blob: 811d49ff521c2da482bac29c9140442a910f9bbd [file] [log] [blame]
/* Copyright (c) 2015-2021 The Khronos Group Inc.
* Copyright (c) 2015-2021 Valve Corporation
* Copyright (c) 2015-2021 LunarG, Inc.
* Copyright (C) 2015-2021 Google Inc.
* Modifications Copyright (C) 2020 Advanced Micro Devices, Inc. All rights reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Chris Forbes <chrisf@ijw.co.nz>
* Author: Dave Houlton <daveh@lunarg.com>
* Author: Tobias Hector <tobias.hector@amd.com>
*/
#include "shader_validation.h"
#include <cassert>
#include <cinttypes>
#include <cmath>
#include <sstream>
#include <string>
#include <vector>
#include <spirv/unified1/spirv.hpp>
#include "vk_enum_string_helper.h"
#include "vk_layer_data.h"
#include "vk_layer_utils.h"
#include "chassis.h"
#include "core_validation.h"
#include "xxhash.h"
static shader_stage_attributes shader_stage_attribs[] = {
{"vertex shader", false, false, VK_SHADER_STAGE_VERTEX_BIT},
{"tessellation control shader", true, true, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT},
{"tessellation evaluation shader", true, false, VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT},
{"geometry shader", true, false, VK_SHADER_STAGE_GEOMETRY_BIT},
{"fragment shader", false, false, VK_SHADER_STAGE_FRAGMENT_BIT},
};
static bool IsNarrowNumericType(spirv_inst_iter type) {
if (type.opcode() != spv::OpTypeInt && type.opcode() != spv::OpTypeFloat) return false;
return type.word(2) < 64;
}
static bool TypesMatch(SHADER_MODULE_STATE const *a, SHADER_MODULE_STATE const *b, unsigned a_type, unsigned b_type, bool a_arrayed,
bool b_arrayed, bool relaxed) {
// Walk two type trees together, and complain about differences
auto a_insn = a->get_def(a_type);
auto b_insn = b->get_def(b_type);
assert(a_insn != a->end());
assert(b_insn != b->end());
// Ignore runtime-sized arrays-- they cannot appear in these interfaces.
if (a_arrayed && a_insn.opcode() == spv::OpTypeArray) {
return TypesMatch(a, b, a_insn.word(2), b_type, false, b_arrayed, relaxed);
}
if (b_arrayed && b_insn.opcode() == spv::OpTypeArray) {
// We probably just found the extra level of arrayness in b_type: compare the type inside it to a_type
return TypesMatch(a, b, a_type, b_insn.word(2), a_arrayed, false, relaxed);
}
if (a_insn.opcode() == spv::OpTypeVector && relaxed && IsNarrowNumericType(b_insn)) {
return TypesMatch(a, b, a_insn.word(2), b_type, a_arrayed, b_arrayed, false);
}
if (a_insn.opcode() != b_insn.opcode()) {
return false;
}
if (a_insn.opcode() == spv::OpTypePointer) {
// Match on pointee type. storage class is expected to differ
return TypesMatch(a, b, a_insn.word(3), b_insn.word(3), a_arrayed, b_arrayed, relaxed);
}
if (a_arrayed || b_arrayed) {
// If we havent resolved array-of-verts by here, we're not going to.
return false;
}
switch (a_insn.opcode()) {
case spv::OpTypeBool:
return true;
case spv::OpTypeInt:
// Match on width, signedness
return a_insn.word(2) == b_insn.word(2) && a_insn.word(3) == b_insn.word(3);
case spv::OpTypeFloat:
// Match on width
return a_insn.word(2) == b_insn.word(2);
case spv::OpTypeVector:
// Match on element type, count.
if (!TypesMatch(a, b, a_insn.word(2), b_insn.word(2), a_arrayed, b_arrayed, false)) return false;
if (relaxed && IsNarrowNumericType(a->get_def(a_insn.word(2)))) {
return a_insn.word(3) >= b_insn.word(3);
} else {
return a_insn.word(3) == b_insn.word(3);
}
case spv::OpTypeMatrix:
// Match on element type, count.
return TypesMatch(a, b, a_insn.word(2), b_insn.word(2), a_arrayed, b_arrayed, false) &&
a_insn.word(3) == b_insn.word(3);
case spv::OpTypeArray:
// Match on element type, count. these all have the same layout. we don't get here if b_arrayed. This differs from
// vector & matrix types in that the array size is the id of a constant instruction, * not a literal within OpTypeArray
return TypesMatch(a, b, a_insn.word(2), b_insn.word(2), a_arrayed, b_arrayed, false) &&
a->GetConstantValueById(a_insn.word(3)) == b->GetConstantValueById(b_insn.word(3));
case spv::OpTypeStruct:
// Match on all element types
{
if (a_insn.len() != b_insn.len()) {
return false; // Structs cannot match if member counts differ
}
for (unsigned i = 2; i < a_insn.len(); i++) {
if (!TypesMatch(a, b, a_insn.word(i), b_insn.word(i), a_arrayed, b_arrayed, false)) {
return false;
}
}
return true;
}
default:
// Remaining types are CLisms, or may not appear in the interfaces we are interested in. Just claim no match.
return false;
}
}
static unsigned GetLocationsConsumedByFormat(VkFormat format) {
switch (format) {
case VK_FORMAT_R64G64B64A64_SFLOAT:
case VK_FORMAT_R64G64B64A64_SINT:
case VK_FORMAT_R64G64B64A64_UINT:
case VK_FORMAT_R64G64B64_SFLOAT:
case VK_FORMAT_R64G64B64_SINT:
case VK_FORMAT_R64G64B64_UINT:
return 2;
default:
return 1;
}
}
static unsigned GetFormatType(VkFormat fmt) {
if (FormatIsSInt(fmt)) return FORMAT_TYPE_SINT;
if (FormatIsUInt(fmt)) return FORMAT_TYPE_UINT;
if (FormatIsDepthAndStencil(fmt)) return FORMAT_TYPE_FLOAT | FORMAT_TYPE_UINT;
if (fmt == VK_FORMAT_UNDEFINED) return 0;
// everything else -- UNORM/SNORM/FLOAT/USCALED/SSCALED is all float in the shader.
return FORMAT_TYPE_FLOAT;
}
static uint32_t GetShaderStageId(VkShaderStageFlagBits stage) {
uint32_t bit_pos = uint32_t(u_ffs(stage));
return bit_pos - 1;
}
bool CoreChecks::ValidateViConsistency(VkPipelineVertexInputStateCreateInfo const *vi) const {
// Walk the binding descriptions, which describe the step rate and stride of each vertex buffer. Each binding should
// be specified only once.
layer_data::unordered_map<uint32_t, VkVertexInputBindingDescription const *> bindings;
bool skip = false;
for (unsigned i = 0; i < vi->vertexBindingDescriptionCount; i++) {
auto desc = &vi->pVertexBindingDescriptions[i];
auto &binding = bindings[desc->binding];
if (binding) {
// TODO: "VUID-VkGraphicsPipelineCreateInfo-pStages-00742" perhaps?
skip |= LogError(device, kVUID_Core_Shader_InconsistentVi, "Duplicate vertex input binding descriptions for binding %d",
desc->binding);
} else {
binding = desc;
}
}
return skip;
}
bool CoreChecks::ValidateViAgainstVsInputs(VkPipelineVertexInputStateCreateInfo const *vi, SHADER_MODULE_STATE const *vs,
spirv_inst_iter entrypoint) const {
bool skip = false;
const auto inputs = vs->CollectInterfaceByLocation(entrypoint, spv::StorageClassInput, false);
// Build index by location
std::map<uint32_t, const VkVertexInputAttributeDescription *> attribs;
if (vi) {
for (uint32_t i = 0; i < vi->vertexAttributeDescriptionCount; ++i) {
const auto num_locations = GetLocationsConsumedByFormat(vi->pVertexAttributeDescriptions[i].format);
for (uint32_t j = 0; j < num_locations; ++j) {
attribs[vi->pVertexAttributeDescriptions[i].location + j] = &vi->pVertexAttributeDescriptions[i];
}
}
}
struct AttribInputPair {
const VkVertexInputAttributeDescription *attrib = nullptr;
const interface_var *input = nullptr;
};
std::map<uint32_t, AttribInputPair> location_map;
for (const auto &attrib_it : attribs) location_map[attrib_it.first].attrib = attrib_it.second;
for (const auto &input_it : inputs) location_map[input_it.first.first].input = &input_it.second;
for (const auto &location_it : location_map) {
const auto location = location_it.first;
const auto attrib = location_it.second.attrib;
const auto input = location_it.second.input;
if (attrib && !input) {
skip |= LogPerformanceWarning(vs->vk_shader_module(), kVUID_Core_Shader_OutputNotConsumed,
"Vertex attribute at location %" PRIu32 " not consumed by vertex shader", location);
} else if (!attrib && input) {
skip |= LogError(vs->vk_shader_module(), kVUID_Core_Shader_InputNotProduced,
"Vertex shader consumes input at location %" PRIu32 " but not provided", location);
} else if (attrib && input) {
const auto attrib_type = GetFormatType(attrib->format);
const auto input_type = vs->GetFundamentalType(input->type_id);
// Type checking
if (!(attrib_type & input_type)) {
skip |= LogError(vs->vk_shader_module(), kVUID_Core_Shader_InterfaceTypeMismatch,
"Attribute type of `%s` at location %" PRIu32 " does not match vertex shader input type of `%s`",
string_VkFormat(attrib->format), location, vs->DescribeType(input->type_id).c_str());
}
} else { // !attrib && !input
assert(false); // at least one exists in the map
}
}
return skip;
}
bool CoreChecks::ValidateFsOutputsAgainstRenderPass(SHADER_MODULE_STATE const *fs, spirv_inst_iter entrypoint,
PIPELINE_STATE const *pipeline, uint32_t subpass_index) const {
bool skip = false;
const auto rpci = pipeline->rp_state->createInfo.ptr();
struct Attachment {
const VkAttachmentReference2 *reference = nullptr;
const VkAttachmentDescription2 *attachment = nullptr;
const interface_var *output = nullptr;
};
std::map<uint32_t, Attachment> location_map;
const auto subpass = rpci->pSubpasses[subpass_index];
for (uint32_t i = 0; i < subpass.colorAttachmentCount; ++i) {
auto const &reference = subpass.pColorAttachments[i];
location_map[i].reference = &reference;
if (reference.attachment != VK_ATTACHMENT_UNUSED &&
rpci->pAttachments[reference.attachment].format != VK_FORMAT_UNDEFINED) {
location_map[i].attachment = &rpci->pAttachments[reference.attachment];
}
}
// TODO: dual source blend index (spv::DecIndex, zero if not provided)
const auto outputs = fs->CollectInterfaceByLocation(entrypoint, spv::StorageClassOutput, false);
for (const auto &output_it : outputs) {
auto const location = output_it.first.first;
location_map[location].output = &output_it.second;
}
const bool alpha_to_coverage_enabled = pipeline->graphicsPipelineCI.pMultisampleState != NULL &&
pipeline->graphicsPipelineCI.pMultisampleState->alphaToCoverageEnable == VK_TRUE;
for (const auto &location_it : location_map) {
const auto reference = location_it.second.reference;
if (reference != nullptr && reference->attachment == VK_ATTACHMENT_UNUSED) {
continue;
}
const auto location = location_it.first;
const auto attachment = location_it.second.attachment;
const auto output = location_it.second.output;
if (attachment && !output) {
if (pipeline->attachments[location].colorWriteMask != 0) {
skip |= LogWarning(fs->vk_shader_module(), kVUID_Core_Shader_InputNotProduced,
"Attachment %" PRIu32
" not written by fragment shader; undefined values will be written to attachment",
location);
}
} else if (!attachment && output) {
if (!(alpha_to_coverage_enabled && location == 0)) {
skip |= LogWarning(fs->vk_shader_module(), kVUID_Core_Shader_OutputNotConsumed,
"fragment shader writes to output location %" PRIu32 " with no matching attachment", location);
}
} else if (attachment && output) {
const auto attachment_type = GetFormatType(attachment->format);
const auto output_type = fs->GetFundamentalType(output->type_id);
// Type checking
if (!(output_type & attachment_type)) {
skip |=
LogWarning(fs->vk_shader_module(), kVUID_Core_Shader_InterfaceTypeMismatch,
"Attachment %" PRIu32
" of type `%s` does not match fragment shader output type of `%s`; resulting values are undefined",
location, string_VkFormat(attachment->format), fs->DescribeType(output->type_id).c_str());
}
} else { // !attachment && !output
assert(false); // at least one exists in the map
}
}
const auto output_zero = location_map.count(0) ? location_map[0].output : nullptr;
bool location_zero_has_alpha = output_zero && fs->get_def(output_zero->type_id) != fs->end() &&
fs->GetComponentsConsumedByType(output_zero->type_id, false) == 4;
if (alpha_to_coverage_enabled && !location_zero_has_alpha) {
skip |= LogError(fs->vk_shader_module(), kVUID_Core_Shader_NoAlphaAtLocation0WithAlphaToCoverage,
"fragment shader doesn't declare alpha output at location 0 even though alpha to coverage is enabled.");
}
return skip;
}
PushConstantByteState CoreChecks::ValidatePushConstantSetUpdate(const std::vector<uint8_t> &push_constant_data_update,
const shader_struct_member &push_constant_used_in_shader,
uint32_t &out_issue_index) const {
const auto *used_bytes = push_constant_used_in_shader.GetUsedbytes();
const auto used_bytes_size = used_bytes->size();
if (used_bytes_size == 0) return PC_Byte_Updated;
const auto push_constant_data_update_size = push_constant_data_update.size();
const auto *data = push_constant_data_update.data();
if ((*data == PC_Byte_Updated) && std::memcmp(data, data + 1, push_constant_data_update_size - 1) == 0) {
if (used_bytes_size <= push_constant_data_update_size) {
return PC_Byte_Updated;
}
const auto used_bytes_size1 = used_bytes_size - push_constant_data_update_size;
const auto *used_bytes_data1 = used_bytes->data() + push_constant_data_update_size;
if ((*used_bytes_data1 == 0) && std::memcmp(used_bytes_data1, used_bytes_data1 + 1, used_bytes_size1 - 1) == 0) {
return PC_Byte_Updated;
}
}
uint32_t i = 0;
for (const auto used : *used_bytes) {
if (used) {
if (i >= push_constant_data_update.size() || push_constant_data_update[i] == PC_Byte_Not_Set) {
out_issue_index = i;
return PC_Byte_Not_Set;
} else if (push_constant_data_update[i] == PC_Byte_Not_Updated) {
out_issue_index = i;
return PC_Byte_Not_Updated;
}
}
++i;
}
return PC_Byte_Updated;
}
bool CoreChecks::ValidatePushConstantUsage(const PIPELINE_STATE &pipeline, SHADER_MODULE_STATE const *src,
VkPipelineShaderStageCreateInfo const *pStage, const std::string &vuid) const {
bool skip = false;
// Temp workaround to prevent false positive errors
// https://github.com/KhronosGroup/Vulkan-ValidationLayers/issues/2450
if (src->multiple_entry_points) {
return skip;
}
// Validate directly off the offsets. this isn't quite correct for arrays and matrices, but is a good first step.
const auto *entrypoint = src->FindEntrypointStruct(pStage->pName, pStage->stage);
if (!entrypoint || !entrypoint->push_constant_used_in_shader.IsUsed()) {
return skip;
}
std::vector<VkPushConstantRange> const *push_constant_ranges = pipeline.pipeline_layout->push_constant_ranges.get();
bool found_stage = false;
for (auto const &range : *push_constant_ranges) {
if (range.stageFlags & pStage->stage) {
found_stage = true;
std::string location_desc;
std::vector<uint8_t> push_constant_bytes_set;
if (range.offset > 0) {
push_constant_bytes_set.resize(range.offset, PC_Byte_Not_Set);
}
push_constant_bytes_set.resize(range.offset + range.size, PC_Byte_Updated);
uint32_t issue_index = 0;
const auto ret =
ValidatePushConstantSetUpdate(push_constant_bytes_set, entrypoint->push_constant_used_in_shader, issue_index);
if (ret == PC_Byte_Not_Set) {
const auto loc_descr = entrypoint->push_constant_used_in_shader.GetLocationDesc(issue_index);
LogObjectList objlist(src->vk_shader_module());
objlist.add(pipeline.pipeline_layout->layout());
skip |= LogError(objlist, vuid, "Push constant buffer:%s in %s is out of range in %s.", loc_descr.c_str(),
string_VkShaderStageFlags(pStage->stage).c_str(),
report_data->FormatHandle(pipeline.pipeline_layout->layout()).c_str());
break;
}
}
}
if (!found_stage) {
LogObjectList objlist(src->vk_shader_module());
objlist.add(pipeline.pipeline_layout->layout());
skip |= LogError(objlist, vuid, "Push constant is used in %s of %s. But %s doesn't set %s.",
string_VkShaderStageFlags(pStage->stage).c_str(), report_data->FormatHandle(src->vk_shader_module()).c_str(),
report_data->FormatHandle(pipeline.pipeline_layout->layout()).c_str(),
string_VkShaderStageFlags(pStage->stage).c_str());
}
return skip;
}
bool CoreChecks::ValidateBuiltinLimits(SHADER_MODULE_STATE const *src, const layer_data::unordered_set<uint32_t> &accessible_ids,
VkShaderStageFlagBits stage) const {
bool skip = false;
// Currently all builtin tested are only found in fragment shaders
if (stage != VK_SHADER_STAGE_FRAGMENT_BIT) {
return skip;
}
for (const auto id : accessible_ids) {
auto insn = src->get_def(id);
const decoration_set decorations = src->get_decorations(insn.word(2));
// Built-ins are obtained from OpVariable
if (((decorations.flags & decoration_set::builtin_bit) != 0) && (insn.opcode() == spv::OpVariable)) {
auto type_pointer = src->get_def(insn.word(1));
assert(type_pointer.opcode() == spv::OpTypePointer);
auto type = src->get_def(type_pointer.word(3));
if (type.opcode() == spv::OpTypeArray) {
uint32_t length = static_cast<uint32_t>(src->GetConstantValueById(type.word(3)));
switch (decorations.builtin) {
case spv::BuiltInSampleMask:
// Handles both the input and output sampleMask
if (length > phys_dev_props.limits.maxSampleMaskWords) {
skip |= LogError(device, "VUID-VkPipelineShaderStageCreateInfo-maxSampleMaskWords-00711",
"vkCreateGraphicsPipelines(): The BuiltIns SampleMask array sizes is %u which exceeds "
"maxSampleMaskWords of %u in %s.",
length, phys_dev_props.limits.maxSampleMaskWords,
report_data->FormatHandle(src->vk_shader_module()).c_str());
}
break;
}
}
}
}
return skip;
}
// Validate that data for each specialization entry is fully contained within the buffer.
bool CoreChecks::ValidateSpecializationOffsets(VkPipelineShaderStageCreateInfo const *info) const {
bool skip = false;
VkSpecializationInfo const *spec = info->pSpecializationInfo;
if (spec) {
for (auto i = 0u; i < spec->mapEntryCount; i++) {
if (spec->pMapEntries[i].offset >= spec->dataSize) {
skip |= LogError(device, "VUID-VkSpecializationInfo-offset-00773",
"Specialization entry %u (for constant id %u) references memory outside provided specialization "
"data (bytes %u.." PRINTF_SIZE_T_SPECIFIER "; " PRINTF_SIZE_T_SPECIFIER " bytes provided).",
i, spec->pMapEntries[i].constantID, spec->pMapEntries[i].offset,
spec->pMapEntries[i].offset + spec->dataSize - 1, spec->dataSize);
continue;
}
if (spec->pMapEntries[i].offset + spec->pMapEntries[i].size > spec->dataSize) {
skip |= LogError(device, "VUID-VkSpecializationInfo-pMapEntries-00774",
"Specialization entry %u (for constant id %u) references memory outside provided specialization "
"data (bytes %u.." PRINTF_SIZE_T_SPECIFIER "; " PRINTF_SIZE_T_SPECIFIER " bytes provided).",
i, spec->pMapEntries[i].constantID, spec->pMapEntries[i].offset,
spec->pMapEntries[i].offset + spec->pMapEntries[i].size - 1, spec->dataSize);
}
}
}
return skip;
}
// TODO (jbolz): Can this return a const reference?
static std::set<uint32_t> TypeToDescriptorTypeSet(SHADER_MODULE_STATE const *module, uint32_t type_id, unsigned &descriptor_count,
bool is_khr) {
auto type = module->get_def(type_id);
bool is_storage_buffer = false;
descriptor_count = 1;
std::set<uint32_t> ret;
// Strip off any array or ptrs. Where we remove array levels, adjust the descriptor count for each dimension.
while (type.opcode() == spv::OpTypeArray || type.opcode() == spv::OpTypePointer || type.opcode() == spv::OpTypeRuntimeArray) {
if (type.opcode() == spv::OpTypeRuntimeArray) {
descriptor_count = 0;
type = module->get_def(type.word(2));
} else if (type.opcode() == spv::OpTypeArray) {
descriptor_count *= module->GetConstantValueById(type.word(3));
type = module->get_def(type.word(2));
} else {
if (type.word(2) == spv::StorageClassStorageBuffer) {
is_storage_buffer = true;
}
type = module->get_def(type.word(3));
}
}
switch (type.opcode()) {
case spv::OpTypeStruct: {
for (auto insn : module->decoration_inst) {
if (insn.word(1) == type.word(1)) {
if (insn.word(2) == spv::DecorationBlock) {
if (is_storage_buffer) {
ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC);
return ret;
} else {
ret.insert(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER);
ret.insert(VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC);
ret.insert(VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT);
return ret;
}
} else if (insn.word(2) == spv::DecorationBufferBlock) {
ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER);
ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC);
return ret;
}
}
}
// Invalid
return ret;
}
case spv::OpTypeSampler:
ret.insert(VK_DESCRIPTOR_TYPE_SAMPLER);
ret.insert(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
return ret;
case spv::OpTypeSampledImage: {
// Slight relaxation for some GLSL historical madness: samplerBuffer doesn't really have a sampler, and a texel
// buffer descriptor doesn't really provide one. Allow this slight mismatch.
auto image_type = module->get_def(type.word(2));
auto dim = image_type.word(3);
auto sampled = image_type.word(7);
if (dim == spv::DimBuffer && sampled == 1) {
ret.insert(VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER);
return ret;
}
}
ret.insert(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
return ret;
case spv::OpTypeImage: {
// Many descriptor types backing image types-- depends on dimension and whether the image will be used with a sampler.
// SPIRV for Vulkan requires that sampled be 1 or 2 -- leaving the decision to runtime is unacceptable.
auto dim = type.word(3);
auto sampled = type.word(7);
if (dim == spv::DimSubpassData) {
ret.insert(VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT);
return ret;
} else if (dim == spv::DimBuffer) {
if (sampled == 1) {
ret.insert(VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER);
return ret;
} else {
ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER);
return ret;
}
} else if (sampled == 1) {
ret.insert(VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE);
ret.insert(VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
return ret;
} else {
ret.insert(VK_DESCRIPTOR_TYPE_STORAGE_IMAGE);
return ret;
}
}
case spv::OpTypeAccelerationStructureNV:
is_khr ? ret.insert(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR)
: ret.insert(VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_NV);
return ret;
// We shouldn't really see any other junk types -- but if we do, they're a mismatch.
default:
return ret; // Matches nothing
}
}
static std::string string_descriptorTypes(const std::set<uint32_t> &descriptor_types) {
std::stringstream ss;
for (auto it = descriptor_types.begin(); it != descriptor_types.end(); ++it) {
if (ss.tellp()) ss << ", ";
ss << string_VkDescriptorType(VkDescriptorType(*it));
}
return ss.str();
}
bool CoreChecks::RequirePropertyFlag(VkBool32 check, char const *flag, char const *structure, const char *vuid) const {
if (!check) {
if (LogError(device, vuid, "Shader requires flag %s set in %s but it is not set on the device", flag, structure)) {
return true;
}
}
return false;
}
bool CoreChecks::RequireFeature(VkBool32 feature, char const *feature_name, const char *vuid) const {
if (!feature) {
if (LogError(device, vuid, "Shader requires %s but is not enabled on the device", feature_name)) {
return true;
}
}
return false;
}
bool CoreChecks::ValidateShaderStageWritableOrAtomicDescriptor(VkShaderStageFlagBits stage, bool has_writable_descriptor,
bool has_atomic_descriptor) const {
bool skip = false;
if (has_writable_descriptor || has_atomic_descriptor) {
switch (stage) {
case VK_SHADER_STAGE_COMPUTE_BIT:
case VK_SHADER_STAGE_RAYGEN_BIT_NV:
case VK_SHADER_STAGE_ANY_HIT_BIT_NV:
case VK_SHADER_STAGE_CLOSEST_HIT_BIT_NV:
case VK_SHADER_STAGE_MISS_BIT_NV:
case VK_SHADER_STAGE_INTERSECTION_BIT_NV:
case VK_SHADER_STAGE_CALLABLE_BIT_NV:
case VK_SHADER_STAGE_TASK_BIT_NV:
case VK_SHADER_STAGE_MESH_BIT_NV:
/* No feature requirements for writes and atomics from compute
* raytracing, or mesh stages */
break;
case VK_SHADER_STAGE_FRAGMENT_BIT:
skip |= RequireFeature(enabled_features.core.fragmentStoresAndAtomics, "fragmentStoresAndAtomics",
kVUID_Core_Shader_FeatureNotEnabled);
break;
default:
skip |= RequireFeature(enabled_features.core.vertexPipelineStoresAndAtomics, "vertexPipelineStoresAndAtomics",
kVUID_Core_Shader_FeatureNotEnabled);
break;
}
}
return skip;
}
bool CoreChecks::ValidateShaderStageGroupNonUniform(SHADER_MODULE_STATE const *module, VkShaderStageFlagBits stage,
spirv_inst_iter &insn) const {
bool skip = false;
// Check anything using a group operation (which currently is only OpGroupNonUnifrom* operations)
if (GroupOperation(insn.opcode()) == true) {
// Check the quad operations.
if ((insn.opcode() == spv::OpGroupNonUniformQuadBroadcast) || (insn.opcode() == spv::OpGroupNonUniformQuadSwap)) {
if ((stage != VK_SHADER_STAGE_FRAGMENT_BIT) && (stage != VK_SHADER_STAGE_COMPUTE_BIT)) {
skip |= RequireFeature(phys_dev_props_core11.subgroupQuadOperationsInAllStages,
"VkPhysicalDeviceSubgroupProperties::quadOperationsInAllStages",
kVUID_Core_Shader_FeatureNotEnabled);
}
}
uint32_t scope_type = spv::ScopeMax;
if (insn.opcode() == spv::OpGroupNonUniformPartitionNV) {
// OpGroupNonUniformPartitionNV always assumed subgroup as missing operand
scope_type = spv::ScopeSubgroup;
} else {
// "All <id> used for Scope <id> must be of an OpConstant"
auto scope_id = module->get_def(insn.word(3));
scope_type = scope_id.word(3);
}
if (scope_type == spv::ScopeSubgroup) {
// "Group operations with subgroup scope" must have stage support
const VkSubgroupFeatureFlags supported_stages = phys_dev_props_core11.subgroupSupportedStages;
skip |= RequirePropertyFlag(supported_stages & stage, string_VkShaderStageFlagBits(stage),
"VkPhysicalDeviceSubgroupProperties::supportedStages", kVUID_Core_Shader_ExceedDeviceLimit);
}
if (!enabled_features.core12.shaderSubgroupExtendedTypes) {
auto type = module->get_def(insn.word(1));
if (type.opcode() == spv::OpTypeVector) {
// Get the element type
type = module->get_def(type.word(2));
}
if (type.opcode() != spv::OpTypeBool) {
// Both OpTypeInt and OpTypeFloat the width is in the 2nd word.
const uint32_t width = type.word(2);
if ((type.opcode() == spv::OpTypeFloat && width == 16) ||
(type.opcode() == spv::OpTypeInt && (width == 8 || width == 16 || width == 64))) {
skip |= RequireFeature(enabled_features.core12.shaderSubgroupExtendedTypes,
"VkPhysicalDeviceShaderSubgroupExtendedTypesFeatures::shaderSubgroupExtendedTypes",
kVUID_Core_Shader_FeatureNotEnabled);
}
}
}
}
return skip;
}
bool CoreChecks::ValidateShaderStageInputOutputLimits(SHADER_MODULE_STATE const *src, VkPipelineShaderStageCreateInfo const *pStage,
const PIPELINE_STATE *pipeline, spirv_inst_iter entrypoint) const {
if (pStage->stage == VK_SHADER_STAGE_COMPUTE_BIT || pStage->stage == VK_SHADER_STAGE_ALL_GRAPHICS ||
pStage->stage == VK_SHADER_STAGE_ALL) {
return false;
}
bool skip = false;
auto const &limits = phys_dev_props.limits;
std::set<uint32_t> patch_i_ds;
struct Variable {
uint32_t baseTypePtrID;
uint32_t ID;
uint32_t storageClass;
};
std::vector<Variable> variables;
uint32_t num_vertices = 0;
bool is_iso_lines = false;
bool is_point_mode = false;
auto entrypoint_variables = FindEntrypointInterfaces(entrypoint);
for (auto insn : *src) {
switch (insn.opcode()) {
// Find all Patch decorations
case spv::OpDecorate:
switch (insn.word(2)) {
case spv::DecorationPatch: {
patch_i_ds.insert(insn.word(1));
break;
}
default:
break;
}
break;
// Find all input and output variables
case spv::OpVariable: {
Variable var = {};
var.storageClass = insn.word(3);
if ((var.storageClass == spv::StorageClassInput || var.storageClass == spv::StorageClassOutput) &&
// Only include variables in the entrypoint's interface
find(entrypoint_variables.begin(), entrypoint_variables.end(), insn.word(2)) != entrypoint_variables.end()) {
var.baseTypePtrID = insn.word(1);
var.ID = insn.word(2);
variables.push_back(var);
}
break;
}
case spv::OpExecutionMode:
if (insn.word(1) == entrypoint.word(2)) {
switch (insn.word(2)) {
default:
break;
case spv::ExecutionModeOutputVertices:
num_vertices = insn.word(3);
break;
case spv::ExecutionModeIsolines:
is_iso_lines = true;
break;
case spv::ExecutionModePointMode:
is_point_mode = true;
break;
}
}
break;
default:
break;
}
}
bool strip_output_array_level =
(pStage->stage == VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT || pStage->stage == VK_SHADER_STAGE_MESH_BIT_NV);
bool strip_input_array_level =
(pStage->stage == VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT ||
pStage->stage == VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT || pStage->stage == VK_SHADER_STAGE_GEOMETRY_BIT);
uint32_t num_comp_in = 0, num_comp_out = 0;
int max_comp_in = 0, max_comp_out = 0;
auto inputs = src->CollectInterfaceByLocation(entrypoint, spv::StorageClassInput, strip_input_array_level);
auto outputs = src->CollectInterfaceByLocation(entrypoint, spv::StorageClassOutput, strip_output_array_level);
// Find max component location used for input variables.
for (auto &var : inputs) {
int location = var.first.first;
int component = var.first.second;
interface_var &iv = var.second;
// Only need to look at the first location, since we use the type's whole size
if (iv.offset != 0) {
continue;
}
if (iv.is_patch) {
continue;
}
int num_components = src->GetComponentsConsumedByType(iv.type_id, strip_input_array_level);
max_comp_in = std::max(max_comp_in, location * 4 + component + num_components);
}
// Find max component location used for output variables.
for (auto &var : outputs) {
int location = var.first.first;
int component = var.first.second;
interface_var &iv = var.second;
// Only need to look at the first location, since we use the type's whole size
if (iv.offset != 0) {
continue;
}
if (iv.is_patch) {
continue;
}
int num_components = src->GetComponentsConsumedByType(iv.type_id, strip_output_array_level);
max_comp_out = std::max(max_comp_out, location * 4 + component + num_components);
}
// XXX TODO: Would be nice to rewrite this to use CollectInterfaceByLocation (or something similar),
// but that doesn't include builtins.
for (auto &var : variables) {
// Check if the variable is a patch. Patches can also be members of blocks,
// but if they are then the top-level arrayness has already been stripped
// by the time GetComponentsConsumedByType gets to it.
bool is_patch = patch_i_ds.find(var.ID) != patch_i_ds.end();
if (var.storageClass == spv::StorageClassInput) {
num_comp_in += src->GetComponentsConsumedByType(var.baseTypePtrID, strip_input_array_level && !is_patch);
} else { // var.storageClass == spv::StorageClassOutput
num_comp_out += src->GetComponentsConsumedByType(var.baseTypePtrID, strip_output_array_level && !is_patch);
}
}
switch (pStage->stage) {
case VK_SHADER_STAGE_VERTEX_BIT:
if (num_comp_out > limits.maxVertexOutputComponents) {
skip |= LogError(pipeline->pipeline(), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Vertex shader exceeds "
"VkPhysicalDeviceLimits::maxVertexOutputComponents of %u "
"components by %u components",
limits.maxVertexOutputComponents, num_comp_out - limits.maxVertexOutputComponents);
}
if (max_comp_out > static_cast<int>(limits.maxVertexOutputComponents)) {
skip |= LogError(pipeline->pipeline(), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Vertex shader output variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxVertexOutputComponents (%u)",
limits.maxVertexOutputComponents);
}
break;
case VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT:
if (num_comp_in > limits.maxTessellationControlPerVertexInputComponents) {
skip |= LogError(pipeline->pipeline(), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Tessellation control shader exceeds "
"VkPhysicalDeviceLimits::maxTessellationControlPerVertexInputComponents of %u "
"components by %u components",
limits.maxTessellationControlPerVertexInputComponents,
num_comp_in - limits.maxTessellationControlPerVertexInputComponents);
}
if (max_comp_in > static_cast<int>(limits.maxTessellationControlPerVertexInputComponents)) {
skip |=
LogError(pipeline->pipeline(), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Tessellation control shader input variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxTessellationControlPerVertexInputComponents (%u)",
limits.maxTessellationControlPerVertexInputComponents);
}
if (num_comp_out > limits.maxTessellationControlPerVertexOutputComponents) {
skip |= LogError(pipeline->pipeline(), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Tessellation control shader exceeds "
"VkPhysicalDeviceLimits::maxTessellationControlPerVertexOutputComponents of %u "
"components by %u components",
limits.maxTessellationControlPerVertexOutputComponents,
num_comp_out - limits.maxTessellationControlPerVertexOutputComponents);
}
if (max_comp_out > static_cast<int>(limits.maxTessellationControlPerVertexOutputComponents)) {
skip |=
LogError(pipeline->pipeline(), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Tessellation control shader output variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxTessellationControlPerVertexOutputComponents (%u)",
limits.maxTessellationControlPerVertexOutputComponents);
}
break;
case VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT:
if (num_comp_in > limits.maxTessellationEvaluationInputComponents) {
skip |= LogError(pipeline->pipeline(), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Tessellation evaluation shader exceeds "
"VkPhysicalDeviceLimits::maxTessellationEvaluationInputComponents of %u "
"components by %u components",
limits.maxTessellationEvaluationInputComponents,
num_comp_in - limits.maxTessellationEvaluationInputComponents);
}
if (max_comp_in > static_cast<int>(limits.maxTessellationEvaluationInputComponents)) {
skip |=
LogError(pipeline->pipeline(), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Tessellation evaluation shader input variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxTessellationEvaluationInputComponents (%u)",
limits.maxTessellationEvaluationInputComponents);
}
if (num_comp_out > limits.maxTessellationEvaluationOutputComponents) {
skip |= LogError(pipeline->pipeline(), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Tessellation evaluation shader exceeds "
"VkPhysicalDeviceLimits::maxTessellationEvaluationOutputComponents of %u "
"components by %u components",
limits.maxTessellationEvaluationOutputComponents,
num_comp_out - limits.maxTessellationEvaluationOutputComponents);
}
if (max_comp_out > static_cast<int>(limits.maxTessellationEvaluationOutputComponents)) {
skip |=
LogError(pipeline->pipeline(), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Tessellation evaluation shader output variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxTessellationEvaluationOutputComponents (%u)",
limits.maxTessellationEvaluationOutputComponents);
}
// Portability validation
if (IsExtEnabled(device_extensions.vk_khr_portability_subset)) {
if (is_iso_lines && (VK_FALSE == enabled_features.portability_subset_features.tessellationIsolines)) {
skip |= LogError(pipeline->pipeline(), kVUID_Portability_Tessellation_Isolines,
"Invalid Pipeline CreateInfo state (portability error): Tessellation evaluation shader"
" is using abstract patch type IsoLines, but this is not supported on this platform");
}
if (is_point_mode && (VK_FALSE == enabled_features.portability_subset_features.tessellationPointMode)) {
skip |= LogError(pipeline->pipeline(), kVUID_Portability_Tessellation_PointMode,
"Invalid Pipeline CreateInfo state (portability error): Tessellation evaluation shader"
" is using abstract patch type PointMode, but this is not supported on this platform");
}
}
break;
case VK_SHADER_STAGE_GEOMETRY_BIT:
if (num_comp_in > limits.maxGeometryInputComponents) {
skip |= LogError(pipeline->pipeline(), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Geometry shader exceeds "
"VkPhysicalDeviceLimits::maxGeometryInputComponents of %u "
"components by %u components",
limits.maxGeometryInputComponents, num_comp_in - limits.maxGeometryInputComponents);
}
if (max_comp_in > static_cast<int>(limits.maxGeometryInputComponents)) {
skip |= LogError(pipeline->pipeline(), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Geometry shader input variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxGeometryInputComponents (%u)",
limits.maxGeometryInputComponents);
}
if (num_comp_out > limits.maxGeometryOutputComponents) {
skip |= LogError(pipeline->pipeline(), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Geometry shader exceeds "
"VkPhysicalDeviceLimits::maxGeometryOutputComponents of %u "
"components by %u components",
limits.maxGeometryOutputComponents, num_comp_out - limits.maxGeometryOutputComponents);
}
if (max_comp_out > static_cast<int>(limits.maxGeometryOutputComponents)) {
skip |= LogError(pipeline->pipeline(), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Geometry shader output variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxGeometryOutputComponents (%u)",
limits.maxGeometryOutputComponents);
}
if (num_comp_out * num_vertices > limits.maxGeometryTotalOutputComponents) {
skip |= LogError(pipeline->pipeline(), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Geometry shader exceeds "
"VkPhysicalDeviceLimits::maxGeometryTotalOutputComponents of %u "
"components by %u components",
limits.maxGeometryTotalOutputComponents,
num_comp_out * num_vertices - limits.maxGeometryTotalOutputComponents);
}
break;
case VK_SHADER_STAGE_FRAGMENT_BIT:
if (num_comp_in > limits.maxFragmentInputComponents) {
skip |= LogError(pipeline->pipeline(), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Fragment shader exceeds "
"VkPhysicalDeviceLimits::maxFragmentInputComponents of %u "
"components by %u components",
limits.maxFragmentInputComponents, num_comp_in - limits.maxFragmentInputComponents);
}
if (max_comp_in > static_cast<int>(limits.maxFragmentInputComponents)) {
skip |= LogError(pipeline->pipeline(), kVUID_Core_Shader_ExceedDeviceLimit,
"Invalid Pipeline CreateInfo State: Fragment shader input variable uses location that "
"exceeds component limit VkPhysicalDeviceLimits::maxFragmentInputComponents (%u)",
limits.maxFragmentInputComponents);
}
break;
case VK_SHADER_STAGE_RAYGEN_BIT_NV:
case VK_SHADER_STAGE_ANY_HIT_BIT_NV:
case VK_SHADER_STAGE_CLOSEST_HIT_BIT_NV:
case VK_SHADER_STAGE_MISS_BIT_NV:
case VK_SHADER_STAGE_INTERSECTION_BIT_NV:
case VK_SHADER_STAGE_CALLABLE_BIT_NV:
case VK_SHADER_STAGE_TASK_BIT_NV:
case VK_SHADER_STAGE_MESH_BIT_NV:
break;
default:
assert(false); // This should never happen
}
return skip;
}
bool CoreChecks::ValidateShaderStageMaxResources(VkShaderStageFlagBits stage, const PIPELINE_STATE *pipeline) const {
bool skip = false;
uint32_t total_resources = 0;
// Only currently testing for graphics and compute pipelines
// TODO: Add check and support for Ray Tracing pipeline VUID 03428
if ((stage & (VK_SHADER_STAGE_ALL_GRAPHICS | VK_SHADER_STAGE_COMPUTE_BIT)) == 0) {
return false;
}
if (stage == VK_SHADER_STAGE_FRAGMENT_BIT) {
// "For the fragment shader stage the framebuffer color attachments also count against this limit"
total_resources += pipeline->rp_state->createInfo.pSubpasses[pipeline->graphicsPipelineCI.subpass].colorAttachmentCount;
}
// TODO: This reuses a lot of GetDescriptorCountMaxPerStage but currently would need to make it agnostic in a way to handle
// input from CreatePipeline and CreatePipelineLayout level
for (auto set_layout : pipeline->pipeline_layout->set_layouts) {
if ((set_layout->GetCreateFlags() & VK_DESCRIPTOR_SET_LAYOUT_CREATE_UPDATE_AFTER_BIND_POOL_BIT) != 0) {
continue;
}
for (uint32_t binding_idx = 0; binding_idx < set_layout->GetBindingCount(); binding_idx++) {
const VkDescriptorSetLayoutBinding *binding = set_layout->GetDescriptorSetLayoutBindingPtrFromIndex(binding_idx);
// Bindings with a descriptorCount of 0 are "reserved" and should be skipped
if (((stage & binding->stageFlags) != 0) && (binding->descriptorCount > 0)) {
// Check only descriptor types listed in maxPerStageResources description in spec
switch (binding->descriptorType) {
case VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER:
case VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE:
case VK_DESCRIPTOR_TYPE_STORAGE_IMAGE:
case VK_DESCRIPTOR_TYPE_UNIFORM_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_TEXEL_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER:
case VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_STORAGE_BUFFER_DYNAMIC:
case VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT:
total_resources += binding->descriptorCount;
break;
default:
break;
}
}
}
}
if (total_resources > phys_dev_props.limits.maxPerStageResources) {
const char *vuid = (stage == VK_SHADER_STAGE_COMPUTE_BIT) ? "VUID-VkComputePipelineCreateInfo-layout-01687"
: "VUID-VkGraphicsPipelineCreateInfo-layout-01688";
skip |= LogError(pipeline->pipeline(), vuid,
"Invalid Pipeline CreateInfo State: Shader Stage %s exceeds component limit "
"VkPhysicalDeviceLimits::maxPerStageResources (%u)",
string_VkShaderStageFlagBits(stage), phys_dev_props.limits.maxPerStageResources);
}
return skip;
}
// copy the specialization constant value into buf, if it is present
void GetSpecConstantValue(VkPipelineShaderStageCreateInfo const *pStage, uint32_t spec_id, void *buf) {
VkSpecializationInfo const *spec = pStage->pSpecializationInfo;
if (spec && spec_id < spec->mapEntryCount) {
memcpy(buf, (uint8_t *)spec->pData + spec->pMapEntries[spec_id].offset, spec->pMapEntries[spec_id].size);
}
}
// Fill in value with the constant or specialization constant value, if available.
// Returns true if the value has been accurately filled out.
static bool GetIntConstantValue(spirv_inst_iter insn, SHADER_MODULE_STATE const *src, VkPipelineShaderStageCreateInfo const *pStage,
const layer_data::unordered_map<uint32_t, uint32_t> &id_to_spec_id, uint32_t *value) {
auto type_id = src->get_def(insn.word(1));
if (type_id.opcode() != spv::OpTypeInt || type_id.word(2) != 32) {
return false;
}
switch (insn.opcode()) {
case spv::OpSpecConstant:
*value = insn.word(3);
GetSpecConstantValue(pStage, id_to_spec_id.at(insn.word(2)), value);
return true;
case spv::OpConstant:
*value = insn.word(3);
return true;
default:
return false;
}
}
// Map SPIR-V type to VK_COMPONENT_TYPE enum
VkComponentTypeNV GetComponentType(spirv_inst_iter insn, SHADER_MODULE_STATE const *src) {
switch (insn.opcode()) {
case spv::OpTypeInt:
switch (insn.word(2)) {
case 8:
return insn.word(3) != 0 ? VK_COMPONENT_TYPE_SINT8_NV : VK_COMPONENT_TYPE_UINT8_NV;
case 16:
return insn.word(3) != 0 ? VK_COMPONENT_TYPE_SINT16_NV : VK_COMPONENT_TYPE_UINT16_NV;
case 32:
return insn.word(3) != 0 ? VK_COMPONENT_TYPE_SINT32_NV : VK_COMPONENT_TYPE_UINT32_NV;
case 64:
return insn.word(3) != 0 ? VK_COMPONENT_TYPE_SINT64_NV : VK_COMPONENT_TYPE_UINT64_NV;
default:
return VK_COMPONENT_TYPE_MAX_ENUM_NV;
}
case spv::OpTypeFloat:
switch (insn.word(2)) {
case 16:
return VK_COMPONENT_TYPE_FLOAT16_NV;
case 32:
return VK_COMPONENT_TYPE_FLOAT32_NV;
case 64:
return VK_COMPONENT_TYPE_FLOAT64_NV;
default:
return VK_COMPONENT_TYPE_MAX_ENUM_NV;
}
default:
return VK_COMPONENT_TYPE_MAX_ENUM_NV;
}
}
// Validate SPV_NV_cooperative_matrix behavior that can't be statically validated
// in SPIRV-Tools (e.g. due to specialization constant usage).
bool CoreChecks::ValidateCooperativeMatrix(SHADER_MODULE_STATE const *src, VkPipelineShaderStageCreateInfo const *pStage,
const PIPELINE_STATE *pipeline) const {
bool skip = false;
// Map SPIR-V result ID to specialization constant id (SpecId decoration value)
layer_data::unordered_map<uint32_t, uint32_t> id_to_spec_id;
// Map SPIR-V result ID to the ID of its type.
layer_data::unordered_map<uint32_t, uint32_t> id_to_type_id;
struct CoopMatType {
uint32_t scope, rows, cols;
VkComponentTypeNV component_type;
bool all_constant;
CoopMatType() : scope(0), rows(0), cols(0), component_type(VK_COMPONENT_TYPE_MAX_ENUM_NV), all_constant(false) {}
void Init(uint32_t id, SHADER_MODULE_STATE const *src, VkPipelineShaderStageCreateInfo const *pStage,
const layer_data::unordered_map<uint32_t, uint32_t> &id_to_spec_id) {
spirv_inst_iter insn = src->get_def(id);
uint32_t component_type_id = insn.word(2);
uint32_t scope_id = insn.word(3);
uint32_t rows_id = insn.word(4);
uint32_t cols_id = insn.word(5);
auto component_type_iter = src->get_def(component_type_id);
auto scope_iter = src->get_def(scope_id);
auto rows_iter = src->get_def(rows_id);
auto cols_iter = src->get_def(cols_id);
all_constant = true;
if (!GetIntConstantValue(scope_iter, src, pStage, id_to_spec_id, &scope)) {
all_constant = false;
}
if (!GetIntConstantValue(rows_iter, src, pStage, id_to_spec_id, &rows)) {
all_constant = false;
}
if (!GetIntConstantValue(cols_iter, src, pStage, id_to_spec_id, &cols)) {
all_constant = false;
}
component_type = GetComponentType(component_type_iter, src);
}
};
bool seen_coopmat_capability = false;
for (auto insn : *src) {
// Whitelist instructions whose result can be a cooperative matrix type, and
// keep track of their types. It would be nice if SPIRV-Headers generated code
// to identify which instructions have a result type and result id. Lacking that,
// this whitelist is based on the set of instructions that
// SPV_NV_cooperative_matrix says can be used with cooperative matrix types.
switch (insn.opcode()) {
case spv::OpLoad:
case spv::OpCooperativeMatrixLoadNV:
case spv::OpCooperativeMatrixMulAddNV:
case spv::OpSNegate:
case spv::OpFNegate:
case spv::OpIAdd:
case spv::OpFAdd:
case spv::OpISub:
case spv::OpFSub:
case spv::OpFDiv:
case spv::OpSDiv:
case spv::OpUDiv:
case spv::OpMatrixTimesScalar:
case spv::OpConstantComposite:
case spv::OpCompositeConstruct:
case spv::OpConvertFToU:
case spv::OpConvertFToS:
case spv::OpConvertSToF:
case spv::OpConvertUToF:
case spv::OpUConvert:
case spv::OpSConvert:
case spv::OpFConvert:
id_to_type_id[insn.word(2)] = insn.word(1);
break;
default:
break;
}
switch (insn.opcode()) {
case spv::OpDecorate:
if (insn.word(2) == spv::DecorationSpecId) {
id_to_spec_id[insn.word(1)] = insn.word(3);
}
break;
case spv::OpCapability:
if (insn.word(1) == spv::CapabilityCooperativeMatrixNV) {
seen_coopmat_capability = true;
if (!(pStage->stage & phys_dev_ext_props.cooperative_matrix_props.cooperativeMatrixSupportedStages)) {
skip |= LogError(
pipeline->pipeline(), kVUID_Core_Shader_CooperativeMatrixSupportedStages,
"OpTypeCooperativeMatrixNV used in shader stage not in cooperativeMatrixSupportedStages (= %u)",
phys_dev_ext_props.cooperative_matrix_props.cooperativeMatrixSupportedStages);
}
}
break;
case spv::OpMemoryModel:
// If the capability isn't enabled, don't bother with the rest of this function.
// OpMemoryModel is the first required instruction after all OpCapability instructions.
if (!seen_coopmat_capability) {
return skip;
}
break;
case spv::OpTypeCooperativeMatrixNV: {
CoopMatType m;
m.Init(insn.word(1), src, pStage, id_to_spec_id);
if (m.all_constant) {
// Validate that the type parameters are all supported for one of the
// operands of a cooperative matrix property.
bool valid = false;
for (unsigned i = 0; i < cooperative_matrix_properties.size(); ++i) {
if (cooperative_matrix_properties[i].AType == m.component_type &&
cooperative_matrix_properties[i].MSize == m.rows && cooperative_matrix_properties[i].KSize == m.cols &&
cooperative_matrix_properties[i].scope == m.scope) {
valid = true;
break;
}
if (cooperative_matrix_properties[i].BType == m.component_type &&
cooperative_matrix_properties[i].KSize == m.rows && cooperative_matrix_properties[i].NSize == m.cols &&
cooperative_matrix_properties[i].scope == m.scope) {
valid = true;
break;
}
if (cooperative_matrix_properties[i].CType == m.component_type &&
cooperative_matrix_properties[i].MSize == m.rows && cooperative_matrix_properties[i].NSize == m.cols &&
cooperative_matrix_properties[i].scope == m.scope) {
valid = true;
break;
}
if (cooperative_matrix_properties[i].DType == m.component_type &&
cooperative_matrix_properties[i].MSize == m.rows && cooperative_matrix_properties[i].NSize == m.cols &&
cooperative_matrix_properties[i].scope == m.scope) {
valid = true;
break;
}
}
if (!valid) {
skip |= LogError(pipeline->pipeline(), kVUID_Core_Shader_CooperativeMatrixType,
"OpTypeCooperativeMatrixNV (result id = %u) operands don't match a supported matrix type",
insn.word(1));
}
}
break;
}
case spv::OpCooperativeMatrixMulAddNV: {
CoopMatType a, b, c, d;
if (id_to_type_id.find(insn.word(2)) == id_to_type_id.end() ||
id_to_type_id.find(insn.word(3)) == id_to_type_id.end() ||
id_to_type_id.find(insn.word(4)) == id_to_type_id.end() ||
id_to_type_id.find(insn.word(5)) == id_to_type_id.end()) {
// Couldn't find type of matrix
assert(false);
break;
}
d.Init(id_to_type_id[insn.word(2)], src, pStage, id_to_spec_id);
a.Init(id_to_type_id[insn.word(3)], src, pStage, id_to_spec_id);
b.Init(id_to_type_id[insn.word(4)], src, pStage, id_to_spec_id);
c.Init(id_to_type_id[insn.word(5)], src, pStage, id_to_spec_id);
if (a.all_constant && b.all_constant && c.all_constant && d.all_constant) {
// Validate that the type parameters are all supported for the same
// cooperative matrix property.
bool valid = false;
for (unsigned i = 0; i < cooperative_matrix_properties.size(); ++i) {
if (cooperative_matrix_properties[i].AType == a.component_type &&
cooperative_matrix_properties[i].MSize == a.rows && cooperative_matrix_properties[i].KSize == a.cols &&
cooperative_matrix_properties[i].scope == a.scope &&
cooperative_matrix_properties[i].BType == b.component_type &&
cooperative_matrix_properties[i].KSize == b.rows && cooperative_matrix_properties[i].NSize == b.cols &&
cooperative_matrix_properties[i].scope == b.scope &&
cooperative_matrix_properties[i].CType == c.component_type &&
cooperative_matrix_properties[i].MSize == c.rows && cooperative_matrix_properties[i].NSize == c.cols &&
cooperative_matrix_properties[i].scope == c.scope &&
cooperative_matrix_properties[i].DType == d.component_type &&
cooperative_matrix_properties[i].MSize == d.rows && cooperative_matrix_properties[i].NSize == d.cols &&
cooperative_matrix_properties[i].scope == d.scope) {
valid = true;
break;
}
}
if (!valid) {
skip |= LogError(pipeline->pipeline(), kVUID_Core_Shader_CooperativeMatrixMulAdd,
"OpCooperativeMatrixMulAddNV (result id = %u) operands don't match a supported matrix "
"VkCooperativeMatrixPropertiesNV",
insn.word(2));
}
}
break;
}
default:
break;
}
}
return skip;
}
bool CoreChecks::ValidateExecutionModes(SHADER_MODULE_STATE const *src, spirv_inst_iter entrypoint) const {
auto entrypoint_id = entrypoint.word(2);
// The first denorm execution mode encountered, along with its bit width.
// Used to check if SeparateDenormSettings is respected.
std::pair<spv::ExecutionMode, uint32_t> first_denorm_execution_mode = std::make_pair(spv::ExecutionModeMax, 0);
// The first rounding mode encountered, along with its bit width.
// Used to check if SeparateRoundingModeSettings is respected.
std::pair<spv::ExecutionMode, uint32_t> first_rounding_mode = std::make_pair(spv::ExecutionModeMax, 0);
bool skip = false;
uint32_t vertices_out = 0;
uint32_t invocations = 0;
auto it = src->execution_mode_inst.find(entrypoint_id);
if (it != src->execution_mode_inst.end()) {
for (auto insn : it->second) {
auto mode = insn.word(2);
switch (mode) {
case spv::ExecutionModeSignedZeroInfNanPreserve: {
auto bit_width = insn.word(3);
if ((bit_width == 16 && !phys_dev_props_core12.shaderSignedZeroInfNanPreserveFloat16) ||
(bit_width == 32 && !phys_dev_props_core12.shaderSignedZeroInfNanPreserveFloat32) ||
(bit_width == 64 && !phys_dev_props_core12.shaderSignedZeroInfNanPreserveFloat64)) {
skip |= LogError(
device, kVUID_Core_Shader_FeatureNotEnabled,
"Shader requires SignedZeroInfNanPreserve for bit width %d but it is not enabled on the device",
bit_width);
}
break;
}
case spv::ExecutionModeDenormPreserve: {
auto bit_width = insn.word(3);
if ((bit_width == 16 && !phys_dev_props_core12.shaderDenormPreserveFloat16) ||
(bit_width == 32 && !phys_dev_props_core12.shaderDenormPreserveFloat32) ||
(bit_width == 64 && !phys_dev_props_core12.shaderDenormPreserveFloat64)) {
skip |= LogError(device, kVUID_Core_Shader_FeatureNotEnabled,
"Shader requires DenormPreserve for bit width %d but it is not enabled on the device",
bit_width);
}
if (first_denorm_execution_mode.first == spv::ExecutionModeMax) {
// Register the first denorm execution mode found
first_denorm_execution_mode = std::make_pair(static_cast<spv::ExecutionMode>(mode), bit_width);
} else if (first_denorm_execution_mode.first != mode && first_denorm_execution_mode.second != bit_width) {
switch (phys_dev_props_core12.denormBehaviorIndependence) {
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY:
if (first_rounding_mode.second != 32 && bit_width != 32) {
skip |= LogError(device, kVUID_Core_Shader_FeatureNotEnabled,
"Shader uses different denorm execution modes for 16 and 64-bit but "
"denormBehaviorIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY on the device");
}
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL:
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE:
skip |= LogError(device, kVUID_Core_Shader_FeatureNotEnabled,
"Shader uses different denorm execution modes for different bit widths but "
"denormBehaviorIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE on the device");
break;
default:
break;
}
}
break;
}
case spv::ExecutionModeDenormFlushToZero: {
auto bit_width = insn.word(3);
if ((bit_width == 16 && !phys_dev_props_core12.shaderDenormFlushToZeroFloat16) ||
(bit_width == 32 && !phys_dev_props_core12.shaderDenormFlushToZeroFloat32) ||
(bit_width == 64 && !phys_dev_props_core12.shaderDenormFlushToZeroFloat64)) {
skip |= LogError(device, kVUID_Core_Shader_FeatureNotEnabled,
"Shader requires DenormFlushToZero for bit width %d but it is not enabled on the device",
bit_width);
}
if (first_denorm_execution_mode.first == spv::ExecutionModeMax) {
// Register the first denorm execution mode found
first_denorm_execution_mode = std::make_pair(static_cast<spv::ExecutionMode>(mode), bit_width);
} else if (first_denorm_execution_mode.first != mode && first_denorm_execution_mode.second != bit_width) {
switch (phys_dev_props_core12.denormBehaviorIndependence) {
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY:
if (first_rounding_mode.second != 32 && bit_width != 32) {
skip |= LogError(device, kVUID_Core_Shader_FeatureNotEnabled,
"Shader uses different denorm execution modes for 16 and 64-bit but "
"denormBehaviorIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY on the device");
}
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL:
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE:
skip |= LogError(device, kVUID_Core_Shader_FeatureNotEnabled,
"Shader uses different denorm execution modes for different bit widths but "
"denormBehaviorIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE on the device");
break;
default:
break;
}
}
break;
}
case spv::ExecutionModeRoundingModeRTE: {
auto bit_width = insn.word(3);
if ((bit_width == 16 && !phys_dev_props_core12.shaderRoundingModeRTEFloat16) ||
(bit_width == 32 && !phys_dev_props_core12.shaderRoundingModeRTEFloat32) ||
(bit_width == 64 && !phys_dev_props_core12.shaderRoundingModeRTEFloat64)) {
skip |= LogError(device, kVUID_Core_Shader_FeatureNotEnabled,
"Shader requires RoundingModeRTE for bit width %d but it is not enabled on the device",
bit_width);
}
if (first_rounding_mode.first == spv::ExecutionModeMax) {
// Register the first rounding mode found
first_rounding_mode = std::make_pair(static_cast<spv::ExecutionMode>(mode), bit_width);
} else if (first_rounding_mode.first != mode && first_rounding_mode.second != bit_width) {
switch (phys_dev_props_core12.roundingModeIndependence) {
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY:
if (first_rounding_mode.second != 32 && bit_width != 32) {
skip |= LogError(device, kVUID_Core_Shader_FeatureNotEnabled,
"Shader uses different rounding modes for 16 and 64-bit but "
"roundingModeIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY on the device");
}
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL:
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE:
skip |= LogError(device, kVUID_Core_Shader_FeatureNotEnabled,
"Shader uses different rounding modes for different bit widths but "
"roundingModeIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE on the device");
break;
default:
break;
}
}
break;
}
case spv::ExecutionModeRoundingModeRTZ: {
auto bit_width = insn.word(3);
if ((bit_width == 16 && !phys_dev_props_core12.shaderRoundingModeRTZFloat16) ||
(bit_width == 32 && !phys_dev_props_core12.shaderRoundingModeRTZFloat32) ||
(bit_width == 64 && !phys_dev_props_core12.shaderRoundingModeRTZFloat64)) {
skip |= LogError(device, kVUID_Core_Shader_FeatureNotEnabled,
"Shader requires RoundingModeRTZ for bit width %d but it is not enabled on the device",
bit_width);
}
if (first_rounding_mode.first == spv::ExecutionModeMax) {
// Register the first rounding mode found
first_rounding_mode = std::make_pair(static_cast<spv::ExecutionMode>(mode), bit_width);
} else if (first_rounding_mode.first != mode && first_rounding_mode.second != bit_width) {
switch (phys_dev_props_core12.roundingModeIndependence) {
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY:
if (first_rounding_mode.second != 32 && bit_width != 32) {
skip |= LogError(device, kVUID_Core_Shader_FeatureNotEnabled,
"Shader uses different rounding modes for 16 and 64-bit but "
"roundingModeIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_32_BIT_ONLY on the device");
}
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_ALL:
break;
case VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE:
skip |= LogError(device, kVUID_Core_Shader_FeatureNotEnabled,
"Shader uses different rounding modes for different bit widths but "
"roundingModeIndependence is "
"VK_SHADER_FLOAT_CONTROLS_INDEPENDENCE_NONE on the device");
break;
default:
break;
}
}
break;
}
case spv::ExecutionModeOutputVertices: {
vertices_out = insn.word(3);
break;
}
case spv::ExecutionModeInvocations: {
invocations = insn.word(3);
break;
}
}
}
}
if (entrypoint.word(1) == spv::ExecutionModelGeometry) {
if (vertices_out == 0 || vertices_out > phys_dev_props.limits.maxGeometryOutputVertices) {
skip |= LogError(device, "VUID-VkPipelineShaderStageCreateInfo-stage-00714",
"Geometry shader entry point must have an OpExecutionMode instruction that "
"specifies a maximum output vertex count that is greater than 0 and less "
"than or equal to maxGeometryOutputVertices. "
"OutputVertices=%d, maxGeometryOutputVertices=%d",
vertices_out, phys_dev_props.limits.maxGeometryOutputVertices);
}
if (invocations == 0 || invocations > phys_dev_props.limits.maxGeometryShaderInvocations) {
skip |= LogError(device, "VUID-VkPipelineShaderStageCreateInfo-stage-00715",
"Geometry shader entry point must have an OpExecutionMode instruction that "
"specifies an invocation count that is greater than 0 and less "
"than or equal to maxGeometryShaderInvocations. "
"Invocations=%d, maxGeometryShaderInvocations=%d",
invocations, phys_dev_props.limits.maxGeometryShaderInvocations);
}
}
return skip;
}
// For given pipelineLayout verify that the set_layout_node at slot.first
// has the requested binding at slot.second and return ptr to that binding
static VkDescriptorSetLayoutBinding const *GetDescriptorBinding(PIPELINE_LAYOUT_STATE const *pipelineLayout,
descriptor_slot_t slot) {
if (!pipelineLayout) return nullptr;
if (slot.first >= pipelineLayout->set_layouts.size()) return nullptr;
return pipelineLayout->set_layouts[slot.first]->GetDescriptorSetLayoutBindingPtrFromBinding(slot.second);
}
// If PointList topology is specified in the pipeline, verify that a shader geometry stage writes PointSize
// o If there is only a vertex shader : gl_PointSize must be written when using points
// o If there is a geometry or tessellation shader:
// - If shaderTessellationAndGeometryPointSize feature is enabled:
// * gl_PointSize must be written in the final geometry stage
// - If shaderTessellationAndGeometryPointSize feature is disabled:
// * gl_PointSize must NOT be written and a default of 1.0 is assumed
bool CoreChecks::ValidatePointListShaderState(const PIPELINE_STATE *pipeline, SHADER_MODULE_STATE const *src,
spirv_inst_iter entrypoint, VkShaderStageFlagBits stage) const {
if (pipeline->topology_at_rasterizer != VK_PRIMITIVE_TOPOLOGY_POINT_LIST) {
return false;
}
bool pointsize_written = false;
bool skip = false;
// Search for PointSize built-in decorations
for (auto set : src->builtin_decoration_list) {
auto insn = src->at(set.offset);
if (set.builtin == spv::BuiltInPointSize) {
pointsize_written = src->IsBuiltInWritten(insn, entrypoint);
if (pointsize_written) {
break;
}
}
}
if ((stage == VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT || stage == VK_SHADER_STAGE_GEOMETRY_BIT) &&
!enabled_features.core.shaderTessellationAndGeometryPointSize) {
if (pointsize_written) {
skip |= LogError(pipeline->pipeline(), kVUID_Core_Shader_PointSizeBuiltInOverSpecified,
"Pipeline topology is set to POINT_LIST and geometry or tessellation shaders write PointSize which "
"is prohibited when the shaderTessellationAndGeometryPointSize feature is not enabled.");
}
} else if (!pointsize_written) {
skip |=
LogError(pipeline->pipeline(), kVUID_Core_Shader_MissingPointSizeBuiltIn,
"Pipeline topology is set to POINT_LIST, but PointSize is not written to in the shader corresponding to %s.",
string_VkShaderStageFlagBits(stage));
}
return skip;
}
bool CoreChecks::ValidatePrimitiveRateShaderState(const PIPELINE_STATE *pipeline, SHADER_MODULE_STATE const *src,
spirv_inst_iter entrypoint, VkShaderStageFlagBits stage) const {
bool primitiverate_written = false;
bool viewportindex_written = false;
bool viewportmask_written = false;
bool skip = false;
// Check if the primitive shading rate is written
for (auto set : src->builtin_decoration_list) {
auto insn = src->at(set.offset);
if (set.builtin == spv::BuiltInPrimitiveShadingRateKHR) {
primitiverate_written = src->IsBuiltInWritten(insn, entrypoint);
} else if (set.builtin == spv::BuiltInViewportIndex) {
viewportindex_written = src->IsBuiltInWritten(insn, entrypoint);
} else if (set.builtin == spv::BuiltInViewportMaskNV) {
viewportmask_written = src->IsBuiltInWritten(insn, entrypoint);
}
if (primitiverate_written && viewportindex_written && viewportmask_written) {
break;
}
}
if (!phys_dev_ext_props.fragment_shading_rate_props.primitiveFragmentShadingRateWithMultipleViewports &&
pipeline->graphicsPipelineCI.pViewportState) {
if (!IsDynamic(pipeline, VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT_EXT) &&
pipeline->graphicsPipelineCI.pViewportState->viewportCount > 1 && primitiverate_written) {
skip |= LogError(pipeline->pipeline(),
"VUID-VkGraphicsPipelineCreateInfo-primitiveFragmentShadingRateWithMultipleViewports-04503",
"vkCreateGraphicsPipelines: %s shader statically writes to PrimitiveShadingRateKHR built-in, but "
"multiple viewports "
"are used and the primitiveFragmentShadingRateWithMultipleViewports limit is not supported.",
string_VkShaderStageFlagBits(stage));
}
if (primitiverate_written && viewportindex_written) {
skip |= LogError(pipeline->pipeline(),
"VUID-VkGraphicsPipelineCreateInfo-primitiveFragmentShadingRateWithMultipleViewports-04504",
"vkCreateGraphicsPipelines: %s shader statically writes to both PrimitiveShadingRateKHR and "
"ViewportIndex built-ins,"
"but the primitiveFragmentShadingRateWithMultipleViewports limit is not supported.",
string_VkShaderStageFlagBits(stage));
}
if (primitiverate_written && viewportmask_written) {
skip |= LogError(pipeline->pipeline(),
"VUID-VkGraphicsPipelineCreateInfo-primitiveFragmentShadingRateWithMultipleViewports-04505",
"vkCreateGraphicsPipelines: %s shader statically writes to both PrimitiveShadingRateKHR and "
"ViewportMaskNV built-ins,"
"but the primitiveFragmentShadingRateWithMultipleViewports limit is not supported.",
string_VkShaderStageFlagBits(stage));
}
}
return skip;
}
// Validate runtime usage of various opcodes that depends on what Vulkan properties or features are exposed
bool CoreChecks::ValidatePropertiesAndFeatures(SHADER_MODULE_STATE const *module, spirv_inst_iter &insn) const {
bool skip = false;
switch (insn.opcode()) {
case spv::OpReadClockKHR: {
auto scope_id = module->get_def(insn.word(3));
auto scope_type = scope_id.word(3);
// if scope isn't Subgroup or Device, spirv-val will catch
if ((scope_type == spv::ScopeSubgroup) && (enabled_features.shader_clock_feature.shaderSubgroupClock == VK_FALSE)) {
skip |= LogError(device, "UNASSIGNED-spirv-shaderClock-shaderSubgroupClock",
"%s: OpReadClockKHR is used with a Subgroup scope but shaderSubgroupClock was not enabled.",
report_data->FormatHandle(module->vk_shader_module()).c_str());
} else if ((scope_type == spv::ScopeDevice) && (enabled_features.shader_clock_feature.shaderDeviceClock == VK_FALSE)) {
skip |= LogError(device, "UNASSIGNED-spirv-shaderClock-shaderDeviceClock",
"%s: OpReadClockKHR is used with a Device scope but shaderDeviceClock was not enabled.",
report_data->FormatHandle(module->vk_shader_module()).c_str());
}
break;
}
}
return skip;
}
bool CoreChecks::ValidatePipelineShaderStage(VkPipelineShaderStageCreateInfo const *pStage, const PIPELINE_STATE *pipeline,
const PIPELINE_STATE::StageState &stage_state, const SHADER_MODULE_STATE *module,
const spirv_inst_iter &entrypoint, bool check_point_size) const {
bool skip = false;
// Check the module
if (!module->has_valid_spirv) {
skip |= LogError(device, "VUID-VkPipelineShaderStageCreateInfo-module-parameter",
"%s does not contain valid spirv for stage %s.",
report_data->FormatHandle(module->vk_shader_module()).c_str(), string_VkShaderStageFlagBits(pStage->stage));
}
// If specialization-constant values are given and specialization-constant instructions are present in the shader, the
// specializations should be applied and validated.
if (pStage->pSpecializationInfo != nullptr && pStage->pSpecializationInfo->mapEntryCount > 0 &&
pStage->pSpecializationInfo->pMapEntries != nullptr && module->has_specialization_constants) {
// Gather the specialization-constant values.
auto const &specialization_info = pStage->pSpecializationInfo;
auto const &specialization_data = reinterpret_cast<uint8_t const *>(specialization_info->pData);
std::unordered_map<uint32_t, std::vector<uint32_t>> id_value_map; // note: this must be std:: to work with spvtools
id_value_map.reserve(specialization_info->mapEntryCount);
for (auto i = 0u; i < specialization_info->mapEntryCount; ++i) {
auto const &map_entry = specialization_info->pMapEntries[i];
// Expect only scalar types.
assert(map_entry.size == 1 || map_entry.size == 2 || map_entry.size == 4 || map_entry.size == 8);
if ((map_entry.offset + map_entry.size) <= specialization_info->dataSize) {
auto entry = id_value_map.emplace(map_entry.constantID, std::vector<uint32_t>(map_entry.size > 4 ? 2 : 1));
memcpy(entry.first->second.data(), specialization_data + map_entry.offset, map_entry.size);
}
}
// Apply the specialization-constant values and revalidate the shader module.
spv_target_env spirv_environment = PickSpirvEnv(api_version, (device_extensions.vk_khr_spirv_1_4 != kNotEnabled));
spvtools::Optimizer optimizer(spirv_environment);
spvtools::MessageConsumer consumer = [&skip, &module, &pStage, this](spv_message_level_t level, const char *source,
const spv_position_t &position, const char *message) {
skip |= LogError(
device, "VUID-VkPipelineShaderStageCreateInfo-module-parameter", "%s does not contain valid spirv for stage %s. %s",
report_data->FormatHandle(module->vk_shader_module()).c_str(), string_VkShaderStageFlagBits(pStage->stage), message);
};
optimizer.SetMessageConsumer(consumer);
optimizer.RegisterPass(spvtools::CreateSetSpecConstantDefaultValuePass(id_value_map));
optimizer.RegisterPass(spvtools::CreateFreezeSpecConstantValuePass());
std::vector<uint32_t> specialized_spirv;
auto const optimized =
optimizer.Run(module->words.data(), module->words.size(), &specialized_spirv, spvtools::ValidatorOptions(), true);
assert(optimized == true);
if (optimized) {
spv_context ctx = spvContextCreate(spirv_environment);
spv_const_binary_t binary{specialized_spirv.data(), specialized_spirv.size()};
spv_diagnostic diag = nullptr;
spvtools::ValidatorOptions options;
AdjustValidatorOptions(device_extensions, enabled_features, options);
auto const spv_valid = spvValidateWithOptions(ctx, options, &binary, &diag);
if (spv_valid != SPV_SUCCESS) {
skip |= LogError(device, "VUID-VkPipelineShaderStageCreateInfo-module-04145",
"After specialization was applied, %s does not contain valid spirv for stage %s.",
report_data->FormatHandle(module->vk_shader_module()).c_str(),
string_VkShaderStageFlagBits(pStage->stage));
}
spvDiagnosticDestroy(diag);
spvContextDestroy(ctx);
}
}
// Check the entrypoint
if (entrypoint == module->end()) {
skip |=
LogError(device, "VUID-VkPipelineShaderStageCreateInfo-pName-00707", "No entrypoint found named `%s` for stage %s.",
pStage->pName, string_VkShaderStageFlagBits(pStage->stage));
}
if (skip) return true; // no point continuing beyond here, any analysis is just going to be garbage.
// Mark accessible ids
auto &accessible_ids = stage_state.accessible_ids;
// Validate descriptor set layout against what the entrypoint actually uses
bool has_writable_descriptor = stage_state.has_writable_descriptor;
auto &descriptor_uses = stage_state.descriptor_uses;
// The following tries to limit the number of passes through the shader module. The validation passes in here are "stateless"
// and mainly only checking the instruction in detail for a single operation
for (auto insn : *module) {
skip |= ValidateShaderCapabilitiesAndExtensions(module, insn);
skip |= ValidatePropertiesAndFeatures(module, insn);
skip |= ValidateShaderStageGroupNonUniform(module, pStage->stage, insn);
}
skip |=
ValidateShaderStageWritableOrAtomicDescriptor(pStage->stage, has_writable_descriptor, stage_state.has_atomic_descriptor);
skip |= ValidateShaderStageInputOutputLimits(module, pStage, pipeline, entrypoint);
skip |= ValidateShaderStageMaxResources(pStage->stage, pipeline);
skip |= ValidateExecutionModes(module, entrypoint);
skip |= ValidateSpecializationOffsets(pStage);
if (check_point_size && !pipeline->graphicsPipelineCI.pRasterizationState->rasterizerDiscardEnable) {
skip |= ValidatePointListShaderState(pipeline, module, entrypoint, pStage->stage);
}
skip |= ValidateBuiltinLimits(module, accessible_ids, pStage->stage);
if (enabled_features.cooperative_matrix_features.cooperativeMatrix) {
skip |= ValidateCooperativeMatrix(module, pStage, pipeline);
}
if (enabled_features.fragment_shading_rate_features.primitiveFragmentShadingRate) {
skip |= ValidatePrimitiveRateShaderState(pipeline, module, entrypoint, pStage->stage);
}
// "layout must be consistent with the layout of the * shader"
// 'consistent' -> #descriptorsets-pipelinelayout-consistency
std::string vuid_layout_mismatch;
if (pipeline->graphicsPipelineCI.sType == VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO) {
vuid_layout_mismatch = "VUID-VkGraphicsPipelineCreateInfo-layout-00756";
} else if (pipeline->computePipelineCI.sType == VK_STRUCTURE_TYPE_COMPUTE_PIPELINE_CREATE_INFO) {
vuid_layout_mismatch = "VUID-VkComputePipelineCreateInfo-layout-00703";
} else if (pipeline->raytracingPipelineCI.sType == VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_CREATE_INFO_KHR) {
vuid_layout_mismatch = "VUID-VkRayTracingPipelineCreateInfoKHR-layout-03427";
} else if (pipeline->raytracingPipelineCI.sType == VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_CREATE_INFO_NV) {
vuid_layout_mismatch = "VUID-VkRayTracingPipelineCreateInfoNV-layout-03427";
}
// Validate Push Constants use
skip |= ValidatePushConstantUsage(*pipeline, module, pStage, vuid_layout_mismatch);
// Validate descriptor use
for (auto use : descriptor_uses) {
// Verify given pipelineLayout has requested setLayout with requested binding
const auto &binding = GetDescriptorBinding(pipeline->pipeline_layout.get(), use.first);
unsigned required_descriptor_count;
bool is_khr = binding && binding->descriptorType == VK_DESCRIPTOR_TYPE_ACCELERATION_STRUCTURE_KHR;
std::set<uint32_t> descriptor_types =
TypeToDescriptorTypeSet(module, use.second.type_id, required_descriptor_count, is_khr);
if (!binding) {
skip |= LogError(device, vuid_layout_mismatch,
"Shader uses descriptor slot %u.%u (expected `%s`) but not declared in pipeline layout",
use.first.first, use.first.second, string_descriptorTypes(descriptor_types).c_str());
} else if (~binding->stageFlags & pStage->stage) {
skip |= LogError(device, vuid_layout_mismatch,
"Shader uses descriptor slot %u.%u but descriptor not accessible from stage %s", use.first.first,
use.first.second, string_VkShaderStageFlagBits(pStage->stage));
} else if ((binding->descriptorType != VK_DESCRIPTOR_TYPE_MUTABLE_VALVE) &&
(descriptor_types.find(binding->descriptorType) == descriptor_types.end())) {
skip |= LogError(device, vuid_layout_mismatch,
"Type mismatch on descriptor slot %u.%u (expected `%s`) but descriptor of type %s", use.first.first,
use.first.second, string_descriptorTypes(descriptor_types).c_str(),
string_VkDescriptorType(binding->descriptorType));
} else if (binding->descriptorCount < required_descriptor_count) {
skip |= LogError(device, vuid_layout_mismatch,
"Shader expects at least %u descriptors for binding %u.%u but only %u provided",
required_descriptor_count, use.first.first, use.first.second, binding->descriptorCount);
}
}
// Validate use of input attachments against subpass structure
if (pStage->stage == VK_SHADER_STAGE_FRAGMENT_BIT) {
auto input_attachment_uses = module->CollectInterfaceByInputAttachmentIndex(accessible_ids);
auto rpci = pipeline->rp_state->createInfo.ptr();
auto subpass = pipeline->graphicsPipelineCI.subpass;
for (auto use : input_attachment_uses) {
auto input_attachments = rpci->pSubpasses[subpass].pInputAttachments;
auto index = (input_attachments && use.first < rpci->pSubpasses[subpass].inputAttachmentCount)
? input_attachments[use.first].attachment
: VK_ATTACHMENT_UNUSED;
if (index == VK_ATTACHMENT_UNUSED) {
skip |= LogError(device, kVUID_Core_Shader_MissingInputAttachment,
"Shader consumes input attachment index %d but not provided in subpass", use.first);
} else if (!(GetFormatType(rpci->pAttachments[index].format) & module->GetFundamentalType(use.second.type_id))) {
skip |=
LogError(device, kVUID_Core_Shader_InputAttachmentTypeMismatch,
"Subpass input attachment %u format of %s does not match type used in shader `%s`", use.first,
string_VkFormat(rpci->pAttachments[index].format), module->DescribeType(use.second.type_id).c_str());
}
}
}
if (pStage->stage == VK_SHADER_STAGE_COMPUTE_BIT) {
skip |= ValidateComputeWorkGroupSizes(module, entrypoint);
}
return skip;
}
bool CoreChecks::ValidateInterfaceBetweenStages(SHADER_MODULE_STATE const *producer, spirv_inst_iter producer_entrypoint,
shader_stage_attributes const *producer_stage, SHADER_MODULE_STATE const *consumer,
spirv_inst_iter consumer_entrypoint,
shader_stage_attributes const *consumer_stage) const {
bool skip = false;
auto outputs =
producer->CollectInterfaceByLocation(producer_entrypoint, spv::StorageClassOutput, producer_stage->arrayed_output);
auto inputs = consumer->CollectInterfaceByLocation(consumer_entrypoint, spv::StorageClassInput, consumer_stage->arrayed_input);
auto a_it = outputs.begin();
auto b_it = inputs.begin();
// Maps sorted by key (location); walk them together to find mismatches
while ((outputs.size() > 0 && a_it != outputs.end()) || (inputs.size() && b_it != inputs.end())) {
bool a_at_end = outputs.size() == 0 || a_it == outputs.end();
bool b_at_end = inputs.size() == 0 || b_it == inputs.end();
auto a_first = a_at_end ? std::make_pair(0u, 0u) : a_it->first;
auto b_first = b_at_end ? std::make_pair(0u, 0u) : b_it->first;
if (b_at_end || ((!a_at_end) && (a_first < b_first))) {
skip |= LogPerformanceWarning(producer->vk_shader_module(), kVUID_Core_Shader_OutputNotConsumed,
"%s writes to output location %u.%u which is not consumed by %s", producer_stage->name,
a_first.first, a_first.second, consumer_stage->name);
a_it++;
} else if (a_at_end || a_first > b_first) {
skip |= LogError(consumer->vk_shader_module(), kVUID_Core_Shader_InputNotProduced,
"%s consumes input location %u.%u which is not written by %s", consumer_stage->name, b_first.first,
b_first.second, producer_stage->name);
b_it++;
} else {
// subtleties of arrayed interfaces:
// - if is_patch, then the member is not arrayed, even though the interface may be.
// - if is_block_member, then the extra array level of an arrayed interface is not
// expressed in the member type -- it's expressed in the block type.
if (!TypesMatch(producer, consumer, a_it->second.type_id, b_it->second.type_id,
producer_stage->arrayed_output && !a_it->second.is_patch && !a_it->second.is_block_member,
consumer_stage->arrayed_input && !b_it->second.is_patch && !b_it->second.is_block_member, true)) {
skip |= LogError(producer->vk_shader_module(), kVUID_Core_Shader_InterfaceTypeMismatch,
"Type mismatch on location %u.%u: '%s' vs '%s'", a_first.first, a_first.second,
producer->DescribeType(a_it->second.type_id).c_str(),
consumer->DescribeType(b_it->second.type_id).c_str());
}
if (a_it->second.is_patch != b_it->second.is_patch) {
skip |= LogError(producer->vk_shader_module(), kVUID_Core_Shader_InterfaceTypeMismatch,
"Decoration mismatch on location %u.%u: is per-%s in %s stage but per-%s in %s stage",
a_first.first, a_first.second, a_it->second.is_patch ? "patch" : "vertex", producer_stage->name,
b_it->second.is_patch ? "patch" : "vertex", consumer_stage->name);
}
if (a_it->second.is_relaxed_precision != b_it->second.is_relaxed_precision) {
skip |= LogError(producer->vk_shader_module(), kVUID_Core_Shader_InterfaceTypeMismatch,
"Decoration mismatch on location %u.%u: %s and %s stages differ in precision", a_first.first,
a_first.second, producer_stage->name, consumer_stage->name);
}
a_it++;
b_it++;
}
}
if (consumer_stage->stage != VK_SHADER_STAGE_FRAGMENT_BIT) {
auto builtins_producer = producer->CollectBuiltinBlockMembers(producer_entrypoint, spv::StorageClassOutput);
auto builtins_consumer = consumer->CollectBuiltinBlockMembers(consumer_entrypoint, spv::StorageClassInput);
if (!builtins_producer.empty() && !builtins_consumer.empty()) {
if (builtins_producer.size() != builtins_consumer.size()) {
skip |= LogError(producer->vk_shader_module(), kVUID_Core_Shader_InterfaceTypeMismatch,
"Number of elements inside builtin block differ between stages (%s %d vs %s %d).",
producer_stage->name, static_cast<int>(builtins_producer.size()), consumer_stage->name,
static_cast<int>(builtins_consumer.size()));
} else {
auto it_producer = builtins_producer.begin();
auto it_consumer = builtins_consumer.begin();
while (it_producer != builtins_producer.end() && it_consumer != builtins_consumer.end()) {
if (*it_producer != *it_consumer) {
skip |= LogError(producer->vk_shader_module(), kVUID_Core_Shader_InterfaceTypeMismatch,
"Builtin variable inside block doesn't match between %s and %s.", producer_stage->name,
consumer_stage->name);
break;
}
it_producer++;
it_consumer++;
}
}
}
}
return skip;
}
static inline uint32_t DetermineFinalGeomStage(const PIPELINE_STATE *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) {
uint32_t stage_mask = 0;
if (pipeline->topology_at_rasterizer == VK_PRIMITIVE_TOPOLOGY_POINT_LIST) {
for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) {
stage_mask |= pCreateInfo->pStages[i].stage;
}
// Determine which shader in which PointSize should be written (the final geometry stage)
if (stage_mask & VK_SHADER_STAGE_MESH_BIT_NV) {
stage_mask = VK_SHADER_STAGE_MESH_BIT_NV;
} else if (stage_mask & VK_SHADER_STAGE_GEOMETRY_BIT) {
stage_mask = VK_SHADER_STAGE_GEOMETRY_BIT;
} else if (stage_mask & VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT) {
stage_mask = VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT;
} else if (stage_mask & VK_SHADER_STAGE_VERTEX_BIT) {
stage_mask = VK_SHADER_STAGE_VERTEX_BIT;
}
}
return stage_mask;
}
// Validate that the shaders used by the given pipeline and store the active_slots
// that are actually used by the pipeline into pPipeline->active_slots
bool CoreChecks::ValidateGraphicsPipelineShaderState(const PIPELINE_STATE *pipeline) const {
auto create_info = pipeline->graphicsPipelineCI.ptr();
int vertex_stage = GetShaderStageId(VK_SHADER_STAGE_VERTEX_BIT);
int fragment_stage = GetShaderStageId(VK_SHADER_STAGE_FRAGMENT_BIT);
const SHADER_MODULE_STATE *shaders[32];
memset(shaders, 0, sizeof(shaders));
spirv_inst_iter entrypoints[32];
bool skip = false;
uint32_t pointlist_stage_mask = DetermineFinalGeomStage(pipeline, create_info);
for (uint32_t i = 0; i < create_info->stageCount; i++) {
auto stage = &create_info->pStages[i];
auto stage_id = GetShaderStageId(stage->stage);
shaders[stage_id] = GetShaderModuleState(stage->module);
entrypoints[stage_id] = shaders[stage_id]->FindEntrypoint(stage->pName, stage->stage);
skip |= ValidatePipelineShaderStage(stage, pipeline, pipeline->stage_state[i], shaders[stage_id], entrypoints[stage_id],
(pointlist_stage_mask == stage->stage));
}
// if the shader stages are no good individually, cross-stage validation is pointless.
if (skip) return true;
auto vi = create_info->pVertexInputState;
if (vi) {
skip |= ValidateViConsistency(vi);
}
if (shaders[vertex_stage] && shaders[vertex_stage]->has_valid_spirv &&
!IsDynamic(pipeline, VK_DYNAMIC_STATE_VERTEX_INPUT_EXT)) {
skip |= ValidateViAgainstVsInputs(vi, shaders[vertex_stage], entrypoints[vertex_stage]);
}
int producer = GetShaderStageId(VK_SHADER_STAGE_VERTEX_BIT);
int consumer = GetShaderStageId(VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT);
while (!shaders[producer] && producer != fragment_stage) {
producer++;
consumer++;
}
for (; producer != fragment_stage && consumer <= fragment_stage; consumer++) {
assert(shaders[producer]);
if (shaders[consumer]) {
if (shaders[consumer]->has_valid_spirv && shaders[producer]->has_valid_spirv) {
skip |= ValidateInterfaceBetweenStages(shaders[producer], entrypoints[producer], &shader_stage_attribs[producer],
shaders[consumer], entrypoints[consumer], &shader_stage_attribs[consumer]);
}
producer = consumer;
}
}
if (shaders[fragment_stage] && shaders[fragment_stage]->has_valid_spirv) {
skip |= ValidateFsOutputsAgainstRenderPass(shaders[fragment_stage], entrypoints[fragment_stage], pipeline,
create_info->subpass);
}
return skip;
}
void CoreChecks::RecordGraphicsPipelineShaderDynamicState(PIPELINE_STATE *pipeline_state) {
auto create_info = pipeline_state->graphicsPipelineCI.ptr();
if (phys_dev_ext_props.fragment_shading_rate_props.primitiveFragmentShadingRateWithMultipleViewports ||
!IsDynamic(pipeline_state, VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT_EXT)) {
return;
}
std::array<const SHADER_MODULE_STATE *, 32> shaders;
std::fill(shaders.begin(), shaders.end(), nullptr);
spirv_inst_iter entrypoints[32];
for (uint32_t i = 0; i < create_info->stageCount; i++) {
auto stage = &create_info->pStages[i];
auto stage_id = GetShaderStageId(stage->stage);
shaders[stage_id] = GetShaderModuleState(stage->module);
entrypoints[stage_id] = shaders[stage_id]->FindEntrypoint(stage->pName, stage->stage);
if (stage->stage == VK_SHADER_STAGE_VERTEX_BIT || stage->stage == VK_SHADER_STAGE_GEOMETRY_BIT ||
stage->stage == VK_SHADER_STAGE_MESH_BIT_NV) {
bool primitiverate_written = false;
for (auto set : shaders[stage_id]->builtin_decoration_list) {
auto insn = shaders[stage_id]->at(set.offset);
if (set.builtin == spv::BuiltInPrimitiveShadingRateKHR) {
primitiverate_written = shaders[stage_id]->IsBuiltInWritten(insn, entrypoints[stage_id]);
}
if (primitiverate_written) {
break;
}
}
if (primitiverate_written) {
pipeline_state->wrote_primitive_shading_rate.insert(stage->stage);
}
}
}
}
bool CoreChecks::ValidateGraphicsPipelineShaderDynamicState(const PIPELINE_STATE *pipeline, const CMD_BUFFER_STATE *pCB,
const char *caller, const DrawDispatchVuid &vuid) const {
auto create_info = pipeline->graphicsPipelineCI.ptr();
bool skip = false;
for (uint32_t i = 0; i < create_info->stageCount; i++) {
auto stage = &create_info->pStages[i];
if (stage->stage == VK_SHADER_STAGE_VERTEX_BIT || stage->stage == VK_SHADER_STAGE_GEOMETRY_BIT ||
stage->stage == VK_SHADER_STAGE_MESH_BIT_NV) {
if (!phys_dev_ext_props.fragment_shading_rate_props.primitiveFragmentShadingRateWithMultipleViewports &&
IsDynamic(pipeline, VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT_EXT) && pCB->viewportWithCountCount != 1) {
if (pipeline->wrote_primitive_shading_rate.find(stage->stage) != pipeline->wrote_primitive_shading_rate.end()) {
skip |=
LogError(pipeline->pipeline(), vuid.viewport_count_primitive_shading_rate,
"%s: %s shader of currently bound pipeline statically writes to PrimitiveShadingRateKHR built-in"
"but multiple viewports are set by the last call to vkCmdSetViewportWithCountEXT,"
"and the primitiveFragmentShadingRateWithMultipleViewports limit is not supported.",
caller, string_VkShaderStageFlagBits(stage->stage));
}
}
}
}
return skip;
}
bool CoreChecks::ValidateComputePipelineShaderState(PIPELINE_STATE *pipeline) const {
const auto &stage = *pipeline->computePipelineCI.stage.ptr();
const SHADER_MODULE_STATE *module = GetShaderModuleState(stage.module);
const spirv_inst_iter entrypoint = module->FindEntrypoint(stage.pName, stage.stage);
return ValidatePipelineShaderStage(&stage, pipeline, pipeline->stage_state[0], module, entrypoint, false);
}
uint32_t CoreChecks::CalcShaderStageCount(const PIPELINE_STATE *pipeline, VkShaderStageFlagBits stageBit) const {
uint32_t total = 0;
const auto *stages = pipeline->raytracingPipelineCI.ptr()->pStages;
for (uint32_t stage_index = 0; stage_index < pipeline->raytracingPipelineCI.stageCount; stage_index++) {
if (stages[stage_index].stage == stageBit) {
total++;
}
}
if (pipeline->raytracingPipelineCI.pLibraryInfo) {
for (uint32_t i = 0; i < pipeline->raytracingPipelineCI.pLibraryInfo->libraryCount; ++i) {
const PIPELINE_STATE *library_pipeline = GetPipelineState(pipeline->raytracingPipelineCI.pLibraryInfo->pLibraries[i]);
total += CalcShaderStageCount(library_pipeline, stageBit);
}
}
return total;
}
bool CoreChecks::ValidateRayTracingPipeline(PIPELINE_STATE *pipeline, VkPipelineCreateFlags flags, bool isKHR) const {
bool skip = false;
if (isKHR) {
if (pipeline->raytracingPipelineCI.maxPipelineRayRecursionDepth >
phys_dev_ext_props.ray_tracing_propsKHR.maxRayRecursionDepth) {
skip |= LogError(device, "VUID-VkRayTracingPipelineCreateInfoKHR-maxPipelineRayRecursionDepth-03589",
"vkCreateRayTracingPipelinesKHR: maxPipelineRayRecursionDepth (%d ) must be less than or equal to "
"VkPhysicalDeviceRayTracingPipelinePropertiesKHR::maxRayRecursionDepth %d",
pipeline->raytracingPipelineCI.maxPipelineRayRecursionDepth,
phys_dev_ext_props.ray_tracing_propsKHR.maxRayRecursionDepth);
}
if (pipeline->raytracingPipelineCI.pLibraryInfo) {
for (uint32_t i = 0; i < pipeline->raytracingPipelineCI.pLibraryInfo->libraryCount; ++i) {
const PIPELINE_STATE *library_pipelinestate =
GetPipelineState(pipeline->raytracingPipelineCI.pLibraryInfo->pLibraries[i]);
if (library_pipelinestate->raytracingPipelineCI.maxPipelineRayRecursionDepth !=
pipeline->raytracingPipelineCI.maxPipelineRayRecursionDepth) {
skip |= LogError(
device, "VUID-VkRayTracingPipelineCreateInfoKHR-pLibraries-03591",
"vkCreateRayTracingPipelinesKHR: Each element (%d) of the pLibraries member of libraries must have been"
"created with the value of maxPipelineRayRecursionDepth (%d) equal to that in this pipeline (%d) .",
i, library_pipelinestate->raytracingPipelineCI.maxPipelineRayRecursionDepth,
pipeline->raytracingPipelineCI.maxPipelineRayRecursionDepth);
}
if (library_pipelinestate->raytracingPipelineCI.pLibraryInfo &&
(library_pipelinestate->raytracingPipelineCI.pLibraryInterface->maxPipelineRayHitAttributeSize !=
pipeline->raytracingPipelineCI.pLibraryInterface->maxPipelineRayHitAttributeSize ||
library_pipelinestate->raytracingPipelineCI.pLibraryInterface->maxPipelineRayPayloadSize !=
pipeline->raytracingPipelineCI.pLibraryInterface->maxPipelineRayPayloadSize)) {
skip |= LogError(device, "VUID-VkRayTracingPipelineCreateInfoKHR-pLibraryInfo-03593",
"vkCreateRayTracingPipelinesKHR: If pLibraryInfo is not NULL, each element of its pLibraries "
"member must have been created with values of the maxPipelineRayPayloadSize and "
"maxPipelineRayHitAttributeSize members of pLibraryInterface equal to those in this pipeline");
}
if ((flags & VK_PIPELINE_CREATE_RAY_TRACING_SHADER_GROUP_HANDLE_CAPTURE_REPLAY_BIT_KHR) &&
!(library_pipelinestate->raytracingPipelineCI.flags &
VK_PIPELINE_CREATE_RAY_TRACING_SHADER_GROUP_HANDLE_CAPTURE_REPLAY_BIT_KHR)) {
skip |= LogError(device, "VUID-VkRayTracingPipelineCreateInfoKHR-flags-03594",
"vkCreateRayTracingPipelinesKHR: If flags includes "
"VK_PIPELINE_CREATE_RAY_TRACING_SHADER_GROUP_HANDLE_CAPTURE_REPLAY_BIT_KHR, each element of "
"the pLibraries member of libraries must have been created with the "
"VK_PIPELINE_CREATE_RAY_TRACING_SHADER_GROUP_HANDLE_CAPTURE_REPLAY_BIT_KHR bit set");
}
}
}
} else {
if (pipeline->raytracingPipelineCI.maxRecursionDepth > phys_dev_ext_props.ray_tracing_propsNV.maxRecursionDepth) {
skip |= LogError(device, "VUID-VkRayTracingPipelineCreateInfoNV-maxRecursionDepth-03457",
"vkCreateRayTracingPipelinesNV: maxRecursionDepth (%d) must be less than or equal to "
"VkPhysicalDeviceRayTracingPropertiesNV::maxRecursionDepth (%d)",
pipeline->raytracingPipelineCI.maxRecursionDepth,
phys_dev_ext_props.ray_tracing_propsNV.maxRecursionDepth);
}
}
const auto *stages = pipeline->raytracingPipelineCI.ptr()->pStages;
const auto *groups = pipeline->raytracingPipelineCI.ptr()->pGroups;
for (uint32_t stage_index = 0; stage_index < pipeline->raytracingPipelineCI.stageCount; stage_index++) {
const auto &stage = stages[stage_index];
const SHADER_MODULE_STATE *module = GetShaderModuleState(stage.module);
const spirv_inst_iter entrypoint = module->FindEntrypoint(stage.pName, stage.stage);
skip |= ValidatePipelineShaderStage(&stage, pipeline, pipeline->stage_state[stage_index], module, entrypoint, false);
}
if ((pipeline->raytracingPipelineCI.flags & VK_PIPELINE_CREATE_LIBRARY_BIT_KHR) == 0) {
const uint32_t raygen_stages_count = CalcShaderStageCount(pipeline, VK_SHADER_STAGE_RAYGEN_BIT_KHR);
if (raygen_stages_count == 0) {
skip |= LogError(
device,
isKHR ? "VUID-VkRayTracingPipelineCreateInfoKHR-stage-03425" : "VUID-VkRayTracingPipelineCreateInfoNV-stage-03425",
" : The stage member of at least one element of pStages must be VK_SHADER_STAGE_RAYGEN_BIT_KHR.");
}
}
for (uint32_t group_index = 0; group_index < pipeline->raytracingPipelineCI.groupCount; group_index++) {
const auto &group = groups[group_index];
if (group.type == VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_NV) {
if (group.generalShader >= pipeline->raytracingPipelineCI.stageCount ||
(stages[group.generalShader].stage != VK_SHADER_STAGE_RAYGEN_BIT_NV &&
stages[group.generalShader].stage != VK_SHADER_STAGE_MISS_BIT_NV &&
stages[group.generalShader].stage != VK_SHADER_STAGE_CALLABLE_BIT_NV)) {
skip |= LogError(device,
isKHR ? "VUID-VkRayTracingShaderGroupCreateInfoKHR-type-03474"
: "VUID-VkRayTracingShaderGroupCreateInfoNV-type-02413",
": pGroups[%d]", group_index);
}
if (group.anyHitShader != VK_SHADER_UNUSED_NV || group.closestHitShader != VK_SHADER_UNUSED_NV ||
group.intersectionShader != VK_SHADER_UNUSED_NV) {
skip |= LogError(device,
isKHR ? "VUID-VkRayTracingShaderGroupCreateInfoKHR-type-03475"
: "VUID-VkRayTracingShaderGroupCreateInfoNV-type-02414",
": pGroups[%d]", group_index);
}
} else if (group.type == VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_NV) {
if (group.intersectionShader >= pipeline->raytracingPipelineCI.stageCount ||
stages[group.intersectionShader].stage != VK_SHADER_STAGE_INTERSECTION_BIT_NV) {
skip |= LogError(device,
isKHR ? "VUID-VkRayTracingShaderGroupCreateInfoKHR-type-03476"
: "VUID-VkRayTracingShaderGroupCreateInfoNV-type-02415",
": pGroups[%d]", group_index);
}
} else if (group.type == VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_NV) {
if (group.intersectionShader != VK_SHADER_UNUSED_NV) {
skip |= LogError(device,
isKHR ? "VUID-VkRayTracingShaderGroupCreateInfoKHR-type-03477"
: "VUID-VkRayTracingShaderGroupCreateInfoNV-type-02416",
": pGroups[%d]", group_index);
}
}
if (group.type == VK_RAY_TRACING_SHADER_GROUP_TYPE_PROCEDURAL_HIT_GROUP_NV ||
group.type == VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_NV) {
if (group.anyHitShader != VK_SHADER_UNUSED_NV && (group.anyHitShader >= pipeline->raytracingPipelineCI.stageCount ||
stages[group.anyHitShader].stage != VK_SHADER_STAGE_ANY_HIT_BIT_NV)) {
skip |= LogError(device,
isKHR ? "VUID-VkRayTracingShaderGroupCreateInfoKHR-anyHitShader-03479"
: "VUID-VkRayTracingShaderGroupCreateInfoNV-anyHitShader-02418",
": pGroups[%d]", group_index);
}
if (group.closestHitShader != VK_SHADER_UNUSED_NV &&
(group.closestHitShader >= pipeline->raytracingPipelineCI.stageCount ||
stages[group.closestHitShader].stage != VK_SHADER_STAGE_CLOSEST_HIT_BIT_NV)) {
skip |= LogError(device,
isKHR ? "VUID-VkRayTracingShaderGroupCreateInfoKHR-closestHitShader-03478"
: "VUID-VkRayTracingShaderGroupCreateInfoNV-closestHitShader-02417",
": pGroups[%d]", group_index);
}
}
}
return skip;
}
uint32_t ValidationCache::MakeShaderHash(VkShaderModuleCreateInfo const *smci) { return XXH32(smci->pCode, smci->codeSize, 0); }
static ValidationCache *GetValidationCacheInfo(VkShaderModuleCreateInfo const *pCreateInfo) {
const auto validation_cache_ci = LvlFindInChain<VkShaderModuleValidationCacheCreateInfoEXT>(pCreateInfo->pNext);
if (validation_cache_ci) {
return CastFromHandle<ValidationCache *>(validation_cache_ci->validationCache);
}
return nullptr;
}
bool CoreChecks::PreCallValidateCreateShaderModule(VkDevice device, const VkShaderModuleCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkShaderModule *pShaderModule) const {
bool skip = false;
spv_result_t spv_valid = SPV_SUCCESS;
if (disabled[shader_validation]) {
return false;
}
auto have_glsl_shader = device_extensions.vk_nv_glsl_shader;
if (!have_glsl_shader && (pCreateInfo->codeSize % 4)) {
skip |= LogError(device, "VUID-VkShaderModuleCreateInfo-pCode-01376",
"SPIR-V module not valid: Codesize must be a multiple of 4 but is " PRINTF_SIZE_T_SPECIFIER ".",
pCreateInfo->codeSize);
} else {
auto cache = GetValidationCacheInfo(pCreateInfo);
uint32_t hash = 0;
if (cache) {
hash = ValidationCache::MakeShaderHash(pCreateInfo);
if (cache->Contains(hash)) return false;
}
// Use SPIRV-Tools validator to try and catch any issues with the module itself. If specialization constants are present,
// the default values will be used during validation.
spv_target_env spirv_environment = PickSpirvEnv(api_version, (device_extensions.vk_khr_spirv_1_4 != kNotEnabled));
spv_context ctx = spvContextCreate(spirv_environment);
spv_const_binary_t binary{pCreateInfo->pCode, pCreateInfo->codeSize / sizeof(uint32_t)};
spv_diagnostic diag = nullptr;
spvtools::ValidatorOptions options;
AdjustValidatorOptions(device_extensions, enabled_features, options);
spv_valid = spvValidateWithOptions(ctx, options, &binary, &diag);
if (spv_valid != SPV_SUCCESS) {
if (!have_glsl_shader || (pCreateInfo->pCode[0] == spv::MagicNumber)) {
if (spv_valid == SPV_WARNING) {
skip |= LogWarning(device, kVUID_Core_Shader_InconsistentSpirv, "SPIR-V module not valid: %s",
diag && diag->error ? diag->error : "(no error text)");
} else {
skip |= LogError(device, kVUID_Core_Shader_InconsistentSpirv, "SPIR-V module not valid: %s",
diag && diag->error ? diag->error : "(no error text)");
}
}
} else {
if (cache) {
cache->Insert(hash);
}
}
spvDiagnosticDestroy(diag);
spvContextDestroy(ctx);
}
return skip;
}
bool CoreChecks::ValidateComputeWorkGroupSizes(const SHADER_MODULE_STATE *shader, const spirv_inst_iter &entrypoint) const {
bool skip = false;
uint32_t local_size_x = 0;
uint32_t local_size_y = 0;
uint32_t local_size_z = 0;
if (shader->FindLocalSize(entrypoint, local_size_x, local_size_y, local_size_z)) {
if (local_size_x > phys_dev_props.limits.maxComputeWorkGroupSize[0]) {
skip |= LogError(shader->vk_shader_module(), "UNASSIGNED-features-limits-maxComputeWorkGroupSize",
"%s local_size_x (%" PRIu32 ") exceeds device limit maxComputeWorkGroupSize[0] (%" PRIu32 ").",
report_data->FormatHandle(shader->vk_shader_module()).c_str(), local_size_x,
phys_dev_props.limits.maxComputeWorkGroupSize[0]);
}
if (local_size_y > phys_dev_props.limits.maxComputeWorkGroupSize[1]) {
skip |= LogError(shader->vk_shader_module(), "UNASSIGNED-features-limits-maxComputeWorkGroupSize",
"%s local_size_y (%" PRIu32 ") exceeds device limit maxComputeWorkGroupSize[1] (%" PRIu32 ").",
report_data->FormatHandle(shader->vk_shader_module()).c_str(), local_size_x,
phys_dev_props.limits.maxComputeWorkGroupSize[1]);
}
if (local_size_z > phys_dev_props.limits.maxComputeWorkGroupSize[2]) {
skip |= LogError(shader->vk_shader_module(), "UNASSIGNED-features-limits-maxComputeWorkGroupSize",
"%s local_size_z (%" PRIu32 ") exceeds device limit maxComputeWorkGroupSize[2] (%" PRIu32 ").",
report_data->FormatHandle(shader->vk_shader_module()).c_str(), local_size_x,
phys_dev_props.limits.maxComputeWorkGroupSize[2]);
}
uint32_t limit = phys_dev_props.limits.maxComputeWorkGroupInvocations;
uint64_t invocations = local_size_x * local_size_y;
// Prevent overflow.
bool fail = false;
if (invocations > UINT32_MAX || invocations > limit) {
fail = true;
}
if (!fail) {
invocations *= local_size_z;
if (invocations > UINT32_MAX || invocations > limit) {
fail = true;
}
}
if (fail) {
skip |= LogError(shader->vk_shader_module(), "UNASSIGNED-features-limits-maxComputeWorkGroupInvocations",
"%s local_size (%" PRIu32 ", %" PRIu32 ", %" PRIu32
") exceeds device limit maxComputeWorkGroupInvocations (%" PRIu32 ").",
report_data->FormatHandle(shader->vk_shader_module()).c_str(), local_size_x, local_size_y, local_size_z,
limit);
}
}
return skip;
}
spv_target_env PickSpirvEnv(uint32_t api_version, bool spirv_1_4) {
if (api_version >= VK_API_VERSION_1_2) {
return SPV_ENV_VULKAN_1_2;
} else if (api_version >= VK_API_VERSION_1_1) {
if (spirv_1_4) {
return SPV_ENV_VULKAN_1_1_SPIRV_1_4;
} else {
return SPV_ENV_VULKAN_1_1;
}
}
return SPV_ENV_VULKAN_1_0;
}
void AdjustValidatorOptions(const DeviceExtensions device_extensions, const DeviceFeatures enabled_features,
spvtools::ValidatorOptions &options) {
if (device_extensions.vk_khr_relaxed_block_layout) {
options.SetRelaxBlockLayout(true);
}
if (device_extensions.vk_khr_uniform_buffer_standard_layout && enabled_features.core12.uniformBufferStandardLayout == VK_TRUE) {
options.SetUniformBufferStandardLayout(true);
}
if (device_extensions.vk_ext_scalar_block_layout && enabled_features.core12.scalarBlockLayout == VK_TRUE) {
options.SetScalarBlockLayout(true);
}
if (device_extensions.vk_khr_workgroup_memory_explicit_layout &&
enabled_features.workgroup_memory_explicit_layout_features.workgroupMemoryExplicitLayoutScalarBlockLayout) {
options.SetWorkgroupScalarBlockLayout(true);
}
}