blob: 1ef09be468ae4c4be54f50e9ba719234050b6b69 [file] [log] [blame]
/* Copyright (c) 2020-2023 The Khronos Group Inc.
* Copyright (c) 2020-2023 Valve Corporation
* Copyright (c) 2020-2023 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "gpu_validation/gpu_error_message.h"
#include "spirv-tools/instrument.hpp"
#include "state_tracker/shader_module.h"
#include <algorithm>
#include <regex>
// Generate the stage-specific part of the message.
void UtilGenerateStageMessage(const uint32_t *debug_record, std::string &msg) {
using namespace spvtools;
std::ostringstream strm;
switch (debug_record[kInstCommonOutStageIdx]) {
case spv::ExecutionModelVertex: {
strm << "Stage = Vertex. Vertex Index = " << debug_record[kInstVertOutVertexIndex]
<< " Instance Index = " << debug_record[kInstVertOutInstanceIndex] << ". ";
} break;
case spv::ExecutionModelTessellationControl: {
strm << "Stage = Tessellation Control. Invocation ID = " << debug_record[kInstTessCtlOutInvocationId]
<< ", Primitive ID = " << debug_record[kInstTessCtlOutPrimitiveId];
} break;
case spv::ExecutionModelTessellationEvaluation: {
strm << "Stage = Tessellation Eval. Primitive ID = " << debug_record[kInstTessEvalOutPrimitiveId]
<< ", TessCoord (u, v) = (" << debug_record[kInstTessEvalOutTessCoordU] << ", "
<< debug_record[kInstTessEvalOutTessCoordV] << "). ";
} break;
case spv::ExecutionModelGeometry: {
strm << "Stage = Geometry. Primitive ID = " << debug_record[kInstGeomOutPrimitiveId]
<< " Invocation ID = " << debug_record[kInstGeomOutInvocationId] << ". ";
} break;
case spv::ExecutionModelFragment: {
strm << "Stage = Fragment. Fragment coord (x,y) = ("
<< *reinterpret_cast<const float *>(&debug_record[kInstFragOutFragCoordX]) << ", "
<< *reinterpret_cast<const float *>(&debug_record[kInstFragOutFragCoordY]) << "). ";
} break;
case spv::ExecutionModelGLCompute: {
strm << "Stage = Compute. Global invocation ID (x, y, z) = (" << debug_record[kInstCompOutGlobalInvocationIdX] << ", "
<< debug_record[kInstCompOutGlobalInvocationIdY] << ", " << debug_record[kInstCompOutGlobalInvocationIdZ] << " )";
} break;
case spv::ExecutionModelRayGenerationNV: {
strm << "Stage = Ray Generation. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
<< debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
} break;
case spv::ExecutionModelIntersectionNV: {
strm << "Stage = Intersection. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
<< debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
} break;
case spv::ExecutionModelAnyHitNV: {
strm << "Stage = Any Hit. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
<< debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
} break;
case spv::ExecutionModelClosestHitNV: {
strm << "Stage = Closest Hit. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
<< debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
} break;
case spv::ExecutionModelMissNV: {
strm << "Stage = Miss. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
<< debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
} break;
case spv::ExecutionModelCallableNV: {
strm << "Stage = Callable. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
<< debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
} break;
case spv::ExecutionModelTaskNV: {
strm << "Stage = Task. Global invocation ID (x, y, z) = (" << debug_record[kInstTaskOutGlobalInvocationIdX] << ", "
<< debug_record[kInstTaskOutGlobalInvocationIdY] << ", " << debug_record[kInstTaskOutGlobalInvocationIdZ] << " )";
} break;
case spv::ExecutionModelMeshNV: {
strm << "Stage = Mesh.Global invocation ID (x, y, z) = (" << debug_record[kInstMeshOutGlobalInvocationIdX] << ", "
<< debug_record[kInstMeshOutGlobalInvocationIdY] << ", " << debug_record[kInstMeshOutGlobalInvocationIdZ] << " )";
} break;
default: {
strm << "Internal Error (unexpected stage = " << debug_record[kInstCommonOutStageIdx] << "). ";
assert(false);
} break;
}
msg = strm.str();
}
static std::string LookupDebugUtilsName(const debug_report_data *report_data, const uint64_t object) {
auto object_label = report_data->DebugReportGetUtilsObjectName(object);
if (object_label != "") {
object_label = "(" + object_label + ")";
}
return object_label;
}
// Generate message from the common portion of the debug report record.
void UtilGenerateCommonMessage(const debug_report_data *report_data, const VkCommandBuffer commandBuffer,
const uint32_t *debug_record, const VkShaderModule shader_module_handle,
const VkPipeline pipeline_handle, const VkShaderEXT shader_object_handle,
const VkPipelineBindPoint pipeline_bind_point, const uint32_t operation_index, std::string &msg) {
using namespace spvtools;
std::ostringstream strm;
if (shader_module_handle == VK_NULL_HANDLE && shader_object_handle == VK_NULL_HANDLE) {
strm << std::hex << std::showbase << "Internal Error: Unable to locate information for shader used in command buffer "
<< LookupDebugUtilsName(report_data, HandleToUint64(commandBuffer)) << "(" << HandleToUint64(commandBuffer) << "). ";
assert(true);
} else {
strm << std::hex << std::showbase << "Command buffer " << LookupDebugUtilsName(report_data, HandleToUint64(commandBuffer))
<< "(" << HandleToUint64(commandBuffer) << "). ";
if (pipeline_bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
strm << "Draw ";
} else if (pipeline_bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
strm << "Compute Dispatch ";
} else if (pipeline_bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_KHR) {
strm << "Ray Trace ";
} else {
assert(false);
strm << "Unknown Pipeline Operation ";
}
if (shader_module_handle) {
strm << "Index " << operation_index << ". "
<< "Pipeline " << LookupDebugUtilsName(report_data, HandleToUint64(pipeline_handle)) << "("
<< HandleToUint64(pipeline_handle) << "). "
<< "Shader Module " << LookupDebugUtilsName(report_data, HandleToUint64(shader_module_handle)) << "("
<< HandleToUint64(shader_module_handle) << "). ";
} else {
strm << "Index " << operation_index << ". "
<< "Shader Object " << LookupDebugUtilsName(report_data, HandleToUint64(shader_object_handle)) << "("
<< HandleToUint64(shader_object_handle) << "). ";
}
}
strm << std::dec << std::noshowbase;
strm << "Shader Instruction Index = " << debug_record[kInstCommonOutInstructionIdx] << ". ";
msg = strm.str();
}
// Read the contents of the SPIR-V OpSource instruction and any following continuation instructions.
// Split the single string into a vector of strings, one for each line, for easier processing.
static void ReadOpSource(const SPIRV_MODULE_STATE &module_state, const uint32_t reported_file_id,
std::vector<std::string> &opsource_lines) {
const std::vector<Instruction> &instructions = module_state.GetInstructions();
for (size_t i = 0; i < instructions.size(); i++) {
const Instruction &insn = instructions[i];
if ((insn.Opcode() == spv::OpSource) && (insn.Length() >= 5) && (insn.Word(3) == reported_file_id)) {
std::istringstream in_stream;
std::string cur_line;
in_stream.str(insn.GetAsString(4));
while (std::getline(in_stream, cur_line)) {
opsource_lines.push_back(cur_line);
}
for (size_t k = i + 1; k < instructions.size(); k++) {
const Instruction &continue_insn = instructions[k];
if (continue_insn.Opcode() != spv::OpSourceContinued) {
break;
}
in_stream.str(continue_insn.GetAsString(1));
while (std::getline(in_stream, cur_line)) {
opsource_lines.push_back(cur_line);
}
}
break;
}
}
}
// The task here is to search the OpSource content to find the #line directive with the
// line number that is closest to, but still prior to the reported error line number and
// still within the reported filename.
// From this known position in the OpSource content we can add the difference between
// the #line line number and the reported error line number to determine the location
// in the OpSource content of the reported error line.
//
// Considerations:
// - Look only at #line directives that specify the reported_filename since
// the reported error line number refers to its location in the reported filename.
// - If a #line directive does not have a filename, the file is the reported filename, or
// the filename found in a prior #line directive. (This is C-preprocessor behavior)
// - It is possible (e.g., inlining) for blocks of code to get shuffled out of their
// original order and the #line directives are used to keep the numbering correct. This
// is why we need to examine the entire contents of the source, instead of leaving early
// when finding a #line line number larger than the reported error line number.
//
static bool GetLineAndFilename(const std::string &string, uint32_t *linenumber, std::string &filename) {
static const std::regex line_regex( // matches #line directives
"^" // beginning of line
"\\s*" // optional whitespace
"#" // required text
"\\s*" // optional whitespace
"line" // required text
"\\s+" // required whitespace
"([0-9]+)" // required first capture - line number
"(\\s+)?" // optional second capture - whitespace
"(\".+\")?" // optional third capture - quoted filename with at least one char inside
".*"); // rest of line (needed when using std::regex_match since the entire line is tested)
std::smatch captures;
const bool found_line = std::regex_match(string, captures, line_regex);
if (!found_line) return false;
// filename is optional and considered found only if the whitespace and the filename are captured
if (captures[2].matched && captures[3].matched) {
// Remove enclosing double quotes. The regex guarantees the quotes and at least one char.
filename = captures[3].str().substr(1, captures[3].str().size() - 2);
}
*linenumber = (uint32_t)std::stoul(captures[1]);
return true;
}
// Extract the filename, line number, and column number from the correct OpLine and build a message string from it.
// Scan the source (from OpSource) to find the line of source at the reported line number and place it in another message string.
void UtilGenerateSourceMessages(vvl::span<const uint32_t> pgm, const uint32_t *debug_record, bool from_printf,
std::string &filename_msg, std::string &source_msg) {
using namespace spvtools;
std::ostringstream filename_stream;
std::ostringstream source_stream;
SPIRV_MODULE_STATE module_state(pgm);
if (module_state.words_.empty()) {
return;
}
// Find the OpLine just before the failing instruction indicated by the debug info.
// SPIR-V can only be iterated in the forward direction due to its opcode/length encoding.
uint32_t instruction_index = 0;
uint32_t reported_file_id = 0;
uint32_t reported_line_number = 0;
uint32_t reported_column_number = 0;
for (const Instruction &insn : module_state.GetInstructions()) {
if (insn.Opcode() == spv::OpLine) {
reported_file_id = insn.Word(1);
reported_line_number = insn.Word(2);
reported_column_number = insn.Word(3);
}
if (instruction_index == debug_record[kInstCommonOutInstructionIdx]) {
break;
}
instruction_index++;
}
// Create message with file information obtained from the OpString pointed to by the discovered OpLine.
std::string reported_filename;
if (reported_file_id == 0) {
filename_stream
<< "Unable to find SPIR-V OpLine for source information. Build shader with debug info to get source information.";
} else {
bool found_opstring = false;
std::string prefix;
if (from_printf) {
prefix = "Debug shader printf message generated ";
} else {
prefix = "Shader validation error occurred ";
}
for (const Instruction *insn : module_state.static_data_.debug_string_inst) {
if (insn->Length() >= 3 && insn->Word(1) == reported_file_id) {
found_opstring = true;
reported_filename = insn->GetAsString(2);
if (reported_filename.empty()) {
filename_stream << prefix << "at line " << reported_line_number;
} else {
filename_stream << prefix << "in file " << reported_filename << " at line " << reported_line_number;
}
if (reported_column_number > 0) {
filename_stream << ", column " << reported_column_number;
}
filename_stream << ".";
break;
}
}
if (!found_opstring) {
filename_stream << "Unable to find SPIR-V OpString for file id " << reported_file_id << " from OpLine instruction."
<< std::endl;
filename_stream << "File ID = " << reported_file_id << ", Line Number = " << reported_line_number
<< ", Column = " << reported_column_number << std::endl;
}
}
filename_msg = filename_stream.str();
// Create message to display source code line containing error.
if ((reported_file_id != 0)) {
// Read the source code and split it up into separate lines.
std::vector<std::string> opsource_lines;
ReadOpSource(module_state, reported_file_id, opsource_lines);
// Find the line in the OpSource content that corresponds to the reported error file and line.
if (!opsource_lines.empty()) {
uint32_t saved_line_number = 0;
std::string current_filename = reported_filename; // current "preprocessor" filename state.
std::vector<std::string>::size_type saved_opsource_offset = 0;
bool found_best_line = false;
for (auto it = opsource_lines.begin(); it != opsource_lines.end(); ++it) {
uint32_t parsed_line_number;
std::string parsed_filename;
const bool found_line = GetLineAndFilename(*it, &parsed_line_number, parsed_filename);
if (!found_line) continue;
const bool found_filename = parsed_filename.size() > 0;
if (found_filename) {
current_filename = parsed_filename;
}
if ((!found_filename) || (current_filename == reported_filename)) {
// Update the candidate best line directive, if the current one is prior and closer to the reported line
if (reported_line_number >= parsed_line_number) {
if (!found_best_line ||
(reported_line_number - parsed_line_number <= reported_line_number - saved_line_number)) {
saved_line_number = parsed_line_number;
saved_opsource_offset = std::distance(opsource_lines.begin(), it);
found_best_line = true;
}
}
}
}
if (found_best_line) {
assert(reported_line_number >= saved_line_number);
std::vector<std::string>::size_type opsource_index =
(reported_line_number - saved_line_number) + 1 + saved_opsource_offset;
if (opsource_index < opsource_lines.size()) {
source_stream << "\n" << reported_line_number << ": " << opsource_lines[opsource_index].c_str();
} else {
source_stream << "Internal error: calculated source line of " << opsource_index << " for source size of "
<< opsource_lines.size() << " lines.";
}
} else {
source_stream << "Unable to find suitable #line directive in SPIR-V OpSource.";
}
} else {
source_stream << "Unable to find SPIR-V OpSource.";
}
}
source_msg = source_stream.str();
}