blob: 87d946bb3f80b815089313680838521d1ae4b32f [file] [log] [blame]
/* Copyright (c) 2019-2021 The Khronos Group Inc.
* Copyright (c) 2019-2021 Valve Corporation
* Copyright (c) 2019-2021 LunarG, Inc.
* Copyright (C) 2019-2021 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* John Zulauf <jzulauf@lunarg.com>
*
*/
#pragma once
#ifndef RANGE_VECTOR_H_
#define RANGE_VECTOR_H_
#include <algorithm>
#include <cassert>
#include <limits>
#include <map>
#include <utility>
#include <cstdint>
#include "vk_layer_data.h"
#define RANGE_ASSERT(b) assert(b)
namespace sparse_container {
// range_map
//
// Implements an ordered map of non-overlapping, non-empty ranges
//
template <typename Index>
struct range {
using index_type = Index;
index_type begin; // Inclusive lower bound of range
index_type end; // Exlcusive upper bound of range
inline bool empty() const { return begin == end; }
inline bool valid() const { return begin <= end; }
inline bool invalid() const { return !valid(); }
inline bool non_empty() const { return begin < end; } // valid and !empty
inline bool is_prior_to(const range &other) const { return end == other.begin; }
inline bool is_subsequent_to(const range &other) const { return begin == other.end; }
inline bool includes(const index_type &index) const { return (begin <= index) && (index < end); }
inline bool includes(const range &other) const { return (begin <= other.begin) && (other.end <= end); }
inline bool excludes(const index_type &index) const { return (index < begin) || (end <= index); }
inline bool excludes(const range &other) const { return (other.end <= begin) || (end <= other.begin); }
inline bool intersects(const range &other) const { return includes(other.begin) || other.includes(begin); }
inline index_type distance() const { return end - begin; }
inline bool operator==(const range &rhs) const { return (begin == rhs.begin) && (end == rhs.end); }
inline bool operator!=(const range &rhs) const { return (begin != rhs.begin) || (end != rhs.end); }
inline range &operator-=(const index_type &offset) {
begin = begin - offset;
end = end - offset;
return *this;
}
inline range &operator+=(const index_type &offset) {
begin = begin + offset;
end = end + offset;
return *this;
}
inline range operator+(const index_type &offset) const { return range(begin + offset, end + offset); }
// for a reversible/transitive < operator compare first on begin and then end
// only less or begin is less or if end is less when begin is equal
bool operator<(const range &rhs) const {
bool result = false;
if (invalid()) {
// all invalid < valid, allows map/set validity check by looking at begin()->first
// all invalid are equal, thus only equal if this is invalid and rhs is valid
result = rhs.valid();
} else if (begin < rhs.begin) {
result = true;
} else if ((begin == rhs.begin) && (end < rhs.end)) {
result = true; // Simple common case -- boundary case require equality check for correctness.
}
return result;
}
// use as "strictly less/greater than" to check for non-overlapping ranges
bool strictly_less(const range &rhs) const { return end <= rhs.begin; }
bool strictly_less(const index_type &index) const { return end <= index; }
bool strictly_greater(const range &rhs) const { return rhs.end <= begin; }
bool strictly_greater(const index_type &index) const { return index < begin; }
range &operator=(const range &rhs) {
begin = rhs.begin;
end = rhs.end;
return *this;
}
range operator&(const range &rhs) const {
if (includes(rhs.begin)) {
return range(rhs.begin, std::min(end, rhs.end));
} else if (rhs.includes(begin)) {
return range(begin, std::min(end, rhs.end));
}
return range(); // Empty default range on non-intersection
}
range() : begin(), end() {}
range(const index_type &begin_, const index_type &end_) : begin(begin_), end(end_) {}
range(const range &other) : begin(other.begin), end(other.end) {}
};
template <typename Range>
class range_view {
public:
using index_type = typename Range::index_type;
class iterator {
public:
iterator &operator++() {
++current;
return *this;
}
const index_type &operator*() const { return current; }
bool operator!=(const iterator &rhs) const { return current != rhs.current; }
iterator(index_type value) : current(value) {}
private:
index_type current;
};
range_view(const Range &range) : range_(range) {}
const iterator begin() const { return iterator(range_.begin); }
const iterator end() const { return iterator(range_.end); }
private:
const Range &range_;
};
// Type parameters for the range_map(s)
struct insert_range_no_split_bounds {
const static bool split_boundaries = false;
};
struct insert_range_split_bounds {
const static bool split_boundaries = true;
};
struct split_op_keep_both {
static constexpr bool keep_lower() { return true; }
static constexpr bool keep_upper() { return true; }
};
struct split_op_keep_lower {
static constexpr bool keep_lower() { return true; }
static constexpr bool keep_upper() { return false; }
};
struct split_op_keep_upper {
static constexpr bool keep_lower() { return false; }
static constexpr bool keep_upper() { return true; }
};
enum class value_precedence { prefer_source, prefer_dest };
// The range based sparse map implemented on the ImplMap
template <typename Key, typename T, typename RangeKey = range<Key>, typename ImplMap = std::map<RangeKey, T>>
class range_map {
public:
protected:
using MapKey = RangeKey;
ImplMap impl_map_;
using ImplIterator = typename ImplMap::iterator;
using ImplConstIterator = typename ImplMap::const_iterator;
public:
using mapped_type = typename ImplMap::mapped_type;
using value_type = typename ImplMap::value_type;
using key_type = typename ImplMap::key_type;
using index_type = typename key_type::index_type;
protected:
template <typename ThisType>
using ConstCorrectImplIterator = decltype(std::declval<ThisType>().impl_begin());
template <typename ThisType, typename WrappedIterator = ConstCorrectImplIterator<ThisType>>
static WrappedIterator lower_bound_impl(ThisType &that, const key_type &key) {
if (key.valid()) {
// ImplMap doesn't give us what want with a direct query, it will give us the first entry contained (if any) in key,
// not the first entry intersecting key, so, first look for the the first entry that starts at or after key.begin
// with the operator > in range, we can safely use an empty range for comparison
auto lower = that.impl_map_.lower_bound(key_type(key.begin, key.begin));
// If there is a preceding entry it's possible that begin is included, as all we know is that lower.begin >= key.begin
// or lower is at end
if (!that.at_impl_begin(lower)) {
auto prev = lower;
--prev;
// If the previous entry includes begin (and we know key.begin > prev.begin) then prev is actually lower
if (key.begin < prev->first.end) {
lower = prev;
}
}
return lower;
}
// Key is ill-formed
return that.impl_end(); // Point safely to nothing.
}
ImplIterator lower_bound_impl(const key_type &key) { return lower_bound_impl(*this, key); }
ImplConstIterator lower_bound_impl(const key_type &key) const { return lower_bound_impl(*this, key); }
template <typename ThisType, typename WrappedIterator = ConstCorrectImplIterator<ThisType>>
static WrappedIterator upper_bound_impl(ThisType &that, const key_type &key) {
if (key.valid()) {
// the upper bound is the first range that is full greater (upper.begin >= key.end
// we can get close by looking for the first to exclude key.end, then adjust to account for the fact that key.end is
// exclusive and we thus ImplMap::upper_bound may be off by one here, i.e. the previous may be the upper bound
auto upper = that.impl_map_.upper_bound(key_type(key.end, key.end));
if (!that.at_impl_end(upper) && (upper != that.impl_begin())) {
auto prev = upper;
--prev;
// We know key.end is >= prev.begin, the only question is whether it's ==
if (prev->first.begin == key.end) {
upper = prev;
}
}
return upper;
}
return that.impl_end(); // Point safely to nothing.
}
ImplIterator upper_bound_impl(const key_type &key) { return upper_bound_impl(*this, key); }
ImplConstIterator upper_bound_impl(const key_type &key) const { return upper_bound_impl(*this, key); }
ImplIterator impl_find(const key_type &key) { return impl_map_.find(key); }
ImplConstIterator impl_find(const key_type &key) const { return impl_map_.find(key); }
bool impl_not_found(const key_type &key) const { return impl_end() == impl_find(key); }
ImplIterator impl_end() { return impl_map_.end(); }
ImplConstIterator impl_end() const { return impl_map_.end(); }
ImplIterator impl_begin() { return impl_map_.begin(); }
ImplConstIterator impl_begin() const { return impl_map_.begin(); }
inline bool at_impl_end(const ImplIterator &pos) { return pos == impl_end(); }
inline bool at_impl_end(const ImplConstIterator &pos) const { return pos == impl_end(); }
inline bool at_impl_begin(const ImplIterator &pos) { return pos == impl_begin(); }
inline bool at_impl_begin(const ImplConstIterator &pos) const { return pos == impl_begin(); }
ImplIterator impl_erase(const ImplIterator &pos) { return impl_map_.erase(pos); }
template <typename Value>
ImplIterator impl_insert(const ImplIterator &hint, Value &&value) {
RANGE_ASSERT(impl_not_found(value.first));
RANGE_ASSERT(value.first.non_empty());
return impl_map_.emplace_hint(hint, std::forward<Value>(value));
}
ImplIterator impl_insert(const ImplIterator &hint, const key_type &key, const mapped_type &value) {
return impl_insert(hint, std::make_pair(key, value));
}
ImplIterator impl_insert(const ImplIterator &hint, const index_type &begin, const index_type &end, const mapped_type &value) {
return impl_insert(hint, key_type(begin, end), value);
}
template <typename SplitOp>
ImplIterator split_impl(const ImplIterator &split_it, const index_type &index, const SplitOp &) {
// Make sure contains the split point
if (!split_it->first.includes(index)) return split_it; // If we don't have a valid split point, just return the iterator
const auto range = split_it->first;
key_type lower_range(range.begin, index);
if (lower_range.empty() && SplitOp::keep_upper()) {
return split_it; // this is a noop we're keeping the upper half which is the same as split_it;
}
// Save the contents of it and erase it
auto value = std::move(split_it->second);
auto next_it = impl_map_.erase(split_it); // Keep this, just in case the split point results in an empty "keep" set
if (lower_range.empty() && !SplitOp::keep_upper()) {
// This effectively an erase...
return next_it;
}
// Upper range cannot be empty
key_type upper_range(index, range.end);
key_type move_range;
key_type copy_range;
// Were either going to keep one or both of the split pieces. If we keep both, we'll copy value to the upper,
// and move to the lower, and return the lower, else move to, and return the kept one.
if (SplitOp::keep_lower() && !lower_range.empty()) {
move_range = lower_range;
if (SplitOp::keep_upper()) {
copy_range = upper_range; // only need a valid copy range if we keep both.
}
} else if (SplitOp::keep_upper()) { // We're not keeping the lower split because it's either empty or not wanted
move_range = upper_range; // this will be non_empty as index is included ( < end) in the original range)
}
// we insert from upper to lower because that's what emplace_hint can do in constant time. (not log time in C++11)
if (!copy_range.empty()) {
// We have a second range to create, so do it by copy
RANGE_ASSERT(impl_map_.find(copy_range) == impl_map_.end());
next_it = impl_map_.emplace_hint(next_it, std::make_pair(copy_range, value));
}
if (!move_range.empty()) {
// Whether we keep one or both, the one we return gets value moved to it, as the other one already has a copy
RANGE_ASSERT(impl_map_.find(move_range) == impl_map_.end());
next_it = impl_map_.emplace_hint(next_it, std::make_pair(move_range, std::move(value)));
}
// point to the beginning of the inserted elements (or the next from the erase
return next_it;
}
// do an ranged insert that splits existing ranges at the boundaries, and writes value to any non-initialized sub-ranges
range<ImplIterator> infill_and_split(const key_type &bounds, const mapped_type &value, ImplIterator lower, bool split_bounds) {
auto pos = lower;
if (at_impl_end(pos)) return range<ImplIterator>(pos, pos); // defensive...
// Logic assumes we are starting at lower bound
RANGE_ASSERT(lower == lower_bound_impl(bounds));
// Trim/infil the beginning if needed
const auto first_begin = pos->first.begin;
if (bounds.begin > first_begin && split_bounds) {
pos = split_impl(pos, bounds.begin, split_op_keep_both());
lower = pos;
++lower;
RANGE_ASSERT(lower == lower_bound_impl(bounds));
} else if (bounds.begin < first_begin) {
pos = impl_insert(pos, bounds.begin, first_begin, value);
lower = pos;
RANGE_ASSERT(lower == lower_bound_impl(bounds));
}
// in the trim case pos starts one before lower_bound, but that allows trimming a single entry range in loop.
// NOTE that the loop is trimming and infilling at pos + 1
while (!at_impl_end(pos) && pos->first.begin < bounds.end) {
auto last_end = pos->first.end;
// check for in-fill
++pos;
if (at_impl_end(pos)) {
if (last_end < bounds.end) {
// Gap after last entry in impl_map and before end,
pos = impl_insert(pos, last_end, bounds.end, value);
++pos; // advances to impl_end, as we're at upper boundary
RANGE_ASSERT(at_impl_end(pos));
}
} else if (pos->first.begin != last_end) {
// we have a gap between last entry and current... fill, but not beyond bounds
if (bounds.includes(pos->first.begin)) {
pos = impl_insert(pos, last_end, pos->first.begin, value);
// don't further advance pos, because we may need to split the next entry and thus can't skip it.
} else if (last_end < bounds.end) {
// Non-zero length final gap in-bounds
pos = impl_insert(pos, last_end, bounds.end, value);
++pos; // advances back to the out of bounds entry which we inserted just before
RANGE_ASSERT(!bounds.includes(pos->first.begin));
}
} else if (pos->first.includes(bounds.end)) {
if (split_bounds) {
// extends past the end of the bounds range, snip to only include the bounded section
// NOTE: this splits pos, but the upper half of the split should now be considered upper_bound
// for the range
pos = split_impl(pos, bounds.end, split_op_keep_both());
}
// advance to the upper haf of the split which will be upper_bound or to next which will both be out of bounds
++pos;
RANGE_ASSERT(!bounds.includes(pos->first.begin));
}
}
// Return the current position which should be the upper_bound for bounds
RANGE_ASSERT(pos == upper_bound_impl(bounds));
return range<ImplIterator>(lower, pos);
}
ImplIterator impl_erase_range(const key_type &bounds, ImplIterator lower) {
// Logic assumes we are starting at a valid lower bound
RANGE_ASSERT(!at_impl_end(lower));
RANGE_ASSERT(lower == lower_bound_impl(bounds));
// Trim/infil the beginning if needed
auto current = lower;
const auto first_begin = current->first.begin;
if (bounds.begin > first_begin) {
// Preserve the portion of lower bound excluded from bounds
if (current->first.end <= bounds.end) {
// If current ends within the erased bound we can discard the the upper portion of current
current = split_impl(current, bounds.begin, split_op_keep_lower());
} else {
// Keep the upper portion of current for the later split below
current = split_impl(current, bounds.begin, split_op_keep_both());
}
// Exclude the preserved portion
++current;
RANGE_ASSERT(current == lower_bound_impl(bounds));
}
// Loop over completely contained entries and erase them
while (!at_impl_end(current) && (current->first.end <= bounds.end)) {
current = impl_erase(current);
}
if (!at_impl_end(current) && current->first.includes(bounds.end)) {
// last entry extends past the end of the bounds range, snip to only erase the bounded section
current = split_impl(current, bounds.end, split_op_keep_upper());
}
RANGE_ASSERT(current == upper_bound_impl(bounds));
return current;
}
template <typename ValueType, typename WrappedIterator_>
struct iterator_impl {
public:
friend class range_map;
using WrappedIterator = WrappedIterator_;
private:
WrappedIterator pos_;
// Create an iterator at a specific internal state -- only from the parent container
iterator_impl(const WrappedIterator &pos) : pos_(pos) {}
public:
iterator_impl() : iterator_impl(WrappedIterator()){};
iterator_impl(const iterator_impl &other) : pos_(other.pos_){};
iterator_impl &operator=(const iterator_impl &rhs) {
pos_ = rhs.pos_;
return *this;
}
inline bool operator==(const iterator_impl &rhs) const { return pos_ == rhs.pos_; }
inline bool operator!=(const iterator_impl &rhs) const { return pos_ != rhs.pos_; }
ValueType &operator*() const { return *pos_; }
ValueType *operator->() const { return &*pos_; }
iterator_impl &operator++() {
++pos_;
return *this;
}
iterator_impl &operator--() {
--pos_;
return *this;
}
// To allow for iterator -> const_iterator construction
// NOTE: while it breaks strict encapsulation, it does so less than friend
const WrappedIterator &get_pos() const { return pos_; };
};
public:
using iterator = iterator_impl<value_type, ImplIterator>;
// The const iterator must be derived to allow the conversion from iterator, which iterator doesn't support
class const_iterator : public iterator_impl<const value_type, ImplConstIterator> {
using Base = iterator_impl<const value_type, ImplConstIterator>;
friend range_map;
public:
const_iterator &operator=(const const_iterator &other) {
Base::operator=(other);
return *this;
}
const_iterator(const const_iterator &other) : Base(other){};
const_iterator(const iterator &it) : Base(ImplConstIterator(it.get_pos())) {}
const_iterator() : Base() {}
private:
const_iterator(const ImplConstIterator &pos) : Base(pos) {}
};
protected:
inline bool at_end(const iterator &it) { return at_impl_end(it.pos_); }
inline bool at_end(const const_iterator &it) const { return at_impl_end(it.pos_); }
inline bool at_begin(const iterator &it) { return at_impl_begin(it.pos_); }
template <typename That, typename Iterator>
static bool is_contiguous_impl(That *const that, const key_type &range, const Iterator &lower) {
// Search range or intersection is empty
if (lower == that->impl_end() || lower->first.excludes(range)) return false;
if (lower->first.includes(range)) {
return true; // there is one entry that contains the whole key range
}
bool contiguous = true;
for (auto pos = lower; contiguous && pos != that->impl_end() && range.includes(pos->first.begin); ++pos) {
// if current doesn't cover the rest of the key range, check to see that the next is extant and abuts
if (pos->first.end < range.end) {
auto next = pos;
++next;
contiguous = (next != that->impl_end()) && pos->first.is_prior_to(next->first);
}
}
return contiguous;
}
public:
iterator end() { return iterator(impl_map_.end()); } // policy and bounds don't matter for end
const_iterator end() const { return const_iterator(impl_map_.end()); } // policy and bounds don't matter for end
iterator begin() { return iterator(impl_map_.begin()); } // with default policy, and thus no bounds
const_iterator begin() const { return const_iterator(impl_map_.begin()); } // with default policy, and thus no bounds
const_iterator cbegin() const { return const_iterator(impl_map_.cbegin()); } // with default policy, and thus no bounds
const_iterator cend() const { return const_iterator(impl_map_.cend()); } // with default policy, and thus no bounds
iterator erase(const iterator &pos) {
RANGE_ASSERT(!at_end(pos));
return iterator(impl_erase(pos.pos_));
}
iterator erase(range<iterator> bounds) {
auto current = bounds.begin.pos_;
while (current != bounds.end.pos_) {
RANGE_ASSERT(!at_impl_end(current));
current = impl_map_.erase(current);
}
RANGE_ASSERT(current == bounds.end.pos_);
return current;
}
iterator erase(iterator first, iterator last) { return erase(range<iterator>(first, last)); }
iterator erase_range(const key_type &bounds) {
auto lower = lower_bound_impl(bounds);
if (at_impl_end(lower) || !bounds.intersects(lower->first)) {
// There is nothing in this range lower bound is above bound
return iterator(lower);
}
auto next = impl_erase_range(bounds, lower);
return iterator(next);
}
void clear() { impl_map_.clear(); }
iterator find(const key_type &key) { return iterator(impl_map_.find(key)); }
const_iterator find(const key_type &key) const { return const_iterator(impl_map_.find(key)); }
iterator find(const index_type &index) {
auto lower = lower_bound(range<index_type>(index, index + 1));
if (!at_end(lower) && lower->first.includes(index)) {
return lower;
}
return end();
}
const_iterator find(const index_type &index) const {
auto lower = lower_bound(key_type(index, index + 1));
if (!at_end(lower) && lower->first.includes(index)) {
return lower;
}
return end();
}
iterator lower_bound(const key_type &key) { return iterator(lower_bound_impl(key)); }
const_iterator lower_bound(const key_type &key) const { return const_iterator(lower_bound_impl(key)); }
iterator upper_bound(const key_type &key) { return iterator(upper_bound_impl(key)); }
const_iterator upper_bound(const key_type &key) const { return const_iterator(upper_bound_impl(key)); }
range<iterator> bounds(const key_type &key) { return {lower_bound(key), upper_bound(key)}; }
range<const_iterator> cbounds(const key_type &key) const { return {lower_bound(key), upper_bound(key)}; }
range<const_iterator> bounds(const key_type &key) const { return cbounds(key); }
using insert_pair = std::pair<iterator, bool>;
// This is traditional no replacement insert.
insert_pair insert(const value_type &value) {
const auto &key = value.first;
if (!key.non_empty()) {
// It's an invalid key, early bail pointing to end
return std::make_pair(end(), false);
}
// Look for range conflicts (and an insertion point, which makes the lower_bound *not* wasted work)
// we don't have to check upper if just check that lower doesn't intersect (which it would if lower != upper)
auto lower = lower_bound_impl(key);
if (at_impl_end(lower) || !lower->first.intersects(key)) {
// range is not even paritally overlapped, and lower is strictly > than key
auto impl_insert = impl_map_.emplace_hint(lower, value);
// auto impl_insert = impl_map_.emplace(value);
iterator wrap_it(impl_insert);
return std::make_pair(wrap_it, true);
}
// We don't replace
return std::make_pair(iterator(lower), false);
};
iterator insert(const_iterator hint, const value_type &value) {
bool hint_open;
ImplConstIterator impl_next = hint.pos_;
if (impl_map_.empty()) {
hint_open = true;
} else if (impl_next == impl_map_.cbegin()) {
hint_open = value.first.strictly_less(impl_next->first);
} else if (impl_next == impl_map_.cend()) {
auto impl_prev = impl_next;
--impl_prev;
hint_open = value.first.strictly_greater(impl_prev->first);
} else {
auto impl_prev = impl_next;
--impl_prev;
hint_open = value.first.strictly_greater(impl_prev->first) && value.first.strictly_less(impl_next->first);
}
if (!hint_open) {
// Hint was unhelpful, fall back to the non-hinted version
auto plain_insert = insert(value);
return plain_insert.first;
}
auto impl_insert = impl_map_.insert(impl_next, value);
return iterator(impl_insert);
}
template <typename SplitOp>
iterator split(const iterator whole_it, const index_type &index, const SplitOp &split_op) {
auto split_it = split_impl(whole_it.pos_, index, split_op);
return iterator(split_it);
}
// The overwrite hint here is lower.... and if it's not right... this fails
template <typename Value>
iterator overwrite_range(const iterator &lower, Value &&value) {
// We're not robust to a bad hint, so detect it with extreme prejudice
// TODO: Add bad hint test to make this robust...
auto lower_impl = lower.pos_;
auto insert_hint = lower_impl;
if (!at_impl_end(lower_impl)) {
// If we're at end (and the hint is good, there's nothing to erase
RANGE_ASSERT(lower == lower_bound(value.first));
insert_hint = impl_erase_range(value.first, lower_impl);
}
auto inserted = impl_insert(insert_hint, std::forward<Value>(value));
return iterator(inserted);
}
template <typename Value>
iterator overwrite_range(Value &&value) {
auto lower = lower_bound(value.first);
return overwrite_range(lower, value);
}
bool empty() const { return impl_map_.empty(); }
size_t size() const { return impl_map_.size(); }
// For configuration/debug use // Use with caution...
ImplMap &get_implementation_map() { return impl_map_; }
const ImplMap &get_implementation_map() const { return impl_map_; }
};
template <typename Container>
using const_correct_iterator = decltype(std::declval<Container>().begin());
// The an array based small ordered map for range keys for use as the range map "ImplMap" as an alternate to std::map
//
// Assumes RangeKey::index_type is unsigned (TBD is it useful to generalize to unsigned?)
// Assumes RangeKey implements begin, end, < and (TBD) from template range above
template <typename Key, typename T, typename RangeKey = range<Key>, size_t N = 64, typename SmallIndex = uint8_t>
class small_range_map {
using SmallRange = range<SmallIndex>;
public:
using mapped_type = T;
using key_type = RangeKey;
using value_type = std::pair<const key_type, mapped_type>;
using index_type = typename key_type::index_type;
using size_type = SmallIndex;
template <typename Map_, typename Value_>
struct IteratorImpl {
public:
using Map = Map_;
using Value = Value_;
friend Map;
Value *operator->() const { return map_->get_value(pos_); }
Value &operator*() const { return *(map_->get_value(pos_)); }
IteratorImpl &operator++() {
pos_ = map_->next_range(pos_);
return *this;
}
IteratorImpl &operator--() {
pos_ = map_->prev_range(pos_);
return *this;
}
IteratorImpl &operator=(const IteratorImpl &other) {
map_ = other.map_;
pos_ = other.pos_;
return *this;
}
bool operator==(const IteratorImpl &other) const {
if (at_end() && other.at_end()) {
return true; // all ends are equal
}
return (map_ == other.map_) && (pos_ == other.pos_);
}
bool operator!=(const IteratorImpl &other) const { return !(*this == other); }
// At end()
IteratorImpl() : map_(nullptr), pos_(N) {}
IteratorImpl(const IteratorImpl &other) : map_(other.map_), pos_(other.pos_) {}
// Raw getters to allow for const_iterator conversion below
Map *get_map() const { return map_; }
SmallIndex get_pos() const { return pos_; }
bool at_end() const { return (map_ == nullptr) || (pos_ >= map_->get_limit()); }
protected:
IteratorImpl(Map *map, SmallIndex pos) : map_(map), pos_(pos) {}
private:
Map *map_;
SmallIndex pos_; // the begin of the current small_range
};
using iterator = IteratorImpl<small_range_map, value_type>;
// The const iterator must be derived to allow the conversion from iterator, which iterator doesn't support
class const_iterator : public IteratorImpl<const small_range_map, const value_type> {
using Base = IteratorImpl<const small_range_map, const value_type>;
friend small_range_map;
public:
const_iterator(const iterator &it) : Base(it.get_map(), it.get_pos()) {}
const_iterator() : Base() {}
private:
const_iterator(const small_range_map *map, SmallIndex pos) : Base(map, pos) {}
};
iterator begin() {
// Either ranges of 0 is valid and begin is 0 and begin *or* it's invalid an points to the first valid range (or end)
return iterator(this, ranges_[0].begin);
}
const_iterator cbegin() const { return const_iterator(this, ranges_[0].begin); }
const_iterator begin() const { return cbegin(); }
iterator end() { return iterator(); }
const_iterator cend() const { return const_iterator(); }
const_iterator end() const { return cend(); }
void clear() {
const SmallRange clear_range(limit_, 0);
for (SmallIndex i = 0; i < limit_; ++i) {
auto &range = ranges_[i];
if (range.begin == i) {
// Clean up the backing store
destruct_value(i);
}
range = clear_range;
}
size_ = 0;
}
// Find entry with an exact key match (uncommon use case)
iterator find(const key_type &key) {
RANGE_ASSERT(in_bounds(key));
if (key.begin < limit_) {
const SmallIndex small_begin = static_cast<SmallIndex>(key.begin);
const auto &range = ranges_[small_begin];
if (range.begin == small_begin) {
const auto small_end = static_cast<SmallIndex>(key.end);
if (range.end == small_end) return iterator(this, small_begin);
}
}
return end();
}
const_iterator find(const key_type &key) const {
RANGE_ASSERT(in_bounds(key));
if (key.begin < limit_) {
const SmallIndex small_begin = static_cast<SmallIndex>(key.begin);
const auto &range = ranges_[small_begin];
if (range.begin == small_begin) {
const auto small_end = static_cast<SmallIndex>(key.end);
if (range.end == small_end) return const_iterator(this, small_begin);
}
}
return end();
}
iterator find(const index_type &index) {
if (index < get_limit()) {
const SmallIndex small_index = static_cast<SmallIndex>(index);
const auto &range = ranges_[small_index];
if (range.valid()) {
return iterator(this, range.begin);
}
}
return end();
}
const_iterator find(const index_type &index) const {
if (index < get_limit()) {
const SmallIndex small_index = static_cast<SmallIndex>(index);
const auto &range = ranges_[small_index];
if (range.valid()) {
return const_iterator(this, range.begin);
}
}
return end();
}
size_type size() const { return size_; }
bool empty() const { return 0 == size_; }
iterator erase(const_iterator pos) {
RANGE_ASSERT(pos.map_ == this);
return erase_impl(pos.get_pos());
}
iterator erase(iterator pos) {
RANGE_ASSERT(pos.map_ == this);
return erase_impl(pos.get_pos());
}
// Must be called with rvalue or lvalue of value_type
template <typename Value>
iterator emplace(Value &&value) {
const auto &key = value.first;
RANGE_ASSERT(in_bounds(key));
if (key.begin >= limit_) return end(); // Invalid key (end is checked in "is_open")
const SmallRange range(static_cast<SmallIndex>(key.begin), static_cast<SmallIndex>(key.end));
if (is_open(key)) {
// This needs to be the fast path, but I don't see how we can avoid the sanity checks above
for (auto i = range.begin; i < range.end; ++i) {
ranges_[i] = range;
}
// Update the next information for the previous unused slots (as stored in begin invalidly)
auto prev = range.begin;
while (prev > 0) {
--prev;
if (ranges_[prev].valid()) break;
ranges_[prev].begin = range.begin;
}
// Placement new into the storage interpreted as Value
construct_value(range.begin, value_type(std::forward<Value>(value)));
auto next = range.end;
// update the previous range information for the next unsed slots (as stored in end invalidly)
while (next < limit_) {
// End is exclusive... increment *after* update
if (ranges_[next].valid()) break;
ranges_[next].end = range.end;
++next;
}
return iterator(this, range.begin);
} else {
// Can't insert into occupied ranges.
// if ranges_[key.begin] is valid then this is the collision (starting at .begin
// if it's invalid .begin points to the overlapping entry from is_open (or end if key was out of range)
return iterator(this, ranges_[range.begin].begin);
}
}
// As hint is going to be ignored, make it as lightweight as possible, by reference and no conversion construction
template <typename Value>
iterator emplace_hint(const const_iterator &hint, Value &&value) {
// We have direct access so we can drop the hint
return emplace(std::forward<Value>(value));
}
template <typename Value>
iterator emplace_hint(const iterator &hint, Value &&value) {
// We have direct access so we can drop the hint
return emplace(std::forward<Value>(value));
}
// Again, hint is going to be ignored, make it as lightweight as possible, by reference and no conversion construction
iterator insert(const const_iterator &hint, const value_type &value) { return emplace(value); }
iterator insert(const iterator &hint, const value_type &value) { return emplace(value); }
std::pair<iterator, bool> insert(const value_type &value) {
const auto &key = value.first;
RANGE_ASSERT(in_bounds(key));
if (key.begin >= limit_) return std::make_pair(end(), false); // Invalid key, not inserted.
if (is_open(key)) {
return std::make_pair(emplace(value), true);
}
// If invalid we point to the subsequent range that collided, if valid begin is the start of the valid range
const auto &collision_begin = ranges_[key.begin].begin;
RANGE_ASSERT(ranges_[collision_begin].valid());
return std::make_pair(iterator(this, collision_begin), false);
}
template <typename SplitOp>
iterator split(const iterator whole_it, const index_type &index, const SplitOp &split_op) {
if (!whole_it->first.includes(index)) return whole_it; // If we don't have a valid split point, just return the iterator
const auto &key = whole_it->first;
const auto small_key = make_small_range(key);
key_type lower_key(key.begin, index);
if (lower_key.empty() && SplitOp::keep_upper()) {
return whole_it; // this is a noop we're keeping the upper half which is the same as whole_it;
}
if ((lower_key.empty() && !SplitOp::keep_upper()) || !(SplitOp::keep_lower() || SplitOp::keep_upper())) {
// This effectively an erase... so erase.
return erase(whole_it);
}
// Upper range cannot be empty (because the split point would be included...
const auto small_lower_key = make_small_range(lower_key);
const SmallRange small_upper_key{small_lower_key.end, small_key.end};
if (SplitOp::keep_upper()) {
// Note: create the upper section before the lower, as processing the lower may erase it
RANGE_ASSERT(!small_upper_key.empty());
const key_type upper_key{lower_key.end, key.end};
if (SplitOp::keep_lower()) {
construct_value(small_upper_key.begin, std::make_pair(upper_key, get_value(small_key.begin)->second));
} else {
// If we aren't keeping the lower, move instead of copy
construct_value(small_upper_key.begin, std::make_pair(upper_key, std::move(get_value(small_key.begin)->second)));
}
for (auto i = small_upper_key.begin; i < small_upper_key.end; ++i) {
ranges_[i] = small_upper_key;
}
} else {
// rewrite "end" to the next valid range (or end)
RANGE_ASSERT(SplitOp::keep_lower());
auto next = next_range(small_key.begin);
rerange(small_upper_key, SmallRange(next, small_lower_key.end));
// for any already invalid, we just rewrite the end.
rerange_end(small_upper_key.end, next, small_lower_key.end);
}
SmallIndex split_index;
if (SplitOp::keep_lower()) {
resize_value(small_key.begin, lower_key.end);
rerange_end(small_lower_key.begin, small_lower_key.end, small_lower_key.end);
split_index = small_lower_key.begin;
} else {
// Remove lower and rewrite empty space
RANGE_ASSERT(SplitOp::keep_upper());
destruct_value(small_key.begin);
// Rewrite prior empty space (if any)
auto prev = prev_range(small_key.begin);
SmallIndex limit = small_lower_key.end;
SmallIndex start = 0;
if (small_key.begin != 0) {
const auto &prev_start = ranges_[prev];
if (prev_start.valid()) {
// If there is a previous used range, the empty space starts after it.
start = prev_start.end;
} else {
RANGE_ASSERT(prev == 0); // prev_range only returns invalid ranges "off the front"
start = prev;
}
// for the section *prior* to key begin only need to rewrite the "invalid" begin (i.e. next "in use" begin)
rerange_begin(start, small_lower_key.begin, limit);
}
// for the section being erased rewrite the invalid range reflecting the empty space
rerange(small_lower_key, SmallRange(limit, start));
split_index = small_lower_key.end;
}
return iterator(this, split_index);
}
// For the value.first range rewrite the range...
template <typename Value>
iterator overwrite_range(Value &&value) {
const auto &key = value.first;
// Small map only has a restricted range supported
RANGE_ASSERT(in_bounds(key));
if (key.end > get_limit()) {
return end();
}
const auto small_key = make_small_range(key);
clear_out_range(small_key, /* valid clear range */ true);
construct_value(small_key.begin, std::forward<Value>(value));
return iterator(this, small_key.begin);
}
// We don't need a hint...
template <typename Value>
iterator overwrite_range(const iterator &hint, Value &&value) {
return overwrite_range(std::forward<Value>(value));
}
// For the range erase all contents within range, trimming any overlapping ranges
iterator erase_range(const key_type &range) {
// Small map only has a restricted range supported
RANGE_ASSERT(in_bounds(range));
if (range.end > get_limit() || range.empty()) {
return end();
}
const auto empty = clear_out_range(make_small_range(range), /* valid clear range */ false);
return iterator(this, empty.end);
}
template <typename Iterator>
iterator erase(const Iterator &first, const Iterator &last) {
RANGE_ASSERT(this == first.map_);
RANGE_ASSERT(this == last.map_);
auto first_pos = !first.at_end() ? first.pos_ : limit_;
auto last_pos = !last.at_end() ? last.pos_ : limit_;
RANGE_ASSERT(first_pos <= last_pos);
const SmallRange clear_me(first_pos, last_pos);
if (!clear_me.empty()) {
const SmallRange empty_range(find_empty_left(clear_me), last_pos);
clear_and_set_range(empty_range.begin, empty_range.end, make_invalid_range(empty_range));
}
return iterator(this, last_pos);
}
iterator lower_bound(const key_type &key) { return iterator(this, lower_bound_impl(this, key)); }
const_iterator lower_bound(const key_type &key) const { return const_iterator(this, lower_bound_impl(this, key)); }
iterator upper_bound(const key_type &key) { return iterator(this, upper_bound_impl(this, key)); }
const_iterator upper_bound(const key_type &key) const { return const_iterator(this, upper_bound_impl(this, key)); }
small_range_map(index_type limit = N) : size_(0), limit_(static_cast<SmallIndex>(limit)) {
RANGE_ASSERT(limit <= std::numeric_limits<SmallIndex>::max());
init_range();
}
// Only valid for empty maps
void set_limit(size_t limit) {
RANGE_ASSERT(size_ == 0);
RANGE_ASSERT(limit <= std::numeric_limits<SmallIndex>::max());
limit_ = static_cast<SmallIndex>(limit);
init_range();
}
inline index_type get_limit() const { return static_cast<index_type>(limit_); }
private:
inline bool in_bounds(index_type index) const { return index < get_limit(); }
inline bool in_bounds(const RangeKey &key) const { return key.begin < get_limit() && key.end <= get_limit(); }
inline SmallRange make_small_range(const RangeKey &key) const {
RANGE_ASSERT(in_bounds(key));
return SmallRange(static_cast<SmallIndex>(key.begin), static_cast<SmallIndex>(key.end));
}
inline SmallRange make_invalid_range(const SmallRange &key) const { return SmallRange(key.end, key.begin); }
bool is_open(const key_type &key) const {
// Remebering that invalid range.begin is the beginning the next used range.
const auto small_key = make_small_range(key);
const auto &range = ranges_[small_key.begin];
return range.invalid() && small_key.end <= range.begin;
}
// Only call this with a valid beginning index
iterator erase_impl(SmallIndex erase_index) {
RANGE_ASSERT(erase_index == ranges_[erase_index].begin);
auto &range = ranges_[erase_index];
destruct_value(erase_index);
// Need to update the ranges to accommodate the erasure
SmallIndex prev = 0; // This is correct for the case erase_index is 0....
if (erase_index != 0) {
prev = prev_range(erase_index);
// This works if prev is valid or invalid, because the invalid end will be either 0 (and correct) or the end of the
// prior valid range and the valid end will be the end of the previous range (and thus correct)
prev = ranges_[prev].end;
}
auto next = next_range(erase_index);
// We have to be careful of next == limit_...
if (next < limit_) {
next = ranges_[next].begin;
}
// Rewrite both adjoining and newly empty entries
SmallRange infill(next, prev);
for (auto i = prev; i < next; ++i) {
ranges_[i] = infill;
}
return iterator(this, next);
}
// This implements the "range lower bound logic" directly on the ranges
template <typename Map>
static SmallIndex lower_bound_impl(Map *const that, const key_type &key) {
if (!that->in_bounds(key.begin)) return that->limit_;
// If range is invalid, then begin points to the next valid (or end) with must be the lower bound
// If range is valid, the begin points to a the lowest range that interects key
const auto lb = that->ranges_[static_cast<SmallIndex>(key.begin)].begin;
return lb;
}
template <typename Map>
static SmallIndex upper_bound_impl(Map *that, const key_type &key) {
const auto limit = that->get_limit();
if (key.end >= limit) return that->limit_; // at end
const auto &end_range = that->ranges_[key.end];
// If range is invalid, then begin points to the next valid (or end) with must be the upper bound (key < range because
auto ub = end_range.begin;
// If range is valid, the begin points to a range that may interects key, which is be upper iff range.begin == key.end
if (end_range.valid() && (key.end > end_range.begin)) {
// the ub candidate *intersects* the key, so we have to go to the next range.
ub = that->next_range(end_range.begin);
}
return ub;
}
// This is and inclusive "inuse", the entry itself
SmallIndex find_inuse_right(const SmallRange &range) const {
if (range.end >= limit_) return limit_;
// if range is valid, begin is the first use (== range.end), else it's the first used after the invalid range
return ranges_[range.end].begin;
}
// This is an exclusive "inuse", the end of the previous range
SmallIndex find_inuse_left(const SmallRange &range) const {
if (range.begin == 0) return 0;
// if range is valid, end is the end of the first use (== range.begin), else it's the end of the in use range before the
// invalid range
return ranges_[range.begin - 1].end;
}
SmallRange find_empty(const SmallRange &range) const { return SmallRange(find_inuse_left(range), find_inuse_right(range)); }
// Clear out the given range, trimming as needed. The clear_range can be set as valid or invalid
SmallRange clear_out_range(const SmallRange &clear_range, bool valid_clear_range) {
// By copy to avoid reranging side affect
auto first_range = ranges_[clear_range.begin];
// fast path for matching ranges...
if (first_range == clear_range) {
// clobber the existing value
destruct_value(clear_range.begin);
if (valid_clear_range) {
return clear_range; // This is the overwrite fastpath for matching range
} else {
const auto empty_range = find_empty(clear_range);
rerange(empty_range, make_invalid_range(empty_range));
return empty_range;
}
}
SmallRange empty_left(clear_range.begin, clear_range.begin);
SmallRange empty_right(clear_range.end, clear_range.end);
// The clearout is entirely within a single extant range, trim and set.
if (first_range.valid() && first_range.includes(clear_range)) {
// Shuffle around first_range, three cases...
if (first_range.begin < clear_range.begin) {
// We have a lower trimmed area to preserve.
resize_value(first_range.begin, clear_range.begin);
rerange_end(first_range.begin, clear_range.begin, clear_range.begin);
if (first_range.end > clear_range.end) {
// And an upper portion of first that needs to copy from the lower
construct_value(clear_range.end, std::make_pair(key_type(clear_range.end, first_range.end),
get_value(first_range.begin)->second));
rerange_begin(clear_range.end, first_range.end, clear_range.end);
} else {
RANGE_ASSERT(first_range.end == clear_range.end);
empty_right.end = find_inuse_right(clear_range);
}
} else {
RANGE_ASSERT(first_range.end > clear_range.end);
RANGE_ASSERT(first_range.begin == clear_range.begin);
// Only an upper trimmed area to preserve, so move the first range value to the upper trim zone.
resize_value_right(first_range, clear_range.end);
rerange_begin(clear_range.end, first_range.end, clear_range.end);
empty_left.begin = find_inuse_left(clear_range);
}
} else {
if (first_range.valid()) {
if (first_range.begin < clear_range.begin) {
// Trim left.
RANGE_ASSERT(first_range.end < clear_range.end); // we handled the "includes" case above
resize_value(first_range.begin, clear_range.begin);
rerange_end(first_range.begin, clear_range.begin, clear_range.begin);
}
} else {
empty_left.begin = find_inuse_left(clear_range);
}
// rewrite excluded portion of final range
if (clear_range.end < limit_) {
const auto &last_range = ranges_[clear_range.end];
if (last_range.valid()) {
// for a valid adjoining range we don't have to change empty_right, but we may have to trim
if (last_range.begin < clear_range.end) {
resize_value_right(last_range, clear_range.end);
rerange_begin(clear_range.end, last_range.end, clear_range.end);
}
} else {
// Note: invalid ranges "begin" and the next inuse range (or end)
empty_right.end = last_range.begin;
}
}
}
const SmallRange empty(empty_left.begin, empty_right.end);
// Clear out the contents
for (auto i = empty.begin; i < empty.end; ++i) {
const auto &range = ranges_[i];
if (range.begin == i) {
RANGE_ASSERT(range.valid());
// Clean up the backing store
destruct_value(i);
}
}
// Rewrite the ranges
if (valid_clear_range) {
rerange_begin(empty_left.begin, empty_left.end, clear_range.begin);
rerange(clear_range, clear_range);
rerange_end(empty_right.begin, empty_right.end, clear_range.end);
} else {
rerange(empty, make_invalid_range(empty));
}
RANGE_ASSERT(empty.end == limit_ || ranges_[empty.end].valid());
RANGE_ASSERT(empty.begin == 0 || ranges_[empty.begin - 1].valid());
return empty;
}
void init_range() {
const SmallRange init_val(limit_, 0);
for (SmallIndex i = 0; i < limit_; ++i) {
ranges_[i] = init_val;
in_use_[i] = false;
}
}
value_type *get_value(SmallIndex index) {
RANGE_ASSERT(index < limit_); // Must be inbounds
return reinterpret_cast<value_type *>(&(backing_store_[index]));
}
const value_type *get_value(SmallIndex index) const {
RANGE_ASSERT(index < limit_); // Must be inbounds
RANGE_ASSERT(index == ranges_[index].begin); // Must be the record at begin
return reinterpret_cast<const value_type *>(&(backing_store_[index]));
}
template <typename Value>
void construct_value(SmallIndex index, Value &&value) {
RANGE_ASSERT(!in_use_[index]);
new (get_value(index)) value_type(std::forward<Value>(value));
in_use_[index] = true;
++size_;
}
void destruct_value(SmallIndex index) {
// there are times when the range and destruct logic clash... allow for double attempted deletes
if (in_use_[index]) {
RANGE_ASSERT(size_ > 0);
--size_;
get_value(index)->~value_type();
in_use_[index] = false;
}
}
// No need to move around the value, when just the key is moving
// Use the destructor/placement new just in case of a complex key with range's semantics
// Note: Call resize before rewriting ranges_
void resize_value(SmallIndex current_begin, index_type new_end) {
// Destroy and rewrite the key in place
RANGE_ASSERT(ranges_[current_begin].end != new_end);
key_type new_key(current_begin, new_end);
key_type *key = const_cast<key_type *>(&get_value(current_begin)->first);
key->~key_type();
new (key) key_type(new_key);
}
inline void rerange_end(SmallIndex old_begin, SmallIndex new_end, SmallIndex new_end_value) {
for (auto i = old_begin; i < new_end; ++i) {
ranges_[i].end = new_end_value;
}
}
inline void rerange_begin(SmallIndex new_begin, SmallIndex old_end, SmallIndex new_begin_value) {
for (auto i = new_begin; i < old_end; ++i) {
ranges_[i].begin = new_begin_value;
}
}
inline void rerange(const SmallRange &range, const SmallRange &range_value) {
for (auto i = range.begin; i < range.end; ++i) {
ranges_[i] = range_value;
}
}
// for resize right need both begin and end...
void resize_value_right(const SmallRange &current_range, index_type new_begin) {
// Use move semantics for (potentially) heavyweight mapped_type's
RANGE_ASSERT(current_range.begin != new_begin);
// Move second from it's current location and update the first at the same time
construct_value(static_cast<SmallIndex>(new_begin),
std::make_pair(key_type(new_begin, current_range.end), std::move(get_value(current_range.begin)->second)));
destruct_value(current_range.begin);
}
// Now we can walk a range and rewrite it cleaning up any live contents
void clear_and_set_range(SmallIndex rewrite_begin, SmallIndex rewrite_end, const SmallRange &new_range) {
for (auto i = rewrite_begin; i < rewrite_end; ++i) {
auto &range = ranges_[i];
if (i == range.begin) {
destruct_value(i);
}
range = new_range;
}
}
SmallIndex next_range(SmallIndex current) const {
SmallIndex next = ranges_[current].end;
// If the next range is invalid, skip to the next range, which *must* be (or be end)
if ((next < limit_) && ranges_[next].invalid()) {
// For invalid ranges, begin is the beginning of the next range
next = ranges_[next].begin;
RANGE_ASSERT(next == limit_ || ranges_[next].valid());
}
return next;
}
SmallIndex prev_range(SmallIndex current) const {
if (current == 0) {
return 0;
}
auto prev = current - 1;
if (ranges_[prev].valid()) {
// For valid ranges, the range denoted by begin (as that's where the backing store keeps values
prev = ranges_[prev].begin;
} else if (prev != 0) {
// Invalid but not off the front, we can recur (only once) from the end of the prev range to get the answer
// For invalid ranges this is the end of the previous range
prev = prev_range(ranges_[prev].end);
}
return prev;
}
friend iterator;
friend const_iterator;
// Stores range boundaries only
// open ranges, stored as inverted, invalid range (begining of next, end of prev]
// inuse(begin, end) for all entries on (begin, end]
// Used for placement new of T for each range begin.
struct alignas(alignof(value_type)) BackingStore {
uint8_t data[sizeof(value_type)];
};
SmallIndex size_;
SmallIndex limit_;
std::array<SmallRange, N> ranges_;
std::array<BackingStore, N> backing_store_;
std::array<bool, N> in_use_;
};
// Forward index iterator, tracking an index value and the appropos lower bound
// returns an index_type, lower_bound pair. Supports ++, offset, and seek affecting the index,
// lower bound updates as needed. As the index may specify a range for which no entry exist, dereferenced
// iterator includes an "valid" field, true IFF the lower_bound is not end() and contains [index, index +1)
//
// Must be explicitly invalidated when the underlying map is changed.
template <typename Map>
class cached_lower_bound_impl {
using plain_map_type = typename std::remove_const<Map>::type; // Allow instatiation with const or non-const Map
public:
using iterator = const_correct_iterator<Map>;
using key_type = typename plain_map_type::key_type;
using mapped_type = typename plain_map_type::mapped_type;
// Both sides of the return pair are const'd because we're returning references/pointers to the *internal* state
// and we don't want and caller altering internal state.
using index_type = typename Map::index_type;
struct value_type {
const index_type &index;
const iterator &lower_bound;
const bool &valid;
value_type(const index_type &index_, const iterator &lower_bound_, bool &valid_)
: index(index_), lower_bound(lower_bound_), valid(valid_) {}
};
private:
Map *const map_;
const iterator end_;
value_type pos_;
index_type index_;
iterator lower_bound_;
bool valid_;
bool is_valid() const { return includes(index_); }
// Allow reuse of a type with const semantics
void set_value(const index_type &index, const iterator &it) {
RANGE_ASSERT(it == lower_bound(index));
index_ = index;
lower_bound_ = it;
valid_ = is_valid();
}
void update(const index_type &index) {
RANGE_ASSERT(lower_bound_ == lower_bound(index));
index_ = index;
valid_ = is_valid();
}
inline iterator lower_bound(const index_type &index) { return map_->lower_bound(key_type(index, index + 1)); }
inline bool at_end(const iterator &it) const { return it == end_; }
bool is_lower_than(const index_type &index, const iterator &it) { return at_end(it) || (index < it->first.end); }
public:
// The cached lower bound knows the parent map, and thus can tell us this...
inline bool at_end() const { return at_end(lower_bound_); }
// includes(index) is a convenience function to test if the index would be in the currently cached lower bound
bool includes(const index_type &index) const { return !at_end() && lower_bound_->first.includes(index); }
// The return is const because we are sharing the internal state directly.
const value_type &operator*() const { return pos_; }
const value_type *operator->() const { return &pos_; }
// Advance the cached location by 1
cached_lower_bound_impl &operator++() {
const index_type next = index_ + 1;
if (is_lower_than(next, lower_bound_)) {
update(next);
} else {
// if we're past pos_->second, next *must* be the new lower bound.
// NOTE: that next can't be past end, so lower_bound_ isn't end.
auto next_it = lower_bound_;
++next_it;
set_value(next, next_it);
// However we *must* not be past next.
RANGE_ASSERT(is_lower_than(next, next_it));
}
return *this;
}
// seek(index) updates lower_bound for index, updating lower_bound_ as needed.
cached_lower_bound_impl &seek(const index_type &seek_to) {
// Optimize seeking to forward
if (index_ == seek_to) {
// seek to self is a NOOP. To reset lower bound after a map change, use invalidate
} else if (index_ < seek_to) {
// See if the current or next ranges are the appropriate lower_bound... should be a common use case
if (is_lower_than(seek_to, lower_bound_)) {
// lower_bound_ is still the correct lower bound
update(seek_to);
} else {
// Look to see if the next range is the new lower_bound (and we aren't at end)
auto next_it = lower_bound_;
++next_it;
if (is_lower_than(seek_to, next_it)) {
// next_it is the correct new lower bound
set_value(seek_to, next_it);
} else {
// We don't know where we are... and we aren't going to walk the tree looking for seek_to.
set_value(seek_to, lower_bound(seek_to));
}
}
} else {
// General case... this is += so we're not implmenting optimized negative offset logic
set_value(seek_to, lower_bound(seek_to));
}
return *this;
}
// Advance the cached location by offset.
cached_lower_bound_impl &offset(const index_type &offset) {
const index_type next = index_ + offset;
return seek(next);
}
// invalidate() resets the the lower_bound_ cache, needed after insert/erase/overwrite/split operations
// Pass index by value in case we are invalidating to index_ and set_value does a modify-in-place on index_
cached_lower_bound_impl &invalidate(index_type index) {
set_value(index, lower_bound(index));
return *this;
}
// For times when the application knows what it's done to the underlying map... (with assert in set_value)
cached_lower_bound_impl &invalidate(const iterator &hint, index_type index) {
set_value(index, hint);
return *this;
}
cached_lower_bound_impl &invalidate() { return invalidate(index_); }
// Allow a hint for a *valid* lower bound for current index
// TODO: if the fail-over becomes a hot-spot, the hint logic could be far more clever (looking at previous/next...)
cached_lower_bound_impl &invalidate(const iterator &hint) {
if ((hint != end_) && hint->first.includes(index_)) {
auto index = index_; // by copy set modifies in place
set_value(index, hint);
} else {
invalidate();
}
return *this;
}
// The offset in index type to the next change (the end of the current range, or the transition from invalid to
// valid. If invalid and at_end, returns index_type(0)
index_type distance_to_edge() {
if (valid_) {
// Distance to edge of
return lower_bound_->first.end - index_;
} else if (at_end()) {
return index_type(0);
} else {
return lower_bound_->first.begin - index_;
}
}
Map &map() { return *map_; }
const Map &map() const { return *map_; }
// Default constructed object reports valid (correctly) as false, but otherwise will fail (assert) under nearly any use.
cached_lower_bound_impl()
: map_(nullptr), end_(), pos_(index_, lower_bound_, valid_), index_(0), lower_bound_(), valid_(false) {}
cached_lower_bound_impl(Map &map, const index_type &index)
: map_(&map),
end_(map.end()),
pos_(index_, lower_bound_, valid_),
index_(index),
lower_bound_(lower_bound(index)),
valid_(is_valid()) {}
};
template <typename CachedLowerBound, typename MappedType = typename CachedLowerBound::mapped_type>
const MappedType &evaluate(const CachedLowerBound &clb, const MappedType &default_value) {
if (clb->valid) {
return clb->lower_bound->second;
}
return default_value;
}
// Split a range into pieces bound by the interection of the interator's range and the supplied range
template <typename Iterator, typename Map, typename Range>
Iterator split(Iterator in, Map &map, const Range &range) {
assert(in != map.end()); // Not designed for use with invalid iterators...
const auto in_range = in->first;
const auto split_range = in_range & range;
if (split_range.empty()) return map.end();
auto pos = in;
if (split_range.begin != in_range.begin) {
pos = map.split(pos, split_range.begin, sparse_container::split_op_keep_both());
++pos;
}
if (split_range.end != in_range.end) {
pos = map.split(pos, split_range.end, sparse_container::split_op_keep_both());
}
return pos;
}
// Parallel iterator
// Traverse to range maps over the the same range, but without assumptions of aligned ranges.
// ++ increments to the next point where on of the two maps changes range, giving a range over which the two
// maps do not transition ranges
template <typename MapA, typename MapB = MapA, typename KeyType = typename MapA::key_type>
class parallel_iterator {
public:
using key_type = KeyType;
using index_type = typename key_type::index_type;
// The traits keep the iterator/const_interator consistent with the constness of the map.
using map_type_A = MapA;
using plain_map_type_A = typename std::remove_const<MapA>::type; // Allow instatiation with const or non-const Map
using key_type_A = typename plain_map_type_A::key_type;
using index_type_A = typename plain_map_type_A::index_type;
using iterator_A = const_correct_iterator<map_type_A>;
using lower_bound_A = cached_lower_bound_impl<map_type_A>;
using map_type_B = MapB;
using plain_map_type_B = typename std::remove_const<MapB>::type;
using key_type_B = typename plain_map_type_B::key_type;
using index_type_B = typename plain_map_type_B::index_type;
using iterator_B = const_correct_iterator<map_type_B>;
using lower_bound_B = cached_lower_bound_impl<map_type_B>;
// This is the value we'll always be returning, but the referenced object will be updated by the operations
struct value_type {
const key_type &range;
const lower_bound_A &pos_A;
const lower_bound_B &pos_B;
value_type(const key_type &range_, const lower_bound_A &pos_A_, const lower_bound_B &pos_B_)
: range(range_), pos_A(pos_A_), pos_B(pos_B_) {}
};
private:
lower_bound_A pos_A_;
lower_bound_B pos_B_;
key_type range_;
value_type pos_;
index_type compute_delta() {
auto delta_A = pos_A_.distance_to_edge();
auto delta_B = pos_B_.distance_to_edge();
index_type delta_min;
// If either A or B are at end, there distance is *0*, so shouldn't be considered in the "distance to edge"
if (delta_A == 0) { // lower A is at end
delta_min = static_cast<index_type>(delta_B);
} else if (delta_B == 0) { // lower B is at end
delta_min = static_cast<index_type>(delta_A);
} else {
// Neither are at end, use the nearest edge, s.t. over this range A and B are both constant
delta_min = std::min(static_cast<index_type>(delta_A), static_cast<index_type>(delta_B));
}
return delta_min;
}
public:
// Default constructed object will report range empty (for end checks), but otherwise is unsafe to use
parallel_iterator() : pos_A_(), pos_B_(), range_(), pos_(range_, pos_A_, pos_B_) {}
parallel_iterator(map_type_A &map_A, map_type_B &map_B, index_type index)
: pos_A_(map_A, static_cast<index_type_A>(index)),
pos_B_(map_B, static_cast<index_type_B>(index)),
range_(index, index + compute_delta()),
pos_(range_, pos_A_, pos_B_) {}
// Advance to the next spot one of the two maps changes
parallel_iterator &operator++() {
const auto start = range_.end; // we computed this the last time we set range
const auto delta = range_.distance(); // we computed this the last time we set range
RANGE_ASSERT(delta != 0); // Trying to increment past end
pos_A_.offset(static_cast<index_type_A>(delta));
pos_B_.offset(static_cast<index_type_B>(delta));
range_ = key_type(start, start + compute_delta()); // find the next boundary (must be after offset)
RANGE_ASSERT(pos_A_->index == start);
RANGE_ASSERT(pos_B_->index == start);
return *this;
}
// Seeks to a specific index in both maps reseting range. Cannot guarantee range.begin is on edge boundary,
/// but range.end will be. Lower bound objects assumed to invalidate their cached lower bounds on seek.
parallel_iterator &seek(const index_type &index) {
pos_A_.seek(static_cast<index_type_A>(index));
pos_B_.seek(static_cast<index_type_B>(index));
range_ = key_type(index, index + compute_delta());
RANGE_ASSERT(pos_A_->index == index);
RANGE_ASSERT(pos_A_->index == pos_B_->index);
return *this;
}
// Invalidates the lower_bound caches, reseting range. Cannot guarantee range.begin is on edge boundary,
// but range.end will be.
parallel_iterator &invalidate() {
const index_type start = range_.begin;
seek(start);
return *this;
}
parallel_iterator &invalidate_A() {
const index_type index = range_.begin;
pos_A_.invalidate(static_cast<index_type_A>(index));
range_ = key_type(index, index + compute_delta());
return *this;
}
parallel_iterator &invalidate_A(const iterator_A &hint) {
const index_type index = range_.begin;
pos_A_.invalidate(hint, static_cast<index_type_A>(index));
range_ = key_type(index, index + compute_delta());
return *this;
}
parallel_iterator &invalidate_B() {
const index_type index = range_.begin;
pos_B_.invalidate(static_cast<index_type_B>(index));
range_ = key_type(index, index + compute_delta());
return *this;
}
parallel_iterator &invalidate_B(const iterator_B &hint) {
const index_type index = range_.begin;
pos_B_.invalidate(hint, static_cast<index_type_B>(index));
range_ = key_type(index, index + compute_delta());
return *this;
}
parallel_iterator &trim_A() {
if (pos_A_->valid && (range_ != pos_A_->lower_bound->first)) {
split(pos_A_->lower_bound, pos_A_.map(), range_);
invalidate_A();
}
return *this;
}
// The return is const because we are sharing the internal state directly.
const value_type &operator*() const { return pos_; }
const value_type *operator->() const { return &pos_; }
};
template <typename DstRangeMap, typename SrcRangeMap, typename Updater,
typename SourceIterator = typename SrcRangeMap::const_iterator>
bool splice(DstRangeMap &to, const SrcRangeMap &from, SourceIterator begin, SourceIterator end, const Updater &updater) {
if (from.empty() || (begin == end) || (begin == from.cend())) return false; // nothing to merge.
using ParallelIterator = parallel_iterator<DstRangeMap, const SrcRangeMap>;
using Key = typename SrcRangeMap::key_type;
using CachedLowerBound = cached_lower_bound_impl<DstRangeMap>;
using ConstCachedLowerBound = cached_lower_bound_impl<const SrcRangeMap>;
ParallelIterator par_it(to, from, begin->first.begin);
bool updated = false;
while (par_it->range.non_empty() && par_it->pos_B->lower_bound != end) {
const Key &range = par_it->range;
const CachedLowerBound &to_lb = par_it->pos_A;
const ConstCachedLowerBound &from_lb = par_it->pos_B;
if (from_lb->valid) {
auto read_it = from_lb->lower_bound;
auto write_it = to_lb->lower_bound;
// Because of how the parallel iterator walk, "to" is valid over the whole range or it isn't (ranges don't span
// transitions between map entries or between valid and invalid ranges)
if (to_lb->valid) {
if (write_it->first == range) {
// if the source and destination ranges match we can overwrite everything
updated |= updater.update(write_it->second, read_it->second);
} else {
// otherwise we need to split the destination range.
auto value_to_update = write_it->second; // intentional copy
updated |= updater.update(value_to_update, read_it->second);
auto intersected_range = write_it->first & range;
to.overwrite_range(to_lb->lower_bound, std::make_pair(intersected_range, value_to_update));
par_it.invalidate_A(); // we've changed map 'to' behind to_lb's back... let it know.
}
} else {
// Insert into the gap.
auto opt = updater.insert(read_it->second);
if (opt) {
to.insert(write_it, std::make_pair(range, std::move(*opt)));
updated = true;
par_it.invalidate_A(); // we've changed map 'to' behind to_lb's back... let it know.
}
}
}
++par_it; // next range over which both 'to' and 'from' stay constant
}
return updated;
}
// And short hand for "from begin to end"
template <typename DstRangeMap, typename SrcRangeMap, typename Updater>
bool splice(DstRangeMap &to, const SrcRangeMap &from, const Updater &updater) {
return splice(to, from, from.cbegin(), from.cend(), updater);
}
template <typename T>
struct update_prefer_source {
bool update(T &dst, const T &src) const {
if (dst != src) {
dst = src;
return true;
}
return false;
}
layer_data::optional<T> insert(const T &src) const { return layer_data::optional<T>(layer_data::in_place, src); }
};
template <typename T>
struct update_prefer_dest {
bool update(T &dst, const T &src) const { return false; }
layer_data::optional<T> insert(const T &src) const { return layer_data::optional<T>(layer_data::in_place, src); }
};
template <typename RangeMap, typename SourceIterator = typename RangeMap::const_iterator>
bool splice(RangeMap &to, const RangeMap &from, value_precedence arbiter, SourceIterator begin, SourceIterator end) {
if (arbiter == value_precedence::prefer_source) {
return splice(to, from, from.cbegin(), from.cend(), update_prefer_source<typename RangeMap::mapped_type>());
} else {
return splice(to, from, from.cbegin(), from.cend(), update_prefer_dest<typename RangeMap::mapped_type>());
}
}
// And short hand for "from begin to end"
template <typename RangeMap>
bool splice(RangeMap &to, const RangeMap &from, value_precedence arbiter) {
return splice(to, from, arbiter, from.cbegin(), from.cend());
}
template <typename Map, typename Range = typename Map::key_type, typename MapValue = typename Map::mapped_type>
bool update_range_value(Map &map, const Range &range, MapValue &&value, value_precedence precedence) {
using CachedLowerBound = typename sparse_container::cached_lower_bound_impl<Map>;
CachedLowerBound pos(map, range.begin);
bool updated = false;
while (range.includes(pos->index)) {
if (!pos->valid) {
if (precedence == value_precedence::prefer_source) {
// We can convert this into and overwrite...
map.overwrite_range(pos->lower_bound, std::make_pair(range, std::forward<MapValue>(value)));
return true;
}
// Fill in the leading space (or in the case of pos at end the trailing space
const auto start = pos->index;
auto it = pos->lower_bound;
const auto limit = (it != map.end()) ? std::min(it->first.begin, range.end) : range.end;
map.insert(it, std::make_pair(Range(start, limit), value));
// We inserted before pos->lower_bound, so pos->lower_bound isn't invalid, but the associated index *is* and seek
// will fix this (and move the state to valid)
pos.seek(limit);
updated = true;
}
// Note that after the "fill" operation pos may have become valid so we check again
if (pos->valid) {
if ((precedence == value_precedence::prefer_source) && (pos->lower_bound->second != value)) {
// We've found a place where we're changing the value, at this point might as well simply over write the range
// and be done with it. (save on later merge operations....)
pos.seek(range.begin);
map.overwrite_range(pos->lower_bound, std::make_pair(range, std::forward<MapValue>(value)));
return true;
} else {
// "prefer_dest" means don't overwrite existing values, so we'll skip this interval.
// Point just past the end of this section, if it's within the given range, it will get filled next iteration
// ++pos could move us past the end of range (which would exit the loop) so we don't use it.
pos.seek(pos->lower_bound->first.end);
}
}
}
return updated;
}
} // namespace sparse_container
#endif