blob: 3818efedc39db63e05287b01006bb2eec324f6aa [file] [log] [blame]
</
/*
* Copyright (c) 2015-2021 The Khronos Group Inc.
* Copyright (c) 2015-2021 Valve Corporation
* Copyright (c) 2015-2021 LunarG, Inc.
* Copyright (c) 2015-2021 Google, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Courtney Goeltzenleuchter <courtney@LunarG.com>
* Author: Tony Barbour <tony@LunarG.com>
* Author: Dave Houlton <daveh@lunarg.com>
*/
#include "vkrenderframework.h"
#include <algorithm>
#include <cassert>
#include <cstring>
#include <utility>
#include <vector>
#include "vk_format_utils.h"
#include "vk_extension_helper.h"
using std::string;
using std::strncmp;
using std::vector;
template <typename C, typename F>
typename C::iterator RemoveIf(C &container, F &&fn) {
return container.erase(std::remove_if(container.begin(), container.end(), std::forward<F>(fn)), container.end());
}
ErrorMonitor::ErrorMonitor(Behavior behavior) : behavior_(behavior) {
test_platform_thread_create_mutex(&mutex_);
MonitorReset();
if (behavior_ == Behavior::DefaultSuccess) {
ExpectSuccess(kErrorBit);
}
}
ErrorMonitor::~ErrorMonitor() NOEXCEPT { test_platform_thread_delete_mutex(&mutex_); }
void ErrorMonitor::MonitorReset() {
message_flags_ = 0;
bailout_ = NULL;
message_found_ = VK_FALSE;
failure_message_strings_.clear();
desired_message_strings_.clear();
ignore_message_strings_.clear();
allowed_message_strings_.clear();
other_messages_.clear();
}
void ErrorMonitor::Reset() {
test_platform_thread_lock_mutex(&mutex_);
MonitorReset();
test_platform_thread_unlock_mutex(&mutex_);
}
void ErrorMonitor::SetDesiredFailureMsg(const VkFlags msgFlags, const string msg) { SetDesiredFailureMsg(msgFlags, msg.c_str()); }
void ErrorMonitor::SetDesiredFailureMsg(const VkFlags msgFlags, const char *const msgString) {
if (NeedCheckSuccess()) {
VerifyNotFound();
}
test_platform_thread_lock_mutex(&mutex_);
desired_message_strings_.insert(msgString);
message_flags_ |= msgFlags;
test_platform_thread_unlock_mutex(&mutex_);
}
void ErrorMonitor::SetAllowedFailureMsg(const char *const msg) {
test_platform_thread_lock_mutex(&mutex_);
allowed_message_strings_.emplace_back(msg);
test_platform_thread_unlock_mutex(&mutex_);
}
void ErrorMonitor::SetUnexpectedError(const char *const msg) {
if (NeedCheckSuccess()) {
VerifyNotFound();
}
test_platform_thread_lock_mutex(&mutex_);
ignore_message_strings_.emplace_back(msg);
test_platform_thread_unlock_mutex(&mutex_);
}
VkBool32 ErrorMonitor::CheckForDesiredMsg(const char *const msgString) {
VkBool32 result = VK_FALSE;
test_platform_thread_lock_mutex(&mutex_);
if (bailout_ != nullptr) {
*bailout_ = true;
}
string errorString(msgString);
bool found_expected = false;
if (!IgnoreMessage(errorString)) {
for (auto desired_msg_it = desired_message_strings_.begin(); desired_msg_it != desired_message_strings_.end();
++desired_msg_it) {
if ((*desired_msg_it).length() == 0) {
// An empty desired_msg string "" indicates a positive test - not expecting an error.
// Return true to avoid calling layers/driver with this error.
// And don't erase the "" string, so it remains if another error is found.
result = VK_TRUE;
found_expected = true;
message_found_ = true;
failure_message_strings_.insert(errorString);
} else if (errorString.find(*desired_msg_it) != string::npos) {
found_expected = true;
failure_message_strings_.insert(errorString);
message_found_ = true;
result = VK_TRUE;
// Remove a maximum of one failure message from the set
// Multiset mutation is acceptable because `break` causes flow of control to exit the for loop
desired_message_strings_.erase(desired_msg_it);
break;
}
}
if (!found_expected && allowed_message_strings_.size()) {
for (auto allowed_msg_it = allowed_message_strings_.begin(); allowed_msg_it != allowed_message_strings_.end();
++allowed_msg_it) {
if (errorString.find(*allowed_msg_it) != string::npos) {
found_expected = true;
break;
}
}
}
if (!found_expected) {
printf("Unexpected: %s\n", msgString);
other_messages_.push_back(errorString);
}
}
test_platform_thread_unlock_mutex(&mutex_);
return result;
}
vector<string> ErrorMonitor::GetOtherFailureMsgs() const { return other_messages_; }
VkDebugReportFlagsEXT ErrorMonitor::GetMessageFlags() { return message_flags_; }
bool ErrorMonitor::AnyDesiredMsgFound() const { return message_found_; }
bool ErrorMonitor::AllDesiredMsgsFound() const { return desired_message_strings_.empty(); }
void ErrorMonitor::SetError(const char *const errorString) {
test_platform_thread_lock_mutex(&mutex_);
message_found_ = true;
failure_message_strings_.insert(errorString);
test_platform_thread_unlock_mutex(&mutex_);
}
void ErrorMonitor::SetBailout(bool *bailout) {
test_platform_thread_lock_mutex(&mutex_);
bailout_ = bailout;
test_platform_thread_unlock_mutex(&mutex_);
}
void ErrorMonitor::DumpFailureMsgs() const {
vector<string> otherMsgs = GetOtherFailureMsgs();
if (otherMsgs.size()) {
std::cout << "Other error messages logged for this test were:" << std::endl;
for (auto iter = otherMsgs.begin(); iter != otherMsgs.end(); iter++) {
std::cout << " " << *iter << std::endl;
}
}
}
void ErrorMonitor::ExpectSuccess(VkDebugReportFlagsEXT const message_flag_mask) {
// Match ANY message matching specified type
test_platform_thread_lock_mutex(&mutex_);
desired_message_strings_.insert("");
message_flags_ = message_flag_mask;
test_platform_thread_unlock_mutex(&mutex_);
}
void ErrorMonitor::VerifyFound() {
test_platform_thread_lock_mutex(&mutex_);
// Not receiving expected message(s) is a failure. /Before/ throwing, dump any other messages
if (!AllDesiredMsgsFound()) {
DumpFailureMsgs();
for (const auto &desired_msg : desired_message_strings_) {
ADD_FAILURE() << "Did not receive expected error '" << desired_msg << "'";
}
} else if (GetOtherFailureMsgs().size() > 0) {
// Fail test case for any unexpected errors
#if defined(ANDROID)
// This will get unexpected errors into the adb log
for (auto msg : other_messages_) {
__android_log_print(ANDROID_LOG_INFO, "VulkanLayerValidationTests", "[ UNEXPECTED_ERR ] '%s'", msg.c_str());
}
#else
ADD_FAILURE() << "Received unexpected error(s).";
#endif
}
MonitorReset();
test_platform_thread_unlock_mutex(&mutex_);
if (behavior_ == Behavior::DefaultSuccess) {
ExpectSuccess();
}
}
void ErrorMonitor::VerifyNotFound() {
test_platform_thread_lock_mutex(&mutex_);
// ExpectSuccess() configured us to match anything. Any error is a failure.
if (AnyDesiredMsgFound()) {
DumpFailureMsgs();
for (const auto &msg : failure_message_strings_) {
ADD_FAILURE() << "Expected to succeed but got error: " << msg;
}
} else if (GetOtherFailureMsgs().size() > 0) {
// Fail test case for any unexpected errors
#if defined(ANDROID)
// This will get unexpected errors into the adb log
for (auto msg : other_messages_) {
__android_log_print(ANDROID_LOG_INFO, "VulkanLayerValidationTests", "[ UNEXPECTED_ERR ] '%s'", msg.c_str());
}
#else
ADD_FAILURE() << "Received unexpected error(s).";
#endif
}
MonitorReset();
test_platform_thread_unlock_mutex(&mutex_);
}
bool ErrorMonitor::IgnoreMessage(string const &msg) const {
if (ignore_message_strings_.empty()) {
return false;
}
return std::find_if(ignore_message_strings_.begin(), ignore_message_strings_.end(),
[&msg](string const &str) { return msg.find(str) != string::npos; }) != ignore_message_strings_.end();
}
void DebugReporter::Create(VkInstance instance) NOEXCEPT {
assert(instance);
assert(!debug_obj_);
auto DebugCreate = reinterpret_cast<DebugCreateFnType>(vk::GetInstanceProcAddr(instance, debug_create_fn_name_));
if (!DebugCreate) return;
const VkResult err = DebugCreate(instance, &debug_create_info_, nullptr, &debug_obj_);
if (err) debug_obj_ = VK_NULL_HANDLE;
}
void DebugReporter::Destroy(VkInstance instance) NOEXCEPT {
assert(instance);
assert(debug_obj_); // valid to call with null object, but probably bug
auto DebugDestroy = reinterpret_cast<DebugDestroyFnType>(vk::GetInstanceProcAddr(instance, debug_destroy_fn_name_));
assert(DebugDestroy);
DebugDestroy(instance, debug_obj_, nullptr);
debug_obj_ = VK_NULL_HANDLE;
}
#ifdef VK_USE_PLATFORM_ANDROID_KHR
VKAPI_ATTR VkBool32 VKAPI_CALL DebugReporter::DebugCallback(VkDebugReportFlagsEXT message_flags, VkDebugReportObjectTypeEXT,
uint64_t, size_t, int32_t, const char *, const char *message,
void *user_data) {
#else
VKAPI_ATTR VkBool32 VKAPI_CALL DebugReporter::DebugCallback(VkDebugUtilsMessageSeverityFlagBitsEXT message_severity,
VkDebugUtilsMessageTypeFlagsEXT message_types,
const VkDebugUtilsMessengerCallbackDataEXT *callback_data,
void *user_data) {
const auto message_flags = DebugAnnotFlagsToReportFlags(message_severity, message_types);
const char *message = callback_data->pMessage;
#endif
ErrorMonitor *errMonitor = (ErrorMonitor *)user_data;
if (message_flags & errMonitor->GetMessageFlags()) {
return errMonitor->CheckForDesiredMsg(message);
}
return VK_FALSE;
}
VkRenderFramework::VkRenderFramework()
: instance_(NULL),
m_device(NULL),
m_commandPool(VK_NULL_HANDLE),
m_commandBuffer(NULL),
m_renderPass(VK_NULL_HANDLE),
m_framebuffer(VK_NULL_HANDLE),
m_surface(VK_NULL_HANDLE),
#if defined(VK_USE_PLATFORM_XLIB_KHR)
m_surface_dpy(nullptr),
m_surface_window(None),
#endif
#if defined(VK_USE_PLATFORM_XCB_KHR)
m_surface_xcb_conn(nullptr),
#endif
m_swapchain(VK_NULL_HANDLE),
m_addRenderPassSelfDependency(false),
m_width(256.0), // default window width
m_height(256.0), // default window height
m_render_target_fmt(VK_FORMAT_R8G8B8A8_UNORM),
m_depth_stencil_fmt(VK_FORMAT_UNDEFINED),
m_clear_via_load_op(true),
m_depth_clear_color(1.0),
m_stencil_clear_color(0),
m_depthStencil(NULL) {
m_framebuffer_info = LvlInitStruct<VkFramebufferCreateInfo>();
m_renderPass_info = LvlInitStruct<VkRenderPassCreateInfo>();
m_renderPassBeginInfo = LvlInitStruct<VkRenderPassBeginInfo>();
// clear the back buffer to dark grey
m_clear_color.float32[0] = 0.25f;
m_clear_color.float32[1] = 0.25f;
m_clear_color.float32[2] = 0.25f;
m_clear_color.float32[3] = 0.0f;
}
VkRenderFramework::~VkRenderFramework() { ShutdownFramework(); }
VkPhysicalDevice VkRenderFramework::gpu() {
EXPECT_NE((VkInstance)0, instance_); // Invalid to request gpu before instance exists
return gpu_;
}
VkPhysicalDeviceProperties VkRenderFramework::physDevProps() {
EXPECT_NE((VkPhysicalDevice)0, gpu_); // Invalid to request physical device properties before gpu
return physDevProps_;
}
// Return true if layer name is found and spec+implementation values are >= requested values
bool VkRenderFramework::InstanceLayerSupported(const char *const layer_name, const uint32_t spec_version,
const uint32_t impl_version) {
const auto layers = vk_testing::GetGlobalLayers();
for (const auto &layer : layers) {
if (0 == strncmp(layer_name, layer.layerName, VK_MAX_EXTENSION_NAME_SIZE)) {
return layer.specVersion >= spec_version && layer.implementationVersion >= impl_version;
}
}
return false;
}
// Return true if extension name is found and spec value is >= requested spec value
// WARNING: for simplicity, does not cover layers' extensions
bool VkRenderFramework::InstanceExtensionSupported(const char *const extension_name, const uint32_t spec_version) {
// WARNING: assume debug and validation feature extensions are always supported, which are usually provided by layers
if (0 == strncmp(extension_name, VK_EXT_DEBUG_UTILS_EXTENSION_NAME, VK_MAX_EXTENSION_NAME_SIZE)) return true;
if (0 == strncmp(extension_name, VK_EXT_DEBUG_REPORT_EXTENSION_NAME, VK_MAX_EXTENSION_NAME_SIZE)) return true;
if (0 == strncmp(extension_name, VK_EXT_VALIDATION_FEATURES_EXTENSION_NAME, VK_MAX_EXTENSION_NAME_SIZE)) return true;
const auto extensions = vk_testing::GetGlobalExtensions();
const auto IsTheQueriedExtension = [extension_name, spec_version](const VkExtensionProperties &extension) {
return strncmp(extension_name, extension.extensionName, VK_MAX_EXTENSION_NAME_SIZE) == 0 &&
extension.specVersion >= spec_version;
};
return std::any_of(extensions.begin(), extensions.end(), IsTheQueriedExtension);
}
// Enable device profile as last layer on stack overriding devsim if there, or return if not available
bool VkRenderFramework::EnableDeviceProfileLayer() {
if (InstanceLayerSupported("VK_LAYER_LUNARG_device_profile_api")) {
if (VkTestFramework::m_devsim_layer) {
assert(0 == strncmp(instance_layers_.back(), "VK_LAYER_LUNARG_device_simulation", VK_MAX_EXTENSION_NAME_SIZE));
instance_layers_.back() = "VK_LAYER_LUNARG_device_profile_api";
} else {
instance_layers_.push_back("VK_LAYER_LUNARG_device_profile_api");
}
} else {
printf(" Did not find VK_LAYER_LUNARG_device_profile_api layer; skipped.\n");
return false;
}
return true;
}
// Return true if instance exists and extension name is in the list
bool VkRenderFramework::InstanceExtensionEnabled(const char *ext_name) {
if (!instance_) return false;
return std::any_of(instance_extensions_.begin(), instance_extensions_.end(),
[ext_name](const char *e) { return 0 == strncmp(ext_name, e, VK_MAX_EXTENSION_NAME_SIZE); });
}
// Return true if extension name is found and spec value is >= requested spec value
bool VkRenderFramework::DeviceExtensionSupported(const char *extension_name, const uint32_t spec_version) const {
if (!instance_ || !gpu_) {
EXPECT_NE((VkInstance)0, instance_); // Complain, not cool without an instance
EXPECT_NE((VkPhysicalDevice)0, gpu_);
return false;
}
const vk_testing::PhysicalDevice device_obj(gpu_);
const auto enabled_layers = instance_layers_; // assumes instance_layers_ contains enabled layers
auto extensions = device_obj.extensions();
for (const auto &layer : enabled_layers) {
const auto layer_extensions = device_obj.extensions(layer);
extensions.insert(extensions.end(), layer_extensions.begin(), layer_extensions.end());
}
const auto IsTheQueriedExtension = [extension_name, spec_version](const VkExtensionProperties &extension) {
return strncmp(extension_name, extension.extensionName, VK_MAX_EXTENSION_NAME_SIZE) == 0 &&
extension.specVersion >= spec_version;
};
return std::any_of(extensions.begin(), extensions.end(), IsTheQueriedExtension);
}
// Return true if device is created and extension name is found in the list
bool VkRenderFramework::DeviceExtensionEnabled(const char *ext_name) {
if (NULL == m_device) return false;
bool ext_found = false;
for (auto ext : m_device_extension_names) {
if (!strncmp(ext, ext_name, VK_MAX_EXTENSION_NAME_SIZE)) {
ext_found = true;
break;
}
}
return ext_found;
}
// Some tests may need to be skipped if the devsim layer is in use.
bool VkRenderFramework::DeviceSimulation() { return m_devsim_layer; }
VkInstanceCreateInfo VkRenderFramework::GetInstanceCreateInfo() const {
return {
VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO,
&debug_reporter_.debug_create_info_,
0,
&app_info_,
static_cast<uint32_t>(instance_layers_.size()),
instance_layers_.data(),
static_cast<uint32_t>(instance_extensions_.size()),
instance_extensions_.data(),
};
}
void VkRenderFramework::InitFramework(void * /*unused compatibility parameter*/, void *instance_pnext) {
ASSERT_EQ((VkInstance)0, instance_);
const auto LayerNotSupportedWithReporting = [](const char *layer) {
if (InstanceLayerSupported(layer))
return false;
else {
ADD_FAILURE() << "InitFramework(): Requested layer \"" << layer << "\" is not supported. It will be disabled.";
return true;
}
};
const auto ExtensionNotSupportedWithReporting = [](const char *extension) {
if (InstanceExtensionSupported(extension))
return false;
else {
ADD_FAILURE() << "InitFramework(): Requested extension \"" << extension << "\" is not supported. It will be disabled.";
return true;
}
};
static bool driver_printed = false;
static bool print_driver_info = GetEnvironment("VK_LAYER_TESTS_PRINT_DRIVER") != "";
if (print_driver_info && !driver_printed &&
InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
instance_extensions_.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
RemoveIf(instance_layers_, LayerNotSupportedWithReporting);
RemoveIf(instance_extensions_, ExtensionNotSupportedWithReporting);
auto ici = GetInstanceCreateInfo();
// concatenate pNexts
void *last_pnext = nullptr;
if (instance_pnext) {
last_pnext = instance_pnext;
while (reinterpret_cast<const VkBaseOutStructure *>(last_pnext)->pNext)
last_pnext = reinterpret_cast<VkBaseOutStructure *>(last_pnext)->pNext;
void *&link = reinterpret_cast<void *&>(reinterpret_cast<VkBaseOutStructure *>(last_pnext)->pNext);
link = const_cast<void *>(ici.pNext);
ici.pNext = instance_pnext;
}
ASSERT_VK_SUCCESS(vk::CreateInstance(&ici, nullptr, &instance_));
if (instance_pnext) reinterpret_cast<VkBaseOutStructure *>(last_pnext)->pNext = nullptr; // reset back borrowed pNext chain
// Choose a physical device
uint32_t gpu_count = 0;
const VkResult err = vk::EnumeratePhysicalDevices(instance_, &gpu_count, nullptr);
ASSERT_TRUE(err == VK_SUCCESS || err == VK_INCOMPLETE) << vk_result_string(err);
ASSERT_GT(gpu_count, (uint32_t)0) << "No GPU (i.e. VkPhysicalDevice) available";
std::vector<VkPhysicalDevice> phys_devices(gpu_count);
vk::EnumeratePhysicalDevices(instance_, &gpu_count, phys_devices.data());
const int phys_device_index = VkTestFramework::m_phys_device_index;
if ((phys_device_index >= 0) && (phys_device_index < static_cast<int>(gpu_count))) {
gpu_ = phys_devices[phys_device_index];
vk::GetPhysicalDeviceProperties(gpu_, &physDevProps_);
m_gpu_index = phys_device_index;
} else {
// Specify a "physical device priority" with larger values meaning higher priority.
std::array<int, VK_PHYSICAL_DEVICE_TYPE_CPU + 1> device_type_rank;
device_type_rank[VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU] = 4;
device_type_rank[VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU] = 3;
device_type_rank[VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU] = 2;
device_type_rank[VK_PHYSICAL_DEVICE_TYPE_CPU] = 1;
device_type_rank[VK_PHYSICAL_DEVICE_TYPE_OTHER] = 0;
// Initialize physical device and properties with first device found
gpu_ = phys_devices[0];
m_gpu_index = 0;
vk::GetPhysicalDeviceProperties(gpu_, &physDevProps_);
// See if there are any higher priority devices found
for (size_t i = 1; i < phys_devices.size(); ++i) {
VkPhysicalDeviceProperties tmp_props;
vk::GetPhysicalDeviceProperties(phys_devices[i], &tmp_props);
if (device_type_rank[tmp_props.deviceType] > device_type_rank[physDevProps_.deviceType]) {
physDevProps_ = tmp_props;
gpu_ = phys_devices[i];
m_gpu_index = i;
}
}
}
debug_reporter_.Create(instance_);
if (print_driver_info && !driver_printed) {
auto driver_properties = LvlInitStruct<VkPhysicalDeviceDriverProperties>();
auto physical_device_properties2 = LvlInitStruct<VkPhysicalDeviceProperties2>(&driver_properties);
vk::GetPhysicalDeviceProperties2(gpu_, &physical_device_properties2);
printf("Driver Name = %s\n", driver_properties.driverName);
printf("Driver Info = %s\n", driver_properties.driverInfo);
driver_printed = true;
}
for (const auto &ext : m_requested_extensions) {
AddRequiredDeviceExtensions(ext);
}
}
bool VkRenderFramework::AddRequiredExtensions(const char *ext_name) {
m_requested_extensions.push_back(ext_name);
return AddRequiredInstanceExtensions(ext_name);
}
bool VkRenderFramework::AreRequestedExtensionsEnabled() const {
for (const auto &ext : m_requested_extensions) {
// `ext` may refer to an instance or device extension
if (!CanEnableDeviceExtension(ext) && !CanEnableInstanceExtension(ext)) {
return false;
}
}
return true;
}
bool VkRenderFramework::AddRequiredInstanceExtensions(const char *ext_name) {
if (CanEnableInstanceExtension(ext_name)) {
return true;
}
const auto &instance_exts_map = InstanceExtensions::get_info_map();
bool is_instance_ext = false;
if (instance_exts_map.count(ext_name) > 0) {
if (!InstanceExtensionSupported(ext_name)) {
return false;
} else {
is_instance_ext = true;
}
}
// Different tables need to be used for extension dependency lookup depending on whether `ext_name` refers to a device or
// instance extension
if (is_instance_ext) {
const auto &info = InstanceExtensions::get_info(ext_name);
for (const auto &req : info.requirements) {
if (!AddRequiredInstanceExtensions(req.name)) {
return false;
}
}
m_instance_extension_names.push_back(ext_name);
} else {
const auto &info = DeviceExtensions::get_info(ext_name);
for (const auto &req : info.requirements) {
if (!AddRequiredInstanceExtensions(req.name)) {
return false;
}
}
}
return true;
}
bool VkRenderFramework::CanEnableInstanceExtension(const std::string &inst_ext_name) const {
return std::any_of(m_instance_extension_names.cbegin(), m_instance_extension_names.cend(),
[&inst_ext_name](const char *ext) { return inst_ext_name == ext; });
}
bool VkRenderFramework::AddRequiredDeviceExtensions(const char *dev_ext_name) {
// Check if the extension has already been added
if (CanEnableDeviceExtension(dev_ext_name)) {
return true;
}
// If this is an instance extension, just return true under the assumption instance extensions do not depend on any device
// extensions.
const auto &instance_exts_map = InstanceExtensions::get_info_map();
if (instance_exts_map.count(dev_ext_name) != 0) {
return true;
}
if (!DeviceExtensionSupported(gpu(), nullptr, dev_ext_name)) {
return false;
}
m_device_extension_names.push_back(dev_ext_name);
const auto &info = DeviceExtensions::get_info(dev_ext_name);
for (const auto &req : info.requirements) {
if (!AddRequiredDeviceExtensions(req.name)) {
return false;
}
}
return true;
}
bool VkRenderFramework::CanEnableDeviceExtension(const std::string &dev_ext_name) const {
return std::any_of(m_device_extension_names.cbegin(), m_device_extension_names.cend(),
[&dev_ext_name](const char *ext) { return dev_ext_name == ext; });
}
void VkRenderFramework::ShutdownFramework() {
debug_reporter_.error_monitor_.Reset();
// Nothing to shut down without a VkInstance
if (!instance_) return;
delete m_commandBuffer;
m_commandBuffer = nullptr;
delete m_commandPool;
m_commandPool = nullptr;
if (m_framebuffer) vk::DestroyFramebuffer(device(), m_framebuffer, NULL);
m_framebuffer = VK_NULL_HANDLE;
if (m_renderPass) vk::DestroyRenderPass(device(), m_renderPass, NULL);
m_renderPass = VK_NULL_HANDLE;
m_renderTargets.clear();
delete m_depthStencil;
m_depthStencil = nullptr;
if (m_device && m_device->device() != VK_NULL_HANDLE) {
DestroySwapchain();
}
// reset the driver
delete m_device;
m_device = nullptr;
debug_reporter_.Destroy(instance_);
vk::DestroyInstance(instance_, nullptr);
instance_ = NULL; // In case we want to re-initialize
}
ErrorMonitor &VkRenderFramework::Monitor() { return debug_reporter_.error_monitor_; }
void VkRenderFramework::GetPhysicalDeviceFeatures(VkPhysicalDeviceFeatures *features) {
if (NULL == m_device) {
VkDeviceObj *temp_device = new VkDeviceObj(0, gpu_, m_device_extension_names);
*features = temp_device->phy().features();
delete (temp_device);
} else {
*features = m_device->phy().features();
}
}
bool VkRenderFramework::IsPlatform(PlatformType platform) {
return (!vk_gpu_table.find(platform)->second.compare(physDevProps().deviceName));
}
bool VkRenderFramework::IsDriver(VkDriverId driver_id) {
// Assumes api version 1.2+
auto driver_properties = LvlInitStruct<VkPhysicalDeviceDriverProperties>();
auto physical_device_properties2 = LvlInitStruct<VkPhysicalDeviceProperties2>(&driver_properties);
vk::GetPhysicalDeviceProperties2(gpu_, &physical_device_properties2);
return(driver_properties.driverID == driver_id);
}
void VkRenderFramework::GetPhysicalDeviceProperties(VkPhysicalDeviceProperties *props) { *props = physDevProps_; }
void VkRenderFramework::InitState(VkPhysicalDeviceFeatures *features, void *create_device_pnext,
const VkCommandPoolCreateFlags flags) {
const auto ExtensionNotSupportedWithReporting = [this](const char *extension) {
if (DeviceExtensionSupported(extension))
return false;
else {
ADD_FAILURE() << "InitState(): Requested device extension \"" << extension
<< "\" is not supported. It will be disabled.";
return true;
}
};
RemoveIf(m_device_extension_names, ExtensionNotSupportedWithReporting);
m_device = new VkDeviceObj(0, gpu_, m_device_extension_names, features, create_device_pnext);
m_device->SetDeviceQueue();
m_depthStencil = new VkDepthStencilObj(m_device);
m_render_target_fmt = VkTestFramework::GetFormat(instance_, m_device);
m_lineWidth = 1.0f;
m_depthBiasConstantFactor = 0.0f;
m_depthBiasClamp = 0.0f;
m_depthBiasSlopeFactor = 0.0f;
m_blendConstants[0] = 1.0f;
m_blendConstants[1] = 1.0f;
m_blendConstants[2] = 1.0f;
m_blendConstants[3] = 1.0f;
m_minDepthBounds = 0.f;
m_maxDepthBounds = 1.f;
m_compareMask = 0xff;
m_writeMask = 0xff;
m_reference = 0;
m_commandPool = new VkCommandPoolObj(m_device, m_device->graphics_queue_node_index_, flags);
m_commandBuffer = new VkCommandBufferObj(m_device, m_commandPool);
}
void VkRenderFramework::InitViewport(float width, float height) {
VkViewport viewport;
VkRect2D scissor;
viewport.x = 0;
viewport.y = 0;
viewport.width = 1.f * width;
viewport.height = 1.f * height;
viewport.minDepth = 0.f;
viewport.maxDepth = 1.f;
m_viewports.push_back(viewport);
scissor.extent.width = (int32_t)width;
scissor.extent.height = (int32_t)height;
scissor.offset.x = 0;
scissor.offset.y = 0;
m_scissors.push_back(scissor);
m_width = width;
m_height = height;
}
void VkRenderFramework::InitViewport() { InitViewport(m_width, m_height); }
bool VkRenderFramework::InitSurface() { return InitSurface(m_width, m_height, m_surface); }
bool VkRenderFramework::InitSurface(float width, float height) { return InitSurface(width, height, m_surface); }
#ifdef VK_USE_PLATFORM_WIN32_KHR
LRESULT CALLBACK WindowProc(HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam) {
return DefWindowProc(hwnd, uMsg, wParam, lParam);
}
#endif // VK_USE_PLATFORM_WIN32_KHR
bool VkRenderFramework::InitSurface(float width, float height, VkSurfaceKHR &surface) {
#if defined(VK_USE_PLATFORM_WIN32_KHR)
HINSTANCE window_instance = GetModuleHandle(nullptr);
const char class_name[] = "test";
WNDCLASS wc = {};
wc.lpfnWndProc = WindowProc;
wc.hInstance = window_instance;
wc.lpszClassName = class_name;
RegisterClass(&wc);
HWND window = CreateWindowEx(0, class_name, 0, 0, 0, 0, (int)m_width, (int)m_height, NULL, NULL, window_instance, NULL);
ShowWindow(window, SW_HIDE);
VkWin32SurfaceCreateInfoKHR surface_create_info = {};
surface_create_info.sType = VK_STRUCTURE_TYPE_WIN32_SURFACE_CREATE_INFO_KHR;
surface_create_info.hinstance = window_instance;
surface_create_info.hwnd = window;
VkResult err = vk::CreateWin32SurfaceKHR(instance(), &surface_create_info, nullptr, &surface);
if (err != VK_SUCCESS) return false;
#endif
#if defined(VK_USE_PLATFORM_ANDROID_KHR) && defined(VALIDATION_APK)
VkAndroidSurfaceCreateInfoKHR surface_create_info = {};
surface_create_info.sType = VK_STRUCTURE_TYPE_ANDROID_SURFACE_CREATE_INFO_KHR;
surface_create_info.window = VkTestFramework::window;
VkResult err = vk::CreateAndroidSurfaceKHR(instance(), &surface_create_info, nullptr, &m_surface);
if (err != VK_SUCCESS) return false;
#endif
#if defined(VK_USE_PLATFORM_XLIB_KHR)
assert(m_surface_dpy == nullptr);
m_surface_dpy = XOpenDisplay(NULL);
if (m_surface_dpy) {
int s = DefaultScreen(m_surface_dpy);
m_surface_window = XCreateSimpleWindow(m_surface_dpy, RootWindow(m_surface_dpy, s), 0, 0, (int)m_width, (int)m_height, 1,
BlackPixel(m_surface_dpy, s), WhitePixel(m_surface_dpy, s));
VkXlibSurfaceCreateInfoKHR surface_create_info = {};
surface_create_info.sType = VK_STRUCTURE_TYPE_XLIB_SURFACE_CREATE_INFO_KHR;
surface_create_info.dpy = m_surface_dpy;
surface_create_info.window = m_surface_window;
VkResult err = vk::CreateXlibSurfaceKHR(instance(), &surface_create_info, nullptr, &m_surface);
if (err != VK_SUCCESS) return false;
}
#endif
#if defined(VK_USE_PLATFORM_XCB_KHR)
if (m_surface == VK_NULL_HANDLE) {
assert(m_surface_xcb_conn == nullptr);
m_surface_xcb_conn = xcb_connect(NULL, NULL);
if (m_surface_xcb_conn) {
xcb_window_t window = xcb_generate_id(m_surface_xcb_conn);
VkXcbSurfaceCreateInfoKHR surface_create_info = {};
surface_create_info.sType = VK_STRUCTURE_TYPE_XCB_SURFACE_CREATE_INFO_KHR;
surface_create_info.connection = m_surface_xcb_conn;
surface_create_info.window = window;
VkResult err = vk::CreateXcbSurfaceKHR(instance(), &surface_create_info, nullptr, &m_surface);
if (err != VK_SUCCESS) return false;
}
}
#endif
return (m_surface == VK_NULL_HANDLE) ? false : true;
}
// Makes query to get information about swapchain needed to create a valid swapchain object each test creating a swapchain will need
void VkRenderFramework::InitSwapchainInfo() {
const VkPhysicalDevice physicalDevice = gpu();
vk::GetPhysicalDeviceSurfaceCapabilitiesKHR(physicalDevice, m_surface, &m_surface_capabilities);
uint32_t format_count;
vk::GetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, m_surface, &format_count, nullptr);
if (format_count != 0) {
m_surface_formats.resize(format_count);
vk::GetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, m_surface, &format_count, m_surface_formats.data());
}
uint32_t present_mode_count;
vk::GetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, m_surface, &present_mode_count, nullptr);
if (present_mode_count != 0) {
m_surface_present_modes.resize(present_mode_count);
vk::GetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, m_surface, &present_mode_count, m_surface_present_modes.data());
// Shared Present mode has different requirements most tests won't actually want
// Implementation required to support a non-shared present mode
for (size_t i = 0; i < m_surface_present_modes.size(); i++) {
const VkPresentModeKHR present_mode = m_surface_present_modes[i];
if ((present_mode != VK_PRESENT_MODE_SHARED_DEMAND_REFRESH_KHR) &&
(present_mode != VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR)) {
m_surface_non_shared_present_mode = present_mode;
break;
}
}
}
#ifdef VK_USE_PLATFORM_ANDROID_KHR
m_surface_composite_alpha = VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR;
#else
m_surface_composite_alpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
#endif
}
bool VkRenderFramework::InitSwapchain(VkImageUsageFlags imageUsage, VkSurfaceTransformFlagBitsKHR preTransform) {
if (InitSurface()) {
return InitSwapchain(m_surface, imageUsage, preTransform);
}
return false;
}
bool VkRenderFramework::InitSwapchain(VkSurfaceKHR &surface, VkImageUsageFlags imageUsage,
VkSurfaceTransformFlagBitsKHR preTransform) {
return InitSwapchain(surface, imageUsage, preTransform, m_swapchain);
}
bool VkRenderFramework::InitSwapchain(VkSurfaceKHR &surface, VkImageUsageFlags imageUsage,
VkSurfaceTransformFlagBitsKHR preTransform, VkSwapchainKHR &swapchain,
VkSwapchainKHR oldSwapchain) {
VkBool32 supported;
vk::GetPhysicalDeviceSurfaceSupportKHR(gpu(), m_device->graphics_queue_node_index_, surface, &supported);
if (!supported) {
// Graphics queue does not support present
return false;
}
InitSwapchainInfo();
VkSwapchainCreateInfoKHR swapchain_create_info = {};
swapchain_create_info.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
swapchain_create_info.pNext = 0;
swapchain_create_info.surface = surface;
swapchain_create_info.minImageCount = m_surface_capabilities.minImageCount;
swapchain_create_info.imageFormat = m_surface_formats[0].format;
swapchain_create_info.imageColorSpace = m_surface_formats[0].colorSpace;
swapchain_create_info.imageExtent = {m_surface_capabilities.minImageExtent.width, m_surface_capabilities.minImageExtent.height};
swapchain_create_info.imageArrayLayers = 1;
swapchain_create_info.imageUsage = imageUsage;
swapchain_create_info.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
swapchain_create_info.preTransform = preTransform;
swapchain_create_info.compositeAlpha = m_surface_composite_alpha;
swapchain_create_info.presentMode = m_surface_non_shared_present_mode;
swapchain_create_info.clipped = VK_FALSE;
swapchain_create_info.oldSwapchain = oldSwapchain;
VkResult err = vk::CreateSwapchainKHR(device(), &swapchain_create_info, nullptr, &swapchain);
if (err != VK_SUCCESS) {
return false;
}
uint32_t imageCount = 0;
vk::GetSwapchainImagesKHR(device(), swapchain, &imageCount, nullptr);
vector<VkImage> swapchainImages;
swapchainImages.resize(imageCount);
vk::GetSwapchainImagesKHR(device(), swapchain, &imageCount, swapchainImages.data());
return true;
}
#if defined(VK_USE_PLATFORM_XLIB_KHR)
int IgnoreXErrors(Display *, XErrorEvent *) { return 0; }
#endif
void VkRenderFramework::DestroySwapchain() {
if (m_swapchain != VK_NULL_HANDLE) {
vk::DestroySwapchainKHR(device(), m_swapchain, nullptr);
m_swapchain = VK_NULL_HANDLE;
}
if (m_surface != VK_NULL_HANDLE) {
vk::DestroySurfaceKHR(instance(), m_surface, nullptr);
m_surface = VK_NULL_HANDLE;
}
vk::DeviceWaitIdle(device());
#if defined(VK_USE_PLATFORM_XLIB_KHR)
if (m_surface_dpy != nullptr) {
// Ignore BadDrawable errors we seem to get during shutdown.
// The default error handler will exit() and end the test suite.
XSetErrorHandler(IgnoreXErrors);
XDestroyWindow(m_surface_dpy, m_surface_window);
m_surface_window = None;
XCloseDisplay(m_surface_dpy);
m_surface_dpy = nullptr;
XSetErrorHandler(nullptr);
}
#endif
#if defined(VK_USE_PLATFORM_XCB_KHR)
if (m_surface_xcb_conn != nullptr) {
xcb_disconnect(m_surface_xcb_conn);
m_surface_xcb_conn = nullptr;
}
#endif
}
void VkRenderFramework::InitRenderTarget() { InitRenderTarget(1); }
void VkRenderFramework::InitRenderTarget(uint32_t targets) { InitRenderTarget(targets, NULL); }
void VkRenderFramework::InitRenderTarget(VkImageView *dsBinding) { InitRenderTarget(1, dsBinding); }
void VkRenderFramework::InitRenderTarget(uint32_t targets, VkImageView *dsBinding) {
vector<VkAttachmentDescription> &attachments = m_renderPass_attachments;
vector<VkAttachmentReference> color_references;
vector<VkImageView> &bindings = m_framebuffer_attachments;
attachments.reserve(targets + 1); // +1 for dsBinding
color_references.reserve(targets);
bindings.reserve(targets + 1); // +1 for dsBinding
VkAttachmentDescription att = {};
att.format = m_render_target_fmt;
att.samples = VK_SAMPLE_COUNT_1_BIT;
att.loadOp = (m_clear_via_load_op) ? VK_ATTACHMENT_LOAD_OP_CLEAR : VK_ATTACHMENT_LOAD_OP_LOAD;
att.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
att.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
att.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
att.initialLayout = (m_clear_via_load_op) ? VK_IMAGE_LAYOUT_UNDEFINED : VK_IMAGE_LAYOUT_GENERAL;
att.finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkAttachmentReference ref = {};
ref.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
m_renderPassClearValues.clear();
VkClearValue clear = {};
clear.color = m_clear_color;
for (uint32_t i = 0; i < targets; i++) {
attachments.push_back(att);
ref.attachment = i;
color_references.push_back(ref);
m_renderPassClearValues.push_back(clear);
std::unique_ptr<VkImageObj> img(new VkImageObj(m_device));
VkFormatProperties props;
vk::GetPhysicalDeviceFormatProperties(m_device->phy().handle(), m_render_target_fmt, &props);
if (props.linearTilingFeatures & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT) {
img->Init((uint32_t)m_width, (uint32_t)m_height, 1, m_render_target_fmt,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT,
VK_IMAGE_TILING_LINEAR);
} else if (props.optimalTilingFeatures & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT) {
img->Init((uint32_t)m_width, (uint32_t)m_height, 1, m_render_target_fmt,
VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT,
VK_IMAGE_TILING_OPTIMAL);
} else {
FAIL() << "Neither Linear nor Optimal allowed for render target";
}
bindings.push_back(img->targetView(m_render_target_fmt));
m_renderTargets.push_back(std::move(img));
}
m_renderPass_subpasses.clear();
m_renderPass_subpasses.resize(1);
VkSubpassDescription &subpass = m_renderPass_subpasses[0];
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.flags = 0;
subpass.inputAttachmentCount = 0;
subpass.pInputAttachments = NULL;
subpass.colorAttachmentCount = targets;
subpass.pColorAttachments = color_references.data();
subpass.pResolveAttachments = NULL;
VkAttachmentReference ds_reference;
if (dsBinding) {
att.format = m_depth_stencil_fmt;
att.loadOp = (m_clear_via_load_op) ? VK_ATTACHMENT_LOAD_OP_CLEAR : VK_ATTACHMENT_LOAD_OP_LOAD;
;
att.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
att.stencilLoadOp = (m_clear_via_load_op) ? VK_ATTACHMENT_LOAD_OP_CLEAR : VK_ATTACHMENT_LOAD_OP_LOAD;
att.stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE;
att.initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
att.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
attachments.push_back(att);
clear.depthStencil.depth = m_depth_clear_color;
clear.depthStencil.stencil = m_stencil_clear_color;
m_renderPassClearValues.push_back(clear);
bindings.push_back(*dsBinding);
ds_reference.attachment = targets;
ds_reference.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
subpass.pDepthStencilAttachment = &ds_reference;
} else {
subpass.pDepthStencilAttachment = NULL;
}
subpass.preserveAttachmentCount = 0;
subpass.pPreserveAttachments = NULL;
VkRenderPassCreateInfo &rp_info = m_renderPass_info;
rp_info.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
rp_info.attachmentCount = attachments.size();
rp_info.pAttachments = attachments.data();
rp_info.subpassCount = m_renderPass_subpasses.size();
rp_info.pSubpasses = m_renderPass_subpasses.data();
m_renderPass_dependencies.clear();
if (m_addRenderPassSelfDependency) {
m_renderPass_dependencies.resize(1);
VkSubpassDependency &subpass_dep = m_renderPass_dependencies[0];
// Add a subpass self-dependency to subpass 0 of default renderPass
subpass_dep.srcSubpass = 0;
subpass_dep.dstSubpass = 0;
// Just using all framebuffer-space pipeline stages in order to get a reasonably large
// set of bits that can be used for both src & dst
subpass_dep.srcStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
subpass_dep.dstStageMask = VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
// Add all of the gfx mem access bits that correlate to the fb-space pipeline stages
subpass_dep.srcAccessMask = VK_ACCESS_UNIFORM_READ_BIT | VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | VK_ACCESS_SHADER_READ_BIT |
VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
subpass_dep.dstAccessMask = VK_ACCESS_UNIFORM_READ_BIT | VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | VK_ACCESS_SHADER_READ_BIT |
VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
// Must include dep_by_region bit when src & dst both include framebuffer-space stages
subpass_dep.dependencyFlags = VK_DEPENDENCY_BY_REGION_BIT;
}
if (m_additionalSubpassDependencies.size()) {
m_renderPass_dependencies.reserve(m_additionalSubpassDependencies.size() + m_renderPass_dependencies.size());
m_renderPass_dependencies.insert(m_renderPass_dependencies.end(), m_additionalSubpassDependencies.begin(),
m_additionalSubpassDependencies.end());
}
if (m_renderPass_dependencies.size()) {
rp_info.dependencyCount = static_cast<uint32_t>(m_renderPass_dependencies.size());
rp_info.pDependencies = m_renderPass_dependencies.data();
} else {
rp_info.dependencyCount = 0;
rp_info.pDependencies = nullptr;
}
vk::CreateRenderPass(device(), &rp_info, NULL, &m_renderPass);
// Create Framebuffer and RenderPass with color attachments and any
// depth/stencil attachment
VkFramebufferCreateInfo &fb_info = m_framebuffer_info;
fb_info.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fb_info.pNext = NULL;
fb_info.renderPass = m_renderPass;
fb_info.attachmentCount = bindings.size();
fb_info.pAttachments = bindings.data();
fb_info.width = (uint32_t)m_width;
fb_info.height = (uint32_t)m_height;
fb_info.layers = 1;
vk::CreateFramebuffer(device(), &fb_info, NULL, &m_framebuffer);
m_renderPassBeginInfo.renderPass = m_renderPass;
m_renderPassBeginInfo.framebuffer = m_framebuffer;
m_renderPassBeginInfo.renderArea.extent.width = (int32_t)m_width;
m_renderPassBeginInfo.renderArea.extent.height = (int32_t)m_height;
m_renderPassBeginInfo.clearValueCount = m_renderPassClearValues.size();
m_renderPassBeginInfo.pClearValues = m_renderPassClearValues.data();
}
void VkRenderFramework::DestroyRenderTarget() {
vk::DestroyRenderPass(device(), m_renderPass, nullptr);
m_renderPass = VK_NULL_HANDLE;
vk::DestroyFramebuffer(device(), m_framebuffer, nullptr);
m_framebuffer = VK_NULL_HANDLE;
}
bool VkRenderFramework::InitFrameworkAndRetrieveFeatures(VkPhysicalDeviceFeatures2KHR &features2) {
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
else {
printf("Instance extension %s not supported, skipping test\n",
VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
return false;
}
InitFramework();
// Cycle through device extensions and check for support
for (auto extension : m_device_extension_names) {
if (!DeviceExtensionSupported(extension)) {
printf("Device extension %s is not supported\n", extension);
return false;
}
}
PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR =
(PFN_vkGetPhysicalDeviceFeatures2KHR)vk::GetInstanceProcAddr(instance(),
"vkGetPhysicalDeviceFeatures2KHR");
if (vkGetPhysicalDeviceFeatures2KHR) {
vkGetPhysicalDeviceFeatures2KHR(gpu(), &features2);
return true;
}
else {
printf("Cannot use vkGetPhysicalDeviceFeatures to determine available features\n");
return false;
}
}
VkDeviceObj::VkDeviceObj(uint32_t id, VkPhysicalDevice obj) : vk_testing::Device(obj), id(id) {
init();
props = phy().properties();
queue_props = phy().queue_properties();
}
VkDeviceObj::VkDeviceObj(uint32_t id, VkPhysicalDevice obj, vector<const char *> &extension_names,
VkPhysicalDeviceFeatures *features, void *create_device_pnext)
: vk_testing::Device(obj), id(id) {
init(extension_names, features, create_device_pnext);
props = phy().properties();
queue_props = phy().queue_properties();
}
uint32_t VkDeviceObj::QueueFamilyMatching(VkQueueFlags with, VkQueueFlags without, bool all_bits) {
// Find a queue family with and without desired capabilities
for (uint32_t i = 0; i < queue_props.size(); i++) {
auto flags = queue_props[i].queueFlags;
bool matches = all_bits ? (flags & with) == with : (flags & with) != 0;
if (matches && ((flags & without) == 0) && (queue_props[i].queueCount > 0)) {
return i;
}
}
return UINT32_MAX;
}
void VkDeviceObj::SetDeviceQueue() {
ASSERT_NE(true, graphics_queues().empty());
m_queue = graphics_queues()[0]->handle();
}
VkQueueObj *VkDeviceObj::GetDefaultQueue() {
if (graphics_queues().empty()) return nullptr;
return graphics_queues()[0];
}
VkQueueObj *VkDeviceObj::GetDefaultComputeQueue() {
if (compute_queues().empty()) return nullptr;
return compute_queues()[0];
}
VkDescriptorSetLayoutObj::VkDescriptorSetLayoutObj(const VkDeviceObj *device,
const vector<VkDescriptorSetLayoutBinding> &descriptor_set_bindings,
VkDescriptorSetLayoutCreateFlags flags, void *pNext) {
VkDescriptorSetLayoutCreateInfo dsl_ci = {};
dsl_ci.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
dsl_ci.pNext = pNext;
dsl_ci.flags = flags;
dsl_ci.bindingCount = static_cast<uint32_t>(descriptor_set_bindings.size());
dsl_ci.pBindings = descriptor_set_bindings.data();
init(*device, dsl_ci);
}
VkDescriptorSetObj::VkDescriptorSetObj(VkDeviceObj *device) : m_device(device), m_nextSlot(0) {}
VkDescriptorSetObj::~VkDescriptorSetObj() NOEXCEPT {
if (m_set) {
delete m_set;
}
}
int VkDescriptorSetObj::AppendDummy() {
/* request a descriptor but do not update it */
VkDescriptorSetLayoutBinding binding = {};
binding.descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
binding.descriptorCount = 1;
binding.binding = m_layout_bindings.size();
binding.stageFlags = VK_SHADER_STAGE_ALL;
binding.pImmutableSamplers = NULL;
m_layout_bindings.push_back(binding);
m_type_counts[VK_DESCRIPTOR_TYPE_STORAGE_BUFFER] += binding.descriptorCount;
return m_nextSlot++;
}
int VkDescriptorSetObj::AppendBuffer(VkDescriptorType type, VkConstantBufferObj &constantBuffer) {
assert(type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER || type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC ||
type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER || type == VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC);
VkDescriptorSetLayoutBinding binding = {};
binding.descriptorType = type;
binding.descriptorCount = 1;
binding.binding = m_layout_bindings.size();
binding.stageFlags = VK_SHADER_STAGE_ALL;
binding.pImmutableSamplers = NULL;
m_layout_bindings.push_back(binding);
m_type_counts[type] += binding.descriptorCount;
m_writes.push_back(vk_testing::Device::write_descriptor_set(vk_testing::DescriptorSet(), m_nextSlot, 0, type, 1,
&constantBuffer.m_descriptorBufferInfo));
return m_nextSlot++;
}
int VkDescriptorSetObj::AppendSamplerTexture(VkSamplerObj *sampler, VkTextureObj *texture) {
VkDescriptorSetLayoutBinding binding = {};
binding.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
binding.descriptorCount = 1;
binding.binding = m_layout_bindings.size();
binding.stageFlags = VK_SHADER_STAGE_ALL;
binding.pImmutableSamplers = NULL;
m_layout_bindings.push_back(binding);
m_type_counts[VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER] += binding.descriptorCount;
VkDescriptorImageInfo tmp = texture->DescriptorImageInfo();
tmp.sampler = sampler->handle();
m_imageSamplerDescriptors.push_back(tmp);
m_writes.push_back(vk_testing::Device::write_descriptor_set(vk_testing::DescriptorSet(), m_nextSlot, 0,
VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, &tmp));
return m_nextSlot++;
}
VkPipelineLayout VkDescriptorSetObj::GetPipelineLayout() const { return m_pipeline_layout.handle(); }
VkDescriptorSetLayout VkDescriptorSetObj::GetDescriptorSetLayout() const { return m_layout.handle(); }
VkDescriptorSet VkDescriptorSetObj::GetDescriptorSetHandle() const {
if (m_set)
return m_set->handle();
else
return VK_NULL_HANDLE;
}
void VkDescriptorSetObj::CreateVKDescriptorSet(VkCommandBufferObj *commandBuffer) {
if (m_type_counts.size()) {
// create VkDescriptorPool
VkDescriptorPoolSize poolSize;
vector<VkDescriptorPoolSize> sizes;
for (auto it = m_type_counts.begin(); it != m_type_counts.end(); ++it) {
poolSize.descriptorCount = it->second;
poolSize.type = it->first;
sizes.push_back(poolSize);
}
VkDescriptorPoolCreateInfo pool = {};
pool.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
pool.poolSizeCount = sizes.size();
pool.maxSets = 1;
pool.pPoolSizes = sizes.data();
init(*m_device, pool);
}
// create VkDescriptorSetLayout
VkDescriptorSetLayoutCreateInfo layout = {};
layout.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO;
layout.bindingCount = m_layout_bindings.size();
layout.pBindings = m_layout_bindings.data();
m_layout.init(*m_device, layout);
vector<const vk_testing::DescriptorSetLayout *> layouts;
layouts.push_back(&m_layout);
// create VkPipelineLayout
VkPipelineLayoutCreateInfo pipeline_layout = {};
pipeline_layout.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pipeline_layout.setLayoutCount = layouts.size();
pipeline_layout.pSetLayouts = NULL;
m_pipeline_layout.init(*m_device, pipeline_layout, layouts);
if (m_type_counts.size()) {
// create VkDescriptorSet
m_set = alloc_sets(*m_device, m_layout);
// build the update array
size_t imageSamplerCount = 0;
for (vector<VkWriteDescriptorSet>::iterator it = m_writes.begin(); it != m_writes.end(); it++) {
it->dstSet = m_set->handle();
if (it->descriptorType == VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER)
it->pImageInfo = &m_imageSamplerDescriptors[imageSamplerCount++];
}
// do the updates
m_device->update_descriptor_sets(m_writes);
}
}
VkRenderpassObj::VkRenderpassObj(VkDeviceObj *dev, const VkFormat format) {
// Create a renderPass with a single color attachment
VkAttachmentReference attach = {};
attach.layout = VK_IMAGE_LAYOUT_GENERAL;
VkSubpassDescription subpass = {};
subpass.pColorAttachments = &attach;
subpass.colorAttachmentCount = 1;
VkRenderPassCreateInfo rpci = {};
rpci.subpassCount = 1;
rpci.pSubpasses = &subpass;
rpci.attachmentCount = 1;
VkAttachmentDescription attach_desc = {};
attach_desc.format = format;
attach_desc.samples = VK_SAMPLE_COUNT_1_BIT;
attach_desc.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attach_desc.finalLayout = VK_IMAGE_LAYOUT_GENERAL;
rpci.pAttachments = &attach_desc;
rpci.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
init(*dev, rpci);
}
VkRenderpassObj::VkRenderpassObj(VkDeviceObj *dev, VkFormat format, bool depthStencil) {
if (!depthStencil) {
VkRenderpassObj(dev, format);
} else {
// Create a renderPass with a depth/stencil attachment
VkAttachmentReference attach = {};
attach.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pDepthStencilAttachment = &attach;
VkRenderPassCreateInfo rpci = {};
rpci.subpassCount = 1;
rpci.pSubpasses = &subpass;
rpci.attachmentCount = 1;
VkAttachmentDescription attach_desc = {};
attach_desc.format = format;
attach_desc.samples = VK_SAMPLE_COUNT_1_BIT;
attach_desc.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attach_desc.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL;
rpci.pAttachments = &attach_desc;
rpci.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
init(*dev, rpci);
}
}
VkImageObj::VkImageObj(VkDeviceObj *dev) {
m_device = dev;
m_descriptorImageInfo.imageView = VK_NULL_HANDLE;
m_descriptorImageInfo.imageLayout = VK_IMAGE_LAYOUT_GENERAL;
m_arrayLayers = 0;
m_mipLevels = 0;
}
// clang-format off
void VkImageObj::ImageMemoryBarrier(VkCommandBufferObj *cmd_buf, VkImageAspectFlags aspect,
VkFlags output_mask /*=
VK_ACCESS_HOST_WRITE_BIT |
VK_ACCESS_SHADER_WRITE_BIT |
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
VK_MEMORY_OUTPUT_COPY_BIT*/,
VkFlags input_mask /*=
VK_ACCESS_HOST_READ_BIT |
VK_ACCESS_INDIRECT_COMMAND_READ_BIT |
VK_ACCESS_INDEX_READ_BIT |
VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT |
VK_ACCESS_UNIFORM_READ_BIT |
VK_ACCESS_SHADER_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
VK_MEMORY_INPUT_COPY_BIT*/, VkImageLayout image_layout,
VkPipelineStageFlags src_stages, VkPipelineStageFlags dest_stages,
uint32_t srcQueueFamilyIndex, uint32_t dstQueueFamilyIndex) {
// clang-format on
const VkImageSubresourceRange subresourceRange = subresource_range(aspect, 0, m_mipLevels, 0, m_arrayLayers);
VkImageMemoryBarrier barrier;
barrier = image_memory_barrier(output_mask, input_mask, Layout(), image_layout, subresourceRange, srcQueueFamilyIndex,
dstQueueFamilyIndex);
VkImageMemoryBarrier *pmemory_barrier = &barrier;
// write barrier to the command buffer
vk::CmdPipelineBarrier(cmd_buf->handle(), src_stages, dest_stages, VK_DEPENDENCY_BY_REGION_BIT, 0, NULL, 0, NULL, 1,
pmemory_barrier);
}
void VkImageObj::SetLayout(VkCommandBufferObj *cmd_buf, VkImageAspectFlags aspect, VkImageLayout image_layout) {
VkFlags src_mask, dst_mask;
const VkFlags all_cache_outputs = VK_ACCESS_HOST_WRITE_BIT | VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT |
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT | VK_ACCESS_TRANSFER_WRITE_BIT;
const VkFlags all_cache_inputs = VK_ACCESS_HOST_READ_BIT | VK_ACCESS_INDIRECT_COMMAND_READ_BIT | VK_ACCESS_INDEX_READ_BIT |
VK_ACCESS_VERTEX_ATTRIBUTE_READ_BIT | VK_ACCESS_UNIFORM_READ_BIT | VK_ACCESS_SHADER_READ_BIT |
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT |
VK_ACCESS_TRANSFER_READ_BIT | VK_ACCESS_MEMORY_READ_BIT;
const VkFlags shader_read_inputs = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_MEMORY_READ_BIT;
if (image_layout == m_descriptorImageInfo.imageLayout) {
return;
}
// Attempt to narrow the src_mask, by what the image could have validly been used for in it's current layout
switch (m_descriptorImageInfo.imageLayout) {
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
src_mask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
src_mask = shader_read_inputs;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
src_mask = VK_ACCESS_TRANSFER_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
src_mask = VK_ACCESS_TRANSFER_READ_BIT;
break;
case VK_IMAGE_LAYOUT_UNDEFINED:
src_mask = 0;
break;
default:
src_mask = all_cache_outputs; // Only need to worry about writes, as the stage mask will protect reads
}
// Narrow the dst mask by the valid accesss for the new layout
switch (image_layout) {
case VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL:
// NOTE: not sure why shader read is here...
dst_mask = VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_TRANSFER_READ_BIT;
break;
case VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL:
dst_mask = VK_ACCESS_TRANSFER_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL:
dst_mask = shader_read_inputs;
break;
case VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL:
dst_mask = VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT;
break;
case VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL:
dst_mask = VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT;
break;
default:
// Must wait all read and write operations for the completion of the layout tranisition
dst_mask = all_cache_inputs | all_cache_outputs;
break;
}
ImageMemoryBarrier(cmd_buf, aspect, src_mask, dst_mask, image_layout);
m_descriptorImageInfo.imageLayout = image_layout;
}
void VkImageObj::SetLayout(VkImageAspectFlags aspect, VkImageLayout image_layout) {
if (image_layout == m_descriptorImageInfo.imageLayout) {
return;
}
VkCommandPoolObj pool(m_device, m_device->graphics_queue_node_index_);
VkCommandBufferObj cmd_buf(m_device, &pool);
/* Build command buffer to set image layout in the driver */
cmd_buf.begin();
SetLayout(&cmd_buf, aspect, image_layout);
cmd_buf.end();
cmd_buf.QueueCommandBuffer();
}
bool VkImageObj::IsCompatible(const VkImageUsageFlags usages, const VkFormatFeatureFlags features) {
VkFormatFeatureFlags all_feature_flags =
VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT | VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT | VK_FORMAT_FEATURE_STORAGE_IMAGE_ATOMIC_BIT |
VK_FORMAT_FEATURE_UNIFORM_TEXEL_BUFFER_BIT | VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_BIT |
VK_FORMAT_FEATURE_STORAGE_TEXEL_BUFFER_ATOMIC_BIT | VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT |
VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT | VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT |
VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_FORMAT_FEATURE_BLIT_SRC_BIT | VK_FORMAT_FEATURE_BLIT_DST_BIT |
VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT;
if (m_device->IsEnabledExtension(VK_IMG_FILTER_CUBIC_EXTENSION_NAME)) {
all_feature_flags |= VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_CUBIC_BIT_IMG;
}
if (m_device->IsEnabledExtension(VK_KHR_MAINTENANCE_1_EXTENSION_NAME)) {
all_feature_flags |= VK_FORMAT_FEATURE_TRANSFER_SRC_BIT_KHR | VK_FORMAT_FEATURE_TRANSFER_DST_BIT_KHR;
}
if (m_device->IsEnabledExtension(VK_EXT_SAMPLER_FILTER_MINMAX_EXTENSION_NAME)) {
all_feature_flags |= VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_MINMAX_BIT_EXT;
}
if (m_device->IsEnabledExtension(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME)) {
all_feature_flags |= VK_FORMAT_FEATURE_MIDPOINT_CHROMA_SAMPLES_BIT_KHR |
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_LINEAR_FILTER_BIT_KHR |
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_SEPARATE_RECONSTRUCTION_FILTER_BIT_KHR |
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT_KHR |
VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_FORCEABLE_BIT_KHR |
VK_FORMAT_FEATURE_DISJOINT_BIT_KHR | VK_FORMAT_FEATURE_COSITED_CHROMA_SAMPLES_BIT_KHR;
}
if ((features & all_feature_flags) == 0) return false; // whole format unsupported
if ((usages & VK_IMAGE_USAGE_SAMPLED_BIT) && !(features & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT)) return false;
if ((usages & VK_IMAGE_USAGE_STORAGE_BIT) && !(features & VK_FORMAT_FEATURE_STORAGE_IMAGE_BIT)) return false;
if ((usages & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) && !(features & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT)) return false;
if ((usages & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) && !(features & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT))
return false;
if (m_device->IsEnabledExtension(VK_KHR_MAINTENANCE_1_EXTENSION_NAME)) {
// WORKAROUND: for DevSim not reporting extended enums, and possibly some drivers too
const auto all_nontransfer_feature_flags =
all_feature_flags ^ (VK_FORMAT_FEATURE_TRANSFER_SRC_BIT_KHR | VK_FORMAT_FEATURE_TRANSFER_DST_BIT_KHR);
const bool transfer_probably_supported_anyway = (features & all_nontransfer_feature_flags) > 0;
if (!transfer_probably_supported_anyway) {
if ((usages & VK_IMAGE_USAGE_TRANSFER_SRC_BIT) && !(features & VK_FORMAT_FEATURE_TRANSFER_SRC_BIT_KHR)) return false;
if ((usages & VK_IMAGE_USAGE_TRANSFER_DST_BIT) && !(features & VK_FORMAT_FEATURE_TRANSFER_DST_BIT_KHR)) return false;
}
}
return true;
}
VkImageCreateInfo VkImageObj::ImageCreateInfo2D(uint32_t const width, uint32_t const height, uint32_t const mipLevels,
uint32_t const layers, VkFormat const format, VkFlags const usage,
VkImageTiling const requested_tiling, const std::vector<uint32_t> *queue_families) {
VkImageCreateInfo imageCreateInfo = vk_testing::Image::create_info();
imageCreateInfo.imageType = VK_IMAGE_TYPE_2D;
imageCreateInfo.format = format;
imageCreateInfo.extent.width = width;
imageCreateInfo.extent.height = height;
imageCreateInfo.mipLevels = mipLevels;
imageCreateInfo.arrayLayers = layers;
imageCreateInfo.tiling = requested_tiling; // This will be touched up below...
imageCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
// Automatically set sharing mode etc. based on queue family information
if (queue_families && (queue_families->size() > 1)) {
imageCreateInfo.sharingMode = VK_SHARING_MODE_CONCURRENT;
imageCreateInfo.queueFamilyIndexCount = static_cast<uint32_t>(queue_families->size());
imageCreateInfo.pQueueFamilyIndices = queue_families->data();
}
imageCreateInfo.usage = usage;
return imageCreateInfo;
}
void VkImageObj::InitNoLayout(uint32_t const width, uint32_t const height, uint32_t const mipLevels, VkFormat const format,
VkFlags const usage, VkImageTiling const requested_tiling, VkMemoryPropertyFlags const reqs,
const vector<uint32_t> *queue_families, bool memory) {
InitNoLayout(ImageCreateInfo2D(width, height, mipLevels, 1, format, usage, requested_tiling, queue_families), reqs, memory);
}
void VkImageObj::InitNoLayout(const VkImageCreateInfo &create_info, VkMemoryPropertyFlags const reqs, bool memory) {
VkFormatProperties image_fmt;
// Touch up create info for tiling compatiblity...
auto usage = create_info.usage;
VkImageTiling requested_tiling = create_info.tiling;
VkImageTiling tiling = VK_IMAGE_TILING_OPTIMAL;
vk::GetPhysicalDeviceFormatProperties(m_device->phy().handle(), create_info.format, &image_fmt);
if (requested_tiling == VK_IMAGE_TILING_LINEAR) {
if (IsCompatible(usage, image_fmt.linearTilingFeatures)) {
tiling = VK_IMAGE_TILING_LINEAR;
} else if (IsCompatible(usage, image_fmt.optimalTilingFeatures)) {
tiling = VK_IMAGE_TILING_OPTIMAL;
} else {
FAIL() << "VkImageObj::init() error: unsupported tiling configuration. Usage: " << std::hex << std::showbase << usage
<< ", supported linear features: " << image_fmt.linearTilingFeatures;
}
} else if (IsCompatible(usage, image_fmt.optimalTilingFeatures)) {
tiling = VK_IMAGE_TILING_OPTIMAL;
} else if (IsCompatible(usage, image_fmt.linearTilingFeatures)) {
tiling = VK_IMAGE_TILING_LINEAR;
} else {
FAIL() << "VkImageObj::init() error: unsupported tiling configuration. Usage: " << std::hex << std::showbase << usage
<< ", supported optimal features: " << image_fmt.optimalTilingFeatures;
}
VkImageCreateInfo imageCreateInfo = create_info;
imageCreateInfo.tiling = tiling;
m_mipLevels = imageCreateInfo.mipLevels;
m_arrayLayers = imageCreateInfo.arrayLayers;
Layout(imageCreateInfo.initialLayout);
if (memory)
vk_testing::Image::init(*m_device, imageCreateInfo, reqs);
else
vk_testing::Image::init_no_mem(*m_device, imageCreateInfo);
}
void VkImageObj::Init(uint32_t const width, uint32_t const height, uint32_t const mipLevels, VkFormat const format,
VkFlags const usage, VkImageTiling const requested_tiling, VkMemoryPropertyFlags const reqs,
const vector<uint32_t> *queue_families, bool memory) {
Init(ImageCreateInfo2D(width, height, mipLevels, 1, format, usage, requested_tiling, queue_families), reqs, memory);
}
void VkImageObj::Init(const VkImageCreateInfo &create_info, VkMemoryPropertyFlags const reqs, bool memory) {
InitNoLayout(create_info, reqs, memory);
if (!initialized() || !memory) return; // We don't have a valid handle from early stage init, and thus SetLayout will fail
VkImageLayout newLayout;
const auto usage = create_info.usage;
if (usage & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT)
newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
else if (usage & VK_IMAGE_USAGE_SAMPLED_BIT)
newLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
else
newLayout = m_descriptorImageInfo.imageLayout;
VkImageAspectFlags image_aspect = 0;
const auto format = create_info.format;
if (FormatIsDepthAndStencil(format)) {
image_aspect = VK_IMAGE_ASPECT_STENCIL_BIT | VK_IMAGE_ASPECT_DEPTH_BIT;
} else if (FormatIsDepthOnly(format)) {
image_aspect = VK_IMAGE_ASPECT_DEPTH_BIT;
} else if (FormatIsStencilOnly(format)) {
image_aspect = VK_IMAGE_ASPECT_STENCIL_BIT;
} else { // color
image_aspect = VK_IMAGE_ASPECT_COLOR_BIT;
}
SetLayout(image_aspect, newLayout);
}
void VkImageObj::init(const VkImageCreateInfo *create_info) {
VkFormatProperties image_fmt;
vk::GetPhysicalDeviceFormatProperties(m_device->phy().handle(), create_info->format, &image_fmt);
switch (create_info->tiling) {
case VK_IMAGE_TILING_OPTIMAL:
if (!IsCompatible(create_info->usage, image_fmt.optimalTilingFeatures)) {
FAIL() << "VkImageObj::init() error: unsupported tiling configuration. Usage: " << std::hex << std::showbase
<< create_info->usage << ", supported optimal features: " << image_fmt.optimalTilingFeatures;
}
break;
case VK_IMAGE_TILING_LINEAR:
if (!IsCompatible(create_info->usage, image_fmt.linearTilingFeatures)) {
FAIL() << "VkImageObj::init() error: unsupported tiling configuration. Usage: " << std::hex << std::showbase
<< create_info->usage << ", supported linear features: " << image_fmt.linearTilingFeatures;
}
break;
default:
break;
}
Layout(create_info->initialLayout);
vk_testing::Image::init(*m_device, *create_info, 0);
m_mipLevels = create_info->mipLevels;
m_arrayLayers = create_info->arrayLayers;
VkImageAspectFlags image_aspect = 0;
if (FormatIsDepthAndStencil(create_info->format)) {
image_aspect = VK_IMAGE_ASPECT_STENCIL_BIT | VK_IMAGE_ASPECT_DEPTH_BIT;
} else if (FormatIsDepthOnly(create_info->format)) {
image_aspect = VK_IMAGE_ASPECT_DEPTH_BIT;
} else if (FormatIsStencilOnly(create_info->format)) {
image_aspect = VK_IMAGE_ASPECT_STENCIL_BIT;
} else { // color
image_aspect = VK_IMAGE_ASPECT_COLOR_BIT;
}
SetLayout(image_aspect, VK_IMAGE_LAYOUT_GENERAL);
}
bool VkImageObj::IsCompatibleCheck(const VkImageCreateInfo &create_info) {
VkFormatProperties image_fmt;
vk::GetPhysicalDeviceFormatProperties(m_device->phy().handle(), create_info.format, &image_fmt);
switch (create_info.tiling) {
case VK_IMAGE_TILING_OPTIMAL:
return IsCompatible(create_info.usage, image_fmt.optimalTilingFeatures);
case VK_IMAGE_TILING_LINEAR:
return IsCompatible(create_info.usage, image_fmt.linearTilingFeatures);
default:
return true;
}
}
VkResult VkImageObj::CopyImage(VkImageObj &src_image) {
VkImageLayout src_image_layout, dest_image_layout;
VkCommandPoolObj pool(m_device, m_device->graphics_queue_node_index_);
VkCommandBufferObj cmd_buf(m_device, &pool);
/* Build command buffer to copy staging texture to usable texture */
cmd_buf.begin();
/* TODO: Can we determine image aspect from image object? */
src_image_layout = src_image.Layout();
src_image.SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
dest_image_layout = (this->Layout() == VK_IMAGE_LAYOUT_UNDEFINED) ? VK_IMAGE_LAYOUT_GENERAL : this->Layout();
this->SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
VkImageCopy copy_region = {};
copy_region.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copy_region.srcSubresource.baseArrayLayer = 0;
copy_region.srcSubresource.mipLevel = 0;
copy_region.srcSubresource.layerCount = 1;
copy_region.srcOffset.x = 0;
copy_region.srcOffset.y = 0;
copy_region.srcOffset.z = 0;
copy_region.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copy_region.dstSubresource.baseArrayLayer = 0;
copy_region.dstSubresource.mipLevel = 0;
copy_region.dstSubresource.layerCount = 1;
copy_region.dstOffset.x = 0;
copy_region.dstOffset.y = 0;
copy_region.dstOffset.z = 0;
copy_region.extent = src_image.extent();
vk::CmdCopyImage(cmd_buf.handle(), src_image.handle(), src_image.Layout(), handle(), Layout(), 1, &copy_region);
src_image.SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, src_image_layout);
this->SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, dest_image_layout);
cmd_buf.end();
cmd_buf.QueueCommandBuffer();
return VK_SUCCESS;
}
// Same as CopyImage, but in the opposite direction
VkResult VkImageObj::CopyImageOut(VkImageObj &dst_image) {
VkImageLayout src_image_layout, dest_image_layout;
VkCommandPoolObj pool(m_device, m_device->graphics_queue_node_index_);
VkCommandBufferObj cmd_buf(m_device, &pool);
cmd_buf.begin();
src_image_layout = this->Layout();
this->SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
dest_image_layout = (dst_image.Layout() == VK_IMAGE_LAYOUT_UNDEFINED) ? VK_IMAGE_LAYOUT_GENERAL : dst_image.Layout();
dst_image.SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
VkImageCopy copy_region = {};
copy_region.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copy_region.srcSubresource.baseArrayLayer = 0;
copy_region.srcSubresource.mipLevel = 0;
copy_region.srcSubresource.layerCount = 1;
copy_region.srcOffset.x = 0;
copy_region.srcOffset.y = 0;
copy_region.srcOffset.z = 0;
copy_region.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copy_region.dstSubresource.baseArrayLayer = 0;
copy_region.dstSubresource.mipLevel = 0;
copy_region.dstSubresource.layerCount = 1;
copy_region.dstOffset.x = 0;
copy_region.dstOffset.y = 0;
copy_region.dstOffset.z = 0;
copy_region.extent = dst_image.extent();
vk::CmdCopyImage(cmd_buf.handle(), handle(), Layout(), dst_image.handle(), dst_image.Layout(), 1, &copy_region);
this->SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, src_image_layout);
dst_image.SetLayout(&cmd_buf, VK_IMAGE_ASPECT_COLOR_BIT, dest_image_layout);
cmd_buf.end();
cmd_buf.QueueCommandBuffer();
return VK_SUCCESS;
}
// Return 16x16 pixel block
std::array<std::array<uint32_t, 16>, 16> VkImageObj::Read() {
VkImageObj stagingImage(m_device);
VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
stagingImage.Init(16, 16, 1, VK_FORMAT_B8G8R8A8_UNORM, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT,
VK_IMAGE_TILING_LINEAR, reqs);
stagingImage.SetLayout(VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_GENERAL);
VkSubresourceLayout layout = stagingImage.subresource_layout(subresource(VK_IMAGE_ASPECT_COLOR_BIT, 0, 0));
CopyImageOut(stagingImage);
void *data = stagingImage.MapMemory();
std::array<std::array<uint32_t, 16>, 16> m = {};
if (data) {
for (uint32_t y = 0; y < stagingImage.extent().height; y++) {
uint32_t *row = (uint32_t *)((char *)data + layout.rowPitch * y);
for (uint32_t x = 0; x < stagingImage.extent().width; x++) m[y][x] = row[x];
}
}
stagingImage.UnmapMemory();
return m;
}
VkTextureObj::VkTextureObj(VkDeviceObj *device, uint32_t *colors) : VkImageObj(device) {
m_device = device;
const VkFormat tex_format = VK_FORMAT_B8G8R8A8_UNORM;
uint32_t tex_colors[2] = {0xffff0000, 0xff00ff00};
void *data;
uint32_t x, y;
VkImageObj stagingImage(device);
VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
stagingImage.Init(16, 16, 1, tex_format, VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT,
VK_IMAGE_TILING_LINEAR, reqs);
VkSubresourceLayout layout = stagingImage.subresource_layout(subresource(VK_IMAGE_ASPECT_COLOR_BIT, 0, 0));
if (colors == NULL) colors = tex_colors;
VkImageViewCreateInfo view = {};
view.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view.pNext = NULL;
view.image = VK_NULL_HANDLE;
view.viewType = VK_IMAGE_VIEW_TYPE_2D;
view.format = tex_format;
view.components.r = VK_COMPONENT_SWIZZLE_R;
view.components.g = VK_COMPONENT_SWIZZLE_G;
view.components.b = VK_COMPONENT_SWIZZLE_B;
view.components.a = VK_COMPONENT_SWIZZLE_A;
view.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
view.subresourceRange.baseMipLevel = 0;
view.subresourceRange.levelCount = 1;
view.subresourceRange.baseArrayLayer = 0;
view.subresourceRange.layerCount = 1;
/* create image */
Init(16, 16, 1, tex_format, VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT, VK_IMAGE_TILING_OPTIMAL);
stagingImage.SetLayout(VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_GENERAL);
/* create image view */
view.image = handle();
m_textureView.init(*m_device, view);
m_descriptorImageInfo.imageView = m_textureView.handle();
data = stagingImage.MapMemory();
for (y = 0; y < extent().height; y++) {
uint32_t *row = (uint32_t *)((char *)data + layout.rowPitch * y);
for (x = 0; x < extent().width; x++) row[x] = colors[(x & 1) ^ (y & 1)];
}
stagingImage.UnmapMemory();
stagingImage.SetLayout(VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
VkImageObj::CopyImage(stagingImage);
}
VkSamplerObj::VkSamplerObj(VkDeviceObj *device) {
m_device = device;
VkSamplerCreateInfo samplerCreateInfo;
memset(&samplerCreateInfo, 0, sizeof(samplerCreateInfo));
samplerCreateInfo.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
samplerCreateInfo.magFilter = VK_FILTER_NEAREST;
samplerCreateInfo.minFilter = VK_FILTER_NEAREST;
samplerCreateInfo.mipmapMode = VK_SAMPLER_MIPMAP_MODE_NEAREST;
samplerCreateInfo.addressModeU = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerCreateInfo.addressModeV = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerCreateInfo.addressModeW = VK_SAMPLER_ADDRESS_MODE_REPEAT;
samplerCreateInfo.mipLodBias = 0.0;
samplerCreateInfo.anisotropyEnable = VK_FALSE;
samplerCreateInfo.maxAnisotropy = 1;
samplerCreateInfo.compareOp = VK_COMPARE_OP_NEVER;
samplerCreateInfo.minLod = 0.0;
samplerCreateInfo.maxLod = 0.0;
samplerCreateInfo.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE;
samplerCreateInfo.unnormalizedCoordinates = VK_FALSE;
init(*m_device, samplerCreateInfo);
}
/*
* Basic ConstantBuffer constructor. Then use create methods to fill in the
* details.
*/
VkConstantBufferObj::VkConstantBufferObj(VkDeviceObj *device, VkBufferUsageFlags usage) {
m_device = device;
memset(&m_descriptorBufferInfo, 0, sizeof(m_descriptorBufferInfo));
// Special case for usages outside of original limits of framework
if ((VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT) != usage) {
init_no_mem(*m_device, create_info(0, usage));
}
}
VkConstantBufferObj::VkConstantBufferObj(VkDeviceObj *device, VkDeviceSize allocationSize, const void *data,
VkBufferUsageFlags usage) {
m_device = device;
memset(&m_descriptorBufferInfo, 0, sizeof(m_descriptorBufferInfo));
VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
if ((VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT) == usage) {
init_as_src_and_dst(*m_device, allocationSize, reqs);
} else {
init(*m_device, create_info(allocationSize, usage), reqs);
}
void *pData = memory().map();
memcpy(pData, data, static_cast<size_t>(allocationSize));
memory().unmap();
/*
* Constant buffers are going to be used as vertex input buffers
* or as shader uniform buffers. So, we'll create the shaderbuffer
* descriptor here so it's ready if needed.
*/
this->m_descriptorBufferInfo.buffer = handle();
this->m_descriptorBufferInfo.offset = 0;
this->m_descriptorBufferInfo.range = allocationSize;
}
VkPipelineShaderStageCreateInfo const &VkShaderObj::GetStageCreateInfo() const { return m_stage_info; }
VkShaderObj::VkShaderObj(VkDeviceObj &device, VkShaderStageFlagBits stage, char const *name, const VkSpecializationInfo *specInfo)
: m_device(device) {
m_stage_info.sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
m_stage_info.pNext = nullptr;
m_stage_info.flags = 0;
m_stage_info.stage = stage;
m_stage_info.module = VK_NULL_HANDLE;
m_stage_info.pName = name;
m_stage_info.pSpecializationInfo = specInfo;
}
VkShaderObj::VkShaderObj(VkDeviceObj *device, const char *shader_code, VkShaderStageFlagBits stage, VkRenderFramework *framework,
char const *name, bool debug, const VkSpecializationInfo *specInfo, const spv_target_env env)
: VkShaderObj(*device, stage, name, specInfo) {
InitFromGLSL(*framework, shader_code, debug, env);
}
bool VkShaderObj::InitFromGLSL(VkRenderFramework &framework, const char *shader_code, bool debug, const spv_target_env env) {
std::vector<uint32_t> spv;
framework.GLSLtoSPV(&m_device.props.limits, m_stage_info.stage, shader_code, spv, debug, env);
VkShaderModuleCreateInfo moduleCreateInfo = {};
moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
moduleCreateInfo.codeSize = spv.size() * sizeof(uint32_t);
moduleCreateInfo.pCode = spv.data();
init(m_device, moduleCreateInfo);
m_stage_info.module = handle();
return VK_NULL_HANDLE != handle();
}
// Because shaders are currently validated at pipeline creation time, there are test cases that might fail shader module creation
// due to supplying an invalid/unknown SPIR-V capability/operation. This is called after VkShaderObj creation when tests are found
// to crash on a CI device
VkResult VkShaderObj::InitFromGLSLTry(VkRenderFramework &framework, const char *shader_code, bool debug, const spv_target_env env) {
std::vector<uint32_t> spv;
framework.GLSLtoSPV(&m_device.props.limits, m_stage_info.stage, shader_code, spv, debug, env);
VkShaderModuleCreateInfo moduleCreateInfo = {};
moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
moduleCreateInfo.codeSize = spv.size() * sizeof(uint32_t);
moduleCreateInfo.pCode = spv.data();
const auto result = init_try(m_device, moduleCreateInfo);
m_stage_info.module = handle();
return result;
}
VkShaderObj::VkShaderObj(VkDeviceObj *device, const string spv_source, VkShaderStageFlagBits stage, VkRenderFramework *framework,
char const *name, const VkSpecializationInfo *specInfo, const spv_target_env env)
: VkShaderObj(*device, stage, name, specInfo) {
InitFromASM(*framework, spv_source, env);
}
bool VkShaderObj::InitFromASM(VkRenderFramework &framework, const std::string &spv_source, const spv_target_env env) {
vector<uint32_t> spv;
framework.ASMtoSPV(env, 0, spv_source.data(), spv);
VkShaderModuleCreateInfo moduleCreateInfo = {};
moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
moduleCreateInfo.codeSize = spv.size() * sizeof(uint32_t);
moduleCreateInfo.pCode = spv.data();
init(m_device, moduleCreateInfo);
m_stage_info.module = handle();
return VK_NULL_HANDLE != handle();
}
VkResult VkShaderObj::InitFromASMTry(VkRenderFramework &framework, const std::string &spv_source, const spv_target_env spv_env) {
vector<uint32_t> spv;
framework.ASMtoSPV(spv_env, 0, spv_source.data(), spv);
VkShaderModuleCreateInfo moduleCreateInfo = {};
moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
moduleCreateInfo.codeSize = spv.size() * sizeof(uint32_t);
moduleCreateInfo.pCode = spv.data();
const auto result = init_try(m_device, moduleCreateInfo);
m_stage_info.module = handle();
return result;
}
// static
std::unique_ptr<VkShaderObj> VkShaderObj::CreateFromGLSL(VkDeviceObj &dev, VkRenderFramework &framework,
VkShaderStageFlagBits stage, const std::string &code,
const char *entry_point, const VkSpecializationInfo *spec_info,
const spv_target_env spv_env, bool debug) {
auto shader = layer_data::make_unique<VkShaderObj>(dev, stage, entry_point, spec_info);
if (VK_SUCCESS == shader->InitFromGLSLTry(framework, code.c_str(), debug, spv_env)) {
return shader;
}
return {};
}
// static
std::unique_ptr<VkShaderObj> VkShaderObj::CreateFromASM(VkDeviceObj &dev, VkRenderFramework &framework, VkShaderStageFlagBits stage,
const std::string &code, const char *entry_point,
const VkSpecializationInfo *spec_info, const spv_target_env spv_env) {
auto shader = layer_data::make_unique<VkShaderObj>(dev, stage, entry_point, spec_info);
if (VK_SUCCESS == shader->InitFromASMTry(framework, code.c_str(), spv_env)) {
return shader;
}
return {};
}
VkPipelineLayoutObj::VkPipelineLayoutObj(VkDeviceObj *device, const vector<const VkDescriptorSetLayoutObj *> &descriptor_layouts,
const vector<VkPushConstantRange> &push_constant_ranges) {
VkPipelineLayoutCreateInfo pl_ci = {};
pl_ci.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
pl_ci.pushConstantRangeCount = static_cast<uint32_t>(push_constant_ranges.size());
pl_ci.pPushConstantRanges = push_constant_ranges.data();
auto descriptor_layouts_unwrapped = MakeTestbindingHandles<const vk_testing::DescriptorSetLayout>(descriptor_layouts);
init(*device, pl_ci, descriptor_layouts_unwrapped);
}
void VkPipelineLayoutObj::Reset() { *this = VkPipelineLayoutObj(); }
VkPipelineObj::VkPipelineObj(VkDeviceObj *device) {
m_device = device;
m_vi_state.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
m_vi_state.pNext = nullptr;
m_vi_state.flags = 0;
m_vi_state.vertexBindingDescriptionCount = 0;
m_vi_state.pVertexBindingDescriptions = nullptr;
m_vi_state.vertexAttributeDescriptionCount = 0;
m_vi_state.pVertexAttributeDescriptions = nullptr;
m_ia_state.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
m_ia_state.pNext = nullptr;
m_ia_state.flags = 0;
m_ia_state.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
m_ia_state.primitiveRestartEnable = VK_FALSE;
m_te_state = nullptr;
m_vp_state.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
m_vp_state.pNext = VK_NULL_HANDLE;
m_vp_state.flags = 0;
m_vp_state.viewportCount = 1;
m_vp_state.scissorCount = 1;
m_vp_state.pViewports = nullptr;
m_vp_state.pScissors = nullptr;
m_rs_state.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
m_rs_state.pNext = &m_line_state;
m_rs_state.flags = 0;
m_rs_state.depthClampEnable = VK_FALSE;
m_rs_state.rasterizerDiscardEnable = VK_FALSE;
m_rs_state.polygonMode = VK_POLYGON_MODE_FILL;
m_rs_state.cullMode = VK_CULL_MODE_BACK_BIT;
m_rs_state.frontFace = VK_FRONT_FACE_CLOCKWISE;
m_rs_state.depthBiasEnable = VK_FALSE;
m_rs_state.depthBiasConstantFactor = 0.0f;
m_rs_state.depthBiasClamp = 0.0f;
m_rs_state.depthBiasSlopeFactor = 0.0f;
m_rs_state.lineWidth = 1.0f;
m_line_state.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT;
m_line_state.pNext = nullptr;
m_line_state.lineRasterizationMode = VK_LINE_RASTERIZATION_MODE_DEFAULT_EXT;
m_line_state.stippledLineEnable = VK_FALSE;
m_line_state.lineStippleFactor = 0;
m_line_state.lineStipplePattern = 0;
m_ms_state.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
m_ms_state.pNext = nullptr;
m_ms_state.flags = 0;
m_ms_state.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
m_ms_state.sampleShadingEnable = VK_FALSE;
m_ms_state.minSampleShading = 0.0f;
m_ms_state.pSampleMask = nullptr;
m_ms_state.alphaToCoverageEnable = VK_FALSE;
m_ms_state.alphaToOneEnable = VK_FALSE;
m_ds_state = nullptr;
memset(&m_cb_state, 0, sizeof(m_cb_state));
m_cb_state.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
m_cb_state.blendConstants[0] = 1.0f;
m_cb_state.blendConstants[1] = 1.0f;
m_cb_state.blendConstants[2] = 1.0f;
m_cb_state.blendConstants[3] = 1.0f;
memset(&m_pd_state, 0, sizeof(m_pd_state));
}
void VkPipelineObj::AddShader(VkShaderObj *shader) { m_shaderStages.push_back(shader->GetStageCreateInfo()); }
void VkPipelineObj::AddShader(VkPipelineShaderStageCreateInfo const &createInfo) { m_shaderStages.push_back(createInfo); }
void VkPipelineObj::AddVertexInputAttribs(VkVertexInputAttributeDescription *vi_attrib, uint32_t count) {
m_vi_state.pVertexAttributeDescriptions = vi_attrib;
m_vi_state.vertexAttributeDescriptionCount = count;
}
void VkPipelineObj::AddVertexInputBindings(VkVertexInputBindingDescription *vi_binding, uint32_t count) {
m_vi_state.pVertexBindingDescriptions = vi_binding;
m_vi_state.vertexBindingDescriptionCount = count;
}
void VkPipelineObj::AddColorAttachment(uint32_t binding, const VkPipelineColorBlendAttachmentState &att) {
if (binding + 1 > m_colorAttachments.size()) {
m_colorAttachments.resize(binding + 1);
}
m_colorAttachments[binding] = att;
}
void VkPipelineObj::SetDepthStencil(const VkPipelineDepthStencilStateCreateInfo *ds_state) { m_ds_state = ds_state; }
void VkPipelineObj::SetViewport(const vector<VkViewport> viewports) {
m_viewports = viewports;
// If we explicitly set a null viewport, pass it through to create info
// but preserve viewportCount because it musn't change
if (m_viewports.size() == 0) {
m_vp_state.pViewports = nullptr;
}
}
void VkPipelineObj::SetScissor(const vector<VkRect2D> scissors) {
m_scissors = scissors;
// If we explicitly set a null scissor, pass it through to create info
// but preserve scissorCount because it musn't change
if (m_scissors.size() == 0) {
m_vp_state.pScissors = nullptr;
}
}
void VkPipelineObj::MakeDynamic(VkDynamicState state) {
/* Only add a state once */
for (auto it = m_dynamic_state_enables.begin(); it != m_dynamic_state_enables.end(); it++) {
if ((*it) == state) return;
}
m_dynamic_state_enables.push_back(state);
}
void VkPipelineObj::SetMSAA(const VkPipelineMultisampleStateCreateInfo *ms_state) { m_ms_state = *ms_state; }
void VkPipelineObj::SetInputAssembly(const VkPipelineInputAssemblyStateCreateInfo *ia_state) { m_ia_state = *ia_state; }
void VkPipelineObj::SetRasterization(const VkPipelineRasterizationStateCreateInfo *rs_state) {
m_rs_state = *rs_state;
m_rs_state.pNext = &m_line_state;
}
void VkPipelineObj::SetTessellation(const VkPipelineTessellationStateCreateInfo *te_state) { m_te_state = te_state; }
void VkPipelineObj::SetLineState(const VkPipelineRasterizationLineStateCreateInfoEXT *line_state) { m_line_state = *line_state; }
void VkPipelineObj::InitGraphicsPipelineCreateInfo(VkGraphicsPipelineCreateInfo *gp_ci) {
gp_ci->stageCount = m_shaderStages.size();
gp_ci->pStages = m_shaderStages.size() ? m_shaderStages.data() : nullptr;
m_vi_state.sType = VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO;
gp_ci->pVertexInputState = &m_vi_state;
m_ia_state.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
gp_ci->pInputAssemblyState = &m_ia_state;
gp_ci->sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
gp_ci->pNext = NULL;
gp_ci->flags = 0;
m_cb_state.attachmentCount = m_colorAttachments.size();
m_cb_state.pAttachments = m_colorAttachments.data();
if (m_viewports.size() > 0) {
m_vp_state.viewportCount = m_viewports.size();
m_vp_state.pViewports = m_viewports.data();
} else {
MakeDynamic(VK_DYNAMIC_STATE_VIEWPORT);
}
if (m_scissors.size() > 0) {
m_vp_state.scissorCount = m_scissors.size();
m_vp_state.pScissors = m_scissors.data();
} else {
MakeDynamic(VK_DYNAMIC_STATE_SCISSOR);
}
memset(&m_pd_state, 0, sizeof(m_pd_state));
if (m_dynamic_state_enables.size() > 0) {
m_pd_state.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
m_pd_state.dynamicStateCount = m_dynamic_state_enables.size();
m_pd_state.pDynamicStates = m_dynamic_state_enables.data();
gp_ci->pDynamicState = &m_pd_state;
}
gp_ci->subpass = 0;
gp_ci->pViewportState = &m_vp_state;
gp_ci->pRasterizationState = &m_rs_state;
gp_ci->pMultisampleState = &m_ms_state;
gp_ci->pDepthStencilState = m_ds_state;
gp_ci->pColorBlendState = &m_cb_state;
gp_ci->pTessellationState = m_te_state;
}
VkResult VkPipelineObj::CreateVKPipeline(VkPipelineLayout layout, VkRenderPass render_pass, VkGraphicsPipelineCreateInfo *gp_ci) {
VkGraphicsPipelineCreateInfo info = {};
// if not given a CreateInfo, create and initialize a local one.
if (gp_ci == nullptr) {
gp_ci = &info;
InitGraphicsPipelineCreateInfo(gp_ci);
}
gp_ci->layout = layout;
gp_ci->renderPass = render_pass;
return init_try(*m_device, *gp_ci);
}
VkCommandBufferObj::VkCommandBufferObj(VkDeviceObj *device, VkCommandPoolObj *pool, VkCommandBufferLevel level, VkQueueObj *queue) {
m_device = device;
if (queue) {
m_queue = queue;
} else {
m_queue = m_device->GetDefaultQueue();
}
assert(m_queue);
auto create_info = vk_testing::CommandBuffer::create_info(pool->handle());
create_info.level = level;
init(*device, create_info);
}
void VkCommandBufferObj::PipelineBarrier(VkPipelineStageFlags src_stages, VkPipelineStageFlags dest_stages,
VkDependencyFlags dependencyFlags, uint32_t memoryBarrierCount,
const VkMemoryBarrier *pMemoryBarriers, uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers) {
vk::CmdPipelineBarrier(handle(), src_stages, dest_stages, dependencyFlags, memoryBarrierCount, pMemoryBarriers,
bufferMemoryBarrierCount, pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers);
}
void VkCommandBufferObj::PipelineBarrier2KHR(const VkDependencyInfoKHR *pDependencyInfo) {
auto fpCmdPipelineBarrier2KHR =
(PFN_vkCmdPipelineBarrier2KHR)vk::GetDeviceProcAddr(m_device->device(), "vkCmdPipelineBarrier2KHR");
assert(fpCmdPipelineBarrier2KHR != nullptr);
fpCmdPipelineBarrier2KHR(handle(), pDependencyInfo);
}
void VkCommandBufferObj::ClearAllBuffers(const vector<std::unique_ptr<VkImageObj>> &color_objs, VkClearColorValue clear_color,
VkDepthStencilObj *depth_stencil_obj, float depth_clear_value,
uint32_t stencil_clear_value) {
// whatever we want to do, we do it to the whole buffer
VkImageSubresourceRange subrange = {};
// srRange.aspectMask to be set later
subrange.baseMipLevel = 0;
// TODO: Mali device crashing with VK_REMAINING_MIP_LEVELS
subrange.levelCount = 1; // VK_REMAINING_MIP_LEVELS;
subrange.baseArrayLayer = 0;
// TODO: Mesa crashing with VK_REMAINING_ARRAY_LAYERS
subrange.layerCount = 1; // VK_REMAINING_ARRAY_LAYERS;
const VkImageLayout clear_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
for (const auto &color_obj : color_objs) {
subrange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
color_obj->Layout(VK_IMAGE_LAYOUT_UNDEFINED);
color_obj->SetLayout(this, subrange.aspectMask, clear_layout);
ClearColorImage(color_obj->image(), clear_layout, &clear_color, 1, &subrange);
}
if (depth_stencil_obj && depth_stencil_obj->Initialized()) {
subrange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
if (FormatIsDepthOnly(depth_stencil_obj->format())) subrange.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
if (FormatIsStencilOnly(depth_stencil_obj->format())) subrange.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
depth_stencil_obj->Layout(VK_IMAGE_LAYOUT_UNDEFINED);
depth_stencil_obj->SetLayout(this, subrange.aspectMask, clear_layout);
VkClearDepthStencilValue clear_value = {depth_clear_value, stencil_clear_value};
ClearDepthStencilImage(depth_stencil_obj->handle(), clear_layout, &clear_value, 1, &subrange);
}
}
void VkCommandBufferObj::FillBuffer(VkBuffer buffer, VkDeviceSize offset, VkDeviceSize fill_size, uint32_t data) {
vk::CmdFillBuffer(handle(), buffer, offset, fill_size, data);
}
void VkCommandBufferObj::UpdateBuffer(VkBuffer buffer, VkDeviceSize dstOffset, VkDeviceSize dataSize, const void *pData) {
vk::CmdUpdateBuffer(handle(), buffer, dstOffset, dataSize, pData);
}
void VkCommandBufferObj::CopyImage(VkImage srcImage, VkImageLayout srcImageLayout, VkImage dstImage, VkImageLayout dstImageLayout,
uint32_t regionCount, const VkImageCopy *pRegions) {
vk::CmdCopyImage(handle(), srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions);
}
void VkCommandBufferObj::ResolveImage(VkImage srcImage, VkImageLayout srcImageLayout, VkImage dstImage,
VkImageLayout dstImageLayout, uint32_t regionCount, const VkImageResolve *pRegions) {
vk::CmdResolveImage(handle(), srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions);
}
void VkCommandBufferObj::ClearColorImage(VkImage image, VkImageLayout imageLayout, const VkClearColorValue *pColor,
uint32_t rangeCount, const VkImageSubresourceRange *pRanges) {
vk::CmdClearColorImage(handle(), image, imageLayout, pColor, rangeCount, pRanges);
}
void VkCommandBufferObj::ClearDepthStencilImage(VkImage image, VkImageLayout imageLayout, const VkClearDepthStencilValue *pColor,
uint32_t rangeCount, const VkImageSubresourceRange *pRanges) {
vk::CmdClearDepthStencilImage(handle(), image, imageLayout, pColor, rangeCount, pRanges);
}
void VkCommandBufferObj::BuildAccelerationStructure(VkAccelerationStructureObj *as, VkBuffer scratchBuffer) {
BuildAccelerationStructure(as, scratchBuffer, VK_NULL_HANDLE);
}
void VkCommandBufferObj::BuildAccelerationStructure(VkAccelerationStructureObj *as, VkBuffer scratchBuffer, VkBuffer instanceData) {
PFN_vkCmdBuildAccelerationStructureNV vkCmdBuildAccelerationStructureNV =
(PFN_vkCmdBuildAccelerationStructureNV)vk::GetDeviceProcAddr(as->dev(), "vkCmdBuildAccelerationStructureNV");
assert(vkCmdBuildAccelerationStructureNV != nullptr);
vkCmdBuildAccelerationStructureNV(handle(), &as->info(), instanceData, 0, VK_FALSE, as->handle(), VK_NULL_HANDLE, scratchBuffer,
0);
}
void VkCommandBufferObj::PrepareAttachments(const vector<std::unique_ptr<VkImageObj>> &color_atts,
VkDepthStencilObj *depth_stencil_att) {
for (const auto &color_att : color_atts) {
color_att->SetLayout(this, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
}
if (depth_stencil_att && depth_stencil_att->Initialized()) {
VkImageAspectFlags aspect = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
if (FormatIsDepthOnly(depth_stencil_att->Format())) aspect = VK_IMAGE_ASPECT_DEPTH_BIT;
if (FormatIsStencilOnly(depth_stencil_att->Format())) aspect = VK_IMAGE_ASPECT_STENCIL_BIT;
depth_stencil_att->SetLayout(this, aspect, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
}
}
void VkCommandBufferObj::BeginRenderPass(const VkRenderPassBeginInfo &info, VkSubpassContents contents) {
vk::CmdBeginRenderPass(handle(), &info, contents);
}
void VkCommandBufferObj::EndRenderPass() { vk::CmdEndRenderPass(handle()); }
void VkCommandBufferObj::SetViewport(uint32_t firstViewport, uint32_t viewportCount, const VkViewport *pViewports) {
vk::CmdSetViewport(handle(), firstViewport, viewportCount, pViewports);
}
void VkCommandBufferObj::SetStencilReference(VkStencilFaceFlags faceMask, uint32_t reference) {
vk::CmdSetStencilReference(handle(), faceMask, reference);
}
void VkCommandBufferObj::DrawIndexed(uint32_t indexCount, uint32_t instanceCount, uint32_t firstIndex, int32_t vertexOffset,
uint32_t firstInstance) {