context, commandBuffer, sizeof(VkDrawIndirectCommand), buffer, offset,
drawCount, stride, "vkCmdDrawIndirect");
// TODO: For now, we validate the whole vertex buffer. It might cause some false positive.
// VkDrawIndirectCommand buffer could be changed until SubmitQueue.
// We will validate the vertex buffer in SubmitQueue in the future.
skip |= cb_access_context->ValidateDrawVertex(UINT32_MAX, 0, "vkCmdDrawIndirect");
return skip;
}
void SyncValidator::PreCallRecordCmdDrawIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t drawCount, uint32_t stride) {
StateTracker::PreCallRecordCmdDrawIndirect(commandBuffer, buffer, offset, drawCount, stride);
if (drawCount == 0) return;
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_DRAWINDIRECT);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
cb_access_context->RecordDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, tag);
cb_access_context->RecordDrawSubpassAttachment(tag);
RecordIndirectBuffer(*context, tag, sizeof(VkDrawIndirectCommand), buffer, offset, drawCount, stride);
// TODO: For now, we record the whole vertex buffer. It might cause some false positive.
// VkDrawIndirectCommand buffer could be changed until SubmitQueue.
// We will record the vertex buffer in SubmitQueue in the future.
cb_access_context->RecordDrawVertex(UINT32_MAX, 0, tag);
}
bool SyncValidator::PreCallValidateCmdDrawIndexedIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t drawCount, uint32_t stride) const {
bool skip = false;
if (drawCount == 0) return skip;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
skip |= cb_access_context->ValidateDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, "vkCmdDrawIndexedIndirect");
skip |= cb_access_context->ValidateDrawSubpassAttachment("vkCmdDrawIndexedIndirect");
skip |= ValidateIndirectBuffer(*cb_access_context, *context, commandBuffer, sizeof(VkDrawIndexedIndirectCommand), buffer,
offset, drawCount, stride, "vkCmdDrawIndexedIndirect");
// TODO: For now, we validate the whole index and vertex buffer. It might cause some false positive.
// VkDrawIndexedIndirectCommand buffer could be changed until SubmitQueue.
// We will validate the index and vertex buffer in SubmitQueue in the future.
skip |= cb_access_context->ValidateDrawVertexIndex(UINT32_MAX, 0, "vkCmdDrawIndexedIndirect");
return skip;
}
void SyncValidator::PreCallRecordCmdDrawIndexedIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t drawCount, uint32_t stride) {
StateTracker::PreCallRecordCmdDrawIndexedIndirect(commandBuffer, buffer, offset, drawCount, stride);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_DRAWINDEXEDINDIRECT);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
cb_access_context->RecordDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, tag);
cb_access_context->RecordDrawSubpassAttachment(tag);
RecordIndirectBuffer(*context, tag, sizeof(VkDrawIndexedIndirectCommand), buffer, offset, drawCount, stride);
// TODO: For now, we record the whole index and vertex buffer. It might cause some false positive.
// VkDrawIndexedIndirectCommand buffer could be changed until SubmitQueue.
// We will record the index and vertex buffer in SubmitQueue in the future.
cb_access_context->RecordDrawVertexIndex(UINT32_MAX, 0, tag);
}
bool SyncValidator::ValidateCmdDrawIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride, const char *function) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
skip |= cb_access_context->ValidateDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, function);
skip |= cb_access_context->ValidateDrawSubpassAttachment(function);
skip |= ValidateIndirectBuffer(*cb_access_context, *context, commandBuffer, sizeof(VkDrawIndirectCommand), buffer, offset,
maxDrawCount, stride, function);
skip |= ValidateCountBuffer(*cb_access_context, *context, commandBuffer, countBuffer, countBufferOffset, function);
// TODO: For now, we validate the whole vertex buffer. It might cause some false positive.
// VkDrawIndirectCommand buffer could be changed until SubmitQueue.
// We will validate the vertex buffer in SubmitQueue in the future.
skip |= cb_access_context->ValidateDrawVertex(UINT32_MAX, 0, function);
return skip;
}
bool SyncValidator::PreCallValidateCmdDrawIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride) const {
return ValidateCmdDrawIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride,
"vkCmdDrawIndirectCount");
}
void SyncValidator::RecordCmdDrawIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride, CMD_TYPE cmd_type) {
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(cmd_type);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
cb_access_context->RecordDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, tag);
cb_access_context->RecordDrawSubpassAttachment(tag);
RecordIndirectBuffer(*context, tag, sizeof(VkDrawIndirectCommand), buffer, offset, 1, stride);
RecordCountBuffer(*context, tag, countBuffer, countBufferOffset);
// TODO: For now, we record the whole vertex buffer. It might cause some false positive.
// VkDrawIndirectCommand buffer could be changed until SubmitQueue.
// We will record the vertex buffer in SubmitQueue in the future.
cb_access_context->RecordDrawVertex(UINT32_MAX, 0, tag);
}
void SyncValidator::PreCallRecordCmdDrawIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride) {
StateTracker::PreCallRecordCmdDrawIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount,
stride);
RecordCmdDrawIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride,
CMD_DRAWINDIRECTCOUNT);
}
bool SyncValidator::PreCallValidateCmdDrawIndirectCountKHR(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) const {
return ValidateCmdDrawIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride,
"vkCmdDrawIndirectCountKHR");
}
void SyncValidator::PreCallRecordCmdDrawIndirectCountKHR(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
StateTracker::PreCallRecordCmdDrawIndirectCountKHR(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount,
stride);
RecordCmdDrawIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride,
CMD_DRAWINDIRECTCOUNTKHR);
}
bool SyncValidator::PreCallValidateCmdDrawIndirectCountAMD(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) const {
return ValidateCmdDrawIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride,
"vkCmdDrawIndirectCountAMD");
}
void SyncValidator::PreCallRecordCmdDrawIndirectCountAMD(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
StateTracker::PreCallRecordCmdDrawIndirectCountAMD(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount,
stride);
RecordCmdDrawIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride,
CMD_DRAWINDIRECTCOUNTAMD);
}
bool SyncValidator::ValidateCmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride, const char *function) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
skip |= cb_access_context->ValidateDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, function);
skip |= cb_access_context->ValidateDrawSubpassAttachment(function);
skip |= ValidateIndirectBuffer(*cb_access_context, *context, commandBuffer, sizeof(VkDrawIndexedIndirectCommand), buffer,
offset, maxDrawCount, stride, function);
skip |= ValidateCountBuffer(*cb_access_context, *context, commandBuffer, countBuffer, countBufferOffset, function);
// TODO: For now, we validate the whole index and vertex buffer. It might cause some false positive.
// VkDrawIndexedIndirectCommand buffer could be changed until SubmitQueue.
// We will validate the index and vertex buffer in SubmitQueue in the future.
skip |= cb_access_context->ValidateDrawVertexIndex(UINT32_MAX, 0, function);
return skip;
}
bool SyncValidator::PreCallValidateCmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) const {
return ValidateCmdDrawIndexedIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride,
"vkCmdDrawIndexedIndirectCount");
}
void SyncValidator::RecordCmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride, CMD_TYPE cmd_type) {
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(cmd_type);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
cb_access_context->RecordDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, tag);
cb_access_context->RecordDrawSubpassAttachment(tag);
RecordIndirectBuffer(*context, tag, sizeof(VkDrawIndexedIndirectCommand), buffer, offset, 1, stride);
RecordCountBuffer(*context, tag, countBuffer, countBufferOffset);
// TODO: For now, we record the whole index and vertex buffer. It might cause some false positive.
// VkDrawIndexedIndirectCommand buffer could be changed until SubmitQueue.
// We will update the index and vertex buffer in SubmitQueue in the future.
cb_access_context->RecordDrawVertexIndex(UINT32_MAX, 0, tag);
}
void SyncValidator::PreCallRecordCmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
StateTracker::PreCallRecordCmdDrawIndexedIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset,
maxDrawCount, stride);
RecordCmdDrawIndexedIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride,
CMD_DRAWINDEXEDINDIRECTCOUNT);
}
bool SyncValidator::PreCallValidateCmdDrawIndexedIndirectCountKHR(VkCommandBuffer commandBuffer, VkBuffer buffer,
VkDeviceSize offset, VkBuffer countBuffer,
VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride) const {
return ValidateCmdDrawIndexedIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride,
"vkCmdDrawIndexedIndirectCountKHR");
}
void SyncValidator::PreCallRecordCmdDrawIndexedIndirectCountKHR(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
StateTracker::PreCallRecordCmdDrawIndexedIndirectCountKHR(commandBuffer, buffer, offset, countBuffer, countBufferOffset,
maxDrawCount, stride);
RecordCmdDrawIndexedIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride,
CMD_DRAWINDEXEDINDIRECTCOUNTKHR);
}
bool SyncValidator::PreCallValidateCmdDrawIndexedIndirectCountAMD(VkCommandBuffer commandBuffer, VkBuffer buffer,
VkDeviceSize offset, VkBuffer countBuffer,
VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride) const {
return ValidateCmdDrawIndexedIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride,
"vkCmdDrawIndexedIndirectCountAMD");
}
void SyncValidator::PreCallRecordCmdDrawIndexedIndirectCountAMD(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
StateTracker::PreCallRecordCmdDrawIndexedIndirectCountAMD(commandBuffer, buffer, offset, countBuffer, countBufferOffset,
maxDrawCount, stride);
RecordCmdDrawIndexedIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride,
CMD_DRAWINDEXEDINDIRECTCOUNTAMD);
}
bool SyncValidator::PreCallValidateCmdClearColorImage(VkCommandBuffer commandBuffer, VkImage image, VkImageLayout imageLayout,
const VkClearColorValue *pColor, uint32_t rangeCount,
const VkImageSubresourceRange *pRanges) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
auto image_state = Get<IMAGE_STATE>(image);
for (uint32_t index = 0; index < rangeCount; index++) {
const auto &range = pRanges[index];
if (image_state) {
auto hazard = context->DetectHazard(*image_state, SYNC_CLEAR_TRANSFER_WRITE, range);
if (hazard.hazard) {
skip |= LogError(image, string_SyncHazardVUID(hazard.hazard),
"vkCmdClearColorImage: Hazard %s for %s, range index %" PRIu32 ". Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(image).c_str(), index,
cb_access_context->FormatUsage(hazard).c_str());
}
}
}
return skip;
}
void SyncValidator::PreCallRecordCmdClearColorImage(VkCommandBuffer commandBuffer, VkImage image, VkImageLayout imageLayout,
const VkClearColorValue *pColor, uint32_t rangeCount,
const VkImageSubresourceRange *pRanges) {
StateTracker::PreCallRecordCmdClearColorImage(commandBuffer, image, imageLayout, pColor, rangeCount, pRanges);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_CLEARCOLORIMAGE);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto image_state = Get<IMAGE_STATE>(image);
for (uint32_t index = 0; index < rangeCount; index++) {
const auto &range = pRanges[index];
if (image_state) {
context->UpdateAccessState(*image_state, SYNC_CLEAR_TRANSFER_WRITE, SyncOrdering::kNonAttachment, range, tag);
}
}
}
bool SyncValidator::PreCallValidateCmdClearDepthStencilImage(VkCommandBuffer commandBuffer, VkImage image,
VkImageLayout imageLayout,
const VkClearDepthStencilValue *pDepthStencil, uint32_t rangeCount,
const VkImageSubresourceRange *pRanges) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
auto image_state = Get<IMAGE_STATE>(image);
for (uint32_t index = 0; index < rangeCount; index++) {
const auto &range = pRanges[index];
if (image_state) {
auto hazard = context->DetectHazard(*image_state, SYNC_CLEAR_TRANSFER_WRITE, range);
if (hazard.hazard) {
skip |= LogError(image, string_SyncHazardVUID(hazard.hazard),
"vkCmdClearDepthStencilImage: Hazard %s for %s, range index %" PRIu32 ". Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(image).c_str(), index,
cb_access_context->FormatUsage(hazard).c_str());
}
}
}
return skip;
}
void SyncValidator::PreCallRecordCmdClearDepthStencilImage(VkCommandBuffer commandBuffer, VkImage image, VkImageLayout imageLayout,
const VkClearDepthStencilValue *pDepthStencil, uint32_t rangeCount,
const VkImageSubresourceRange *pRanges) {
StateTracker::PreCallRecordCmdClearDepthStencilImage(commandBuffer, image, imageLayout, pDepthStencil, rangeCount, pRanges);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_CLEARDEPTHSTENCILIMAGE);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto image_state = Get<IMAGE_STATE>(image);
for (uint32_t index = 0; index < rangeCount; index++) {
const auto &range = pRanges[index];
if (image_state) {
context->UpdateAccessState(*image_state, SYNC_CLEAR_TRANSFER_WRITE, SyncOrdering::kNonAttachment, range, tag);
}
}
}
bool SyncValidator::PreCallValidateCmdCopyQueryPoolResults(VkCommandBuffer commandBuffer, VkQueryPool queryPool,
uint32_t firstQuery, uint32_t queryCount, VkBuffer dstBuffer,
VkDeviceSize dstOffset, VkDeviceSize stride,
VkQueryResultFlags flags) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
auto dst_buffer = Get<BUFFER_STATE>(dstBuffer);
if (dst_buffer) {
const ResourceAccessRange range = MakeRange(dstOffset, stride * queryCount);
auto hazard = context->DetectHazard(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, range);
if (hazard.hazard) {
skip |=
LogError(dstBuffer, string_SyncHazardVUID(hazard.hazard),
"vkCmdCopyQueryPoolResults: Hazard %s for dstBuffer %s. Access info %s.", string_SyncHazard(hazard.hazard),
report_data->FormatHandle(dstBuffer).c_str(), cb_access_context->FormatUsage(hazard).c_str());
}
}
// TODO:Track VkQueryPool
return skip;
}
void SyncValidator::PreCallRecordCmdCopyQueryPoolResults(VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t firstQuery,
uint32_t queryCount, VkBuffer dstBuffer, VkDeviceSize dstOffset,
VkDeviceSize stride, VkQueryResultFlags flags) {
StateTracker::PreCallRecordCmdCopyQueryPoolResults(commandBuffer, queryPool, firstQuery, queryCount, dstBuffer, dstOffset,
stride, flags);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_COPYQUERYPOOLRESULTS);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto dst_buffer = Get<BUFFER_STATE>(dstBuffer);
if (dst_buffer) {
const ResourceAccessRange range = MakeRange(dstOffset, stride * queryCount);
context->UpdateAccessState(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, SyncOrdering::kNonAttachment, range, tag);
}
// TODO:Track VkQueryPool
}
bool SyncValidator::PreCallValidateCmdFillBuffer(VkCommandBuffer commandBuffer, VkBuffer dstBuffer, VkDeviceSize dstOffset,
VkDeviceSize size, uint32_t data) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
auto dst_buffer = Get<BUFFER_STATE>(dstBuffer);
if (dst_buffer) {
const ResourceAccessRange range = MakeRange(*dst_buffer, dstOffset, size);
auto hazard = context->DetectHazard(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, range);
if (hazard.hazard) {
skip |= LogError(dstBuffer, string_SyncHazardVUID(hazard.hazard),
"vkCmdFillBuffer: Hazard %s for dstBuffer %s. Access info %s.", string_SyncHazard(hazard.hazard),
report_data->FormatHandle(dstBuffer).c_str(), cb_access_context->FormatUsage(hazard).c_str());
}
}
return skip;
}
void SyncValidator::PreCallRecordCmdFillBuffer(VkCommandBuffer commandBuffer, VkBuffer dstBuffer, VkDeviceSize dstOffset,
VkDeviceSize size, uint32_t data) {
StateTracker::PreCallRecordCmdFillBuffer(commandBuffer, dstBuffer, dstOffset, size, data);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_FILLBUFFER);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto dst_buffer = Get<BUFFER_STATE>(dstBuffer);
if (dst_buffer) {
const ResourceAccessRange range = MakeRange(*dst_buffer, dstOffset, size);
context->UpdateAccessState(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, SyncOrdering::kNonAttachment, range, tag);
}
}
bool SyncValidator::PreCallValidateCmdResolveImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount,
const VkImageResolve *pRegions) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
auto src_image = Get<IMAGE_STATE>(srcImage);
auto dst_image = Get<IMAGE_STATE>(dstImage);
for (uint32_t region = 0; region < regionCount; region++) {
const auto &resolve_region = pRegions[region];
if (src_image) {
auto hazard = context->DetectHazard(*src_image, SYNC_RESOLVE_TRANSFER_READ, resolve_region.srcSubresource,
resolve_region.srcOffset, resolve_region.extent);
if (hazard.hazard) {
skip |= LogError(srcImage, string_SyncHazardVUID(hazard.hazard),
"vkCmdResolveImage: Hazard %s for srcImage %s, region %" PRIu32 ". Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(srcImage).c_str(), region,
cb_access_context->FormatUsage(hazard).c_str());
}
}
if (dst_image) {
auto hazard = context->DetectHazard(*dst_image, SYNC_RESOLVE_TRANSFER_WRITE, resolve_region.dstSubresource,
resolve_region.dstOffset, resolve_region.extent);
if (hazard.hazard) {
skip |= LogError(dstImage, string_SyncHazardVUID(hazard.hazard),
"vkCmdResolveImage: Hazard %s for dstImage %s, region %" PRIu32 ". Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(dstImage).c_str(), region,
cb_access_context->FormatUsage(hazard).c_str());
}
if (skip) break;
}
}
return skip;
}
void SyncValidator::PreCallRecordCmdResolveImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount,
const VkImageResolve *pRegions) {
StateTracker::PreCallRecordCmdResolveImage(commandBuffer, srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount,
pRegions);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_RESOLVEIMAGE);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto src_image = Get<IMAGE_STATE>(srcImage);
auto dst_image = Get<IMAGE_STATE>(dstImage);
for (uint32_t region = 0; region < regionCount; region++) {
const auto &resolve_region = pRegions[region];
if (src_image) {
context->UpdateAccessState(*src_image, SYNC_RESOLVE_TRANSFER_READ, SyncOrdering::kNonAttachment,
resolve_region.srcSubresource, resolve_region.srcOffset, resolve_region.extent, tag);
}
if (dst_image) {
context->UpdateAccessState(*dst_image, SYNC_RESOLVE_TRANSFER_WRITE, SyncOrdering::kNonAttachment,
resolve_region.dstSubresource, resolve_region.dstOffset, resolve_region.extent, tag);
}
}
}
bool SyncValidator::ValidateCmdResolveImage2(VkCommandBuffer commandBuffer, const VkResolveImageInfo2KHR *pResolveImageInfo,
CMD_TYPE cmd_type) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
const char *func_name = CommandTypeString(cmd_type);
auto src_image = Get<IMAGE_STATE>(pResolveImageInfo->srcImage);
auto dst_image = Get<IMAGE_STATE>(pResolveImageInfo->dstImage);
for (uint32_t region = 0; region < pResolveImageInfo->regionCount; region++) {
const auto &resolve_region = pResolveImageInfo->pRegions[region];
if (src_image) {
auto hazard = context->DetectHazard(*src_image, SYNC_RESOLVE_TRANSFER_READ, resolve_region.srcSubresource,
resolve_region.srcOffset, resolve_region.extent);
if (hazard.hazard) {
skip |= LogError(pResolveImageInfo->srcImage, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for srcImage %s, region %" PRIu32 ". Access info %s.", func_name,
string_SyncHazard(hazard.hazard), report_data->FormatHandle(pResolveImageInfo->srcImage).c_str(),
region, cb_access_context->FormatUsage(hazard).c_str());
}
}
if (dst_image) {
auto hazard = context->DetectHazard(*dst_image, SYNC_RESOLVE_TRANSFER_WRITE, resolve_region.dstSubresource,
resolve_region.dstOffset, resolve_region.extent);
if (hazard.hazard) {
skip |= LogError(pResolveImageInfo->dstImage, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for dstImage %s, region %" PRIu32 ". Access info %s.", func_name,
string_SyncHazard(hazard.hazard), report_data->FormatHandle(pResolveImageInfo->dstImage).c_str(),
region, cb_access_context->FormatUsage(hazard).c_str());
}
if (skip) break;
}
}
return skip;
}
bool SyncValidator::PreCallValidateCmdResolveImage2KHR(VkCommandBuffer commandBuffer,
const VkResolveImageInfo2KHR *pResolveImageInfo) const {
return ValidateCmdResolveImage2(commandBuffer, pResolveImageInfo, CMD_RESOLVEIMAGE2KHR);
}
bool SyncValidator::PreCallValidateCmdResolveImage2(VkCommandBuffer commandBuffer,
const VkResolveImageInfo2 *pResolveImageInfo) const {
return ValidateCmdResolveImage2(commandBuffer, pResolveImageInfo, CMD_RESOLVEIMAGE2);
}
void SyncValidator::RecordCmdResolveImage2(VkCommandBuffer commandBuffer, const VkResolveImageInfo2KHR *pResolveImageInfo,
CMD_TYPE cmd_type) {
StateTracker::PreCallRecordCmdResolveImage2KHR(commandBuffer, pResolveImageInfo);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(cmd_type);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto src_image = Get<IMAGE_STATE>(pResolveImageInfo->srcImage);
auto dst_image = Get<IMAGE_STATE>(pResolveImageInfo->dstImage);
for (uint32_t region = 0; region < pResolveImageInfo->regionCount; region++) {
const auto &resolve_region = pResolveImageInfo->pRegions[region];
if (src_image) {
context->UpdateAccessState(*src_image, SYNC_RESOLVE_TRANSFER_READ, SyncOrdering::kNonAttachment,
resolve_region.srcSubresource, resolve_region.srcOffset, resolve_region.extent, tag);
}
if (dst_image) {
context->UpdateAccessState(*dst_image, SYNC_RESOLVE_TRANSFER_WRITE, SyncOrdering::kNonAttachment,
resolve_region.dstSubresource, resolve_region.dstOffset, resolve_region.extent, tag);
}
}
}
void SyncValidator::PreCallRecordCmdResolveImage2KHR(VkCommandBuffer commandBuffer,
const VkResolveImageInfo2KHR *pResolveImageInfo) {
RecordCmdResolveImage2(commandBuffer, pResolveImageInfo, CMD_RESOLVEIMAGE2KHR);
}
void SyncValidator::PreCallRecordCmdResolveImage2(VkCommandBuffer commandBuffer, const VkResolveImageInfo2 *pResolveImageInfo) {
RecordCmdResolveImage2(commandBuffer, pResolveImageInfo, CMD_RESOLVEIMAGE2);
}
bool SyncValidator::PreCallValidateCmdUpdateBuffer(VkCommandBuffer commandBuffer, VkBuffer dstBuffer, VkDeviceSize dstOffset,
VkDeviceSize dataSize, const void *pData) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
auto dst_buffer = Get<BUFFER_STATE>(dstBuffer);
if (dst_buffer) {
// VK_WHOLE_SIZE not allowed
const ResourceAccessRange range = MakeRange(dstOffset, dataSize);
auto hazard = context->DetectHazard(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, range);
if (hazard.hazard) {
skip |= LogError(dstBuffer, string_SyncHazardVUID(hazard.hazard),
"vkCmdUpdateBuffer: Hazard %s for dstBuffer %s. Access info %s.", string_SyncHazard(hazard.hazard),
report_data->FormatHandle(dstBuffer).c_str(), cb_access_context->FormatUsage(hazard).c_str());
}
}
return skip;
}
void SyncValidator::PreCallRecordCmdUpdateBuffer(VkCommandBuffer commandBuffer, VkBuffer dstBuffer, VkDeviceSize dstOffset,
VkDeviceSize dataSize, const void *pData) {
StateTracker::PreCallRecordCmdUpdateBuffer(commandBuffer, dstBuffer, dstOffset, dataSize, pData);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_UPDATEBUFFER);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto dst_buffer = Get<BUFFER_STATE>(dstBuffer);
if (dst_buffer) {
// VK_WHOLE_SIZE not allowed
const ResourceAccessRange range = MakeRange(dstOffset, dataSize);
context->UpdateAccessState(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, SyncOrdering::kNonAttachment, range, tag);
}
}
bool SyncValidator::PreCallValidateCmdWriteBufferMarkerAMD(VkCommandBuffer commandBuffer, VkPipelineStageFlagBits pipelineStage,
VkBuffer dstBuffer, VkDeviceSize dstOffset, uint32_t marker) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
auto dst_buffer = Get<BUFFER_STATE>(dstBuffer);
if (dst_buffer) {
const ResourceAccessRange range = MakeRange(dstOffset, 4);
auto hazard = context->DetectHazard(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, range);
if (hazard.hazard) {
skip |=
LogError(dstBuffer, string_SyncHazardVUID(hazard.hazard),
"vkCmdWriteBufferMarkerAMD: Hazard %s for dstBuffer %s. Access info %s.", string_SyncHazard(hazard.hazard),
report_data->FormatHandle(dstBuffer).c_str(), cb_access_context->FormatUsage(hazard).c_str());
}
}
return skip;
}
void SyncValidator::PreCallRecordCmdWriteBufferMarkerAMD(VkCommandBuffer commandBuffer, VkPipelineStageFlagBits pipelineStage,
VkBuffer dstBuffer, VkDeviceSize dstOffset, uint32_t marker) {
StateTracker::PreCallRecordCmdWriteBufferMarkerAMD(commandBuffer, pipelineStage, dstBuffer, dstOffset, marker);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_WRITEBUFFERMARKERAMD);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto dst_buffer = Get<BUFFER_STATE>(dstBuffer);
if (dst_buffer) {
const ResourceAccessRange range = MakeRange(dstOffset, 4);
context->UpdateAccessState(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, SyncOrdering::kNonAttachment, range, tag);
}
}
bool SyncValidator::PreCallValidateCmdSetEvent(VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags stageMask) const {
bool skip = false;
const auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context) return skip;
SyncOpSetEvent set_event_op(CMD_SETEVENT, *this, cb_context->GetQueueFlags(), event, stageMask);
return set_event_op.Validate(*cb_context);
}
void SyncValidator::PostCallRecordCmdSetEvent(VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags stageMask) {
StateTracker::PostCallRecordCmdSetEvent(commandBuffer, event, stageMask);
auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context) return;
cb_context->RecordSyncOp<SyncOpSetEvent>(CMD_SETEVENT, *this, cb_context->GetQueueFlags(), event, stageMask);
}
bool SyncValidator::PreCallValidateCmdSetEvent2KHR(VkCommandBuffer commandBuffer, VkEvent event,
const VkDependencyInfoKHR *pDependencyInfo) const {
bool skip = false;
const auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context || !pDependencyInfo) return skip;
SyncOpSetEvent set_event_op(CMD_SETEVENT2KHR, *this, cb_context->GetQueueFlags(), event, *pDependencyInfo);
return set_event_op.Validate(*cb_context);
}
bool SyncValidator::PreCallValidateCmdSetEvent2(VkCommandBuffer commandBuffer, VkEvent event,
const VkDependencyInfo *pDependencyInfo) const {
bool skip = false;
const auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context || !pDependencyInfo) return skip;
SyncOpSetEvent set_event_op(CMD_SETEVENT2, *this, cb_context->GetQueueFlags(), event, *pDependencyInfo);
return set_event_op.Validate(*cb_context);
}
void SyncValidator::PostCallRecordCmdSetEvent2KHR(VkCommandBuffer commandBuffer, VkEvent event,
const VkDependencyInfoKHR *pDependencyInfo) {
StateTracker::PostCallRecordCmdSetEvent2KHR(commandBuffer, event, pDependencyInfo);
auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context || !pDependencyInfo) return;
cb_context->RecordSyncOp<SyncOpSetEvent>(CMD_SETEVENT2KHR, *this, cb_context->GetQueueFlags(), event, *pDependencyInfo);
}
void SyncValidator::PostCallRecordCmdSetEvent2(VkCommandBuffer commandBuffer, VkEvent event,
const VkDependencyInfo *pDependencyInfo) {
StateTracker::PostCallRecordCmdSetEvent2(commandBuffer, event, pDependencyInfo);
auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context || !pDependencyInfo) return;
cb_context->RecordSyncOp<SyncOpSetEvent>(CMD_SETEVENT2, *this, cb_context->GetQueueFlags(), event, *pDependencyInfo);
}
bool SyncValidator::PreCallValidateCmdResetEvent(VkCommandBuffer commandBuffer, VkEvent event,
VkPipelineStageFlags stageMask) const {
bool skip = false;
const auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context) return skip;
SyncOpResetEvent reset_event_op(CMD_RESETEVENT, *this, cb_context->GetQueueFlags(), event, stageMask);
return reset_event_op.Validate(*cb_context);
}
void SyncValidator::PostCallRecordCmdResetEvent(VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags stageMask) {
StateTracker::PostCallRecordCmdResetEvent(commandBuffer, event, stageMask);
auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context) return;
cb_context->RecordSyncOp<SyncOpResetEvent>(CMD_RESETEVENT, *this, cb_context->GetQueueFlags(), event, stageMask);
}
bool SyncValidator::PreCallValidateCmdResetEvent2KHR(VkCommandBuffer commandBuffer, VkEvent event,
VkPipelineStageFlags2KHR stageMask) const {
bool skip = false;
const auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context) return skip;
SyncOpResetEvent reset_event_op(CMD_RESETEVENT2KHR, *this, cb_context->GetQueueFlags(), event, stageMask);
return reset_event_op.Validate(*cb_context);
}
bool SyncValidator::PreCallValidateCmdResetEvent2(VkCommandBuffer commandBuffer, VkEvent event,
VkPipelineStageFlags2 stageMask) const {
bool skip = false;
const auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context) return skip;
SyncOpResetEvent reset_event_op(CMD_RESETEVENT2, *this, cb_context->GetQueueFlags(), event, stageMask);
return reset_event_op.Validate(*cb_context);
}
void SyncValidator::PostCallRecordCmdResetEvent2KHR(VkCommandBuffer commandBuffer, VkEvent event,
VkPipelineStageFlags2KHR stageMask) {
StateTracker::PostCallRecordCmdResetEvent2KHR(commandBuffer, event, stageMask);
auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context) return;
cb_context->RecordSyncOp<SyncOpResetEvent>(CMD_RESETEVENT2KHR, *this, cb_context->GetQueueFlags(), event, stageMask);
}
void SyncValidator::PostCallRecordCmdResetEvent2(VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags2 stageMask) {
StateTracker::PostCallRecordCmdResetEvent2(commandBuffer, event, stageMask);
auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context) return;
cb_context->RecordSyncOp<SyncOpResetEvent>(CMD_RESETEVENT2, *this, cb_context->GetQueueFlags(), event, stageMask);
}
bool SyncValidator::PreCallValidateCmdWaitEvents(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents,
VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask,
uint32_t memoryBarrierCount, const VkMemoryBarrier *pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers) const {
bool skip = false;
const auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context) return skip;
SyncOpWaitEvents wait_events_op(CMD_WAITEVENTS, *this, cb_context->GetQueueFlags(), eventCount, pEvents, srcStageMask,
dstStageMask, memoryBarrierCount, pMemoryBarriers, bufferMemoryBarrierCount,
pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers);
return wait_events_op.Validate(*cb_context);
}
void SyncValidator::PostCallRecordCmdWaitEvents(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents,
VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask,
uint32_t memoryBarrierCount, const VkMemoryBarrier *pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers) {
StateTracker::PostCallRecordCmdWaitEvents(commandBuffer, eventCount, pEvents, srcStageMask, dstStageMask, memoryBarrierCount,
pMemoryBarriers, bufferMemoryBarrierCount, pBufferMemoryBarriers,
imageMemoryBarrierCount, pImageMemoryBarriers);
auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context) return;
cb_context->RecordSyncOp<SyncOpWaitEvents>(
CMD_WAITEVENTS, *this, cb_context->GetQueueFlags(), eventCount, pEvents, srcStageMask, dstStageMask, memoryBarrierCount,
pMemoryBarriers, bufferMemoryBarrierCount, pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers);
}
bool SyncValidator::PreCallValidateCmdWaitEvents2KHR(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents,
const VkDependencyInfoKHR *pDependencyInfos) const {
bool skip = false;
const auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context) return skip;
SyncOpWaitEvents wait_events_op(CMD_WAITEVENTS2KHR, *this, cb_context->GetQueueFlags(), eventCount, pEvents, pDependencyInfos);
skip |= wait_events_op.Validate(*cb_context);
return skip;
}
void SyncValidator::PostCallRecordCmdWaitEvents2KHR(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents,
const VkDependencyInfoKHR *pDependencyInfos) {
StateTracker::PostCallRecordCmdWaitEvents2KHR(commandBuffer, eventCount, pEvents, pDependencyInfos);
auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context) return;
cb_context->RecordSyncOp<SyncOpWaitEvents>(CMD_WAITEVENTS2KHR, *this, cb_context->GetQueueFlags(), eventCount, pEvents,
pDependencyInfos);
}
bool SyncValidator::PreCallValidateCmdWaitEvents2(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents,
const VkDependencyInfo *pDependencyInfos) const {
bool skip = false;
const auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context) return skip;
SyncOpWaitEvents wait_events_op(CMD_WAITEVENTS2, *this, cb_context->GetQueueFlags(), eventCount, pEvents, pDependencyInfos);
skip |= wait_events_op.Validate(*cb_context);
return skip;
}
void SyncValidator::PostCallRecordCmdWaitEvents2(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents,
const VkDependencyInfo *pDependencyInfos) {
StateTracker::PostCallRecordCmdWaitEvents2KHR(commandBuffer, eventCount, pEvents, pDependencyInfos);
auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context) return;
cb_context->RecordSyncOp<SyncOpWaitEvents>(CMD_WAITEVENTS2, *this, cb_context->GetQueueFlags(), eventCount, pEvents,
pDependencyInfos);
}
void SyncEventState::ResetFirstScope() {
for (const auto address_type : kAddressTypes) {
first_scope[static_cast<size_t>(address_type)].clear();
}
scope = SyncExecScope();
first_scope_set = false;
first_scope_tag = 0;
}
// Keep the "ignore this event" logic in same place for ValidateWait and RecordWait to use
SyncEventState::IgnoreReason SyncEventState::IsIgnoredByWait(CMD_TYPE cmd, VkPipelineStageFlags2KHR srcStageMask) const {
IgnoreReason reason = NotIgnored;
if ((CMD_WAITEVENTS2KHR == cmd || CMD_WAITEVENTS2 == cmd) && (CMD_SETEVENT == last_command)) {
reason = SetVsWait2;
} else if ((last_command == CMD_RESETEVENT || last_command == CMD_RESETEVENT2KHR) && !HasBarrier(0U, 0U)) {
reason = (last_command == CMD_RESETEVENT) ? ResetWaitRace : Reset2WaitRace;
} else if (unsynchronized_set) {
reason = SetRace;
} else if (first_scope_set) {
const VkPipelineStageFlags2KHR missing_bits = scope.mask_param & ~srcStageMask;
if (missing_bits) reason = MissingStageBits;
}
return reason;
}
bool SyncEventState::HasBarrier(VkPipelineStageFlags2KHR stageMask, VkPipelineStageFlags2KHR exec_scope_arg) const {
bool has_barrier = (last_command == CMD_NONE) || (stageMask & VK_PIPELINE_STAGE_ALL_COMMANDS_BIT) ||
(barriers & exec_scope_arg) || (barriers & VK_PIPELINE_STAGE_ALL_COMMANDS_BIT);
return has_barrier;
}
SyncOpBarriers::SyncOpBarriers(CMD_TYPE cmd, const SyncValidator &sync_state, VkQueueFlags queue_flags,
VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask,
VkDependencyFlags dependencyFlags, uint32_t memoryBarrierCount,
const VkMemoryBarrier *pMemoryBarriers, uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers)
: SyncOpBase(cmd), barriers_(1) {
auto &barrier_set = barriers_[0];
barrier_set.dependency_flags = dependencyFlags;
barrier_set.src_exec_scope = SyncExecScope::MakeSrc(queue_flags, srcStageMask);
barrier_set.dst_exec_scope = SyncExecScope::MakeDst(queue_flags, dstStageMask);
// Translate the API parameters into structures SyncVal understands directly, and dehandle for safer/faster replay.
barrier_set.MakeMemoryBarriers(barrier_set.src_exec_scope, barrier_set.dst_exec_scope, dependencyFlags, memoryBarrierCount,
pMemoryBarriers);
barrier_set.MakeBufferMemoryBarriers(sync_state, barrier_set.src_exec_scope, barrier_set.dst_exec_scope, dependencyFlags,
bufferMemoryBarrierCount, pBufferMemoryBarriers);
barrier_set.MakeImageMemoryBarriers(sync_state, barrier_set.src_exec_scope, barrier_set.dst_exec_scope, dependencyFlags,
imageMemoryBarrierCount, pImageMemoryBarriers);
}
SyncOpBarriers::SyncOpBarriers(CMD_TYPE cmd, const SyncValidator &sync_state, VkQueueFlags queue_flags, uint32_t event_count,
const VkDependencyInfoKHR *dep_infos)
: SyncOpBase(cmd), barriers_(event_count) {
for (uint32_t i = 0; i < event_count; i++) {
const auto &dep_info = dep_infos[i];
auto &barrier_set = barriers_[i];
barrier_set.dependency_flags = dep_info.dependencyFlags;
auto stage_masks = sync_utils::GetGlobalStageMasks(dep_info);
barrier_set.src_exec_scope = SyncExecScope::MakeSrc(queue_flags, stage_masks.src);
barrier_set.dst_exec_scope = SyncExecScope::MakeDst(queue_flags, stage_masks.dst);
// Translate the API parameters into structures SyncVal understands directly, and dehandle for safer/faster replay.
barrier_set.MakeMemoryBarriers(queue_flags, dep_info.dependencyFlags, dep_info.memoryBarrierCount,
dep_info.pMemoryBarriers);
barrier_set.MakeBufferMemoryBarriers(sync_state, queue_flags, dep_info.dependencyFlags, dep_info.bufferMemoryBarrierCount,
dep_info.pBufferMemoryBarriers);
barrier_set.MakeImageMemoryBarriers(sync_state, queue_flags, dep_info.dependencyFlags, dep_info.imageMemoryBarrierCount,
dep_info.pImageMemoryBarriers);
}
}
SyncOpPipelineBarrier::SyncOpPipelineBarrier(CMD_TYPE cmd, const SyncValidator &sync_state, VkQueueFlags queue_flags,
VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask,
VkDependencyFlags dependencyFlags, uint32_t memoryBarrierCount,
const VkMemoryBarrier *pMemoryBarriers, uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers)
: SyncOpBarriers(cmd, sync_state, queue_flags, srcStageMask, dstStageMask, dependencyFlags, memoryBarrierCount, pMemoryBarriers,
bufferMemoryBarrierCount, pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers) {}
SyncOpPipelineBarrier::SyncOpPipelineBarrier(CMD_TYPE cmd, const SyncValidator &sync_state, VkQueueFlags queue_flags,
const VkDependencyInfoKHR &dep_info)
: SyncOpBarriers(cmd, sync_state, queue_flags, 1, &dep_info) {}
bool SyncOpPipelineBarrier::Validate(const CommandBufferAccessContext &cb_context) const {
bool skip = false;
const auto *context = cb_context.GetCurrentAccessContext();
assert(context);
if (!context) return skip;
assert(barriers_.size() == 1); // PipelineBarriers only support a single barrier set.
// Validate Image Layout transitions
const auto &barrier_set = barriers_[0];
for (const auto &image_barrier : barrier_set.image_memory_barriers) {
if (image_barrier.new_layout == image_barrier.old_layout) continue; // Only interested in layout transitions at this point.
const auto *image_state = image_barrier.image.get();
if (!image_state) continue;
const auto hazard = context->DetectImageBarrierHazard(image_barrier);
if (hazard.hazard) {
// PHASE1 TODO -- add tag information to log msg when useful.
const auto &sync_state = cb_context.GetSyncState();
const auto image_handle = image_state->image();
skip |= sync_state.LogError(image_handle, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for image barrier %" PRIu32 " %s. Access info %s.", CmdName(),
string_SyncHazard(hazard.hazard), image_barrier.index,
sync_state.report_data->FormatHandle(image_handle).c_str(),
cb_context.FormatUsage(hazard).c_str());
}
}
return skip;
}
struct SyncOpPipelineBarrierFunctorFactory {
using BarrierOpFunctor = PipelineBarrierOp;
using ApplyFunctor = ApplyBarrierFunctor<BarrierOpFunctor>;
using GlobalBarrierOpFunctor = PipelineBarrierOp;
using GlobalApplyFunctor = ApplyBarrierOpsFunctor<GlobalBarrierOpFunctor>;
using BufferRange = ResourceAccessRange;
using ImageRange = subresource_adapter::ImageRangeGenerator;
using GlobalRange = ResourceAccessRange;
ApplyFunctor MakeApplyFunctor(const SyncBarrier &barrier, bool layout_transition) const {
return ApplyFunctor(BarrierOpFunctor(barrier, layout_transition));
}
GlobalApplyFunctor MakeGlobalApplyFunctor(size_t size_hint, ResourceUsageTag tag) const {
return GlobalApplyFunctor(true /* resolve */, size_hint, tag);
}
GlobalBarrierOpFunctor MakeGlobalBarrierOpFunctor(const SyncBarrier &barrier) const {
return GlobalBarrierOpFunctor(barrier, false);
}
BufferRange MakeRangeGen(const BUFFER_STATE &buffer, const ResourceAccessRange &range) const {
if (!SimpleBinding(buffer)) return ResourceAccessRange();
const auto base_address = ResourceBaseAddress(buffer);
return (range + base_address);
}
ImageRange MakeRangeGen(const IMAGE_STATE &image, const VkImageSubresourceRange &subresource_range) const {
if (!SimpleBinding(image)) return subresource_adapter::ImageRangeGenerator();
const auto base_address = ResourceBaseAddress(image);
subresource_adapter::ImageRangeGenerator range_gen(*image.fragment_encoder.get(), subresource_range, base_address);
return range_gen;
}
GlobalRange MakeGlobalRangeGen(AccessAddressType) const { return kFullRange; }
};
template <typename Barriers, typename FunctorFactory>
void SyncOpBarriers::ApplyBarriers(const Barriers &barriers, const FunctorFactory &factory, const ResourceUsageTag tag,
AccessContext *context) {
for (const auto &barrier : barriers) {
const auto *state = barrier.GetState();
if (state) {
auto *const accesses = &context->GetAccessStateMap(GetAccessAddressType(*state));
auto update_action = factory.MakeApplyFunctor(barrier.barrier, barrier.IsLayoutTransition());
auto range_gen = factory.MakeRangeGen(*state, barrier.Range());
UpdateMemoryAccessState(accesses, update_action, &range_gen);
}
}
}
template <typename Barriers, typename FunctorFactory>
void SyncOpBarriers::ApplyGlobalBarriers(const Barriers &barriers, const FunctorFactory &factory, const ResourceUsageTag tag,
AccessContext *access_context) {
auto barriers_functor = factory.MakeGlobalApplyFunctor(barriers.size(), tag);
for (const auto &barrier : barriers) {
barriers_functor.EmplaceBack(factory.MakeGlobalBarrierOpFunctor(barrier));
}
for (const auto address_type : kAddressTypes) {
auto range_gen = factory.MakeGlobalRangeGen(address_type);
UpdateMemoryAccessState(&(access_context->GetAccessStateMap(address_type)), barriers_functor, &range_gen);
}
}
ResourceUsageTag SyncOpPipelineBarrier::Record(CommandBufferAccessContext *cb_context) const {
auto *access_context = cb_context->GetCurrentAccessContext();
auto *events_context = cb_context->GetCurrentEventsContext();
const auto tag = cb_context->NextCommandTag(cmd_);
DoRecord(tag, access_context, events_context);
return tag;
}
void SyncOpPipelineBarrier::DoRecord(const ResourceUsageTag tag, AccessContext *access_context,
SyncEventsContext *events_context) const {
SyncOpPipelineBarrierFunctorFactory factory;
// Pipeline barriers only have a single barrier set, unlike WaitEvents2
assert(barriers_.size() == 1);
const auto &barrier_set = barriers_[0];
ApplyBarriers(barrier_set.buffer_memory_barriers, factory, tag, access_context);
ApplyBarriers(barrier_set.image_memory_barriers, factory, tag, access_context);
ApplyGlobalBarriers(barrier_set.memory_barriers, factory, tag, access_context);
if (barrier_set.single_exec_scope) {
events_context->ApplyBarrier(barrier_set.src_exec_scope, barrier_set.dst_exec_scope);
} else {
for (const auto &barrier : barrier_set.memory_barriers) {
events_context->ApplyBarrier(barrier.src_exec_scope, barrier.dst_exec_scope);
}
}
}
bool SyncOpPipelineBarrier::ReplayValidate(ResourceUsageTag recorded_tag, const CommandBufferAccessContext &recorded_context,
ResourceUsageTag base_tag, CommandBufferAccessContext *active_context) const {
// No Validation for replay, as the layout transition accesses are checked directly, and the src*Mask ordering is captured
// with first access information.
return false;
}
void SyncOpBarriers::BarrierSet::MakeMemoryBarriers(const SyncExecScope &src, const SyncExecScope &dst,
VkDependencyFlags dependency_flags, uint32_t memory_barrier_count,
const VkMemoryBarrier *barriers) {
memory_barriers.reserve(std::max<uint32_t>(1, memory_barrier_count));
for (uint32_t barrier_index = 0; barrier_index < memory_barrier_count; barrier_index++) {
const auto &barrier = barriers[barrier_index];
SyncBarrier sync_barrier(barrier, src, dst);
memory_barriers.emplace_back(sync_barrier);
}
if (0 == memory_barrier_count) {
// If there are no global memory barriers, force an exec barrier
memory_barriers.emplace_back(SyncBarrier(src, dst));
}
single_exec_scope = true;
}
void SyncOpBarriers::BarrierSet::MakeBufferMemoryBarriers(const SyncValidator &sync_state, const SyncExecScope &src,
const SyncExecScope &dst, VkDependencyFlags dependencyFlags,
uint32_t barrier_count, const VkBufferMemoryBarrier *barriers) {
buffer_memory_barriers.reserve(barrier_count);
for (uint32_t index = 0; index < barrier_count; index++) {
const auto &barrier = barriers[index];
auto buffer = sync_state.Get<BUFFER_STATE>(barrier.buffer);
if (buffer) {
const auto barrier_size = GetBufferWholeSize(*buffer, barrier.offset, barrier.size);
const auto range = MakeRange(barrier.offset, barrier_size);
const SyncBarrier sync_barrier(barrier, src, dst);
buffer_memory_barriers.emplace_back(buffer, sync_barrier, range);
} else {
buffer_memory_barriers.emplace_back();
}
}
}
void SyncOpBarriers::BarrierSet::MakeMemoryBarriers(VkQueueFlags queue_flags, VkDependencyFlags dependency_flags,
uint32_t memory_barrier_count, const VkMemoryBarrier2 *barriers) {
memory_barriers.reserve(memory_barrier_count);
for (uint32_t barrier_index = 0; barrier_index < memory_barrier_count; barrier_index++) {
const auto &barrier = barriers[barrier_index];
auto src = SyncExecScope::MakeSrc(queue_flags, barrier.srcStageMask);
auto dst = SyncExecScope::MakeDst(queue_flags, barrier.dstStageMask);
SyncBarrier sync_barrier(barrier, src, dst);
memory_barriers.emplace_back(sync_barrier);
}
single_exec_scope = false;
}
void SyncOpBarriers::BarrierSet::MakeBufferMemoryBarriers(const SyncValidator &sync_state, VkQueueFlags queue_flags,
VkDependencyFlags dependencyFlags, uint32_t barrier_count,
const VkBufferMemoryBarrier2 *barriers) {
buffer_memory_barriers.reserve(barrier_count);
for (uint32_t index = 0; index < barrier_count; index++) {
const auto &barrier = barriers[index];
auto src = SyncExecScope::MakeSrc(queue_flags, barrier.srcStageMask);
auto dst = SyncExecScope::MakeDst(queue_flags, barrier.dstStageMask);
auto buffer = sync_state.Get<BUFFER_STATE>(barrier.buffer);
if (buffer) {
const auto barrier_size = GetBufferWholeSize(*buffer, barrier.offset, barrier.size);
const auto range = MakeRange(barrier.offset, barrier_size);
const SyncBarrier sync_barrier(barrier, src, dst);
buffer_memory_barriers.emplace_back(buffer, sync_barrier, range);
} else {
buffer_memory_barriers.emplace_back();
}
}
}
void SyncOpBarriers::BarrierSet::MakeImageMemoryBarriers(const SyncValidator &sync_state, const SyncExecScope &src,
const SyncExecScope &dst, VkDependencyFlags dependencyFlags,
uint32_t barrier_count, const VkImageMemoryBarrier *barriers) {
image_memory_barriers.reserve(barrier_count);
for (uint32_t index = 0; index < barrier_count; index++) {
const auto &barrier = barriers[index];
auto image = sync_state.Get<IMAGE_STATE>(barrier.image);
if (image) {
auto subresource_range = NormalizeSubresourceRange(image->createInfo, barrier.subresourceRange);
const SyncBarrier sync_barrier(barrier, src, dst);
image_memory_barriers.emplace_back(image, index, sync_barrier, barrier.oldLayout, barrier.newLayout, subresource_range);
} else {
image_memory_barriers.emplace_back();
image_memory_barriers.back().index = index; // Just in case we're interested in the ones we skipped.
}
}
}
void SyncOpBarriers::BarrierSet::MakeImageMemoryBarriers(const SyncValidator &sync_state, VkQueueFlags queue_flags,
VkDependencyFlags dependencyFlags, uint32_t barrier_count,
const VkImageMemoryBarrier2 *barriers) {
image_memory_barriers.reserve(barrier_count);
for (uint32_t index = 0; index < barrier_count; index++) {
const auto &barrier = barriers[index];
auto src = SyncExecScope::MakeSrc(queue_flags, barrier.srcStageMask);
auto dst = SyncExecScope::MakeDst(queue_flags, barrier.dstStageMask);
auto image = sync_state.Get<IMAGE_STATE>(barrier.image);
if (image) {
auto subresource_range = NormalizeSubresourceRange(image->createInfo, barrier.subresourceRange);
const SyncBarrier sync_barrier(barrier, src, dst);
image_memory_barriers.emplace_back(image, index, sync_barrier, barrier.oldLayout, barrier.newLayout, subresource_range);
} else {
image_memory_barriers.emplace_back();
image_memory_barriers.back().index = index; // Just in case we're interested in the ones we skipped.
}
}
}
SyncOpWaitEvents::SyncOpWaitEvents(CMD_TYPE cmd, const SyncValidator &sync_state, VkQueueFlags queue_flags, uint32_t eventCount,
const VkEvent *pEvents, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask,
uint32_t memoryBarrierCount, const VkMemoryBarrier *pMemoryBarriers,
uint32_t bufferMemoryBarrierCount, const VkBufferMemoryBarrier *pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount, const VkImageMemoryBarrier *pImageMemoryBarriers)
: SyncOpBarriers(cmd, sync_state, queue_flags, srcStageMask, dstStageMask, VkDependencyFlags(0U), memoryBarrierCount,
pMemoryBarriers, bufferMemoryBarrierCount, pBufferMemoryBarriers, imageMemoryBarrierCount,
pImageMemoryBarriers) {
MakeEventsList(sync_state, eventCount, pEvents);
}
SyncOpWaitEvents::SyncOpWaitEvents(CMD_TYPE cmd, const SyncValidator &sync_state, VkQueueFlags queue_flags, uint32_t eventCount,
const VkEvent *pEvents, const VkDependencyInfoKHR *pDependencyInfo)
: SyncOpBarriers(cmd, sync_state, queue_flags, eventCount, pDependencyInfo) {
MakeEventsList(sync_state, eventCount, pEvents);
assert(events_.size() == barriers_.size()); // Just so nobody gets clever and decides to cull the event or barrier arrays
}
const char *const SyncOpWaitEvents::kIgnored = "Wait operation is ignored for this event.";
bool SyncOpWaitEvents::Validate(const CommandBufferAccessContext &cb_context) const {
bool skip = false;
const auto &sync_state = cb_context.GetSyncState();
const auto command_buffer_handle = cb_context.GetCBState().commandBuffer();
// This is only interesting at record and not replay (Execute/Submit) time.
for (size_t barrier_set_index = 0; barrier_set_index < barriers_.size(); barrier_set_index++) {
const auto &barrier_set = barriers_[barrier_set_index];
if (barrier_set.single_exec_scope) {
if (barrier_set.src_exec_scope.mask_param & VK_PIPELINE_STAGE_HOST_BIT) {
const std::string vuid = std::string("SYNC-") + std::string(CmdName()) + std::string("-hostevent-unsupported");
skip = sync_state.LogInfo(command_buffer_handle, vuid,
"%s, srcStageMask includes %s, unsupported by synchronization validation.", CmdName(),
string_VkPipelineStageFlagBits(VK_PIPELINE_STAGE_HOST_BIT));
} else {
const auto &barriers = barrier_set.memory_barriers;
for (size_t barrier_index = 0; barrier_index < barriers.size(); barrier_index++) {
const auto &barrier = barriers[barrier_index];
if (barrier.src_exec_scope.mask_param & VK_PIPELINE_STAGE_HOST_BIT) {
const std::string vuid =
std::string("SYNC-") + std::string(CmdName()) + std::string("-hostevent-unsupported");
skip =
sync_state.LogInfo(command_buffer_handle, vuid,
"%s, srcStageMask %s of %s %zu, %s %zu, unsupported by synchronization validation.",
CmdName(), string_VkPipelineStageFlagBits(VK_PIPELINE_STAGE_HOST_BIT),
"pDependencyInfo", barrier_set_index, "pMemoryBarriers", barrier_index);
}
}
}
}
}
// The rest is common to record time and replay time.
skip |= DoValidate(cb_context, ResourceUsageRecord::kMaxIndex);
return skip;
}
bool SyncOpWaitEvents::DoValidate(const CommandBufferAccessContext &cb_context, const ResourceUsageTag base_tag) const {
bool skip = false;
const auto &sync_state = cb_context.GetSyncState();
VkPipelineStageFlags2KHR event_stage_masks = 0U;
VkPipelineStageFlags2KHR barrier_mask_params = 0U;
bool events_not_found = false;
const auto *events_context = cb_context.GetCurrentEventsContext();
assert(events_context);
size_t barrier_set_index = 0;
size_t barrier_set_incr = (barriers_.size() == 1) ? 0 : 1;
for (const auto &event : events_) {
const auto *sync_event = events_context->Get(event.get());
const auto &barrier_set = barriers_[barrier_set_index];
if (!sync_event) {
// NOTE PHASE2: This is where we'll need queue submit time validation to come back and check the srcStageMask bits
// or solve this with replay creating the SyncEventState in the queue context... also this will be a
// new validation error... wait without previously submitted set event...
events_not_found = true; // Demote "extra_stage_bits" error to warning, to avoid false positives at *record time*
barrier_set_index += barrier_set_incr;
continue; // Core, Lifetimes, or Param check needs to catch invalid events.
}
// For replay calls, don't revalidate "same command buffer" events
if (sync_event->last_command_tag > base_tag) continue;
const auto event_handle = sync_event->event->event();
// TODO add "destroyed" checks
if (sync_event->first_scope_set) {
// Only accumulate barrier and event stages if there is a pending set in the current context
barrier_mask_params |= barrier_set.src_exec_scope.mask_param;
event_stage_masks |= sync_event->scope.mask_param;
}
const auto &src_exec_scope = barrier_set.src_exec_scope;
const auto ignore_reason = sync_event->IsIgnoredByWait(cmd_, src_exec_scope.mask_param);
if (ignore_reason) {
switch (ignore_reason) {
case SyncEventState::ResetWaitRace:
case SyncEventState::Reset2WaitRace: {
// Four permuations of Reset and Wait calls...
const char *vuid =
(cmd_ == CMD_WAITEVENTS) ? "VUID-vkCmdResetEvent-event-03834" : "VUID-vkCmdResetEvent-event-03835";
if (ignore_reason == SyncEventState::Reset2WaitRace) {
vuid = (cmd_ == CMD_WAITEVENTS) ? "VUID-vkCmdResetEvent2-event-03831"
: "VUID-vkCmdResetEvent2-event-03832";
}
const char *const message =
"%s: %s %s operation following %s without intervening execution barrier, may cause race condition. %s";
skip |= sync_state.LogError(event_handle, vuid, message, CmdName(),
sync_state.report_data->FormatHandle(event_handle).c_str(), CmdName(),
CommandTypeString(sync_event->last_command), kIgnored);
break;
}
case SyncEventState::SetRace: {
// Issue error message that Wait is waiting on an signal subject to race condition, and is thus ignored for
// this event
const char *const vuid = "SYNC-vkCmdWaitEvents-unsynchronized-setops";
const char *const message =
"%s: %s Unsychronized %s calls result in race conditions w.r.t. event signalling, %s %s";
const char *const reason = "First synchronization scope is undefined.";
skip |= sync_state.LogError(event_handle, vuid, message, CmdName(),
sync_state.report_data->FormatHandle(event_handle).c_str(),
CommandTypeString(sync_event->last_command), reason, kIgnored);
break;
}
case SyncEventState::MissingStageBits: {
const auto missing_bits = sync_event->scope.mask_param & ~src_exec_scope.mask_param;
// Issue error message that event waited for is not in wait events scope
const char *const vuid = "VUID-vkCmdWaitEvents-srcStageMask-01158";
const char *const message = "%s: %s stageMask %" PRIx64 " includes bits not present in srcStageMask 0x%" PRIx64
". Bits missing from srcStageMask %s. %s";
skip |= sync_state.LogError(event_handle, vuid, message, CmdName(),
sync_state.report_data->FormatHandle(event_handle).c_str(),
sync_event->scope.mask_param, src_exec_scope.mask_param,
sync_utils::StringPipelineStageFlags(missing_bits).c_str(), kIgnored);
break;
}
case SyncEventState::SetVsWait2: {
skip |= sync_state.LogError(event_handle, "VUID-vkCmdWaitEvents2-pEvents-03837",
"%s: Follows set of %s by %s. Disallowed.", CmdName(),
sync_state.report_data->FormatHandle(event_handle).c_str(),
CommandTypeString(sync_event->last_command));
break;
}
default:
assert(ignore_reason == SyncEventState::NotIgnored);
}
} else if (barrier_set.image_memory_barriers.size()) {
const auto &image_memory_barriers = barrier_set.image_memory_barriers;
const auto *context = cb_context.GetCurrentAccessContext();
assert(context);
for (const auto &image_memory_barrier : image_memory_barriers) {
if (image_memory_barrier.old_layout == image_memory_barrier.new_layout) continue;
const auto *image_state = image_memory_barrier.image.get();
if (!image_state) continue;
const auto &subresource_range = image_memory_barrier.range;
const auto &src_access_scope = image_memory_barrier.barrier.src_access_scope;
const auto hazard =
context->DetectImageBarrierHazard(*image_state, sync_event->scope.exec_scope, src_access_scope,
subresource_range, *sync_event, AccessContext::DetectOptions::kDetectAll);
if (hazard.hazard) {
skip |= sync_state.LogError(image_state->image(), string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for image barrier %" PRIu32 " %s. Access info %s.", CmdName(),
string_SyncHazard(hazard.hazard), image_memory_barrier.index,
sync_state.report_data->FormatHandle(image_state->image()).c_str(),
cb_context.FormatUsage(hazard).c_str());
break;
}
}
}
// TODO: Add infrastructure for checking pDependencyInfo's vs. CmdSetEvent2 VUID - vkCmdWaitEvents2KHR - pEvents -
// 03839
barrier_set_index += barrier_set_incr;
}
// Note that we can't check for HOST in pEvents as we don't track that set event type
const auto extra_stage_bits = (barrier_mask_params & ~VK_PIPELINE_STAGE_2_HOST_BIT_KHR) & ~event_stage_masks;
if (extra_stage_bits) {
// Issue error message that event waited for is not in wait events scope
// NOTE: This isn't exactly the right VUID for WaitEvents2, but it's as close as we currently have support for
const char *const vuid =
(CMD_WAITEVENTS == cmd_) ? "VUID-vkCmdWaitEvents-srcStageMask-01158" : "VUID-vkCmdWaitEvents2-pEvents-03838";
const char *const message =
"%s: srcStageMask 0x%" PRIx64 " contains stages not present in pEvents stageMask. Extra stages are %s.%s";
const auto command_buffer_handle = cb_context.GetCBState().commandBuffer();
if (events_not_found) {
skip |= sync_state.LogInfo(command_buffer_handle, vuid, message, CmdName(), barrier_mask_params,
sync_utils::StringPipelineStageFlags(extra_stage_bits).c_str(),
" vkCmdSetEvent may be in previously submitted command buffer.");
} else {
skip |= sync_state.LogError(command_buffer_handle, vuid, message, CmdName(), barrier_mask_params,
sync_utils::StringPipelineStageFlags(extra_stage_bits).c_str(), "");
}
}
return skip;
}
struct SyncOpWaitEventsFunctorFactory {
using BarrierOpFunctor = WaitEventBarrierOp;
using ApplyFunctor = ApplyBarrierFunctor<BarrierOpFunctor>;
using GlobalBarrierOpFunctor = WaitEventBarrierOp;
using GlobalApplyFunctor = ApplyBarrierOpsFunctor<GlobalBarrierOpFunctor>;
using BufferRange = EventSimpleRangeGenerator;
using ImageRange = EventImageRangeGenerator;
using GlobalRange = EventSimpleRangeGenerator;
// Need to restrict to only valid exec and access scope for this event
// Pass by value is intentional to get a copy we can change without modifying the passed barrier
SyncBarrier RestrictToEvent(SyncBarrier barrier) const {
barrier.src_exec_scope.exec_scope = sync_event->scope.exec_scope & barrier.src_exec_scope.exec_scope;
barrier.src_access_scope = sync_event->scope.valid_accesses & barrier.src_access_scope;
return barrier;
}
ApplyFunctor MakeApplyFunctor(const SyncBarrier &barrier_arg, bool layout_transition) const {
auto barrier = RestrictToEvent(barrier_arg);
return ApplyFunctor(BarrierOpFunctor(sync_event->first_scope_tag, barrier, layout_transition));
}
GlobalApplyFunctor MakeGlobalApplyFunctor(size_t size_hint, ResourceUsageTag tag) const {
return GlobalApplyFunctor(false /* don't resolve */, size_hint, tag);
}
GlobalBarrierOpFunctor MakeGlobalBarrierOpFunctor(const SyncBarrier &barrier_arg) const {
auto barrier = RestrictToEvent(barrier_arg);
return GlobalBarrierOpFunctor(sync_event->first_scope_tag, barrier, false);
}
BufferRange MakeRangeGen(const BUFFER_STATE &buffer, const ResourceAccessRange &range_arg) const {
const AccessAddressType address_type = GetAccessAddressType(buffer);
const auto base_address = ResourceBaseAddress(buffer);
ResourceAccessRange range = SimpleBinding(buffer) ? (range_arg + base_address) : ResourceAccessRange();
EventSimpleRangeGenerator filtered_range_gen(sync_event->FirstScope(address_type), range);
return filtered_range_gen;
}
ImageRange MakeRangeGen(const IMAGE_STATE &image, const VkImageSubresourceRange &subresource_range) const {
if (!SimpleBinding(image)) return ImageRange();
const auto address_type = GetAccessAddressType(image);
const auto base_address = ResourceBaseAddress(image);
subresource_adapter::ImageRangeGenerator image_range_gen(*image.fragment_encoder.get(), subresource_range, base_address);
EventImageRangeGenerator filtered_range_gen(sync_event->FirstScope(address_type), image_range_gen);
return filtered_range_gen;
}
GlobalRange MakeGlobalRangeGen(AccessAddressType address_type) const {
return EventSimpleRangeGenerator(sync_event->FirstScope(address_type), kFullRange);
}
SyncOpWaitEventsFunctorFactory(SyncEventState *sync_event_) : sync_event(sync_event_) { assert(sync_event); }
SyncEventState *sync_event;
};
ResourceUsageTag SyncOpWaitEvents::Record(CommandBufferAccessContext *cb_context) const {
const auto tag = cb_context->NextCommandTag(cmd_);
auto *access_context = cb_context->GetCurrentAccessContext();
assert(access_context);
if (!access_context) return tag;
auto *events_context = cb_context->GetCurrentEventsContext();
assert(events_context);
if (!events_context) return tag;
DoRecord(tag, access_context, events_context);
return tag;
}
void SyncOpWaitEvents::DoRecord(ResourceUsageTag tag, AccessContext *access_context, SyncEventsContext *events_context) const {
// Unlike PipelineBarrier, WaitEvent is *not* limited to accesses within the current subpass (if any) and thus needs to import
// all accesses. Can instead import for all first_scopes, or a union of them, if this becomes a performance/memory issue,
// but with no idea of the performance of the union, nor of whether it even matters... take the simplest approach here,
access_context->ResolvePreviousAccesses();
size_t barrier_set_index = 0;
size_t barrier_set_incr = (barriers_.size() == 1) ? 0 : 1;
assert(barriers_.size() == 1 || (barriers_.size() == events_.size()));
for (auto &event_shared : events_) {
if (!event_shared.get()) continue;
auto *sync_event = events_context->GetFromShared(event_shared);
sync_event->last_command = cmd_;
sync_event->last_command_tag = tag;
const auto &barrier_set = barriers_[barrier_set_index];
const auto &dst = barrier_set.dst_exec_scope;
if (!sync_event->IsIgnoredByWait(cmd_, barrier_set.src_exec_scope.mask_param)) {
// These apply barriers one at a time as the are restricted to the resource ranges specified per each barrier,
// but do not update the dependency chain information (but set the "pending" state) // s.t. the order independence
// of the barriers is maintained.
SyncOpWaitEventsFunctorFactory factory(sync_event);
ApplyBarriers(barrier_set.buffer_memory_barriers, factory, tag, access_context);
ApplyBarriers(barrier_set.image_memory_barriers, factory, tag, access_context);
ApplyGlobalBarriers(barrier_set.memory_barriers, factory, tag, access_context);
// Apply the global barrier to the event itself (for race condition tracking)
// Events don't happen at a stage, so we need to store the unexpanded ALL_COMMANDS if set for inter-event-calls
sync_event->barriers = dst.mask_param & VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
sync_event->barriers |= dst.exec_scope;
} else {
// We ignored this wait, so we don't have any effective synchronization barriers for it.
sync_event->barriers = 0U;
}
barrier_set_index += barrier_set_incr;
}
// Apply the pending barriers
ResolvePendingBarrierFunctor apply_pending_action(tag);
access_context->ApplyToContext(apply_pending_action);
}
bool SyncOpWaitEvents::ReplayValidate(ResourceUsageTag recorded_tag, const CommandBufferAccessContext &recorded_context,
ResourceUsageTag base_tag, CommandBufferAccessContext *active_context) const {
return DoValidate(*active_context, base_tag);
}
bool SyncValidator::PreCallValidateCmdWriteBufferMarker2AMD(VkCommandBuffer commandBuffer, VkPipelineStageFlags2KHR pipelineStage,
VkBuffer dstBuffer, VkDeviceSize dstOffset, uint32_t marker) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
auto dst_buffer = Get<BUFFER_STATE>(dstBuffer);
if (dst_buffer) {
const ResourceAccessRange range = MakeRange(dstOffset, 4);
auto hazard = context->DetectHazard(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, range);
if (hazard.hazard) {
skip |= LogError(dstBuffer, string_SyncHazardVUID(hazard.hazard),
"vkCmdWriteBufferMarkerAMD2: Hazard %s for dstBuffer %s. Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(dstBuffer).c_str(),
cb_access_context->FormatUsage(hazard).c_str());
}
}
return skip;
}
void SyncOpWaitEvents::MakeEventsList(const SyncValidator &sync_state, uint32_t event_count, const VkEvent *events) {
events_.reserve(event_count);
for (uint32_t event_index = 0; event_index < event_count; event_index++) {
events_.emplace_back(sync_state.Get<EVENT_STATE>(events[event_index]));
}
}
SyncOpResetEvent::SyncOpResetEvent(CMD_TYPE cmd, const SyncValidator &sync_state, VkQueueFlags queue_flags, VkEvent event,
VkPipelineStageFlags2KHR stageMask)
: SyncOpBase(cmd), event_(sync_state.Get<EVENT_STATE>(event)), exec_scope_(SyncExecScope::MakeSrc(queue_flags, stageMask)) {}
bool SyncOpResetEvent::Validate(const CommandBufferAccessContext& cb_context) const {
return DoValidate(cb_context, ResourceUsageRecord::kMaxIndex);
}
bool SyncOpResetEvent::DoValidate(const CommandBufferAccessContext & cb_context, const ResourceUsageTag base_tag) const {
auto *events_context = cb_context.GetCurrentEventsContext();
assert(events_context);
bool skip = false;
if (!events_context) return skip;
const auto &sync_state = cb_context.GetSyncState();
const auto *sync_event = events_context->Get(event_);
if (!sync_event) return skip; // Core, Lifetimes, or Param check needs to catch invalid events.
if (sync_event->last_command_tag > base_tag) return skip; // if we validated this in recording of the secondary, don't repeat
const char *const set_wait =
"%s: %s %s operation following %s without intervening execution barrier, is a race condition and may result in data "
"hazards.";
const char *message = set_wait; // Only one message this call.
if (!sync_event->HasBarrier(exec_scope_.mask_param, exec_scope_.exec_scope)) {
const char *vuid = nullptr;
switch (sync_event->last_command) {
case CMD_SETEVENT:
case CMD_SETEVENT2KHR:
case CMD_SETEVENT2:
// Needs a barrier between set and reset
vuid = "SYNC-vkCmdResetEvent-missingbarrier-set";
break;
case CMD_WAITEVENTS:
case CMD_WAITEVENTS2:
case CMD_WAITEVENTS2KHR: {
// Needs to be in the barriers chain (either because of a barrier, or because of dstStageMask
vuid = "SYNC-vkCmdResetEvent-missingbarrier-wait";
break;
}
default:
// The only other valid last command that wasn't one.
assert((sync_event->last_command == CMD_NONE) || (sync_event->last_command == CMD_RESETEVENT) ||
(sync_event->last_command == CMD_RESETEVENT2KHR));
break;
}
if (vuid) {
skip |= sync_state.LogError(event_->event(), vuid, message, CmdName(),
sync_state.report_data->FormatHandle(event_->event()).c_str(), CmdName(),
CommandTypeString(sync_event->last_command));
}
}
return skip;
}
ResourceUsageTag SyncOpResetEvent::Record(CommandBufferAccessContext *cb_context) const {
const auto tag = cb_context->NextCommandTag(cmd_);
auto *events_context = cb_context->GetCurrentEventsContext();
assert(events_context);
if (!events_context) return tag;
auto *sync_event = events_context->GetFromShared(event_);
if (!sync_event) return tag; // Core, Lifetimes, or Param check needs to catch invalid events.
// Update the event state
sync_event->last_command = cmd_;
sync_event->last_command_tag = tag;
sync_event->unsynchronized_set = CMD_NONE;
sync_event->ResetFirstScope();
sync_event->barriers = 0U;
return tag;
}
bool SyncOpResetEvent::ReplayValidate(ResourceUsageTag recorded_tag, const CommandBufferAccessContext &recorded_context,
ResourceUsageTag base_tag, CommandBufferAccessContext *active_context) const {
return DoValidate(*active_context, base_tag);
}
void SyncOpResetEvent::DoRecord(ResourceUsageTag tag, AccessContext *access_context, SyncEventsContext *events_context) const {}
SyncOpSetEvent::SyncOpSetEvent(CMD_TYPE cmd, const SyncValidator &sync_state, VkQueueFlags queue_flags, VkEvent event,
VkPipelineStageFlags2KHR stageMask)
: SyncOpBase(cmd),
event_(sync_state.Get<EVENT_STATE>(event)),
src_exec_scope_(SyncExecScope::MakeSrc(queue_flags, stageMask)),
dep_info_() {}
SyncOpSetEvent::SyncOpSetEvent(CMD_TYPE cmd, const SyncValidator &sync_state, VkQueueFlags queue_flags, VkEvent event,
const VkDependencyInfoKHR &dep_info)
: SyncOpBase(cmd),
event_(sync_state.Get<EVENT_STATE>(event)),
src_exec_scope_(SyncExecScope::MakeSrc(queue_flags, sync_utils::GetGlobalStageMasks(dep_info).src)),
dep_info_(new safe_VkDependencyInfo(&dep_info)) {}
bool SyncOpSetEvent::Validate(const CommandBufferAccessContext &cb_context) const {
return DoValidate(cb_context, ResourceUsageRecord::kMaxIndex);
}
bool SyncOpSetEvent::ReplayValidate(ResourceUsageTag recorded_tag, const CommandBufferAccessContext &recorded_context,
ResourceUsageTag base_tag, CommandBufferAccessContext *active_context) const {
assert(active_context);
return DoValidate(*active_context, base_tag);
}
bool SyncOpSetEvent::DoValidate(const CommandBufferAccessContext &cb_context, const ResourceUsageTag base_tag) const {
bool skip = false;
const auto &sync_state = cb_context.GetSyncState();
auto *events_context = cb_context.GetCurrentEventsContext();
assert(events_context);
if (!events_context) return skip;
const auto *sync_event = events_context->Get(event_);
if (!sync_event) return skip; // Core, Lifetimes, or Param check needs to catch invalid events.
if (sync_event->last_command_tag >= base_tag) return skip; // for replay we don't want to revalidate internal "last commmand"
const char *const reset_set =
"%s: %s %s operation following %s without intervening execution barrier, is a race condition and may result in data "
"hazards.";
const char *const wait =
"%s: %s %s operation following %s without intervening vkCmdResetEvent, may result in data hazard and is ignored.";
if (!sync_event->HasBarrier(src_exec_scope_.mask_param, src_exec_scope_.exec_scope)) {
const char *vuid_stem = nullptr;
const char *message = nullptr;
switch (sync_event->last_command) {
case CMD_RESETEVENT:
case CMD_RESETEVENT2KHR:
case CMD_RESETEVENT2:
// Needs a barrier between reset and set
vuid_stem = "-missingbarrier-reset";
message = reset_set;
break;
case CMD_SETEVENT:
case CMD_SETEVENT2KHR:
case CMD_SETEVENT2:
// Needs a barrier between set and set
vuid_stem = "-missingbarrier-set";
message = reset_set;
break;
case CMD_WAITEVENTS:
case CMD_WAITEVENTS2:
case CMD_WAITEVENTS2KHR:
// Needs a barrier or is in second execution scope
vuid_stem = "-missingbarrier-wait";
message = wait;
break;
default:
// The only other valid last command that wasn't one.
assert(sync_event->last_command == CMD_NONE);
break;
}
if (vuid_stem) {
assert(nullptr != message);
std::string vuid("SYNC-");
vuid.append(CmdName()).append(vuid_stem);
skip |= sync_state.LogError(event_->event(), vuid.c_str(), message, CmdName(),
sync_state.report_data->FormatHandle(event_->event()).c_str(), CmdName(),
CommandTypeString(sync_event->last_command));
}
}
return skip;
}
ResourceUsageTag SyncOpSetEvent::Record(CommandBufferAccessContext *cb_context) const {
const auto tag = cb_context->NextCommandTag(cmd_);
auto *events_context = cb_context->GetCurrentEventsContext();
auto *access_context = cb_context->GetCurrentAccessContext();
assert(events_context);
if (access_context && events_context) {
DoRecord(tag, access_context, events_context);
}
return tag;
}
void SyncOpSetEvent::DoRecord(ResourceUsageTag tag, AccessContext *access_context, SyncEventsContext *events_context) const {
auto *sync_event = events_context->GetFromShared(event_);
if (!sync_event) return; // Core, Lifetimes, or Param check needs to catch invalid events.
// NOTE: We're going to simply record the sync scope here, as anything else would be implementation defined/undefined
// and we're issuing errors re: missing barriers between event commands, which if the user fixes would fix
// any issues caused by naive scope setting here.
// What happens with two SetEvent is that one cannot know what group of operations will be waited for.
// Given:
// Stuff1; SetEvent; Stuff2; SetEvent; WaitEvents;
// WaitEvents cannot know which of Stuff1, Stuff2, or both has completed execution.
if (!sync_event->HasBarrier(src_exec_scope_.mask_param, src_exec_scope_.exec_scope)) {
sync_event->unsynchronized_set = sync_event->last_command;
sync_event->ResetFirstScope();
} else if (!sync_event->first_scope_set) {
// We only set the scope if there isn't one
sync_event->scope = src_exec_scope_;
auto set_scope = [&sync_event](AccessAddressType address_type, const ResourceAccessRangeMap::value_type &access) {
auto &scope_map = sync_event->first_scope[static_cast<size_t>(address_type)];
if (access.second.InSourceScopeOrChain(sync_event->scope.exec_scope, sync_event->scope.valid_accesses)) {
scope_map.insert(scope_map.end(), std::make_pair(access.first, true));
}
};
access_context->ForAll(set_scope);
sync_event->unsynchronized_set = CMD_NONE;
sync_event->first_scope_set = true;
sync_event->first_scope_tag = tag;
}
// TODO: Store dep_info_ shared ptr in sync_state for WaitEvents2 validation
sync_event->last_command = cmd_;
sync_event->last_command_tag = tag;
sync_event->barriers = 0U;
}
SyncOpBeginRenderPass::SyncOpBeginRenderPass(CMD_TYPE cmd, const SyncValidator &sync_state,
const VkRenderPassBeginInfo *pRenderPassBegin,
const VkSubpassBeginInfo *pSubpassBeginInfo)
: SyncOpBase(cmd) {
if (pRenderPassBegin) {
rp_state_ = sync_state.Get<RENDER_PASS_STATE>(pRenderPassBegin->renderPass);
renderpass_begin_info_ = safe_VkRenderPassBeginInfo(pRenderPassBegin);
auto fb_state = sync_state.Get<FRAMEBUFFER_STATE>(pRenderPassBegin->framebuffer);
if (fb_state) {
shared_attachments_ = sync_state.GetAttachmentViews(*renderpass_begin_info_.ptr(), *fb_state);
// TODO: Revisit this when all attachment validation is through SyncOps to see if we can discard the plain pointer copy
// Note that this a safe to presist as long as shared_attachments is not cleared
attachments_.reserve(shared_attachments_.size());
for (const auto &attachment : shared_attachments_) {
attachments_.emplace_back(attachment.get());
}
}
if (pSubpassBeginInfo) {
subpass_begin_info_ = safe_VkSubpassBeginInfo(pSubpassBeginInfo);
}
}
}
bool SyncOpBeginRenderPass::Validate(const CommandBufferAccessContext &cb_context) const {
// Check if any of the layout transitions are hazardous.... but we don't have the renderpass context to work with, so we
bool skip = false;
assert(rp_state_.get());
if (nullptr == rp_state_.get()) return skip;
auto &rp_state = *rp_state_.get();
const uint32_t subpass = 0;
// Construct the state we can use to validate against... (since validation is const and RecordCmdBeginRenderPass
// hasn't happened yet)
const std::vector<AccessContext> empty_context_vector;
AccessContext temp_context(subpass, cb_context.GetQueueFlags(), rp_state.subpass_dependencies, empty_context_vector,
cb_context.GetCurrentAccessContext());
// Validate attachment operations
if (attachments_.size() == 0) return skip;
const auto &render_area = renderpass_begin_info_.renderArea;
// Since the isn't a valid RenderPassAccessContext until Record, needs to create the view/generator list... we could limit this
// by predicating on whether subpass 0 uses the attachment if it is too expensive to create the full list redundantly here.
// More broadly we could look at thread specific state shared between Validate and Record as is done for other heavyweight
// operations (though it's currently a messy approach)
AttachmentViewGenVector view_gens = RenderPassAccessContext::CreateAttachmentViewGen(render_area, attachments_);
skip |= temp_context.ValidateLayoutTransitions(cb_context, rp_state, render_area, subpass, view_gens, CmdName());
// Validate load operations if there were no layout transition hazards
if (!skip) {
temp_context.RecordLayoutTransitions(rp_state, subpass, view_gens, kCurrentCommandTag);
skip |= temp_context.ValidateLoadOperation(cb_context, rp_state, render_area, subpass, view_gens, CmdName());
}
return skip;
}
ResourceUsageTag SyncOpBeginRenderPass::Record(CommandBufferAccessContext *cb_context) const {
const auto tag = cb_context->NextCommandTag(cmd_);
// TODO PHASE2 need to have a consistent way to record to either command buffer or queue contexts
assert(rp_state_.get());
if (nullptr == rp_state_.get()) return tag;
cb_context->RecordBeginRenderPass(*rp_state_.get(), renderpass_begin_info_.renderArea, attachments_, tag);
return tag;
}
bool SyncOpBeginRenderPass::ReplayValidate(ResourceUsageTag recorded_tag, const CommandBufferAccessContext &recorded_context,
ResourceUsageTag base_tag, CommandBufferAccessContext *active_context) const {
return false;
}
void SyncOpBeginRenderPass::DoRecord(ResourceUsageTag tag, AccessContext *access_context, SyncEventsContext *events_context) const {
}
SyncOpNextSubpass::SyncOpNextSubpass(CMD_TYPE cmd, const SyncValidator &sync_state, const VkSubpassBeginInfo *pSubpassBeginInfo,
const VkSubpassEndInfo *pSubpassEndInfo)
: SyncOpBase(cmd) {
if (pSubpassBeginInfo) {
subpass_begin_info_.initialize(pSubpassBeginInfo);
}
if (pSubpassEndInfo) {
subpass_end_info_.initialize(pSubpassEndInfo);
}
}
bool SyncOpNextSubpass::Validate(const CommandBufferAccessContext &cb_context) const {
bool skip = false;
const auto *renderpass_context = cb_context.GetCurrentRenderPassContext();
if (!renderpass_context) return skip;
skip |= renderpass_context->ValidateNextSubpass(cb_context.GetExecutionContext(), CmdName());
return skip;
}
ResourceUsageTag SyncOpNextSubpass::Record(CommandBufferAccessContext *cb_context) const {
// TODO PHASE2 need to have a consistent way to record to either command buffer or queue contexts
// TODO PHASE2 Need to fix renderpass tagging/segregation of barrier and access operations for QueueSubmit time validation
auto prev_tag = cb_context->NextCommandTag(cmd_);
auto next_tag = cb_context->NextSubcommandTag(cmd_);
cb_context->RecordNextSubpass(prev_tag, next_tag);
// TODO PHASE2 This needs to be the tag of the barrier operations
return prev_tag;
}
bool SyncOpNextSubpass::ReplayValidate(ResourceUsageTag recorded_tag, const CommandBufferAccessContext &recorded_context,
ResourceUsageTag base_tag, CommandBufferAccessContext *active_context) const {
return false;
}
SyncOpEndRenderPass::SyncOpEndRenderPass(CMD_TYPE cmd, const SyncValidator &sync_state, const VkSubpassEndInfo *pSubpassEndInfo)
: SyncOpBase(cmd) {
if (pSubpassEndInfo) {
subpass_end_info_.initialize(pSubpassEndInfo);
}
}
void SyncOpNextSubpass::DoRecord(ResourceUsageTag tag, AccessContext *access_context, SyncEventsContext *events_context) const {}
bool SyncOpEndRenderPass::Validate(const CommandBufferAccessContext &cb_context) const {
bool skip = false;
const auto *renderpass_context = cb_context.GetCurrentRenderPassContext();
if (!renderpass_context) return skip;
skip |= renderpass_context->ValidateEndRenderPass(cb_context.GetExecutionContext(), CmdName());
return skip;
}
ResourceUsageTag SyncOpEndRenderPass::Record(CommandBufferAccessContext *cb_context) const {
// TODO PHASE2 need to have a consistent way to record to either command buffer or queue contexts
const auto tag = cb_context->NextCommandTag(cmd_);
cb_context->RecordEndRenderPass(tag);
return tag;
}
bool SyncOpEndRenderPass::ReplayValidate(ResourceUsageTag recorded_tag, const CommandBufferAccessContext &recorded_context,
ResourceUsageTag base_tag, CommandBufferAccessContext *active_context) const {
return false;
}
void SyncOpEndRenderPass::DoRecord(ResourceUsageTag tag, AccessContext *access_context, SyncEventsContext *events_context) const {}
void SyncValidator::PreCallRecordCmdWriteBufferMarker2AMD(VkCommandBuffer commandBuffer, VkPipelineStageFlags2KHR pipelineStage,
VkBuffer dstBuffer, VkDeviceSize dstOffset, uint32_t marker) {
StateTracker::PreCallRecordCmdWriteBufferMarker2AMD(commandBuffer, pipelineStage, dstBuffer, dstOffset, marker);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_WRITEBUFFERMARKERAMD);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto dst_buffer = Get<BUFFER_STATE>(dstBuffer);
if (dst_buffer) {
const ResourceAccessRange range = MakeRange(dstOffset, 4);
context->UpdateAccessState(*dst_buffer, SYNC_COPY_TRANSFER_WRITE, SyncOrdering::kNonAttachment, range, tag);
}
}
bool SyncValidator::PreCallValidateCmdExecuteCommands(VkCommandBuffer commandBuffer, uint32_t commandBufferCount,
const VkCommandBuffer *pCommandBuffers) const {
bool skip = StateTracker::PreCallValidateCmdExecuteCommands(commandBuffer, commandBufferCount, pCommandBuffers);
const char *func_name = "vkCmdExecuteCommands";
const auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
// Heavyweight, but we need a proxy copy of the active command buffer access context
CommandBufferAccessContext proxy_cb_context(*cb_context, CommandBufferAccessContext::AsProxyContext());
// Make working copies of the access and events contexts
proxy_cb_context.NextCommandTag(CMD_EXECUTECOMMANDS);
for (uint32_t cb_index = 0; cb_index < commandBufferCount; ++cb_index) {
proxy_cb_context.NextSubcommandTag(CMD_EXECUTECOMMANDS);
const auto *recorded_cb_context = GetAccessContext(pCommandBuffers[cb_index]);
if (!recorded_cb_context) continue;
const auto *recorded_context = recorded_cb_context->GetCurrentAccessContext();
assert(recorded_context);
skip |= recorded_cb_context->ValidateFirstUse(&proxy_cb_context, func_name, cb_index);
// The barriers have already been applied in ValidatFirstUse
ResourceUsageRange tag_range = proxy_cb_context.ImportRecordedAccessLog(*recorded_cb_context);
proxy_cb_context.ResolveRecordedContext(*recorded_context, tag_range.begin);
}
return skip;
}
void SyncValidator::PreCallRecordCmdExecuteCommands(VkCommandBuffer commandBuffer, uint32_t commandBufferCount,
const VkCommandBuffer *pCommandBuffers) {
StateTracker::PreCallRecordCmdExecuteCommands(commandBuffer, commandBufferCount, pCommandBuffers);
auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
cb_context->NextCommandTag(CMD_EXECUTECOMMANDS);
for (uint32_t cb_index = 0; cb_index < commandBufferCount; ++cb_index) {
cb_context->NextSubcommandTag(CMD_EXECUTECOMMANDS);
const auto *recorded_cb_context = GetAccessContext(pCommandBuffers[cb_index]);
if (!recorded_cb_context) continue;
cb_context->RecordExecutedCommandBuffer(*recorded_cb_context, CMD_EXECUTECOMMANDS);
}
}
AttachmentViewGen::AttachmentViewGen(const IMAGE_VIEW_STATE *view, const VkOffset3D &offset, const VkExtent3D &extent)
: view_(view), view_mask_(), gen_store_() {
if (!view_ || !view_->image_state || !SimpleBinding(*view_->image_state)) return;
const IMAGE_STATE &image_state = *view_->image_state.get();
const auto base_address = ResourceBaseAddress(image_state);
const auto *encoder = image_state.fragment_encoder.get();
if (!encoder) return;
// Get offset and extent for the view, accounting for possible depth slicing
const VkOffset3D zero_offset = view->GetOffset();
const VkExtent3D &image_extent = view->GetExtent();
// Intentional copy
VkImageSubresourceRange subres_range = view_->normalized_subresource_range;
view_mask_ = subres_range.aspectMask;
gen_store_[Gen::kViewSubresource].emplace(*encoder, subres_range, zero_offset, image_extent, base_address);
gen_store_[Gen::kRenderArea].emplace(*encoder, subres_range, offset, extent, base_address);
const auto depth = view_mask_ & VK_IMAGE_ASPECT_DEPTH_BIT;
if (depth && (depth != view_mask_)) {
subres_range.aspectMask = depth;
gen_store_[Gen::kDepthOnlyRenderArea].emplace(*encoder, subres_range, offset, extent, base_address);
}
const auto stencil = view_mask_ & VK_IMAGE_ASPECT_STENCIL_BIT;
if (stencil && (stencil != view_mask_)) {
subres_range.aspectMask = stencil;
gen_store_[Gen::kStencilOnlyRenderArea].emplace(*encoder, subres_range, offset, extent, base_address);
}
}
const ImageRangeGen *AttachmentViewGen::GetRangeGen(AttachmentViewGen::Gen gen_type) const {
const ImageRangeGen *got = nullptr;
switch (gen_type) {
case kViewSubresource:
got = &gen_store_[kViewSubresource];
break;
case kRenderArea:
got = &gen_store_[kRenderArea];
break;
case kDepthOnlyRenderArea:
got =
(view_mask_ == VK_IMAGE_ASPECT_DEPTH_BIT) ? &gen_store_[Gen::kRenderArea] : &gen_store_[Gen::kDepthOnlyRenderArea];
break;
case kStencilOnlyRenderArea:
got = (view_mask_ == VK_IMAGE_ASPECT_STENCIL_BIT) ? &gen_store_[Gen::kRenderArea]
: &gen_store_[Gen::kStencilOnlyRenderArea];
break;
default:
assert(got);
}
return got;
}
AttachmentViewGen::Gen AttachmentViewGen::GetDepthStencilRenderAreaGenType(bool depth_op, bool stencil_op) const {
assert(IsValid());
assert(view_mask_ & (VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT));
if (depth_op) {
assert(view_mask_ & VK_IMAGE_ASPECT_DEPTH_BIT);
if (stencil_op) {
assert(view_mask_ & VK_IMAGE_ASPECT_STENCIL_BIT);
return kRenderArea;
}
return kDepthOnlyRenderArea;
}
if (stencil_op) {
assert(view_mask_ & VK_IMAGE_ASPECT_STENCIL_BIT);
return kStencilOnlyRenderArea;
}
assert(depth_op || stencil_op);
return kRenderArea;
}
AccessAddressType AttachmentViewGen::GetAddressType() const { return AccessContext::ImageAddressType(*view_->image_state); }
void SyncEventsContext::ApplyBarrier(const SyncExecScope &src, const SyncExecScope &dst) {
const bool all_commands_bit = 0 != (src.mask_param & VK_PIPELINE_STAGE_ALL_COMMANDS_BIT);
for (auto &event_pair : map_) {
assert(event_pair.second); // Shouldn't be storing empty
auto &sync_event = *event_pair.second;
// Events don't happen at a stage, so we need to check and store the unexpanded ALL_COMMANDS if set for inter-event-calls
if ((sync_event.barriers & src.exec_scope) || all_commands_bit) {
sync_event.barriers |= dst.exec_scope;
sync_event.barriers |= dst.mask_param & VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
}
}
}