blob: 31de1cb2e56a89a8dd2425fdd979f167fffec7a2 [file] [log] [blame]
/* Copyright (c) 2020-2023 The Khronos Group Inc.
* Copyright (c) 2020-2023 Valve Corporation
* Copyright (c) 2020-2023 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "gpu_validation/gpu_state_tracker.h"
#include "sync/sync_utils.h"
#include "vma/vma.h"
// Implementation for Descriptor Set Manager class
UtilDescriptorSetManager::UtilDescriptorSetManager(VkDevice device, uint32_t num_bindings_in_set)
: device(device), num_bindings_in_set(num_bindings_in_set) {}
UtilDescriptorSetManager::~UtilDescriptorSetManager() {
for (auto &pool : desc_pool_map_) {
DispatchDestroyDescriptorPool(device, pool.first, NULL);
}
desc_pool_map_.clear();
}
VkResult UtilDescriptorSetManager::GetDescriptorSet(VkDescriptorPool *desc_pool, VkDescriptorSetLayout ds_layout,
VkDescriptorSet *desc_set) {
std::vector<VkDescriptorSet> desc_sets;
VkResult result = GetDescriptorSets(1, desc_pool, ds_layout, &desc_sets);
assert(result == VK_SUCCESS);
if (result == VK_SUCCESS) {
*desc_set = desc_sets[0];
}
return result;
}
VkResult UtilDescriptorSetManager::GetDescriptorSets(uint32_t count, VkDescriptorPool *pool, VkDescriptorSetLayout ds_layout,
std::vector<VkDescriptorSet> *desc_sets) {
auto guard = Lock();
const uint32_t default_pool_size = kItemsPerChunk;
VkResult result = VK_SUCCESS;
VkDescriptorPool pool_to_use = VK_NULL_HANDLE;
assert(count > 0);
if (0 == count) {
return result;
}
desc_sets->clear();
desc_sets->resize(count);
for (auto &pool : desc_pool_map_) {
if (pool.second.used + count < pool.second.size) {
pool_to_use = pool.first;
break;
}
}
if (VK_NULL_HANDLE == pool_to_use) {
uint32_t pool_count = default_pool_size;
if (count > default_pool_size) {
pool_count = count;
}
const VkDescriptorPoolSize size_counts = {
VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
pool_count * num_bindings_in_set,
};
VkDescriptorPoolCreateInfo desc_pool_info = vku::InitStructHelper();
desc_pool_info.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT;
desc_pool_info.maxSets = pool_count;
desc_pool_info.poolSizeCount = 1;
desc_pool_info.pPoolSizes = &size_counts;
result = DispatchCreateDescriptorPool(device, &desc_pool_info, NULL, &pool_to_use);
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
return result;
}
desc_pool_map_[pool_to_use].size = desc_pool_info.maxSets;
desc_pool_map_[pool_to_use].used = 0;
}
std::vector<VkDescriptorSetLayout> desc_layouts(count, ds_layout);
VkDescriptorSetAllocateInfo alloc_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, NULL, pool_to_use, count,
desc_layouts.data()};
result = DispatchAllocateDescriptorSets(device, &alloc_info, desc_sets->data());
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
return result;
}
*pool = pool_to_use;
desc_pool_map_[pool_to_use].used += count;
return result;
}
void UtilDescriptorSetManager::PutBackDescriptorSet(VkDescriptorPool desc_pool, VkDescriptorSet desc_set) {
auto guard = Lock();
auto iter = desc_pool_map_.find(desc_pool);
if (iter != desc_pool_map_.end()) {
VkResult result = DispatchFreeDescriptorSets(device, desc_pool, 1, &desc_set);
assert(result == VK_SUCCESS);
if (result != VK_SUCCESS) {
return;
}
desc_pool_map_[desc_pool].used--;
if (0 == desc_pool_map_[desc_pool].used) {
DispatchDestroyDescriptorPool(device, desc_pool, NULL);
desc_pool_map_.erase(desc_pool);
}
}
return;
}
// Trampolines to make VMA call Dispatch for Vulkan calls
static VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL gpuVkGetInstanceProcAddr(VkInstance inst, const char *name) {
return DispatchGetInstanceProcAddr(inst, name);
}
static VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL gpuVkGetDeviceProcAddr(VkDevice dev, const char *name) {
return DispatchGetDeviceProcAddr(dev, name);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkGetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties *pProperties) {
DispatchGetPhysicalDeviceProperties(physicalDevice, pProperties);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkGetPhysicalDeviceMemoryProperties(VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties *pMemoryProperties) {
DispatchGetPhysicalDeviceMemoryProperties(physicalDevice, pMemoryProperties);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkAllocateMemory(VkDevice device, const VkMemoryAllocateInfo *pAllocateInfo,
const VkAllocationCallbacks *pAllocator, VkDeviceMemory *pMemory) {
return DispatchAllocateMemory(device, pAllocateInfo, pAllocator, pMemory);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkFreeMemory(VkDevice device, VkDeviceMemory memory, const VkAllocationCallbacks *pAllocator) {
DispatchFreeMemory(device, memory, pAllocator);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkMapMemory(VkDevice device, VkDeviceMemory memory, VkDeviceSize offset, VkDeviceSize size,
VkMemoryMapFlags flags, void **ppData) {
return DispatchMapMemory(device, memory, offset, size, flags, ppData);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkUnmapMemory(VkDevice device, VkDeviceMemory memory) { DispatchUnmapMemory(device, memory); }
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkFlushMappedMemoryRanges(VkDevice device, uint32_t memoryRangeCount,
const VkMappedMemoryRange *pMemoryRanges) {
return DispatchFlushMappedMemoryRanges(device, memoryRangeCount, pMemoryRanges);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkInvalidateMappedMemoryRanges(VkDevice device, uint32_t memoryRangeCount,
const VkMappedMemoryRange *pMemoryRanges) {
return DispatchInvalidateMappedMemoryRanges(device, memoryRangeCount, pMemoryRanges);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkBindBufferMemory(VkDevice device, VkBuffer buffer, VkDeviceMemory memory,
VkDeviceSize memoryOffset) {
return DispatchBindBufferMemory(device, buffer, memory, memoryOffset);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkBindImageMemory(VkDevice device, VkImage image, VkDeviceMemory memory,
VkDeviceSize memoryOffset) {
return DispatchBindImageMemory(device, image, memory, memoryOffset);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkGetBufferMemoryRequirements(VkDevice device, VkBuffer buffer,
VkMemoryRequirements *pMemoryRequirements) {
DispatchGetBufferMemoryRequirements(device, buffer, pMemoryRequirements);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkGetImageMemoryRequirements(VkDevice device, VkImage image,
VkMemoryRequirements *pMemoryRequirements) {
DispatchGetImageMemoryRequirements(device, image, pMemoryRequirements);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkCreateBuffer(VkDevice device, const VkBufferCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkBuffer *pBuffer) {
return DispatchCreateBuffer(device, pCreateInfo, pAllocator, pBuffer);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkDestroyBuffer(VkDevice device, VkBuffer buffer, const VkAllocationCallbacks *pAllocator) {
return DispatchDestroyBuffer(device, buffer, pAllocator);
}
static VKAPI_ATTR VkResult VKAPI_CALL gpuVkCreateImage(VkDevice device, const VkImageCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkImage *pImage) {
return DispatchCreateImage(device, pCreateInfo, pAllocator, pImage);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkDestroyImage(VkDevice device, VkImage image, const VkAllocationCallbacks *pAllocator) {
DispatchDestroyImage(device, image, pAllocator);
}
static VKAPI_ATTR void VKAPI_CALL gpuVkCmdCopyBuffer(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkBuffer dstBuffer,
uint32_t regionCount, const VkBufferCopy *pRegions) {
DispatchCmdCopyBuffer(commandBuffer, srcBuffer, dstBuffer, regionCount, pRegions);
}
VkResult UtilInitializeVma(VkInstance instance, VkPhysicalDevice physical_device, VkDevice device, bool use_buffer_device_address,
VmaAllocator *pAllocator) {
VmaVulkanFunctions functions;
VmaAllocatorCreateInfo allocator_info = {};
allocator_info.instance = instance;
allocator_info.device = device;
allocator_info.physicalDevice = physical_device;
if (use_buffer_device_address) {
allocator_info.flags |= VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT;
}
functions.vkGetInstanceProcAddr = static_cast<PFN_vkGetInstanceProcAddr>(gpuVkGetInstanceProcAddr);
functions.vkGetDeviceProcAddr = static_cast<PFN_vkGetDeviceProcAddr>(gpuVkGetDeviceProcAddr);
functions.vkGetPhysicalDeviceProperties = static_cast<PFN_vkGetPhysicalDeviceProperties>(gpuVkGetPhysicalDeviceProperties);
functions.vkGetPhysicalDeviceMemoryProperties =
static_cast<PFN_vkGetPhysicalDeviceMemoryProperties>(gpuVkGetPhysicalDeviceMemoryProperties);
functions.vkAllocateMemory = static_cast<PFN_vkAllocateMemory>(gpuVkAllocateMemory);
functions.vkFreeMemory = static_cast<PFN_vkFreeMemory>(gpuVkFreeMemory);
functions.vkMapMemory = static_cast<PFN_vkMapMemory>(gpuVkMapMemory);
functions.vkUnmapMemory = static_cast<PFN_vkUnmapMemory>(gpuVkUnmapMemory);
functions.vkFlushMappedMemoryRanges = static_cast<PFN_vkFlushMappedMemoryRanges>(gpuVkFlushMappedMemoryRanges);
functions.vkInvalidateMappedMemoryRanges = static_cast<PFN_vkInvalidateMappedMemoryRanges>(gpuVkInvalidateMappedMemoryRanges);
functions.vkBindBufferMemory = static_cast<PFN_vkBindBufferMemory>(gpuVkBindBufferMemory);
functions.vkBindImageMemory = static_cast<PFN_vkBindImageMemory>(gpuVkBindImageMemory);
functions.vkGetBufferMemoryRequirements = static_cast<PFN_vkGetBufferMemoryRequirements>(gpuVkGetBufferMemoryRequirements);
functions.vkGetImageMemoryRequirements = static_cast<PFN_vkGetImageMemoryRequirements>(gpuVkGetImageMemoryRequirements);
functions.vkCreateBuffer = static_cast<PFN_vkCreateBuffer>(gpuVkCreateBuffer);
functions.vkDestroyBuffer = static_cast<PFN_vkDestroyBuffer>(gpuVkDestroyBuffer);
functions.vkCreateImage = static_cast<PFN_vkCreateImage>(gpuVkCreateImage);
functions.vkDestroyImage = static_cast<PFN_vkDestroyImage>(gpuVkDestroyImage);
functions.vkCmdCopyBuffer = static_cast<PFN_vkCmdCopyBuffer>(gpuVkCmdCopyBuffer);
allocator_info.pVulkanFunctions = &functions;
return vmaCreateAllocator(&allocator_info, pAllocator);
}
gpu_utils_state::CommandBuffer::CommandBuffer(GpuAssistedBase *ga, VkCommandBuffer cb,
const VkCommandBufferAllocateInfo *pCreateInfo, const COMMAND_POOL_STATE *pool)
: CMD_BUFFER_STATE(ga, cb, pCreateInfo, pool) {}
ReadLockGuard GpuAssistedBase::ReadLock() const {
if (fine_grained_locking) {
return ReadLockGuard(validation_object_mutex, std::defer_lock);
} else {
return ReadLockGuard(validation_object_mutex);
}
}
WriteLockGuard GpuAssistedBase::WriteLock() {
if (fine_grained_locking) {
return WriteLockGuard(validation_object_mutex, std::defer_lock);
} else {
return WriteLockGuard(validation_object_mutex);
}
}
void GpuAssistedBase::PreCallRecordCreateDevice(VkPhysicalDevice gpu, const VkDeviceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkDevice *pDevice, void *modified_ci) {
ValidationStateTracker::PreCallRecordCreateDevice(gpu, pCreateInfo, pAllocator, pDevice, modified_ci);
VkPhysicalDeviceFeatures *features = nullptr;
// Use a local variable to query features since this method runs in the instance validation object.
// To avoid confusion and race conditions about which physical device's features are stored in the
// 'supported_devices' member variable, it will only be set in the device validation objects.
// See CreateDevice() below.
VkPhysicalDeviceFeatures gpu_supported_features;
DispatchGetPhysicalDeviceFeatures(gpu, &gpu_supported_features);
// See CreateDevice() in chassis.cpp. modified_ci is a pointer to a safe struct stored on the stack.
// This code follows the safe struct memory memory management scheme. That is, we must delete any memory
// remove from the safe struct, and any additions must be allocated in a way that is compatible with
// the safe struct destructor.
auto *modified_create_info = static_cast<safe_VkDeviceCreateInfo *>(modified_ci);
if (modified_create_info->pEnabledFeatures) {
// If pEnabledFeatures, VkPhysicalDeviceFeatures2 in pNext chain is not allowed
features = const_cast<VkPhysicalDeviceFeatures *>(modified_create_info->pEnabledFeatures);
} else {
auto *features2 =
const_cast<VkPhysicalDeviceFeatures2 *>(vku::FindStructInPNextChain<VkPhysicalDeviceFeatures2>(modified_create_info->pNext));
if (features2) features = &features2->features;
}
VkPhysicalDeviceFeatures new_features = {};
VkBool32 *desired = reinterpret_cast<VkBool32 *>(&desired_features);
VkBool32 *feature_ptr;
if (features) {
feature_ptr = reinterpret_cast<VkBool32 *>(features);
} else {
feature_ptr = reinterpret_cast<VkBool32 *>(&new_features);
}
VkBool32 *supported = reinterpret_cast<VkBool32 *>(&supported_features);
for (size_t i = 0; i < sizeof(VkPhysicalDeviceFeatures); i += (sizeof(VkBool32))) {
if (*supported && *desired) {
*feature_ptr = true;
}
supported++;
desired++;
feature_ptr++;
}
if (!features) {
delete modified_create_info->pEnabledFeatures;
modified_create_info->pEnabledFeatures = new VkPhysicalDeviceFeatures(new_features);
}
if (force_buffer_device_address) {
// TODO How to handle multi-device
if (api_version > VK_API_VERSION_1_1) {
auto *features12 = const_cast<VkPhysicalDeviceVulkan12Features *>(
vku::FindStructInPNextChain<VkPhysicalDeviceVulkan12Features>(modified_create_info->pNext));
if (features12) {
features12->bufferDeviceAddress = VK_TRUE;
} else {
auto *bda_features = const_cast<VkPhysicalDeviceBufferDeviceAddressFeatures *>(
vku::FindStructInPNextChain<VkPhysicalDeviceBufferDeviceAddressFeatures>(modified_create_info->pNext));
if (bda_features) {
bda_features->bufferDeviceAddress = VK_TRUE;
} else {
VkPhysicalDeviceBufferDeviceAddressFeatures new_bda_features = vku::InitStructHelper();
new_bda_features.bufferDeviceAddress = VK_TRUE;
new_bda_features.pNext = const_cast<void *>(modified_create_info->pNext);
modified_create_info->pNext = new VkPhysicalDeviceBufferDeviceAddressFeatures(new_bda_features);
}
}
} else if (api_version == VK_API_VERSION_1_1) {
static const std::string bda_ext{"VK_KHR_buffer_device_address"};
bool found_ext = false;
for (uint32_t i = 0; i < modified_create_info->enabledExtensionCount; i++) {
if (bda_ext == modified_create_info->ppEnabledExtensionNames[i]) {
found_ext = true;
break;
}
}
if (!found_ext) {
const char **ext_names = new const char *[modified_create_info->enabledExtensionCount + 1];
// Copy the existing pointer table
std::copy(modified_create_info->ppEnabledExtensionNames,
modified_create_info->ppEnabledExtensionNames + modified_create_info->enabledExtensionCount, ext_names);
// Add our new extension
char *bda_ext_copy = new char[bda_ext.size() + 1]{};
bda_ext.copy(bda_ext_copy, bda_ext.size());
bda_ext_copy[bda_ext.size()] = '\0';
ext_names[modified_create_info->enabledExtensionCount] = bda_ext_copy;
// Patch up the safe struct
delete[] modified_create_info->ppEnabledExtensionNames;
modified_create_info->ppEnabledExtensionNames = ext_names;
modified_create_info->enabledExtensionCount++;
}
auto *bda_features = const_cast<VkPhysicalDeviceBufferDeviceAddressFeatures *>(
vku::FindStructInPNextChain<VkPhysicalDeviceBufferDeviceAddressFeatures>(modified_create_info));
if (bda_features) {
bda_features->bufferDeviceAddress = VK_TRUE;
} else {
VkPhysicalDeviceBufferDeviceAddressFeatures new_bda_features = vku::InitStructHelper();
new_bda_features.bufferDeviceAddress = VK_TRUE;
new_bda_features.pNext = const_cast<void *>(modified_create_info->pNext);
modified_create_info->pNext = new VkPhysicalDeviceBufferDeviceAddressFeatures(new_bda_features);
}
} else {
force_buffer_device_address = false;
}
}
}
void GpuAssistedBase::CreateDevice(const VkDeviceCreateInfo *pCreateInfo) {
ValidationStateTracker::CreateDevice(pCreateInfo);
// If api version 1.1 or later, SetDeviceLoaderData will be in the loader
auto chain_info = get_chain_info(pCreateInfo, VK_LOADER_DATA_CALLBACK);
assert(chain_info->u.pfnSetDeviceLoaderData);
vkSetDeviceLoaderData = chain_info->u.pfnSetDeviceLoaderData;
// Some devices have extremely high limits here, so set a reasonable max because we have to pad
// the pipeline layout with dummy descriptor set layouts.
adjusted_max_desc_sets = phys_dev_props.limits.maxBoundDescriptorSets;
adjusted_max_desc_sets = std::min(33U, adjusted_max_desc_sets);
// We can't do anything if there is only one.
// Device probably not a legit Vulkan device, since there should be at least 4. Protect ourselves.
if (adjusted_max_desc_sets == 1) {
ReportSetupProblem(device, "Device can bind only a single descriptor set.");
aborted = true;
return;
}
desc_set_bind_index = adjusted_max_desc_sets - 1;
VkResult result1 = UtilInitializeVma(instance, physical_device, device, force_buffer_device_address, &vmaAllocator);
assert(result1 == VK_SUCCESS);
desc_set_manager = std::make_unique<UtilDescriptorSetManager>(device, static_cast<uint32_t>(bindings_.size()));
const VkDescriptorSetLayoutCreateInfo debug_desc_layout_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, NULL, 0,
static_cast<uint32_t>(bindings_.size()), bindings_.data()};
const VkDescriptorSetLayoutCreateInfo dummy_desc_layout_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, NULL, 0, 0,
NULL};
result1 = DispatchCreateDescriptorSetLayout(device, &debug_desc_layout_info, NULL, &debug_desc_layout);
// This is a layout used to "pad" a pipeline layout to fill in any gaps to the selected bind index.
VkResult result2 = DispatchCreateDescriptorSetLayout(device, &dummy_desc_layout_info, NULL, &dummy_desc_layout);
std::vector<VkDescriptorSetLayout> debug_layouts;
for (uint32_t j = 0; j < adjusted_max_desc_sets - 1; ++j) {
debug_layouts.push_back(dummy_desc_layout);
}
debug_layouts.push_back(debug_desc_layout);
const VkPipelineLayoutCreateInfo debug_pipeline_layout_info = {
VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, NULL, 0u, static_cast<uint32_t>(debug_layouts.size()), debug_layouts.data(), 0u, NULL};
VkResult result3 = DispatchCreatePipelineLayout(device, &debug_pipeline_layout_info, NULL, &debug_pipeline_layout);
assert((result1 == VK_SUCCESS) && (result2 == VK_SUCCESS) && (result3 == VK_SUCCESS));
if ((result1 != VK_SUCCESS) || (result2 != VK_SUCCESS) || (result3 != VK_SUCCESS)) {
ReportSetupProblem(device, "Unable to create descriptor set layout.");
if (result1 == VK_SUCCESS) {
DispatchDestroyDescriptorSetLayout(device, debug_desc_layout, NULL);
}
if (result2 == VK_SUCCESS) {
DispatchDestroyDescriptorSetLayout(device, dummy_desc_layout, NULL);
}
if (result3 == VK_SUCCESS) {
DispatchDestroyPipelineLayout(device, debug_pipeline_layout, NULL);
}
debug_desc_layout = VK_NULL_HANDLE;
dummy_desc_layout = VK_NULL_HANDLE;
debug_pipeline_layout = VK_NULL_HANDLE;
aborted = true;
return;
}
}
void GpuAssistedBase::PreCallRecordDestroyDevice(VkDevice device, const VkAllocationCallbacks *pAllocator) {
if (debug_desc_layout) {
DispatchDestroyDescriptorSetLayout(device, debug_desc_layout, NULL);
debug_desc_layout = VK_NULL_HANDLE;
}
if (dummy_desc_layout) {
DispatchDestroyDescriptorSetLayout(device, dummy_desc_layout, NULL);
dummy_desc_layout = VK_NULL_HANDLE;
}
if (debug_pipeline_layout) {
DispatchDestroyPipelineLayout(device, debug_pipeline_layout, NULL);
}
ValidationStateTracker::PreCallRecordDestroyDevice(device, pAllocator);
// State Tracker can end up making vma calls through callbacks - don't destroy allocator until ST is done
if (output_buffer_pool) {
vmaDestroyPool(vmaAllocator, output_buffer_pool);
}
if (vmaAllocator) {
vmaDestroyAllocator(vmaAllocator);
}
desc_set_manager.reset();
}
gpu_utils_state::Queue::Queue(GpuAssistedBase &state, VkQueue q, uint32_t index, VkDeviceQueueCreateFlags flags,
const VkQueueFamilyProperties &queueFamilyProperties)
: QUEUE_STATE(state, q, index, flags, queueFamilyProperties), state_(state) {}
gpu_utils_state::Queue::~Queue() {
if (barrier_command_buffer_) {
DispatchFreeCommandBuffers(state_.device, barrier_command_pool_, 1, &barrier_command_buffer_);
barrier_command_buffer_ = VK_NULL_HANDLE;
}
if (barrier_command_pool_) {
DispatchDestroyCommandPool(state_.device, barrier_command_pool_, NULL);
barrier_command_pool_ = VK_NULL_HANDLE;
}
}
// Submit a memory barrier on graphics queues.
// Lazy-create and record the needed command buffer.
void gpu_utils_state::Queue::SubmitBarrier() {
if (barrier_command_pool_ == VK_NULL_HANDLE) {
VkResult result = VK_SUCCESS;
VkCommandPoolCreateInfo pool_create_info = vku::InitStructHelper();
pool_create_info.queueFamilyIndex = queueFamilyIndex;
result = DispatchCreateCommandPool(state_.device, &pool_create_info, nullptr, &barrier_command_pool_);
if (result != VK_SUCCESS) {
state_.ReportSetupProblem(state_.device, "Unable to create command pool for barrier CB.");
barrier_command_pool_ = VK_NULL_HANDLE;
return;
}
VkCommandBufferAllocateInfo buffer_alloc_info = vku::InitStructHelper();
buffer_alloc_info.commandPool = barrier_command_pool_;
buffer_alloc_info.commandBufferCount = 1;
buffer_alloc_info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
result = DispatchAllocateCommandBuffers(state_.device, &buffer_alloc_info, &barrier_command_buffer_);
if (result != VK_SUCCESS) {
state_.ReportSetupProblem(state_.device, "Unable to create barrier command buffer.");
DispatchDestroyCommandPool(state_.device, barrier_command_pool_, nullptr);
barrier_command_pool_ = VK_NULL_HANDLE;
barrier_command_buffer_ = VK_NULL_HANDLE;
return;
}
// Hook up command buffer dispatch
state_.vkSetDeviceLoaderData(state_.device, barrier_command_buffer_);
// Record a global memory barrier to force availability of device memory operations to the host domain.
VkCommandBufferBeginInfo command_buffer_begin_info = vku::InitStructHelper();
result = DispatchBeginCommandBuffer(barrier_command_buffer_, &command_buffer_begin_info);
if (result == VK_SUCCESS) {
VkMemoryBarrier memory_barrier = vku::InitStructHelper();
memory_barrier.srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT;
memory_barrier.dstAccessMask = VK_ACCESS_HOST_READ_BIT;
DispatchCmdPipelineBarrier(barrier_command_buffer_, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_HOST_BIT, 0,
1, &memory_barrier, 0, nullptr, 0, nullptr);
DispatchEndCommandBuffer(barrier_command_buffer_);
}
}
if (barrier_command_buffer_ != VK_NULL_HANDLE) {
VkSubmitInfo submit_info = vku::InitStructHelper();
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &barrier_command_buffer_;
DispatchQueueSubmit(QUEUE_STATE::Queue(), 1, &submit_info, VK_NULL_HANDLE);
}
}
bool GpuAssistedBase::CommandBufferNeedsProcessing(VkCommandBuffer command_buffer) const {
auto cb_node = GetRead<gpu_utils_state::CommandBuffer>(command_buffer);
if (cb_node->NeedsProcessing()) {
return true;
}
for (const auto *secondary_cb : cb_node->linkedCommandBuffers) {
auto secondary_cb_node = static_cast<const gpu_utils_state::CommandBuffer *>(secondary_cb);
auto guard = secondary_cb_node->ReadLock();
if (secondary_cb_node->NeedsProcessing()) {
return true;
}
}
return false;
}
void GpuAssistedBase::ProcessCommandBuffer(VkQueue queue, VkCommandBuffer command_buffer) {
auto cb_node = GetWrite<gpu_utils_state::CommandBuffer>(command_buffer);
cb_node->Process(queue);
for (auto *secondary_cmd_base : cb_node->linkedCommandBuffers) {
auto *secondary_cb_node = static_cast<gpu_utils_state::CommandBuffer *>(secondary_cmd_base);
auto guard = secondary_cb_node->WriteLock();
secondary_cb_node->Process(queue);
}
}
// Issue a memory barrier to make GPU-written data available to host.
// Wait for the queue to complete execution.
// Check the debug buffers for all the command buffers that were submitted.
void GpuAssistedBase::PostCallRecordQueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo *pSubmits, VkFence fence,
const RecordObject &record_obj) {
ValidationStateTracker::PostCallRecordQueueSubmit(queue, submitCount, pSubmits, fence, record_obj);
if (aborted || (record_obj.result != VK_SUCCESS)) return;
bool buffers_present = false;
// Don't QueueWaitIdle if there's nothing to process
for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
const VkSubmitInfo *submit = &pSubmits[submit_idx];
for (uint32_t i = 0; i < submit->commandBufferCount; i++) {
buffers_present |= CommandBufferNeedsProcessing(submit->pCommandBuffers[i]);
}
}
if (!buffers_present) return;
SubmitBarrier(queue);
DispatchQueueWaitIdle(queue);
for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
const VkSubmitInfo *submit = &pSubmits[submit_idx];
for (uint32_t i = 0; i < submit->commandBufferCount; i++) {
ProcessCommandBuffer(queue, submit->pCommandBuffers[i]);
}
}
}
void GpuAssistedBase::RecordQueueSubmit2(VkQueue queue, uint32_t submitCount, const VkSubmitInfo2 *pSubmits, VkFence fence,
const RecordObject &record_obj) {
if (aborted || (record_obj.result != VK_SUCCESS)) return;
bool buffers_present = false;
// Don't QueueWaitIdle if there's nothing to process
for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
const VkSubmitInfo2 *submit = &pSubmits[submit_idx];
for (uint32_t i = 0; i < submit->commandBufferInfoCount; i++) {
buffers_present |= CommandBufferNeedsProcessing(submit->pCommandBufferInfos[i].commandBuffer);
}
}
if (!buffers_present) return;
SubmitBarrier(queue);
DispatchQueueWaitIdle(queue);
for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
const VkSubmitInfo2 *submit = &pSubmits[submit_idx];
for (uint32_t i = 0; i < submit->commandBufferInfoCount; i++) {
ProcessCommandBuffer(queue, submit->pCommandBufferInfos[i].commandBuffer);
}
}
}
void GpuAssistedBase::PostCallRecordQueueSubmit2KHR(VkQueue queue, uint32_t submitCount, const VkSubmitInfo2KHR *pSubmits,
VkFence fence, const RecordObject &record_obj) {
ValidationStateTracker::PostCallRecordQueueSubmit2KHR(queue, submitCount, pSubmits, fence, record_obj);
RecordQueueSubmit2(queue, submitCount, pSubmits, fence, record_obj);
}
void GpuAssistedBase::PostCallRecordQueueSubmit2(VkQueue queue, uint32_t submitCount, const VkSubmitInfo2 *pSubmits, VkFence fence,
const RecordObject &record_obj) {
ValidationStateTracker::PostCallRecordQueueSubmit2(queue, submitCount, pSubmits, fence, record_obj);
RecordQueueSubmit2(queue, submitCount, pSubmits, fence, record_obj);
}
// Just gives a warning about a possible deadlock.
bool GpuAssistedBase::ValidateCmdWaitEvents(VkCommandBuffer command_buffer, VkPipelineStageFlags2 src_stage_mask,
const Location &loc) const {
if (src_stage_mask & VK_PIPELINE_STAGE_2_HOST_BIT) {
std::ostringstream error_msg;
error_msg << loc.Message()
<< ": recorded with VK_PIPELINE_STAGE_HOST_BIT set. GPU-Assisted validation waits on queue completion. This wait "
"could block the host's signaling of this event, resulting in deadlock.";
ReportSetupProblem(command_buffer, error_msg.str().c_str());
}
return false;
}
bool GpuAssistedBase::PreCallValidateCmdWaitEvents(
VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents, VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask, uint32_t memoryBarrierCount, const VkMemoryBarrier *pMemoryBarriers,
uint32_t bufferMemoryBarrierCount, const VkBufferMemoryBarrier *pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers, const ErrorObject &error_obj) const {
ValidationStateTracker::PreCallValidateCmdWaitEvents(
commandBuffer, eventCount, pEvents, srcStageMask, dstStageMask, memoryBarrierCount, pMemoryBarriers,
bufferMemoryBarrierCount, pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers, error_obj);
return ValidateCmdWaitEvents(commandBuffer, static_cast<VkPipelineStageFlags2>(srcStageMask), error_obj.location);
}
bool GpuAssistedBase::PreCallValidateCmdWaitEvents2KHR(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents,
const VkDependencyInfoKHR *pDependencyInfos,
const ErrorObject &error_obj) const {
return PreCallValidateCmdWaitEvents2(commandBuffer, eventCount, pEvents, pDependencyInfos, error_obj);
}
bool GpuAssistedBase::PreCallValidateCmdWaitEvents2(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents,
const VkDependencyInfo *pDependencyInfos, const ErrorObject &error_obj) const {
VkPipelineStageFlags2 src_stage_mask = 0;
for (uint32_t i = 0; i < eventCount; i++) {
auto stage_masks = sync_utils::GetGlobalStageMasks(pDependencyInfos[i]);
src_stage_mask |= stage_masks.src;
}
ValidationStateTracker::PreCallValidateCmdWaitEvents2(commandBuffer, eventCount, pEvents, pDependencyInfos, error_obj);
return ValidateCmdWaitEvents(commandBuffer, src_stage_mask, error_obj.location);
}
void GpuAssistedBase::PreCallRecordCreatePipelineLayout(VkDevice device, const VkPipelineLayoutCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkPipelineLayout *pPipelineLayout,
void *cpl_state_data) {
if (aborted) {
return;
}
auto cpl_state = static_cast<create_pipeline_layout_api_state *>(cpl_state_data);
if (cpl_state->modified_create_info.setLayoutCount >= adjusted_max_desc_sets) {
std::ostringstream strm;
strm << "Pipeline Layout conflict with validation's descriptor set at slot " << desc_set_bind_index << ". "
<< "Application has too many descriptor sets in the pipeline layout to continue with gpu validation. "
<< "Validation is not modifying the pipeline layout. "
<< "Instrumented shaders are replaced with non-instrumented shaders.";
ReportSetupProblem(device, strm.str().c_str());
} else {
// Modify the pipeline layout by:
// 1. Copying the caller's descriptor set desc_layouts
// 2. Fill in dummy descriptor layouts up to the max binding
// 3. Fill in with the debug descriptor layout at the max binding slot
cpl_state->new_layouts.reserve(adjusted_max_desc_sets);
cpl_state->new_layouts.insert(cpl_state->new_layouts.end(), &pCreateInfo->pSetLayouts[0],
&pCreateInfo->pSetLayouts[pCreateInfo->setLayoutCount]);
for (uint32_t i = pCreateInfo->setLayoutCount; i < adjusted_max_desc_sets - 1; ++i) {
cpl_state->new_layouts.push_back(dummy_desc_layout);
}
cpl_state->new_layouts.push_back(debug_desc_layout);
cpl_state->modified_create_info.pSetLayouts = cpl_state->new_layouts.data();
cpl_state->modified_create_info.setLayoutCount = adjusted_max_desc_sets;
}
ValidationStateTracker::PreCallRecordCreatePipelineLayout(device, pCreateInfo, pAllocator, pPipelineLayout, cpl_state_data);
}
void GpuAssistedBase::PostCallRecordCreatePipelineLayout(VkDevice device, const VkPipelineLayoutCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkPipelineLayout *pPipelineLayout,
const RecordObject &record_obj) {
if (record_obj.result != VK_SUCCESS) {
ReportSetupProblem(device, "Unable to create pipeline layout. Device could become unstable.");
aborted = true;
}
ValidationStateTracker::PostCallRecordCreatePipelineLayout(device, pCreateInfo, pAllocator, pPipelineLayout, record_obj);
}
void GpuAssistedBase::PreCallRecordCreateShadersEXT(VkDevice device, uint32_t createInfoCount,
const VkShaderCreateInfoEXT *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkShaderEXT *pShaders,
void *csm_state_data) {
if (aborted) {
return;
}
auto cso_state = static_cast<create_shader_object_api_state *>(csm_state_data);
for (uint32_t i = 0; i < createInfoCount; ++i) {
if (cso_state->instrumented_create_info->setLayoutCount >= adjusted_max_desc_sets) {
std::ostringstream strm;
strm << "Descriptor Set Layout conflict with validation's descriptor set at slot " << desc_set_bind_index << ". "
<< "Application has too many descriptor sets in the pipeline layout to continue with gpu validation. "
<< "Validation is not modifying the pipeline layout. "
<< "Instrumented shaders are replaced with non-instrumented shaders.";
ReportSetupProblem(device, strm.str().c_str());
} else {
// Modify the pipeline layout by:
// 1. Copying the caller's descriptor set desc_layouts
// 2. Fill in dummy descriptor layouts up to the max binding
// 3. Fill in with the debug descriptor layout at the max binding slot
cso_state->new_layouts.reserve(adjusted_max_desc_sets);
cso_state->new_layouts.insert(cso_state->new_layouts.end(), pCreateInfos[i].pSetLayouts,
&pCreateInfos[i].pSetLayouts[pCreateInfos[i].setLayoutCount]);
for (uint32_t j = pCreateInfos[i].setLayoutCount; j < adjusted_max_desc_sets - 1; ++j) {
cso_state->new_layouts.push_back(dummy_desc_layout);
}
cso_state->new_layouts.push_back(debug_desc_layout);
cso_state->instrumented_create_info->pSetLayouts = cso_state->new_layouts.data();
cso_state->instrumented_create_info->setLayoutCount = adjusted_max_desc_sets;
}
}
}
void GpuAssistedBase::PostCallRecordCreateShadersEXT(VkDevice device, uint32_t createInfoCount,
const VkShaderCreateInfoEXT *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkShaderEXT *pShaders,
const RecordObject &record_obj, void *csm_state_data) {
ValidationStateTracker::PostCallRecordCreateShadersEXT(device, createInfoCount, pCreateInfos, pAllocator, pShaders, record_obj,
csm_state_data);
if (aborted) return;
auto cso_state = static_cast<create_shader_object_api_state *>(csm_state_data);
for (uint32_t i = 0; i < createInfoCount; ++i) {
shader_map.insert_or_assign(cso_state->unique_shader_ids[i], VK_NULL_HANDLE, VK_NULL_HANDLE, pShaders[i],
cso_state->instrumented_spirv[i]);
}
}
void GpuAssistedBase::PreCallRecordDestroyShaderEXT(VkDevice device, VkShaderEXT shader, const VkAllocationCallbacks *pAllocator) {
auto to_erase = shader_map.snapshot([shader](const GpuAssistedShaderTracker &entry) { return entry.shader_object == shader; });
for (const auto &entry : to_erase) {
shader_map.erase(entry.first);
}
ValidationStateTracker::PreCallRecordDestroyShaderEXT(device, shader, pAllocator);
}
void GpuAssistedBase::PreCallRecordCreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkGraphicsPipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
void *cgpl_state_data) {
if (aborted) return;
std::vector<safe_VkGraphicsPipelineCreateInfo> new_pipeline_create_infos;
create_graphics_pipeline_api_state *cgpl_state = reinterpret_cast<create_graphics_pipeline_api_state *>(cgpl_state_data);
PreCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, cgpl_state->pipe_state, &new_pipeline_create_infos,
VK_PIPELINE_BIND_POINT_GRAPHICS, *cgpl_state);
cgpl_state->modified_create_infos = new_pipeline_create_infos;
cgpl_state->pCreateInfos = reinterpret_cast<VkGraphicsPipelineCreateInfo *>(cgpl_state->modified_create_infos.data());
}
void GpuAssistedBase::PreCallRecordCreateComputePipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkComputePipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
void *ccpl_state_data) {
if (aborted) return;
std::vector<safe_VkComputePipelineCreateInfo> new_pipeline_create_infos;
auto *ccpl_state = reinterpret_cast<create_compute_pipeline_api_state *>(ccpl_state_data);
PreCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, ccpl_state->pipe_state, &new_pipeline_create_infos,
VK_PIPELINE_BIND_POINT_COMPUTE, *ccpl_state);
ccpl_state->modified_create_infos = new_pipeline_create_infos;
ccpl_state->pCreateInfos = reinterpret_cast<VkComputePipelineCreateInfo *>(ccpl_state->modified_create_infos.data());
}
void GpuAssistedBase::PreCallRecordCreateRayTracingPipelinesNV(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkRayTracingPipelineCreateInfoNV *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
void *crtpl_state_data) {
if (aborted) return;
std::vector<safe_VkRayTracingPipelineCreateInfoCommon> new_pipeline_create_infos;
auto *crtpl_state = reinterpret_cast<create_ray_tracing_pipeline_api_state *>(crtpl_state_data);
PreCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, crtpl_state->pipe_state, &new_pipeline_create_infos,
VK_PIPELINE_BIND_POINT_RAY_TRACING_NV, *crtpl_state);
crtpl_state->modified_create_infos = new_pipeline_create_infos;
crtpl_state->pCreateInfos = reinterpret_cast<VkRayTracingPipelineCreateInfoNV *>(crtpl_state->modified_create_infos.data());
}
void GpuAssistedBase::PreCallRecordCreateRayTracingPipelinesKHR(VkDevice device, VkDeferredOperationKHR deferredOperation,
VkPipelineCache pipelineCache, uint32_t count,
const VkRayTracingPipelineCreateInfoKHR *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
void *crtpl_state_data) {
if (aborted) return;
std::vector<safe_VkRayTracingPipelineCreateInfoCommon> new_pipeline_create_infos;
auto *crtpl_state = reinterpret_cast<create_ray_tracing_pipeline_khr_api_state *>(crtpl_state_data);
PreCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, crtpl_state->pipe_state, &new_pipeline_create_infos,
VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR, *crtpl_state);
crtpl_state->modified_create_infos = new_pipeline_create_infos;
crtpl_state->pCreateInfos = reinterpret_cast<VkRayTracingPipelineCreateInfoKHR *>(crtpl_state->modified_create_infos.data());
}
template <typename CreateInfos, typename SafeCreateInfos>
static void UtilCopyCreatePipelineFeedbackData(const uint32_t count, CreateInfos *pCreateInfos, SafeCreateInfos *pSafeCreateInfos) {
for (uint32_t i = 0; i < count; i++) {
auto src_feedback_struct = vku::FindStructInPNextChain<VkPipelineCreationFeedbackCreateInfoEXT>(pSafeCreateInfos[i].pNext);
if (!src_feedback_struct) return;
auto dst_feedback_struct = const_cast<VkPipelineCreationFeedbackCreateInfoEXT *>(
vku::FindStructInPNextChain<VkPipelineCreationFeedbackCreateInfoEXT>(pCreateInfos[i].pNext));
*dst_feedback_struct->pPipelineCreationFeedback = *src_feedback_struct->pPipelineCreationFeedback;
for (uint32_t j = 0; j < src_feedback_struct->pipelineStageCreationFeedbackCount; j++) {
dst_feedback_struct->pPipelineStageCreationFeedbacks[j] = src_feedback_struct->pPipelineStageCreationFeedbacks[j];
}
}
}
void GpuAssistedBase::PostCallRecordCreateGraphicsPipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkGraphicsPipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
const RecordObject &record_obj, void *cgpl_state_data) {
ValidationStateTracker::PostCallRecordCreateGraphicsPipelines(device, pipelineCache, count, pCreateInfos, pAllocator,
pPipelines, record_obj, cgpl_state_data);
if (aborted) return;
create_graphics_pipeline_api_state *cgpl_state = reinterpret_cast<create_graphics_pipeline_api_state *>(cgpl_state_data);
UtilCopyCreatePipelineFeedbackData(count, pCreateInfos, cgpl_state->modified_create_infos.data());
PostCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, VK_PIPELINE_BIND_POINT_GRAPHICS,
cgpl_state->modified_create_infos.data());
}
void GpuAssistedBase::PostCallRecordCreateComputePipelines(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkComputePipelineCreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
const RecordObject &record_obj, void *ccpl_state_data) {
ValidationStateTracker::PostCallRecordCreateComputePipelines(device, pipelineCache, count, pCreateInfos, pAllocator, pPipelines,
record_obj, ccpl_state_data);
if (aborted) return;
create_compute_pipeline_api_state *ccpl_state = reinterpret_cast<create_compute_pipeline_api_state *>(ccpl_state_data);
UtilCopyCreatePipelineFeedbackData(count, pCreateInfos, ccpl_state->modified_create_infos.data());
PostCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, VK_PIPELINE_BIND_POINT_COMPUTE,
ccpl_state->modified_create_infos.data());
}
void GpuAssistedBase::PostCallRecordCreateRayTracingPipelinesNV(VkDevice device, VkPipelineCache pipelineCache, uint32_t count,
const VkRayTracingPipelineCreateInfoNV *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
const RecordObject &record_obj, void *crtpl_state_data) {
auto *crtpl_state = reinterpret_cast<create_ray_tracing_pipeline_khr_api_state *>(crtpl_state_data);
ValidationStateTracker::PostCallRecordCreateRayTracingPipelinesNV(device, pipelineCache, count, pCreateInfos, pAllocator,
pPipelines, record_obj, crtpl_state_data);
if (aborted) return;
UtilCopyCreatePipelineFeedbackData(count, pCreateInfos, crtpl_state->modified_create_infos.data());
PostCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, VK_PIPELINE_BIND_POINT_RAY_TRACING_NV,
crtpl_state->modified_create_infos.data());
}
void GpuAssistedBase::PostCallRecordCreateRayTracingPipelinesKHR(VkDevice device, VkDeferredOperationKHR deferredOperation,
VkPipelineCache pipelineCache, uint32_t count,
const VkRayTracingPipelineCreateInfoKHR *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
const RecordObject &record_obj, void *crtpl_state_data) {
auto *crtpl_state = reinterpret_cast<create_ray_tracing_pipeline_khr_api_state *>(crtpl_state_data);
ValidationStateTracker::PostCallRecordCreateRayTracingPipelinesKHR(
device, deferredOperation, pipelineCache, count, pCreateInfos, pAllocator, pPipelines, record_obj, crtpl_state_data);
if (aborted) return;
UtilCopyCreatePipelineFeedbackData(count, pCreateInfos, crtpl_state->modified_create_infos.data());
PostCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR,
crtpl_state->modified_create_infos.data());
}
// Remove all the shader trackers associated with this destroyed pipeline.
void GpuAssistedBase::PreCallRecordDestroyPipeline(VkDevice device, VkPipeline pipeline, const VkAllocationCallbacks *pAllocator) {
auto to_erase = shader_map.snapshot([pipeline](const GpuAssistedShaderTracker &entry) { return entry.pipeline == pipeline; });
for (const auto &entry : to_erase) {
shader_map.erase(entry.first);
}
ValidationStateTracker::PreCallRecordDestroyPipeline(device, pipeline, pAllocator);
}
template <typename CreateInfo>
VkShaderModule GetShaderModule(const CreateInfo &createInfo, VkShaderStageFlagBits stage) {
for (uint32_t i = 0; i < createInfo.stageCount; ++i) {
if (createInfo.pStages[i].stage == stage) {
return createInfo.pStages[i].module;
}
}
return {};
}
template <>
VkShaderModule GetShaderModule(const VkComputePipelineCreateInfo &createInfo, VkShaderStageFlagBits) {
return createInfo.stage.module;
}
template <typename SafeType>
void SetShaderModule(SafeType &createInfo, const safe_VkPipelineShaderStageCreateInfo &stage_info, VkShaderModule shader_module,
uint32_t stage_ci_index) {
createInfo.pStages[stage_ci_index] = stage_info;
createInfo.pStages[stage_ci_index].module = shader_module;
}
template <>
void SetShaderModule(safe_VkComputePipelineCreateInfo &createInfo, const safe_VkPipelineShaderStageCreateInfo &stage_info,
VkShaderModule shader_module, uint32_t stage_ci_index) {
assert(stage_ci_index == 0);
createInfo.stage = stage_info;
createInfo.stage.module = shader_module;
}
template <typename CreateInfo, typename StageInfo>
StageInfo &GetShaderStageCI(CreateInfo &ci, VkShaderStageFlagBits stage) {
static StageInfo null_stage{};
for (uint32_t i = 0; i < ci.stageCount; ++i) {
if (ci.pStages[i].stage == stage) {
return ci.pStages[i];
}
}
return null_stage;
}
template <>
safe_VkPipelineShaderStageCreateInfo &GetShaderStageCI(safe_VkComputePipelineCreateInfo &ci, VkShaderStageFlagBits) {
return ci.stage;
}
bool GpuAssistedBase::CheckForGpuAvEnabled(const void *pNext) {
auto features = vku::FindStructInPNextChain<VkValidationFeaturesEXT>(pNext);
if (features) {
for (uint32_t i = 0; i < features->enabledValidationFeatureCount; i++) {
if (features->pEnabledValidationFeatures[i] == VK_VALIDATION_FEATURE_ENABLE_GPU_ASSISTED_EXT) {
return true;
}
}
}
return false;
}
// Examine the pipelines to see if they use the debug descriptor set binding index.
// If any do, create new non-instrumented shader modules and use them to replace the instrumented
// shaders in the pipeline. Return the (possibly) modified create infos to the caller.
template <typename CreateInfo, typename SafeCreateInfo, typename GPUAVState>
void GpuAssistedBase::PreCallRecordPipelineCreations(uint32_t count, const CreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
std::vector<std::shared_ptr<PIPELINE_STATE>> &pipe_state,
std::vector<SafeCreateInfo> *new_pipeline_create_infos,
const VkPipelineBindPoint bind_point, GPUAVState &cgpl_state) {
if (bind_point != VK_PIPELINE_BIND_POINT_GRAPHICS && bind_point != VK_PIPELINE_BIND_POINT_COMPUTE &&
bind_point != VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR) {
return;
}
// Walk through all the pipelines, make a copy of each and flag each pipeline that contains a shader that uses the debug
// descriptor set index.
for (uint32_t pipeline = 0; pipeline < count; ++pipeline) {
const auto &pipe = pipe_state[pipeline];
// NOTE: since these are "safe" CreateInfos, this will create a deep copy via the safe copy constructor
auto new_pipeline_ci = pipe->GetCreateInfo<CreateInfo>();
bool replace_shaders = false;
if (pipe->active_slots.find(desc_set_bind_index) != pipe->active_slots.end()) {
replace_shaders = true;
}
// If the app requests all available sets, the pipeline layout was not modified at pipeline layout creation and the
// already instrumented shaders need to be replaced with uninstrumented shaders
const auto pipeline_layout = pipe->PipelineLayoutState();
if (pipeline_layout && pipeline_layout->set_layouts.size() >= adjusted_max_desc_sets) {
replace_shaders = true;
}
if (replace_shaders) {
for (uint32_t i = 0; i < static_cast<uint32_t>(pipe->stage_states.size()); ++i) {
const auto &stage = pipe->stage_states[i];
const auto &spirv_state = stage.spirv_state;
VkShaderModule shader_module;
VkShaderModuleCreateInfo create_info = vku::InitStructHelper();
create_info.pCode = spirv_state->words_.data();
create_info.codeSize = spirv_state->words_.size() * sizeof(uint32_t);
VkResult result = DispatchCreateShaderModule(device, &create_info, pAllocator, &shader_module);
if (result == VK_SUCCESS) {
SetShaderModule(new_pipeline_ci, *stage.pipeline_create_info, shader_module, i);
} else {
ReportSetupProblem(device,
"Unable to replace instrumented shader with non-instrumented one. "
"Device could become unstable.");
}
}
} else {
// !replace_shaders implies that the instrumented shaders should be used. However, if this is a non-executable pipeline
// library created with pre-raster or fragment shader state, it contains shaders that have not yet been instrumented
if (!pipe->HasFullState() && (pipe->pre_raster_state || pipe->fragment_shader_state)) {
for (const auto &stage_state : pipe->stage_states) {
auto module_state = std::const_pointer_cast<SHADER_MODULE_STATE>(stage_state.module_state);
if (!module_state->Handle()) {
// If the shader module's handle is non-null, then it was defined with CreateShaderModule and covered by the
// case above. Otherwise, it is being defined during CGPL time
if (cgpl_state.shader_states.size() <= pipeline) {
cgpl_state.shader_states.resize(pipeline + 1);
}
const VkShaderStageFlagBits stage = stage_state.GetStage();
// Now find the corresponding VkShaderModuleCreateInfo
auto &stage_ci =
GetShaderStageCI<SafeCreateInfo, safe_VkPipelineShaderStageCreateInfo>(new_pipeline_ci, stage);
// We're modifying the copied, safe create info, which is ok to be non-const
auto sm_ci =
const_cast<safe_VkShaderModuleCreateInfo *>(reinterpret_cast<const safe_VkShaderModuleCreateInfo *>(
vku::FindStructInPNextChain<VkShaderModuleCreateInfo>(stage_ci.pNext)));
if (gpuav_settings.select_instrumented_shaders && sm_ci && !CheckForGpuAvEnabled(sm_ci->pNext)) continue;
auto &csm_state = cgpl_state.shader_states[pipeline][stage];
bool cached = false;
bool pass = false;
if (gpuav_settings.cache_instrumented_shaders) {
csm_state.unique_shader_id = ValidationCache::MakeShaderHash(module_state->spirv->words_.data(),
module_state->spirv->words_.size());
auto it = instrumented_shaders.find(csm_state.unique_shader_id);
if (it != instrumented_shaders.end()) {
csm_state.instrumented_spirv = it->second.second;
cached = true;
}
} else {
csm_state.unique_shader_id = unique_shader_module_id++;
}
if (!cached) {
pass = InstrumentShader(module_state->spirv->words_, csm_state.instrumented_spirv,
csm_state.unique_shader_id);
}
if (cached || pass) {
module_state->gpu_validation_shader_id = csm_state.unique_shader_id;
// Now we need to update the shader code in VkShaderModuleCreateInfo
// module_state->Handle() == VK_NULL_HANDLE should imply sm_ci != nullptr, but checking here anyway
if (sm_ci) {
sm_ci->SetCode(csm_state.instrumented_spirv);
}
if (gpuav_settings.cache_instrumented_shaders && !cached) {
instrumented_shaders.emplace(
csm_state.unique_shader_id,
std::make_pair(csm_state.instrumented_spirv.size(), csm_state.instrumented_spirv));
}
}
}
}
}
}
new_pipeline_create_infos->push_back(std::move(new_pipeline_ci));
}
}
// For every pipeline:
// - For every shader in a pipeline:
// - If the shader had to be replaced in PreCallRecord (because the pipeline is using the debug desc set index):
// - Destroy it since it has been bound into the pipeline by now. This is our only chance to delete it.
// - Track the shader in the shader_map
// - Save the shader binary if it contains debug code
template <typename CreateInfo, typename SafeCreateInfo>
void GpuAssistedBase::PostCallRecordPipelineCreations(const uint32_t count, const CreateInfo *pCreateInfos,
const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
const VkPipelineBindPoint bind_point,
const SafeCreateInfo &modified_create_infos) {
if (bind_point != VK_PIPELINE_BIND_POINT_GRAPHICS && bind_point != VK_PIPELINE_BIND_POINT_COMPUTE &&
bind_point != VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR) {
return;
}
for (uint32_t pipeline = 0; pipeline < count; ++pipeline) {
auto pipeline_state = Get<PIPELINE_STATE>(pPipelines[pipeline]);
if (!pipeline_state) continue;
if (!pipeline_state->stage_states.empty() && !(pipeline_state->create_flags & VK_PIPELINE_CREATE_LIBRARY_BIT_KHR)) {
const auto pipeline_layout = pipeline_state->PipelineLayoutState();
for (auto &stage_state : pipeline_state->stage_states) {
auto &module_state = stage_state.module_state;
const auto shader_module = module_state->Handle();
if (pipeline_state->active_slots.find(desc_set_bind_index) != pipeline_state->active_slots.end() ||
(pipeline_layout->set_layouts.size() >= adjusted_max_desc_sets)) {
auto *modified_ci = reinterpret_cast<const CreateInfo *>(modified_create_infos[pipeline].ptr());
auto uninstrumented_module = GetShaderModule(*modified_ci, stage_state.GetStage());
assert(uninstrumented_module != shader_module.Cast<VkShaderModule>());
DispatchDestroyShaderModule(device, uninstrumented_module, pAllocator);
}
std::vector<unsigned int> code;
// Save the shader binary
// The core_validation ShaderModule tracker saves the binary too, but discards it when the ShaderModule
// is destroyed. Applications may destroy ShaderModules after they are placed in a pipeline and before
// the pipeline is used, so we have to keep another copy.
if (module_state && module_state->spirv) code = module_state->spirv->words_;
shader_map.insert_or_assign(module_state->gpu_validation_shader_id, pipeline_state->pipeline(),
shader_module.Cast<VkShaderModule>(), VK_NULL_HANDLE, std::move(code));
}
}
}
}