blob: bdfa4caad4078bb23ef615c919e2b34290822ced [file] [log] [blame]
/*
* Copyright (c) 2015-2021 The Khronos Group Inc.
* Copyright (c) 2015-2021 Valve Corporation
* Copyright (c) 2015-2021 LunarG, Inc.
* Copyright (c) 2015-2021 Google, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Author: Chia-I Wu <olvaffe@gmail.com>
* Author: Chris Forbes <chrisf@ijw.co.nz>
* Author: Courtney Goeltzenleuchter <courtney@LunarG.com>
* Author: Mark Lobodzinski <mark@lunarg.com>
* Author: Mike Stroyan <mike@LunarG.com>
* Author: Tobin Ehlis <tobine@google.com>
* Author: Tony Barbour <tony@LunarG.com>
* Author: Cody Northrop <cnorthrop@google.com>
* Author: Dave Houlton <daveh@lunarg.com>
* Author: Jeremy Kniager <jeremyk@lunarg.com>
* Author: Shannon McPherson <shannon@lunarg.com>
* Author: John Zulauf <jzulauf@lunarg.com>
*/
#include "../layer_validation_tests.h"
#include "vk_extension_helper.h"
#include <algorithm>
#include <array>
#include <chrono>
#include <memory>
#include <mutex>
#include <thread>
#include "cast_utils.h"
//
// POSITIVE VALIDATION TESTS
//
// These tests do not expect to encounter ANY validation errors pass only if this is true
TEST_F(VkPositiveLayerTest, ViewportWithCountNoMultiViewport) {
TEST_DESCRIPTION("DynamicViewportWithCount/ScissorWithCount without multiViewport feature not enabled.");
uint32_t version = SetTargetApiVersion(VK_API_VERSION_1_1);
if (version < VK_API_VERSION_1_1) {
printf("%s At least Vulkan version 1.1 is required, skipping test.\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
if (DeviceExtensionSupported(gpu(), nullptr, VK_EXT_EXTENDED_DYNAMIC_STATE_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_EXT_EXTENDED_DYNAMIC_STATE_EXTENSION_NAME);
} else {
printf("%s Extension %s is not supported.\n", kSkipPrefix, VK_EXT_EXTENDED_DYNAMIC_STATE_EXTENSION_NAME);
return;
}
auto extended_dynamic_state_features = LvlInitStruct<VkPhysicalDeviceExtendedDynamicStateFeaturesEXT>();
auto features2 = LvlInitStruct<VkPhysicalDeviceFeatures2>(&extended_dynamic_state_features);
vk::GetPhysicalDeviceFeatures2(gpu(), &features2);
if (!extended_dynamic_state_features.extendedDynamicState) {
printf("%s Test requires (unsupported) extendedDynamicState, skipping\n", kSkipPrefix);
return;
}
// Ensure multiViewport feature is *not* enabled for this device
features2.features.multiViewport = 0;
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
CreatePipelineHelper pipe(*this);
pipe.InitInfo();
const VkDynamicState dyn_states[] = {
VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT_EXT,
VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT_EXT,
};
VkPipelineDynamicStateCreateInfo dyn_state_ci = {};
dyn_state_ci.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dyn_state_ci.dynamicStateCount = size(dyn_states);
dyn_state_ci.pDynamicStates = dyn_states;
pipe.dyn_state_ci_ = dyn_state_ci;
pipe.vp_state_ci_.viewportCount = 0;
pipe.vp_state_ci_.scissorCount = 0;
pipe.InitState();
m_errorMonitor->ExpectSuccess();
pipe.CreateGraphicsPipeline();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, CreatePipelineComplexTypes) {
TEST_DESCRIPTION("Smoke test for complex types across VS/FS boundary");
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
if (!m_device->phy().features().tessellationShader) {
printf("%s Device does not support tessellation shaders; skipped.\n", kSkipPrefix);
return;
}
m_errorMonitor->ExpectSuccess();
VkShaderObj vs(m_device, bindStateVertShaderText, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj tcs(m_device, bindStateTscShaderText, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT, this);
VkShaderObj tes(m_device, bindStateTeshaderText, VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, this);
VkShaderObj fs(m_device, bindStateFragShaderText, VK_SHADER_STAGE_FRAGMENT_BIT, this);
VkPipelineInputAssemblyStateCreateInfo iasci{VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, nullptr, 0,
VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, VK_FALSE};
VkPipelineTessellationStateCreateInfo tsci{VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO, nullptr, 0, 3};
CreatePipelineHelper pipe(*this);
pipe.InitInfo();
pipe.gp_ci_.pTessellationState = &tsci;
pipe.gp_ci_.pInputAssemblyState = &iasci;
pipe.shader_stages_ = {vs.GetStageCreateInfo(), tcs.GetStageCreateInfo(), tes.GetStageCreateInfo(), fs.GetStageCreateInfo()};
pipe.InitState();
pipe.CreateGraphicsPipeline();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, CreatePipelineAttribMatrixType) {
TEST_DESCRIPTION("Test that pipeline validation accepts matrices passed as vertex attributes");
m_errorMonitor->ExpectSuccess();
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
VkVertexInputBindingDescription input_binding;
memset(&input_binding, 0, sizeof(input_binding));
VkVertexInputAttributeDescription input_attribs[2];
memset(input_attribs, 0, sizeof(input_attribs));
for (int i = 0; i < 2; i++) {
input_attribs[i].format = VK_FORMAT_R32G32B32A32_SFLOAT;
input_attribs[i].location = i;
}
char const *vsSource = R"glsl(
#version 450
layout(location=0) in mat2x4 x;
void main(){
gl_Position = x[0] + x[1];
}
)glsl";
VkShaderObj vs(m_device, vsSource, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj fs(m_device, bindStateFragShaderText, VK_SHADER_STAGE_FRAGMENT_BIT, this);
CreatePipelineHelper pipe(*this);
pipe.InitInfo();
pipe.vi_ci_.pVertexBindingDescriptions = &input_binding;
pipe.vi_ci_.vertexBindingDescriptionCount = 1;
pipe.vi_ci_.pVertexAttributeDescriptions = input_attribs;
pipe.vi_ci_.vertexAttributeDescriptionCount = 2;
pipe.shader_stages_ = {vs.GetStageCreateInfo(), fs.GetStageCreateInfo()};
pipe.InitState();
pipe.CreateGraphicsPipeline();
/* expect success */
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, CreatePipelineAttribArrayType) {
m_errorMonitor->ExpectSuccess();
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
VkVertexInputBindingDescription input_binding;
memset(&input_binding, 0, sizeof(input_binding));
VkVertexInputAttributeDescription input_attribs[2];
memset(input_attribs, 0, sizeof(input_attribs));
for (int i = 0; i < 2; i++) {
input_attribs[i].format = VK_FORMAT_R32G32B32A32_SFLOAT;
input_attribs[i].location = i;
}
char const *vsSource = R"glsl(
#version 450
layout(location=0) in vec4 x[2];
void main(){
gl_Position = x[0] + x[1];
}
)glsl";
VkShaderObj vs(m_device, vsSource, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj fs(m_device, bindStateFragShaderText, VK_SHADER_STAGE_FRAGMENT_BIT, this);
CreatePipelineHelper pipe(*this);
pipe.InitInfo();
pipe.vi_ci_.pVertexBindingDescriptions = &input_binding;
pipe.vi_ci_.vertexBindingDescriptionCount = 1;
pipe.vi_ci_.pVertexAttributeDescriptions = input_attribs;
pipe.vi_ci_.vertexAttributeDescriptionCount = 2;
pipe.shader_stages_ = {vs.GetStageCreateInfo(), fs.GetStageCreateInfo()};
pipe.InitState();
pipe.CreateGraphicsPipeline();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, CreatePipelineAttribComponents) {
TEST_DESCRIPTION(
"Test that pipeline validation accepts consuming a vertex attribute through multiple vertex shader inputs, each consuming "
"a different subset of the components, and that fragment shader-attachment validation tolerates multiple duplicate "
"location outputs");
m_errorMonitor->ExpectSuccess(kErrorBit | kWarningBit);
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
VkVertexInputBindingDescription input_binding;
memset(&input_binding, 0, sizeof(input_binding));
VkVertexInputAttributeDescription input_attribs[3];
memset(input_attribs, 0, sizeof(input_attribs));
for (int i = 0; i < 3; i++) {
input_attribs[i].format = VK_FORMAT_R32G32B32A32_SFLOAT;
input_attribs[i].location = i;
}
char const *vsSource = R"glsl(
#version 450
layout(location=0) in vec4 x;
layout(location=1) in vec3 y1;
layout(location=1, component=3) in float y2;
layout(location=2) in vec4 z;
void main(){
gl_Position = x + vec4(y1, y2) + z;
}
)glsl";
char const *fsSource = R"glsl(
#version 450
layout(location=0, component=0) out float color0;
layout(location=0, component=1) out float color1;
layout(location=0, component=2) out float color2;
layout(location=0, component=3) out float color3;
layout(location=1, component=0) out vec2 second_color0;
layout(location=1, component=2) out vec2 second_color1;
void main(){
color0 = float(1);
second_color0 = vec2(1);
}
)glsl";
VkShaderObj vs(m_device, vsSource, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj fs(m_device, fsSource, VK_SHADER_STAGE_FRAGMENT_BIT, this);
VkPipelineObj pipe(m_device);
VkDescriptorSetObj descriptorSet(m_device);
descriptorSet.AppendDummy();
descriptorSet.CreateVKDescriptorSet(m_commandBuffer);
// Create a renderPass with two color attachments
VkAttachmentReference attachments[2] = {};
attachments[0].layout = VK_IMAGE_LAYOUT_GENERAL;
attachments[1].attachment = 1;
attachments[1].layout = VK_IMAGE_LAYOUT_GENERAL;
VkSubpassDescription subpass = {};
subpass.pColorAttachments = attachments;
subpass.colorAttachmentCount = 2;
VkRenderPassCreateInfo rpci = {};
rpci.subpassCount = 1;
rpci.pSubpasses = &subpass;
rpci.attachmentCount = 2;
VkAttachmentDescription attach_desc[2] = {};
attach_desc[0].format = VK_FORMAT_B8G8R8A8_UNORM;
attach_desc[0].samples = VK_SAMPLE_COUNT_1_BIT;
attach_desc[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attach_desc[0].finalLayout = VK_IMAGE_LAYOUT_GENERAL;
attach_desc[0].loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
attach_desc[1].format = VK_FORMAT_B8G8R8A8_UNORM;
attach_desc[1].samples = VK_SAMPLE_COUNT_1_BIT;
attach_desc[1].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
attach_desc[1].finalLayout = VK_IMAGE_LAYOUT_GENERAL;
attach_desc[1].loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
rpci.pAttachments = attach_desc;
rpci.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO;
VkRenderPass renderpass;
vk::CreateRenderPass(m_device->device(), &rpci, NULL, &renderpass);
pipe.AddShader(&vs);
pipe.AddShader(&fs);
VkPipelineColorBlendAttachmentState att_state1 = {};
att_state1.dstAlphaBlendFactor = VK_BLEND_FACTOR_CONSTANT_COLOR;
att_state1.blendEnable = VK_FALSE;
pipe.AddColorAttachment(0, att_state1);
pipe.AddColorAttachment(1, att_state1);
pipe.AddVertexInputBindings(&input_binding, 1);
pipe.AddVertexInputAttribs(input_attribs, 3);
pipe.CreateVKPipeline(descriptorSet.GetPipelineLayout(), renderpass);
vk::DestroyRenderPass(m_device->device(), renderpass, nullptr);
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, CreatePipelineSimplePositive) {
m_errorMonitor->ExpectSuccess();
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
CreatePipelineHelper pipe(*this);
pipe.InitInfo();
pipe.InitState();
pipe.CreateGraphicsPipeline();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, CreatePipelineRelaxedTypeMatch) {
TEST_DESCRIPTION(
"Test that pipeline validation accepts the relaxed type matching rules set out in 14.1.3: fundamental type must match, and "
"producer side must have at least as many components");
m_errorMonitor->ExpectSuccess();
// VK 1.0.8 Specification, 14.1.3 "Additionally,..." block
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
char const *vsSource = R"glsl(
#version 450
layout(location=0) out vec3 x;
layout(location=1) out ivec3 y;
layout(location=2) out vec3 z;
void main(){
gl_Position = vec4(0);
x = vec3(0); y = ivec3(0); z = vec3(0);
}
)glsl";
char const *fsSource = R"glsl(
#version 450
layout(location=0) out vec4 color;
layout(location=0) in float x;
layout(location=1) flat in int y;
layout(location=2) in vec2 z;
void main(){
color = vec4(1 + x + y + z.x);
}
)glsl";
VkShaderObj vs(m_device, vsSource, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj fs(m_device, fsSource, VK_SHADER_STAGE_FRAGMENT_BIT, this);
CreatePipelineHelper pipe(*this);
pipe.InitInfo();
pipe.shader_stages_ = {vs.GetStageCreateInfo(), fs.GetStageCreateInfo()};
pipe.InitState();
pipe.CreateGraphicsPipeline();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, CreatePipelineTessPerVertex) {
TEST_DESCRIPTION("Test that pipeline validation accepts per-vertex variables passed between the TCS and TES stages");
m_errorMonitor->ExpectSuccess();
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
if (!m_device->phy().features().tessellationShader) {
printf("%s Device does not support tessellation shaders; skipped.\n", kSkipPrefix);
return;
}
char const *tcsSource = R"glsl(
#version 450
layout(location=0) out int x[];
layout(vertices=3) out;
void main(){
gl_TessLevelOuter[0] = gl_TessLevelOuter[1] = gl_TessLevelOuter[2] = 1;
gl_TessLevelInner[0] = 1;
x[gl_InvocationID] = gl_InvocationID;
}
)glsl";
char const *tesSource = R"glsl(
#version 450
layout(triangles, equal_spacing, cw) in;
layout(location=0) in int x[];
void main(){
gl_Position.xyz = gl_TessCoord;
gl_Position.w = x[0] + x[1] + x[2];
}
)glsl";
VkShaderObj vs(m_device, bindStateMinimalShaderText, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj tcs(m_device, tcsSource, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT, this);
VkShaderObj tes(m_device, tesSource, VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, this);
VkShaderObj fs(m_device, bindStateFragShaderText, VK_SHADER_STAGE_FRAGMENT_BIT, this);
VkPipelineInputAssemblyStateCreateInfo iasci{VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, nullptr, 0,
VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, VK_FALSE};
VkPipelineTessellationStateCreateInfo tsci{VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO, nullptr, 0, 3};
CreatePipelineHelper pipe(*this);
pipe.InitInfo();
pipe.gp_ci_.pTessellationState = &tsci;
pipe.gp_ci_.pInputAssemblyState = &iasci;
pipe.shader_stages_ = {vs.GetStageCreateInfo(), tcs.GetStageCreateInfo(), tes.GetStageCreateInfo(), fs.GetStageCreateInfo()};
pipe.InitState();
pipe.CreateGraphicsPipeline();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, CreatePipelineGeometryInputBlockPositive) {
TEST_DESCRIPTION(
"Test that pipeline validation accepts a user-defined interface block passed into the geometry shader. This is interesting "
"because the 'extra' array level is not present on the member type, but on the block instance.");
m_errorMonitor->ExpectSuccess();
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
if (!m_device->phy().features().geometryShader) {
printf("%s Device does not support geometry shaders; skipped.\n", kSkipPrefix);
return;
}
char const *vsSource = R"glsl(
#version 450
layout(location = 0) out VertexData { vec4 x; } gs_out;
void main(){
gs_out.x = vec4(1.0f);
}
)glsl";
char const *gsSource = R"glsl(
#version 450
layout(triangles) in;
layout(triangle_strip, max_vertices=3) out;
layout(location=0) in VertexData { vec4 x; } gs_in[];
void main() {
gl_Position = gs_in[0].x;
EmitVertex();
}
)glsl";
VkShaderObj vs(m_device, vsSource, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj gs(m_device, gsSource, VK_SHADER_STAGE_GEOMETRY_BIT, this);
VkShaderObj fs(m_device, bindStateFragShaderText, VK_SHADER_STAGE_FRAGMENT_BIT, this);
CreatePipelineHelper pipe(*this);
pipe.InitInfo();
pipe.shader_stages_ = {vs.GetStageCreateInfo(), gs.GetStageCreateInfo(), fs.GetStageCreateInfo()};
pipe.InitState();
pipe.CreateGraphicsPipeline();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, CreatePipeline64BitAttributesPositive) {
TEST_DESCRIPTION(
"Test that pipeline validation accepts basic use of 64bit vertex attributes. This is interesting because they consume "
"multiple locations.");
m_errorMonitor->ExpectSuccess();
if (!EnableDeviceProfileLayer()) {
printf("%s Failed to enable device profile layer.\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
ASSERT_NO_FATAL_FAILURE(InitState());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
if (!m_device->phy().features().shaderFloat64) {
printf("%s Device does not support 64bit vertex attributes; skipped.\n", kSkipPrefix);
return;
}
VkFormatProperties format_props;
vk::GetPhysicalDeviceFormatProperties(gpu(), VK_FORMAT_R64G64B64A64_SFLOAT, &format_props);
if (!(format_props.bufferFeatures & VK_FORMAT_FEATURE_VERTEX_BUFFER_BIT)) {
printf("%s Device does not support VK_FORMAT_R64G64B64A64_SFLOAT vertex buffers; skipped.\n", kSkipPrefix);
return;
}
VkVertexInputBindingDescription input_bindings[1];
memset(input_bindings, 0, sizeof(input_bindings));
VkVertexInputAttributeDescription input_attribs[4];
memset(input_attribs, 0, sizeof(input_attribs));
input_attribs[0].location = 0;
input_attribs[0].offset = 0;
input_attribs[0].format = VK_FORMAT_R64G64B64A64_SFLOAT;
input_attribs[1].location = 2;
input_attribs[1].offset = 32;
input_attribs[1].format = VK_FORMAT_R64G64B64A64_SFLOAT;
input_attribs[2].location = 4;
input_attribs[2].offset = 64;
input_attribs[2].format = VK_FORMAT_R64G64B64A64_SFLOAT;
input_attribs[3].location = 6;
input_attribs[3].offset = 96;
input_attribs[3].format = VK_FORMAT_R64G64B64A64_SFLOAT;
char const *vsSource = R"glsl(
#version 450
layout(location=0) in dmat4 x;
void main(){
gl_Position = vec4(x[0][0]);
}
)glsl";
VkShaderObj vs(m_device, vsSource, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj fs(m_device, bindStateFragShaderText, VK_SHADER_STAGE_FRAGMENT_BIT, this);
CreatePipelineHelper pipe(*this);
pipe.InitInfo();
pipe.vi_ci_.pVertexBindingDescriptions = input_bindings;
pipe.vi_ci_.vertexBindingDescriptionCount = 1;
pipe.vi_ci_.pVertexAttributeDescriptions = input_attribs;
pipe.vi_ci_.vertexAttributeDescriptionCount = 4;
pipe.shader_stages_ = {vs.GetStageCreateInfo(), fs.GetStageCreateInfo()};
pipe.InitState();
pipe.CreateGraphicsPipeline();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, CreatePipelineInputAttachmentPositive) {
TEST_DESCRIPTION("Positive test for a correctly matched input attachment");
m_errorMonitor->ExpectSuccess();
ASSERT_NO_FATAL_FAILURE(Init());
char const *fsSource = R"glsl(
#version 450
layout(input_attachment_index=0, set=0, binding=0) uniform subpassInput x;
layout(location=0) out vec4 color;
void main() {
color = subpassLoad(x);
}
)glsl";
VkShaderObj vs(m_device, bindStateVertShaderText, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj fs(m_device, fsSource, VK_SHADER_STAGE_FRAGMENT_BIT, this);
VkPipelineObj pipe(m_device);
pipe.AddShader(&vs);
pipe.AddShader(&fs);
pipe.AddDefaultColorAttachment();
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
VkDescriptorSetLayoutBinding dslb = {0, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 1, VK_SHADER_STAGE_FRAGMENT_BIT, nullptr};
const VkDescriptorSetLayoutObj dsl(m_device, {dslb});
const VkPipelineLayoutObj pl(m_device, {&dsl});
VkAttachmentDescription descs[2] = {
{0, VK_FORMAT_R8G8B8A8_UNORM, VK_SAMPLE_COUNT_1_BIT, VK_ATTACHMENT_LOAD_OP_LOAD, VK_ATTACHMENT_STORE_OP_STORE,
VK_ATTACHMENT_LOAD_OP_LOAD, VK_ATTACHMENT_STORE_OP_STORE, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL},
{0, VK_FORMAT_R8G8B8A8_UNORM, VK_SAMPLE_COUNT_1_BIT, VK_ATTACHMENT_LOAD_OP_LOAD, VK_ATTACHMENT_STORE_OP_STORE,
VK_ATTACHMENT_LOAD_OP_LOAD, VK_ATTACHMENT_STORE_OP_STORE, VK_IMAGE_LAYOUT_GENERAL, VK_IMAGE_LAYOUT_GENERAL},
};
VkAttachmentReference color = {
0,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
};
VkAttachmentReference input = {
1,
VK_IMAGE_LAYOUT_GENERAL,
};
VkSubpassDescription sd = {0, VK_PIPELINE_BIND_POINT_GRAPHICS, 1, &input, 1, &color, nullptr, nullptr, 0, nullptr};
VkRenderPassCreateInfo rpci = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, nullptr, 0, 2, descs, 1, &sd, 0, nullptr};
VkRenderPass rp;
VkResult err = vk::CreateRenderPass(m_device->device(), &rpci, nullptr, &rp);
ASSERT_VK_SUCCESS(err);
// should be OK. would go wrong here if it's going to...
pipe.CreateVKPipeline(pl.handle(), rp);
m_errorMonitor->VerifyNotFound();
vk::DestroyRenderPass(m_device->device(), rp, nullptr);
}
TEST_F(VkPositiveLayerTest, CreateComputePipelineMissingDescriptorUnusedPositive) {
TEST_DESCRIPTION(
"Test that pipeline validation accepts a compute pipeline which declares a descriptor-backed resource which is not "
"provided, but the shader does not statically use it. This is interesting because it requires compute pipelines to have a "
"proper descriptor use walk, which they didn't for some time.");
m_errorMonitor->ExpectSuccess();
ASSERT_NO_FATAL_FAILURE(Init());
char const *csSource = R"glsl(
#version 450
layout(local_size_x=1) in;
layout(set=0, binding=0) buffer block { vec4 x; };
void main(){
// x is not used.
}
)glsl";
CreateComputePipelineHelper pipe(*this);
pipe.InitInfo();
pipe.cs_.reset(new VkShaderObj(m_device, csSource, VK_SHADER_STAGE_COMPUTE_BIT, this));
pipe.InitState();
pipe.CreateComputePipeline();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, CreateComputePipelineFragmentShadingRate) {
TEST_DESCRIPTION("Verify that pipeline validation accepts a compute pipeline with fragment shading rate extension enabled");
m_errorMonitor->ExpectSuccess();
// Enable KHR_fragment_shading_rate and all of its required extensions
bool fsr_extensions = InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
if (fsr_extensions) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
fsr_extensions = fsr_extensions && DeviceExtensionSupported(gpu(), nullptr, VK_KHR_MAINTENANCE_1_EXTENSION_NAME);
fsr_extensions = fsr_extensions && DeviceExtensionSupported(gpu(), nullptr, VK_KHR_MAINTENANCE_2_EXTENSION_NAME);
fsr_extensions = fsr_extensions && DeviceExtensionSupported(gpu(), nullptr, VK_KHR_MULTIVIEW_EXTENSION_NAME);
fsr_extensions = fsr_extensions && DeviceExtensionSupported(gpu(), nullptr, VK_KHR_CREATE_RENDERPASS_2_EXTENSION_NAME);
fsr_extensions = fsr_extensions && DeviceExtensionSupported(gpu(), nullptr, VK_KHR_FRAGMENT_SHADING_RATE_EXTENSION_NAME);
if (fsr_extensions) {
m_device_extension_names.push_back(VK_KHR_MAINTENANCE_1_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_MAINTENANCE_2_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_MULTIVIEW_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_CREATE_RENDERPASS_2_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_FRAGMENT_SHADING_RATE_EXTENSION_NAME);
} else {
printf("%s requires VK_KHR_fragment_shading_rate.\n", kSkipPrefix);
return;
}
VkPhysicalDeviceFragmentShadingRateFeaturesKHR fsr_features = {};
fsr_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FRAGMENT_SHADING_RATE_FEATURES_KHR;
fsr_features.pipelineFragmentShadingRate = true;
fsr_features.primitiveFragmentShadingRate = true;
VkPhysicalDeviceFeatures2 device_features = {};
device_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
device_features.pNext = &fsr_features;
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &device_features));
char const *csSource = R"glsl(
#version 450
layout(local_size_x=1) in;
layout(set=0, binding=0) buffer block { vec4 x; };
void main(){
// x is not used.
}
)glsl";
CreateComputePipelineHelper pipe(*this);
pipe.InitInfo();
pipe.cs_.reset(new VkShaderObj(m_device, csSource, VK_SHADER_STAGE_COMPUTE_BIT, this));
pipe.InitState();
pipe.CreateComputePipeline();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, CreateComputePipelineCombinedImageSamplerConsumedAsSampler) {
TEST_DESCRIPTION(
"Test that pipeline validation accepts a shader consuming only the sampler portion of a combined image + sampler");
m_errorMonitor->ExpectSuccess();
ASSERT_NO_FATAL_FAILURE(Init());
std::vector<VkDescriptorSetLayoutBinding> bindings = {
{0, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_COMPUTE_BIT, nullptr},
{1, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, 1, VK_SHADER_STAGE_COMPUTE_BIT, nullptr},
{2, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_COMPUTE_BIT, nullptr},
};
char const *csSource = R"glsl(
#version 450
layout(local_size_x=1) in;
layout(set=0, binding=0) uniform sampler s;
layout(set=0, binding=1) uniform texture2D t;
layout(set=0, binding=2) buffer block { vec4 x; };
void main() {
x = texture(sampler2D(t, s), vec2(0));
}
)glsl";
CreateComputePipelineHelper pipe(*this);
pipe.InitInfo();
pipe.dsl_bindings_.resize(bindings.size());
memcpy(pipe.dsl_bindings_.data(), bindings.data(), bindings.size() * sizeof(VkDescriptorSetLayoutBinding));
pipe.cs_.reset(new VkShaderObj(m_device, csSource, VK_SHADER_STAGE_COMPUTE_BIT, this));
pipe.InitState();
m_errorMonitor->ExpectSuccess();
pipe.CreateComputePipeline();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, CreateComputePipelineCombinedImageSamplerConsumedAsImage) {
TEST_DESCRIPTION(
"Test that pipeline validation accepts a shader consuming only the image portion of a combined image + sampler");
m_errorMonitor->ExpectSuccess();
ASSERT_NO_FATAL_FAILURE(Init());
std::vector<VkDescriptorSetLayoutBinding> bindings = {
{0, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_COMPUTE_BIT, nullptr},
{1, VK_DESCRIPTOR_TYPE_SAMPLER, 1, VK_SHADER_STAGE_COMPUTE_BIT, nullptr},
{2, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_COMPUTE_BIT, nullptr},
};
char const *csSource = R"glsl(
#version 450
layout(local_size_x=1) in;
layout(set=0, binding=0) uniform texture2D t;
layout(set=0, binding=1) uniform sampler s;
layout(set=0, binding=2) buffer block { vec4 x; };
void main() {
x = texture(sampler2D(t, s), vec2(0));
}
)glsl";
CreateComputePipelineHelper pipe(*this);
pipe.InitInfo();
pipe.dsl_bindings_.resize(bindings.size());
memcpy(pipe.dsl_bindings_.data(), bindings.data(), bindings.size() * sizeof(VkDescriptorSetLayoutBinding));
pipe.cs_.reset(new VkShaderObj(m_device, csSource, VK_SHADER_STAGE_COMPUTE_BIT, this));
pipe.InitState();
m_errorMonitor->ExpectSuccess();
pipe.CreateComputePipeline();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, CreateComputePipelineCombinedImageSamplerConsumedAsBoth) {
TEST_DESCRIPTION(
"Test that pipeline validation accepts a shader consuming both the sampler and the image of a combined image+sampler but "
"via separate variables");
m_errorMonitor->ExpectSuccess();
ASSERT_NO_FATAL_FAILURE(Init());
std::vector<VkDescriptorSetLayoutBinding> bindings = {
{0, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_COMPUTE_BIT, nullptr},
{1, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_COMPUTE_BIT, nullptr},
};
char const *csSource = R"glsl(
#version 450
layout(local_size_x=1) in;
layout(set=0, binding=0) uniform texture2D t;
layout(set=0, binding=0) uniform sampler s; // both binding 0!
layout(set=0, binding=1) buffer block { vec4 x; };
void main() {
x = texture(sampler2D(t, s), vec2(0));
}
)glsl";
CreateComputePipelineHelper pipe(*this);
pipe.InitInfo();
pipe.dsl_bindings_.resize(bindings.size());
memcpy(pipe.dsl_bindings_.data(), bindings.data(), bindings.size() * sizeof(VkDescriptorSetLayoutBinding));
pipe.cs_.reset(new VkShaderObj(m_device, csSource, VK_SHADER_STAGE_COMPUTE_BIT, this));
pipe.InitState();
m_errorMonitor->ExpectSuccess();
pipe.CreateComputePipeline();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, PSOPolygonModeValid) {
TEST_DESCRIPTION("Verify that using a solid polygon fill mode works correctly.");
ASSERT_NO_FATAL_FAILURE(Init());
if (IsPlatform(kNexusPlayer)) {
printf("%s This test should not run on Nexus Player\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
std::vector<const char *> device_extension_names;
auto features = m_device->phy().features();
// Artificially disable support for non-solid fill modes
features.fillModeNonSolid = false;
// The sacrificial device object
VkDeviceObj test_device(0, gpu(), device_extension_names, &features);
VkRenderpassObj render_pass(&test_device);
const VkPipelineLayoutObj pipeline_layout(&test_device);
VkPipelineRasterizationStateCreateInfo rs_ci = {};
rs_ci.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO;
rs_ci.pNext = nullptr;
rs_ci.lineWidth = 1.0f;
rs_ci.rasterizerDiscardEnable = false;
VkShaderObj vs(&test_device, bindStateVertShaderText, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj fs(&test_device, bindStateFragShaderText, VK_SHADER_STAGE_FRAGMENT_BIT, this);
// Set polygonMode=FILL. No error is expected
m_errorMonitor->ExpectSuccess();
{
VkPipelineObj pipe(&test_device);
pipe.AddShader(&vs);
pipe.AddShader(&fs);
pipe.AddDefaultColorAttachment();
// Set polygonMode to a good value
rs_ci.polygonMode = VK_POLYGON_MODE_FILL;
pipe.SetRasterization(&rs_ci);
pipe.CreateVKPipeline(pipeline_layout.handle(), render_pass.handle());
}
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, CreateGraphicsPipelineWithIgnoredPointers) {
TEST_DESCRIPTION("Create Graphics Pipeline with pointers that must be ignored by layers");
SetTargetApiVersion(VK_API_VERSION_1_1);
ASSERT_NO_FATAL_FAILURE(Init());
if (IsPlatform(kNexusPlayer)) {
printf("%s This test should not run on Nexus Player\n", kSkipPrefix);
return;
}
m_depth_stencil_fmt = FindSupportedDepthStencilFormat(gpu());
ASSERT_TRUE(m_depth_stencil_fmt != 0);
m_depthStencil->Init(m_device, static_cast<int32_t>(m_width), static_cast<int32_t>(m_height), m_depth_stencil_fmt);
ASSERT_NO_FATAL_FAILURE(InitRenderTarget(m_depthStencil->BindInfo()));
const uint64_t fake_address_64 = 0xCDCDCDCDCDCDCDCD;
const uint64_t fake_address_32 = 0xCDCDCDCD;
void *hopefully_undereferencable_pointer =
sizeof(void *) == 8 ? reinterpret_cast<void *>(fake_address_64) : reinterpret_cast<void *>(fake_address_32);
VkShaderObj vs(m_device, bindStateVertShaderText, VK_SHADER_STAGE_VERTEX_BIT, this);
const VkPipelineVertexInputStateCreateInfo pipeline_vertex_input_state_create_info{
VK_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_STATE_CREATE_INFO,
nullptr, // pNext
0, // flags
0,
nullptr, // bindings
0,
nullptr // attributes
};
const VkPipelineInputAssemblyStateCreateInfo pipeline_input_assembly_state_create_info{
VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO,
nullptr, // pNext
0, // flags
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST,
VK_FALSE // primitive restart
};
const VkPipelineRasterizationStateCreateInfo pipeline_rasterization_state_create_info_template{
VK_STRUCTURE_TYPE_PIPELINE_RASTERIZATION_STATE_CREATE_INFO,
nullptr, // pNext
0, // flags
VK_FALSE, // depthClamp
VK_FALSE, // rasterizerDiscardEnable
VK_POLYGON_MODE_FILL,
VK_CULL_MODE_NONE,
VK_FRONT_FACE_COUNTER_CLOCKWISE,
VK_FALSE, // depthBias
0.0f,
0.0f,
0.0f, // depthBias params
1.0f // lineWidth
};
VkPipelineLayout pipeline_layout;
{
VkPipelineLayoutCreateInfo pipeline_layout_create_info{
VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
nullptr, // pNext
0, // flags
0,
nullptr, // layouts
0,
nullptr // push constants
};
VkResult err = vk::CreatePipelineLayout(m_device->device(), &pipeline_layout_create_info, nullptr, &pipeline_layout);
ASSERT_VK_SUCCESS(err);
}
// try disabled rasterizer and no tessellation
{
m_errorMonitor->ExpectSuccess();
VkPipelineRasterizationStateCreateInfo pipeline_rasterization_state_create_info =
pipeline_rasterization_state_create_info_template;
pipeline_rasterization_state_create_info.rasterizerDiscardEnable = VK_TRUE;
VkGraphicsPipelineCreateInfo graphics_pipeline_create_info{
VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
nullptr, // pNext
0, // flags
1, // stageCount
&vs.GetStageCreateInfo(),
&pipeline_vertex_input_state_create_info,
&pipeline_input_assembly_state_create_info,
reinterpret_cast<const VkPipelineTessellationStateCreateInfo *>(hopefully_undereferencable_pointer),
reinterpret_cast<const VkPipelineViewportStateCreateInfo *>(hopefully_undereferencable_pointer),
&pipeline_rasterization_state_create_info,
reinterpret_cast<const VkPipelineMultisampleStateCreateInfo *>(hopefully_undereferencable_pointer),
reinterpret_cast<const VkPipelineDepthStencilStateCreateInfo *>(hopefully_undereferencable_pointer),
reinterpret_cast<const VkPipelineColorBlendStateCreateInfo *>(hopefully_undereferencable_pointer),
nullptr, // dynamic states
pipeline_layout,
m_renderPass,
0, // subpass
VK_NULL_HANDLE,
0};
VkPipeline pipeline;
vk::CreateGraphicsPipelines(m_device->handle(), VK_NULL_HANDLE, 1, &graphics_pipeline_create_info, nullptr, &pipeline);
m_errorMonitor->VerifyNotFound();
m_errorMonitor->ExpectSuccess();
m_commandBuffer->begin();
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);
m_errorMonitor->VerifyNotFound();
vk::DestroyPipeline(m_device->handle(), pipeline, nullptr);
}
const VkPipelineMultisampleStateCreateInfo pipeline_multisample_state_create_info{
VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO,
nullptr, // pNext
0, // flags
VK_SAMPLE_COUNT_1_BIT,
VK_FALSE, // sample shading
0.0f, // minSampleShading
nullptr, // pSampleMask
VK_FALSE, // alphaToCoverageEnable
VK_FALSE // alphaToOneEnable
};
// try enabled rasterizer but no subpass attachments
{
m_errorMonitor->ExpectSuccess();
VkPipelineRasterizationStateCreateInfo pipeline_rasterization_state_create_info =
pipeline_rasterization_state_create_info_template;
pipeline_rasterization_state_create_info.rasterizerDiscardEnable = VK_FALSE;
VkViewport viewport = {0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 1.0f};
VkRect2D scissor = {{0, 0}, {static_cast<uint32_t>(m_width), static_cast<uint32_t>(m_height)}};
const VkPipelineViewportStateCreateInfo pipeline_viewport_state_create_info{
VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
nullptr, // pNext
0, // flags
1,
&viewport,
1,
&scissor};
VkRenderPass render_pass;
{
VkSubpassDescription subpass_desc = {};
VkRenderPassCreateInfo render_pass_create_info{
VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
nullptr, // pNext
0, // flags
0,
nullptr, // attachments
1,
&subpass_desc,
0,
nullptr // subpass dependencies
};
VkResult err = vk::CreateRenderPass(m_device->handle(), &render_pass_create_info, nullptr, &render_pass);
ASSERT_VK_SUCCESS(err);
}
VkGraphicsPipelineCreateInfo graphics_pipeline_create_info{
VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
nullptr, // pNext
0, // flags
1, // stageCount
&vs.GetStageCreateInfo(),
&pipeline_vertex_input_state_create_info,
&pipeline_input_assembly_state_create_info,
nullptr,
&pipeline_viewport_state_create_info,
&pipeline_rasterization_state_create_info,
&pipeline_multisample_state_create_info,
reinterpret_cast<const VkPipelineDepthStencilStateCreateInfo *>(hopefully_undereferencable_pointer),
reinterpret_cast<const VkPipelineColorBlendStateCreateInfo *>(hopefully_undereferencable_pointer),
nullptr, // dynamic states
pipeline_layout,
render_pass,
0, // subpass
VK_NULL_HANDLE,
0};
VkPipeline pipeline;
vk::CreateGraphicsPipelines(m_device->handle(), VK_NULL_HANDLE, 1, &graphics_pipeline_create_info, nullptr, &pipeline);
m_errorMonitor->VerifyNotFound();
vk::DestroyPipeline(m_device->handle(), pipeline, nullptr);
vk::DestroyRenderPass(m_device->handle(), render_pass, nullptr);
}
// try dynamic viewport and scissor
{
m_errorMonitor->ExpectSuccess();
VkPipelineRasterizationStateCreateInfo pipeline_rasterization_state_create_info =
pipeline_rasterization_state_create_info_template;
pipeline_rasterization_state_create_info.rasterizerDiscardEnable = VK_FALSE;
const VkPipelineViewportStateCreateInfo pipeline_viewport_state_create_info{
VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO,
nullptr, // pNext
0, // flags
1,
reinterpret_cast<const VkViewport *>(hopefully_undereferencable_pointer),
1,
reinterpret_cast<const VkRect2D *>(hopefully_undereferencable_pointer)};
const VkPipelineDepthStencilStateCreateInfo pipeline_depth_stencil_state_create_info{
VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO,
nullptr, // pNext
0, // flags
};
const VkPipelineColorBlendAttachmentState pipeline_color_blend_attachment_state = {};
const VkPipelineColorBlendStateCreateInfo pipeline_color_blend_state_create_info{
VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO,
nullptr, // pNext
0, // flags
VK_FALSE,
VK_LOGIC_OP_CLEAR,
1,
&pipeline_color_blend_attachment_state,
{0.0f, 0.0f, 0.0f, 0.0f}};
const VkDynamicState dynamic_states[2] = {VK_DYNAMIC_STATE_VIEWPORT, VK_DYNAMIC_STATE_SCISSOR};
const VkPipelineDynamicStateCreateInfo pipeline_dynamic_state_create_info{
VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO,
nullptr, // pNext
0, // flags
2, dynamic_states};
VkGraphicsPipelineCreateInfo graphics_pipeline_create_info{VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO,
nullptr, // pNext
0, // flags
1, // stageCount
&vs.GetStageCreateInfo(),
&pipeline_vertex_input_state_create_info,
&pipeline_input_assembly_state_create_info,
nullptr,
&pipeline_viewport_state_create_info,
&pipeline_rasterization_state_create_info,
&pipeline_multisample_state_create_info,
&pipeline_depth_stencil_state_create_info,
&pipeline_color_blend_state_create_info,
&pipeline_dynamic_state_create_info, // dynamic states
pipeline_layout,
m_renderPass,
0, // subpass
VK_NULL_HANDLE,
0};
VkPipeline pipeline;
vk::CreateGraphicsPipelines(m_device->handle(), VK_NULL_HANDLE, 1, &graphics_pipeline_create_info, nullptr, &pipeline);
m_errorMonitor->VerifyNotFound();
vk::DestroyPipeline(m_device->handle(), pipeline, nullptr);
}
vk::DestroyPipelineLayout(m_device->handle(), pipeline_layout, nullptr);
}
TEST_F(VkPositiveLayerTest, CreatePipelineWithCoreChecksDisabled) {
TEST_DESCRIPTION("Test CreatePipeline while the CoreChecks validation object is disabled");
// Enable KHR validation features extension
VkValidationFeatureDisableEXT disables[] = {VK_VALIDATION_FEATURE_DISABLE_CORE_CHECKS_EXT};
VkValidationFeaturesEXT features = {};
features.sType = VK_STRUCTURE_TYPE_VALIDATION_FEATURES_EXT;
features.disabledValidationFeatureCount = 1;
features.pDisabledValidationFeatures = disables;
VkCommandPoolCreateFlags pool_flags = VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT;
ASSERT_NO_FATAL_FAILURE(Init(nullptr, nullptr, pool_flags, &features));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
VkShaderObj vs(m_device, bindStateVertShaderText, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj fs(m_device, bindStateFragShaderText, VK_SHADER_STAGE_FRAGMENT_BIT, this);
VkPipelineInputAssemblyStateCreateInfo iasci{VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, nullptr, 0,
VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST, VK_FALSE};
CreatePipelineHelper pipe(*this);
pipe.InitInfo();
pipe.gp_ci_.pInputAssemblyState = &iasci;
pipe.shader_stages_ = {vs.GetStageCreateInfo(), fs.GetStageCreateInfo()};
pipe.InitState();
m_errorMonitor->ExpectSuccess();
pipe.CreateGraphicsPipeline();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, CreatePipeineWithTessellationDomainOrigin) {
TEST_DESCRIPTION(
"Test CreatePipeline when VkPipelineTessellationStateCreateInfo.pNext include "
"VkPipelineTessellationDomainOriginStateCreateInfo");
SetTargetApiVersion(VK_API_VERSION_1_1);
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
if (!m_device->phy().features().tessellationShader) {
printf("%s Device does not support tessellation shaders; skipped.\n", kSkipPrefix);
return;
}
VkShaderObj vs(m_device, bindStateVertShaderText, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj tcs(m_device, bindStateTscShaderText, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT, this);
VkShaderObj tes(m_device, bindStateTeshaderText, VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, this);
VkShaderObj fs(m_device, bindStateFragShaderText, VK_SHADER_STAGE_FRAGMENT_BIT, this);
VkPipelineInputAssemblyStateCreateInfo iasci{VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, nullptr, 0,
VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, VK_FALSE};
VkPipelineTessellationDomainOriginStateCreateInfo tessellationDomainOriginStateInfo = {
VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO, VK_NULL_HANDLE,
VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT};
VkPipelineTessellationStateCreateInfo tsci{VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO,
&tessellationDomainOriginStateInfo, 0, 3};
CreatePipelineHelper pipe(*this);
pipe.InitInfo();
pipe.gp_ci_.pTessellationState = &tsci;
pipe.gp_ci_.pInputAssemblyState = &iasci;
pipe.shader_stages_ = {vs.GetStageCreateInfo(), tcs.GetStageCreateInfo(), tes.GetStageCreateInfo(), fs.GetStageCreateInfo()};
pipe.InitState();
m_errorMonitor->ExpectSuccess();
pipe.CreateGraphicsPipeline();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, ViewportArray2NV) {
TEST_DESCRIPTION("Test to validate VK_NV_viewport_array2");
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
VkPhysicalDeviceFeatures available_features = {};
ASSERT_NO_FATAL_FAILURE(GetPhysicalDeviceFeatures(&available_features));
if (!available_features.multiViewport) {
printf("%s VkPhysicalDeviceFeatures::multiViewport is not supported, skipping tests\n", kSkipPrefix);
return;
}
if (!available_features.tessellationShader) {
printf("%s VkPhysicalDeviceFeatures::tessellationShader is not supported, skipping tests\n", kSkipPrefix);
return;
}
if (!available_features.geometryShader) {
printf("%s VkPhysicalDeviceFeatures::geometryShader is not supported, skipping tests\n", kSkipPrefix);
return;
}
if (DeviceExtensionSupported(gpu(), nullptr, VK_NV_VIEWPORT_ARRAY_2_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_NV_VIEWPORT_ARRAY_2_EXTENSION_NAME);
} else {
printf("%s %s Extension not supported, skipping tests\n", kSkipPrefix, VK_NV_VIEWPORT_ARRAY_2_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
const char tcs_src[] = R"glsl(
#version 450
layout(vertices = 3) out;
void main() {
gl_TessLevelOuter[0] = 4.0f;
gl_TessLevelOuter[1] = 4.0f;
gl_TessLevelOuter[2] = 4.0f;
gl_TessLevelInner[0] = 3.0f;
gl_out[gl_InvocationID].gl_Position = gl_in[gl_InvocationID].gl_Position;
}
)glsl";
// Create tessellation control and fragment shader here since they will not be
// modified by the different test cases.
VkShaderObj tcs(m_device, tcs_src, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT, this);
VkShaderObj fs(m_device, bindStateFragShaderText, VK_SHADER_STAGE_FRAGMENT_BIT, this);
std::vector<VkViewport> vps = {{0.0f, 0.0f, m_width / 2.0f, m_height}, {m_width / 2.0f, 0.0f, m_width / 2.0f, m_height}};
std::vector<VkRect2D> scs = {
{{0, 0}, {static_cast<uint32_t>(m_width) / 2, static_cast<uint32_t>(m_height)}},
{{static_cast<int32_t>(m_width) / 2, 0}, {static_cast<uint32_t>(m_width) / 2, static_cast<uint32_t>(m_height)}}};
enum class TestStage { VERTEX = 0, TESSELLATION_EVAL = 1, GEOMETRY = 2 };
std::array<TestStage, 3> vertex_stages = {{TestStage::VERTEX, TestStage::TESSELLATION_EVAL, TestStage::GEOMETRY}};
// Verify that the usage of gl_ViewportMask[] in the allowed vertex processing
// stages does not cause any errors.
for (auto stage : vertex_stages) {
m_errorMonitor->ExpectSuccess();
VkPipelineInputAssemblyStateCreateInfo iaci = {VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO};
iaci.topology = (stage != TestStage::VERTEX) ? VK_PRIMITIVE_TOPOLOGY_PATCH_LIST : VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
VkPipelineTessellationStateCreateInfo tsci = {VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO};
tsci.patchControlPoints = 3;
const VkPipelineLayoutObj pl(m_device);
VkPipelineObj pipe(m_device);
pipe.AddDefaultColorAttachment();
pipe.SetInputAssembly(&iaci);
pipe.SetViewport(vps);
pipe.SetScissor(scs);
pipe.AddShader(&fs);
std::stringstream vs_src, tes_src, geom_src;
vs_src << R"(
#version 450
#extension GL_NV_viewport_array2 : require
vec2 positions[3] = { vec2( 0.0f, -0.5f),
vec2( 0.5f, 0.5f),
vec2(-0.5f, 0.5f)
};
void main() {)";
// Write viewportMask if the vertex shader is the last vertex processing stage.
if (stage == TestStage::VERTEX) {
vs_src << "gl_ViewportMask[0] = 3;\n";
}
vs_src << R"(
gl_Position = vec4(positions[gl_VertexIndex % 3], 0.0, 1.0);
})";
VkShaderObj vs(m_device, vs_src.str().c_str(), VK_SHADER_STAGE_VERTEX_BIT, this);
pipe.AddShader(&vs);
std::unique_ptr<VkShaderObj> tes, geom;
if (stage >= TestStage::TESSELLATION_EVAL) {
tes_src << R"(
#version 450
#extension GL_NV_viewport_array2 : require
layout(triangles) in;
void main() {
gl_Position = (gl_in[0].gl_Position * gl_TessCoord.x +
gl_in[1].gl_Position * gl_TessCoord.y +
gl_in[2].gl_Position * gl_TessCoord.z);)";
// Write viewportMask if the tess eval shader is the last vertex processing stage.
if (stage == TestStage::TESSELLATION_EVAL) {
tes_src << "gl_ViewportMask[0] = 3;\n";
}
tes_src << "}";
tes = std::unique_ptr<VkShaderObj>(
new VkShaderObj(m_device, tes_src.str().c_str(), VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, this));
pipe.AddShader(tes.get());
pipe.AddShader(&tcs);
pipe.SetTessellation(&tsci);
}
if (stage >= TestStage::GEOMETRY) {
geom_src << R"(
#version 450
#extension GL_NV_viewport_array2 : require
layout(triangles) in;
layout(triangle_strip, max_vertices = 3) out;
void main() {
gl_ViewportMask[0] = 3;
for(int i = 0; i < 3; ++i) {
gl_Position = gl_in[i].gl_Position;
EmitVertex();
}
})";
geom =
std::unique_ptr<VkShaderObj>(new VkShaderObj(m_device, geom_src.str().c_str(), VK_SHADER_STAGE_GEOMETRY_BIT, this));
pipe.AddShader(geom.get());
}
pipe.CreateVKPipeline(pl.handle(), renderPass());
m_errorMonitor->VerifyNotFound();
}
}
TEST_F(VkPositiveLayerTest, CreatePipelineFragmentOutputNotConsumedButAlphaToCoverageEnabled) {
TEST_DESCRIPTION(
"Test that no warning is produced when writing to non-existing color attachment if alpha to coverage is enabled.");
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget(0u));
VkPipelineMultisampleStateCreateInfo ms_state_ci = {};
ms_state_ci.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
ms_state_ci.rasterizationSamples = VK_SAMPLE_COUNT_1_BIT;
ms_state_ci.alphaToCoverageEnable = VK_TRUE;
const auto set_info = [&](CreatePipelineHelper &helper) {
helper.pipe_ms_state_ci_ = ms_state_ci;
helper.cb_ci_.attachmentCount = 0;
};
CreatePipelineHelper::OneshotTest(*this, set_info, kErrorBit | kWarningBit, "", true);
}
TEST_F(VkPositiveLayerTest, CreatePipelineAttachmentUnused) {
TEST_DESCRIPTION("Make sure unused attachments are correctly ignored.");
ASSERT_NO_FATAL_FAILURE(Init());
if (IsPlatform(kNexusPlayer)) {
printf("%s This test should not run on Nexus Player\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
char const *fsSource = R"glsl(
#version 450
layout(location=0) out vec4 x;
void main(){
x = vec4(1); // attachment is unused
}
)glsl";
VkShaderObj fs(m_device, fsSource, VK_SHADER_STAGE_FRAGMENT_BIT, this);
VkAttachmentReference const color_attachments[1]{{VK_ATTACHMENT_UNUSED, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL}};
VkSubpassDescription const subpass_descriptions[1]{
{0, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, nullptr, 1, color_attachments, nullptr, nullptr, 0, nullptr}};
VkAttachmentDescription const attachment_descriptions[1]{{0, VK_FORMAT_B8G8R8A8_UNORM, VK_SAMPLE_COUNT_1_BIT,
VK_ATTACHMENT_LOAD_OP_CLEAR, VK_ATTACHMENT_STORE_OP_STORE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL}};
VkRenderPassCreateInfo const render_pass_info{
VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, nullptr, 0, 1, attachment_descriptions, 1, subpass_descriptions, 0, nullptr};
VkRenderPass render_pass;
auto result = vk::CreateRenderPass(m_device->device(), &render_pass_info, nullptr, &render_pass);
ASSERT_VK_SUCCESS(result);
const auto override_info = [&](CreatePipelineHelper &helper) {
helper.shader_stages_ = {helper.vs_->GetStageCreateInfo(), fs.GetStageCreateInfo()};
helper.gp_ci_.renderPass = render_pass;
};
CreatePipelineHelper::OneshotTest(*this, override_info, kErrorBit | kWarningBit, "", true);
vk::DestroyRenderPass(m_device->device(), render_pass, nullptr);
}
TEST_F(VkPositiveLayerTest, CreateSurface) {
TEST_DESCRIPTION("Create and destroy a surface without ever creating a swapchain");
if (!AddSurfaceInstanceExtension()) {
printf("%s surface extensions not supported, skipping CreateSurface test\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
ASSERT_NO_FATAL_FAILURE(InitState());
m_errorMonitor->ExpectSuccess();
if (!InitSurface()) {
printf("%s Cannot create surface, skipping test\n", kSkipPrefix);
return;
}
DestroySwapchain(); // cleans up both surface and swapchain, if they were created
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, SampleMaskOverrideCoverageNV) {
TEST_DESCRIPTION("Test to validate VK_NV_sample_mask_override_coverage");
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
if (DeviceExtensionSupported(gpu(), nullptr, VK_NV_SAMPLE_MASK_OVERRIDE_COVERAGE_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_NV_SAMPLE_MASK_OVERRIDE_COVERAGE_EXTENSION_NAME);
} else {
printf("%s %s Extension not supported, skipping tests\n", kSkipPrefix, VK_NV_SAMPLE_MASK_OVERRIDE_COVERAGE_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState());
const char vs_src[] = R"glsl(
#version 450
layout(location=0) out vec4 fragColor;
const vec2 pos[3] = { vec2( 0.0f, -0.5f),
vec2( 0.5f, 0.5f),
vec2(-0.5f, 0.5f)
};
void main()
{
gl_Position = vec4(pos[gl_VertexIndex % 3], 0.0f, 1.0f);
fragColor = vec4(0.0f, 1.0f, 0.0f, 1.0f);
}
)glsl";
const char fs_src[] = R"glsl(
#version 450
#extension GL_NV_sample_mask_override_coverage : require
layout(location = 0) in vec4 fragColor;
layout(location = 0) out vec4 outColor;
layout(override_coverage) out int gl_SampleMask[];
void main()
{
gl_SampleMask[0] = 0xff;
outColor = fragColor;
}
)glsl";
m_errorMonitor->ExpectSuccess();
const VkSampleCountFlagBits sampleCount = VK_SAMPLE_COUNT_8_BIT;
VkAttachmentDescription cAttachment = {};
cAttachment.format = VK_FORMAT_B8G8R8A8_UNORM;
cAttachment.samples = sampleCount;
cAttachment.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR;
cAttachment.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
cAttachment.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
cAttachment.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE;
cAttachment.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
cAttachment.finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkAttachmentReference cAttachRef = {};
cAttachRef.attachment = 0;
cAttachRef.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkSubpassDescription subpass = {};
subpass.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
subpass.colorAttachmentCount = 1;
subpass.pColorAttachments = &cAttachRef;
VkRenderPassCreateInfo rpci = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO};
rpci.attachmentCount = 1;
rpci.pAttachments = &cAttachment;
rpci.subpassCount = 1;
rpci.pSubpasses = &subpass;
VkRenderPass rp;
vk::CreateRenderPass(m_device->device(), &rpci, nullptr, &rp);
const VkPipelineLayoutObj pl(m_device);
VkSampleMask sampleMask = 0x01;
VkPipelineMultisampleStateCreateInfo msaa = {VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO};
msaa.rasterizationSamples = sampleCount;
msaa.sampleShadingEnable = VK_FALSE;
msaa.pSampleMask = &sampleMask;
VkPipelineObj pipe(m_device);
pipe.AddDefaultColorAttachment();
pipe.SetMSAA(&msaa);
VkShaderObj vs(m_device, vs_src, VK_SHADER_STAGE_VERTEX_BIT, this);
pipe.AddShader(&vs);
VkShaderObj fs(m_device, fs_src, VK_SHADER_STAGE_FRAGMENT_BIT, this);
pipe.AddShader(&fs);
// Create pipeline and make sure that the usage of NV_sample_mask_override_coverage
// in the fragment shader does not cause any errors.
pipe.CreateVKPipeline(pl.handle(), rp);
vk::DestroyRenderPass(m_device->device(), rp, nullptr);
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, TestRasterizationDiscardEnableTrue) {
TEST_DESCRIPTION("Ensure it doesn't crash and trigger error msg when rasterizerDiscardEnable = true");
ASSERT_NO_FATAL_FAILURE(Init());
if (IsPlatform(kNexusPlayer)) {
printf("%s This test should not run on Nexus Player\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
VkAttachmentDescription att[1] = {{}};
att[0].format = VK_FORMAT_R8G8B8A8_UNORM;
att[0].samples = VK_SAMPLE_COUNT_4_BIT;
att[0].initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
att[0].finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
VkAttachmentReference cr = {0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL};
VkSubpassDescription sp = {};
sp.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
sp.colorAttachmentCount = 1;
sp.pColorAttachments = &cr;
VkRenderPassCreateInfo rpi = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO};
rpi.attachmentCount = 1;
rpi.pAttachments = att;
rpi.subpassCount = 1;
rpi.pSubpasses = &sp;
VkRenderPass rp;
vk::CreateRenderPass(m_device->device(), &rpi, nullptr, &rp);
CreatePipelineHelper pipe(*this);
pipe.InitInfo();
pipe.gp_ci_.pViewportState = nullptr;
pipe.gp_ci_.pMultisampleState = nullptr;
pipe.gp_ci_.pDepthStencilState = nullptr;
pipe.gp_ci_.pColorBlendState = nullptr;
pipe.gp_ci_.renderPass = rp;
m_errorMonitor->ExpectSuccess();
// Skip the test in NexusPlayer. The driver crashes when pViewportState, pMultisampleState, pDepthStencilState, pColorBlendState
// are NULL.
pipe.rs_state_ci_.rasterizerDiscardEnable = VK_TRUE;
pipe.InitState();
pipe.CreateGraphicsPipeline();
m_errorMonitor->VerifyNotFound();
vk::DestroyRenderPass(m_device->device(), rp, nullptr);
}
TEST_F(VkPositiveLayerTest, TestSamplerDataForCombinedImageSampler) {
TEST_DESCRIPTION("Shader code uses sampler data for CombinedImageSampler");
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
const std::string fsSource = R"(
OpCapability Shader
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main"
OpExecutionMode %main OriginUpperLeft
OpDecorate %InputData DescriptorSet 0
OpDecorate %InputData Binding 0
OpDecorate %SamplerData DescriptorSet 0
OpDecorate %SamplerData Binding 0
%void = OpTypeVoid
%f32 = OpTypeFloat 32
%Image = OpTypeImage %f32 2D 0 0 0 1 Rgba32f
%ImagePtr = OpTypePointer UniformConstant %Image
%InputData = OpVariable %ImagePtr UniformConstant
%Sampler = OpTypeSampler
%SamplerPtr = OpTypePointer UniformConstant %Sampler
%SamplerData = OpVariable %SamplerPtr UniformConstant
%SampledImage = OpTypeSampledImage %Image
%func = OpTypeFunction %void
%main = OpFunction %void None %func
%40 = OpLabel
%call_smp = OpLoad %Sampler %SamplerData
OpReturn
OpFunctionEnd)";
VkShaderObj fs(m_device, fsSource, VK_SHADER_STAGE_FRAGMENT_BIT, this);
CreatePipelineHelper pipe(*this);
pipe.InitInfo();
pipe.dsl_bindings_ = {
{0, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_ALL, nullptr},
};
pipe.shader_stages_ = {fs.GetStageCreateInfo(), pipe.vs_->GetStageCreateInfo()};
pipe.InitState();
pipe.CreateGraphicsPipeline();
VkImageObj image(m_device);
image.Init(32, 32, 1, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_SAMPLED_BIT, VK_IMAGE_TILING_OPTIMAL, 0);
VkImageView view = image.targetView(VK_FORMAT_R8G8B8A8_UNORM);
VkSamplerCreateInfo sampler_ci = SafeSaneSamplerCreateInfo();
VkSampler sampler;
vk::CreateSampler(m_device->device(), &sampler_ci, nullptr, &sampler);
uint32_t qfi = 0;
VkBufferCreateInfo buffer_create_info = {};
buffer_create_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buffer_create_info.size = 1024;
buffer_create_info.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
buffer_create_info.queueFamilyIndexCount = 1;
buffer_create_info.pQueueFamilyIndices = &qfi;
VkBufferObj buffer;
buffer.init(*m_device, buffer_create_info);
pipe.descriptor_set_->WriteDescriptorImageInfo(0, view, sampler, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER);
pipe.descriptor_set_->UpdateDescriptorSets();
m_commandBuffer->begin();
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.pipeline_);
vk::CmdBindDescriptorSets(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.pipeline_layout_.handle(), 0, 1,
&pipe.descriptor_set_->set_, 0, NULL);
m_errorMonitor->ExpectSuccess();
vk::CmdDraw(m_commandBuffer->handle(), 3, 1, 0, 0);
m_errorMonitor->VerifyNotFound();
vk::CmdEndRenderPass(m_commandBuffer->handle());
m_commandBuffer->end();
vk::DestroySampler(m_device->device(), sampler, NULL);
}
TEST_F(VkPositiveLayerTest, NotPointSizeGeometryShaderSuccess) {
TEST_DESCRIPTION("Create a pipeline using TOPOLOGY_POINT_LIST, but geometry shader doesn't include PointSize.");
ASSERT_NO_FATAL_FAILURE(Init());
if ((!m_device->phy().features().geometryShader)) {
printf("%s Device does not support the required geometry shader features; skipped.\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
ASSERT_NO_FATAL_FAILURE(InitViewport());
VkShaderObj gs(m_device, bindStateGeomShaderText, VK_SHADER_STAGE_GEOMETRY_BIT, this);
CreatePipelineHelper pipe(*this);
pipe.InitInfo();
pipe.shader_stages_ = {pipe.vs_->GetStageCreateInfo(), gs.GetStageCreateInfo(), pipe.fs_->GetStageCreateInfo()};
pipe.ia_ci_.topology = VK_PRIMITIVE_TOPOLOGY_POINT_LIST;
pipe.InitState();
m_errorMonitor->ExpectSuccess();
pipe.CreateGraphicsPipeline();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, SubpassWithReadOnlyLayoutWithoutDependency) {
TEST_DESCRIPTION("When both subpasses' attachments are the same and layouts are read-only, they don't need dependency.");
ASSERT_NO_FATAL_FAILURE(Init());
auto depth_format = FindSupportedDepthStencilFormat(gpu());
if (!depth_format) {
printf("%s No Depth + Stencil format found. Skipped.\n", kSkipPrefix);
return;
}
// A renderpass with one color attachment.
VkAttachmentDescription attachment = {0,
depth_format,
VK_SAMPLE_COUNT_1_BIT,
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_STORE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE,
VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL};
const int size = 2;
std::array<VkAttachmentDescription, size> attachments = {{attachment, attachment}};
VkAttachmentReference att_ref_depth_stencil = {0, VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL};
std::array<VkSubpassDescription, size> subpasses;
subpasses[0] = {0, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, 0, 0, nullptr, nullptr, &att_ref_depth_stencil, 0, nullptr};
subpasses[1] = {0, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, 0, 0, nullptr, nullptr, &att_ref_depth_stencil, 0, nullptr};
VkRenderPassCreateInfo rpci = {
VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, nullptr, 0, size, attachments.data(), size, subpasses.data(), 0, nullptr};
VkRenderPass rp;
VkResult err = vk::CreateRenderPass(m_device->device(), &rpci, nullptr, &rp);
ASSERT_VK_SUCCESS(err);
// A compatible framebuffer.
VkImageObj image(m_device);
image.Init(32, 32, 1, depth_format, VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT, VK_IMAGE_TILING_LINEAR, 0);
ASSERT_TRUE(image.initialized());
VkImageViewCreateInfo ivci = {VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
nullptr,
0,
image.handle(),
VK_IMAGE_VIEW_TYPE_2D,
depth_format,
{VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY,
VK_COMPONENT_SWIZZLE_IDENTITY},
{VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT, 0, 1, 0, 1}};
VkImageView view;
err = vk::CreateImageView(m_device->device(), &ivci, nullptr, &view);
ASSERT_VK_SUCCESS(err);
std::array<VkImageView, size> views = {{view, view}};
VkFramebufferCreateInfo fci = {VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, nullptr, 0, rp, size, views.data(), 32, 32, 1};
VkFramebuffer fb;
err = vk::CreateFramebuffer(m_device->device(), &fci, nullptr, &fb);
ASSERT_VK_SUCCESS(err);
VkRenderPassBeginInfo rpbi = {VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, nullptr, rp, fb, {{0, 0}, {32, 32}}, 0, nullptr};
m_commandBuffer->begin();
vk::CmdBeginRenderPass(m_commandBuffer->handle(), &rpbi, VK_SUBPASS_CONTENTS_INLINE);
vk::CmdNextSubpass(m_commandBuffer->handle(), VK_SUBPASS_CONTENTS_INLINE);
vk::CmdEndRenderPass(m_commandBuffer->handle());
m_commandBuffer->end();
vk::DestroyFramebuffer(m_device->device(), fb, nullptr);
vk::DestroyRenderPass(m_device->device(), rp, nullptr);
vk::DestroyImageView(m_device->device(), view, nullptr);
}
TEST_F(VkPositiveLayerTest, GeometryShaderPassthroughNV) {
TEST_DESCRIPTION("Test to validate VK_NV_geometry_shader_passthrough");
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
VkPhysicalDeviceFeatures available_features = {};
ASSERT_NO_FATAL_FAILURE(GetPhysicalDeviceFeatures(&available_features));
if (!available_features.geometryShader) {
printf("%s VkPhysicalDeviceFeatures::geometryShader is not supported, skipping test\n", kSkipPrefix);
return;
}
if (DeviceExtensionSupported(gpu(), nullptr, VK_NV_GEOMETRY_SHADER_PASSTHROUGH_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_NV_GEOMETRY_SHADER_PASSTHROUGH_EXTENSION_NAME);
} else {
printf("%s %s Extension not supported, skipping tests\n", kSkipPrefix, VK_NV_GEOMETRY_SHADER_PASSTHROUGH_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
const char vs_src[] = R"glsl(
#version 450
out gl_PerVertex {
vec4 gl_Position;
};
layout(location = 0) out ColorBlock {vec4 vertexColor;};
const vec2 positions[3] = { vec2( 0.0f, -0.5f),
vec2( 0.5f, 0.5f),
vec2(-0.5f, 0.5f)
};
const vec4 colors[3] = { vec4(1.0f, 0.0f, 0.0f, 1.0f),
vec4(0.0f, 1.0f, 0.0f, 1.0f),
vec4(0.0f, 0.0f, 1.0f, 1.0f)
};
void main()
{
vertexColor = colors[gl_VertexIndex % 3];
gl_Position = vec4(positions[gl_VertexIndex % 3], 0.0, 1.0);
}
)glsl";
const char gs_src[] = R"glsl(
#version 450
#extension GL_NV_geometry_shader_passthrough: require
layout(triangles) in;
layout(triangle_strip, max_vertices = 3) out;
layout(passthrough) in gl_PerVertex {vec4 gl_Position;};
layout(location = 0, passthrough) in ColorBlock {vec4 vertexColor;};
void main()
{
gl_Layer = 0;
}
)glsl";
const char fs_src[] = R"glsl(
#version 450
layout(location = 0) in ColorBlock {vec4 vertexColor;};
layout(location = 0) out vec4 outColor;
void main() {
outColor = vertexColor;
}
)glsl";
m_errorMonitor->ExpectSuccess();
const VkPipelineLayoutObj pl(m_device);
VkPipelineObj pipe(m_device);
pipe.AddDefaultColorAttachment();
VkShaderObj vs(m_device, vs_src, VK_SHADER_STAGE_VERTEX_BIT, this);
pipe.AddShader(&vs);
VkShaderObj gs(m_device, gs_src, VK_SHADER_STAGE_GEOMETRY_BIT, this);
pipe.AddShader(&gs);
VkShaderObj fs(m_device, fs_src, VK_SHADER_STAGE_FRAGMENT_BIT, this);
pipe.AddShader(&fs);
// Create pipeline and make sure that the usage of NV_geometry_shader_passthrough
// in the fragment shader does not cause any errors.
pipe.CreateVKPipeline(pl.handle(), renderPass());
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, PipelineStageConditionalRendering) {
TEST_DESCRIPTION("Create renderpass and CmdPipelineBarrier with VK_PIPELINE_STAGE_CONDITIONAL_RENDERING_BIT_EXT");
m_errorMonitor->ExpectSuccess();
if (!InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
printf("%s Did not find required instance extension %s; skipped.\n", kSkipPrefix,
VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
return;
}
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
if (!DeviceExtensionSupported(gpu(), nullptr, VK_EXT_CONDITIONAL_RENDERING_EXTENSION_NAME)) {
printf("%s Did not find required device extension %s; skipped.\n", kSkipPrefix,
VK_EXT_CONDITIONAL_RENDERING_EXTENSION_NAME);
return;
}
m_device_extension_names.push_back(VK_EXT_CONDITIONAL_RENDERING_EXTENSION_NAME);
auto vkGetPhysicalDeviceFeatures2KHR =
(PFN_vkGetPhysicalDeviceFeatures2KHR)vk::GetInstanceProcAddr(instance(), "vkGetPhysicalDeviceFeatures2KHR");
ASSERT_TRUE(vkGetPhysicalDeviceFeatures2KHR != nullptr);
if (!DeviceExtensionSupported(gpu(), nullptr, VK_EXT_CONDITIONAL_RENDERING_EXTENSION_NAME)) {
printf("%s requires %s.\n", kSkipPrefix, VK_EXT_CONDITIONAL_RENDERING_EXTENSION_NAME);
return;
}
auto cond_rendering_feature = LvlInitStruct<VkPhysicalDeviceConditionalRenderingFeaturesEXT>();
auto features2 = LvlInitStruct<VkPhysicalDeviceFeatures2KHR>(&cond_rendering_feature);
vkGetPhysicalDeviceFeatures2KHR(gpu(), &features2);
if (cond_rendering_feature.conditionalRendering == VK_FALSE) {
printf("%s conditionalRendering feature not supported.\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
// A renderpass with a single subpass that declared a self-dependency
VkAttachmentDescription attach[] = {
{0, VK_FORMAT_R8G8B8A8_UNORM, VK_SAMPLE_COUNT_1_BIT, VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE, VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL},
};
VkAttachmentReference ref = {0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL};
VkSubpassDescription subpasses[] = {
{0, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, nullptr, 1, &ref, nullptr, nullptr, 0, nullptr},
};
VkSubpassDependency dependency = {0,
0,
VK_PIPELINE_STAGE_VERTEX_SHADER_BIT,
VK_PIPELINE_STAGE_CONDITIONAL_RENDERING_BIT_EXT,
VK_ACCESS_SHADER_WRITE_BIT,
VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT,
(VkDependencyFlags)0};
VkRenderPassCreateInfo rpci = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, nullptr, 0, 1, attach, 1, subpasses, 1, &dependency};
VkRenderPass rp;
m_errorMonitor->ExpectSuccess();
vk::CreateRenderPass(m_device->device(), &rpci, nullptr, &rp);
m_errorMonitor->VerifyNotFound();
VkImageObj image(m_device);
image.Init(32, 32, 1, VK_FORMAT_R8G8B8A8_UNORM, VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT);
VkImageView imageView = image.targetView(VK_FORMAT_R8G8B8A8_UNORM);
VkFramebufferCreateInfo fbci = {VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, nullptr, 0, rp, 1, &imageView, 32, 32, 1};
VkFramebuffer fb;
vk::CreateFramebuffer(m_device->device(), &fbci, nullptr, &fb);
m_commandBuffer->begin();
VkRenderPassBeginInfo rpbi = {VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
nullptr,
rp,
fb,
{{
0,
0,
},
{32, 32}},
0,
nullptr};
vk::CmdBeginRenderPass(m_commandBuffer->handle(), &rpbi, VK_SUBPASS_CONTENTS_INLINE);
VkImageMemoryBarrier imb = {};
imb.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imb.pNext = nullptr;
imb.srcAccessMask = VK_ACCESS_SHADER_WRITE_BIT;
imb.dstAccessMask = VK_ACCESS_CONDITIONAL_RENDERING_READ_BIT_EXT;
imb.oldLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
imb.newLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
imb.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
imb.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
imb.image = image.handle();
imb.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
imb.subresourceRange.baseMipLevel = 0;
imb.subresourceRange.levelCount = 1;
imb.subresourceRange.baseArrayLayer = 0;
imb.subresourceRange.layerCount = 1;
m_errorMonitor->ExpectSuccess();
vk::CmdPipelineBarrier(m_commandBuffer->handle(), VK_PIPELINE_STAGE_VERTEX_SHADER_BIT,
VK_PIPELINE_STAGE_CONDITIONAL_RENDERING_BIT_EXT, 0, 0, nullptr, 0, nullptr, 1, &imb);
m_errorMonitor->VerifyNotFound();
vk::CmdEndRenderPass(m_commandBuffer->handle());
m_commandBuffer->end();
vk::DestroyRenderPass(m_device->device(), rp, nullptr);
vk::DestroyFramebuffer(m_device->device(), fb, nullptr);
}
TEST_F(VkPositiveLayerTest, CreatePipelineOverlappingPushConstantRange) {
TEST_DESCRIPTION("Test overlapping push-constant ranges.");
m_errorMonitor->ExpectSuccess();
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
char const *const vsSource = R"glsl(
#version 450
layout(push_constant, std430) uniform foo { float x[8]; } constants;
void main(){
gl_Position = vec4(constants.x[0]);
}
)glsl";
char const *const fsSource = R"glsl(
#version 450
layout(push_constant, std430) uniform foo { float x[4]; } constants;
layout(location=0) out vec4 o;
void main(){
o = vec4(constants.x[0]);
}
)glsl";
VkShaderObj const vs(m_device, vsSource, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj const fs(m_device, fsSource, VK_SHADER_STAGE_FRAGMENT_BIT, this);
VkPushConstantRange push_constant_ranges[2]{{VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(float) * 8},
{VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(float) * 4}};
VkPipelineLayoutCreateInfo const pipeline_layout_info{
VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, nullptr, 0, 0, nullptr, 2, push_constant_ranges};
CreatePipelineHelper pipe(*this);
pipe.InitInfo();
pipe.shader_stages_ = {vs.GetStageCreateInfo(), fs.GetStageCreateInfo()};
pipe.pipeline_layout_ci_ = pipeline_layout_info;
pipe.InitState();
pipe.CreateGraphicsPipeline();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, MultipleEntryPointPushConstantVertNormalFrag) {
TEST_DESCRIPTION("Test push-constant only being used by single entrypoint.");
m_errorMonitor->ExpectSuccess();
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
// #version 450
// layout(push_constant, std430) uniform foo { float x; } consts;
// void main(){
// gl_Position = vec4(consts.x);
// }
//
// #version 450
// layout(location=0) out vec4 o;
// void main(){
// o = vec4(1.0);
// }
const std::string source_body = R"(
OpExecutionMode %main_f OriginUpperLeft
OpSource GLSL 450
OpMemberDecorate %gl_PerVertex 0 BuiltIn Position
OpMemberDecorate %gl_PerVertex 1 BuiltIn PointSize
OpMemberDecorate %gl_PerVertex 2 BuiltIn ClipDistance
OpMemberDecorate %gl_PerVertex 3 BuiltIn CullDistance
OpDecorate %gl_PerVertex Block
OpMemberDecorate %foo 0 Offset 0
OpDecorate %foo Block
OpDecorate %out_frag Location 0
%void = OpTypeVoid
%3 = OpTypeFunction %void
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%uint = OpTypeInt 32 0
%uint_1 = OpConstant %uint 1
%_arr_float_uint_1 = OpTypeArray %float %uint_1
%gl_PerVertex = OpTypeStruct %v4float %float %_arr_float_uint_1 %_arr_float_uint_1
%_ptr_Output_gl_PerVertex = OpTypePointer Output %gl_PerVertex
%out_vert = OpVariable %_ptr_Output_gl_PerVertex Output
%int = OpTypeInt 32 1
%int_0 = OpConstant %int 0
%foo = OpTypeStruct %float
%_ptr_PushConstant_foo = OpTypePointer PushConstant %foo
%consts = OpVariable %_ptr_PushConstant_foo PushConstant
%_ptr_PushConstant_float = OpTypePointer PushConstant %float
%_ptr_Output_v4float = OpTypePointer Output %v4float
%out_frag = OpVariable %_ptr_Output_v4float Output
%float_1 = OpConstant %float 1
%vec_1_0 = OpConstantComposite %v4float %float_1 %float_1 %float_1 %float_1
%main_v = OpFunction %void None %3
%label_v = OpLabel
%20 = OpAccessChain %_ptr_PushConstant_float %consts %int_0
%21 = OpLoad %float %20
%22 = OpCompositeConstruct %v4float %21 %21 %21 %21
%24 = OpAccessChain %_ptr_Output_v4float %out_vert %int_0
OpStore %24 %22
OpReturn
OpFunctionEnd
%main_f = OpFunction %void None %3
%label_f = OpLabel
OpStore %out_frag %vec_1_0
OpReturn
OpFunctionEnd
)";
std::string vert_first = R"(
OpCapability Shader
OpMemoryModel Logical GLSL450
OpEntryPoint Vertex %main_v "main_v" %out_vert
OpEntryPoint Fragment %main_f "main_f" %out_frag
)" + source_body;
std::string frag_first = R"(
OpCapability Shader
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main_f "main_f" %out_frag
OpEntryPoint Vertex %main_v "main_v" %out_vert
)" + source_body;
VkPushConstantRange push_constant_ranges[1]{{VK_SHADER_STAGE_VERTEX_BIT, 0, sizeof(float)}};
VkPipelineLayoutCreateInfo const pipeline_layout_info{
VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, nullptr, 0, 0, nullptr, 1, push_constant_ranges};
// Vertex entry point first
{
VkShaderObj const vs(m_device, vert_first, VK_SHADER_STAGE_VERTEX_BIT, this, "main_v");
VkShaderObj const fs(m_device, vert_first, VK_SHADER_STAGE_FRAGMENT_BIT, this, "main_f");
const auto set_info = [&](CreatePipelineHelper &helper) {
helper.shader_stages_ = {vs.GetStageCreateInfo(), fs.GetStageCreateInfo()};
helper.pipeline_layout_ci_ = pipeline_layout_info;
};
CreatePipelineHelper::OneshotTest(*this, set_info, kErrorBit, "", true);
}
// Fragment entry point first
{
VkShaderObj const vs(m_device, frag_first, VK_SHADER_STAGE_VERTEX_BIT, this, "main_v");
VkShaderObj const fs(m_device, frag_first, VK_SHADER_STAGE_FRAGMENT_BIT, this, "main_f");
const auto set_info = [&](CreatePipelineHelper &helper) {
helper.shader_stages_ = {vs.GetStageCreateInfo(), fs.GetStageCreateInfo()};
helper.pipeline_layout_ci_ = pipeline_layout_info;
};
CreatePipelineHelper::OneshotTest(*this, set_info, kErrorBit, "", true);
}
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, MultipleEntryPointNormalVertPushConstantFrag) {
TEST_DESCRIPTION("Test push-constant only being used by single entrypoint.");
m_errorMonitor->ExpectSuccess();
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
// #version 450
// void main(){
// gl_Position = vec4(1.0);
// }
//
// #version 450
// layout(push_constant, std430) uniform foo { float x; } consts;
// layout(location=0) out vec4 o;
// void main(){
// o = vec4(consts.x);
// }
const std::string source_body = R"(
OpExecutionMode %main_f OriginUpperLeft
OpSource GLSL 450
OpMemberDecorate %gl_PerVertex 0 BuiltIn Position
OpMemberDecorate %gl_PerVertex 1 BuiltIn PointSize
OpMemberDecorate %gl_PerVertex 2 BuiltIn ClipDistance
OpMemberDecorate %gl_PerVertex 3 BuiltIn CullDistance
OpDecorate %gl_PerVertex Block
OpDecorate %out_frag Location 0
OpMemberDecorate %foo 0 Offset 0
OpDecorate %foo Block
%void = OpTypeVoid
%3 = OpTypeFunction %void
%float = OpTypeFloat 32
%v4float = OpTypeVector %float 4
%uint = OpTypeInt 32 0
%uint_1 = OpConstant %uint 1
%_arr_float_uint_1 = OpTypeArray %float %uint_1
%gl_PerVertex = OpTypeStruct %v4float %float %_arr_float_uint_1 %_arr_float_uint_1
%_ptr_Output_gl_PerVertex = OpTypePointer Output %gl_PerVertex
%out_vert = OpVariable %_ptr_Output_gl_PerVertex Output
%int = OpTypeInt 32 1
%int_0 = OpConstant %int 0
%float_1 = OpConstant %float 1
%17 = OpConstantComposite %v4float %float_1 %float_1 %float_1 %float_1
%_ptr_Output_v4float = OpTypePointer Output %v4float
%out_frag = OpVariable %_ptr_Output_v4float Output
%foo = OpTypeStruct %float
%_ptr_PushConstant_foo = OpTypePointer PushConstant %foo
%consts = OpVariable %_ptr_PushConstant_foo PushConstant
%_ptr_PushConstant_float = OpTypePointer PushConstant %float
%main_v = OpFunction %void None %3
%label_v = OpLabel
%19 = OpAccessChain %_ptr_Output_v4float %out_vert %int_0
OpStore %19 %17
OpReturn
OpFunctionEnd
%main_f = OpFunction %void None %3
%label_f = OpLabel
%26 = OpAccessChain %_ptr_PushConstant_float %consts %int_0
%27 = OpLoad %float %26
%28 = OpCompositeConstruct %v4float %27 %27 %27 %27
OpStore %out_frag %28
OpReturn
OpFunctionEnd
)";
std::string vert_first = R"(
OpCapability Shader
OpMemoryModel Logical GLSL450
OpEntryPoint Vertex %main_v "main_v" %out_vert
OpEntryPoint Fragment %main_f "main_f" %out_frag
)" + source_body;
std::string frag_first = R"(
OpCapability Shader
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main_f "main_f" %out_frag
OpEntryPoint Vertex %main_v "main_v" %out_vert
)" + source_body;
VkPushConstantRange push_constant_ranges[1]{{VK_SHADER_STAGE_FRAGMENT_BIT, 0, sizeof(float)}};
VkPipelineLayoutCreateInfo const pipeline_layout_info{
VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, nullptr, 0, 0, nullptr, 1, push_constant_ranges};
// Vertex entry point first
{
VkShaderObj const vs(m_device, vert_first, VK_SHADER_STAGE_VERTEX_BIT, this, "main_v");
VkShaderObj const fs(m_device, vert_first, VK_SHADER_STAGE_FRAGMENT_BIT, this, "main_f");
const auto set_info = [&](CreatePipelineHelper &helper) {
helper.shader_stages_ = {vs.GetStageCreateInfo(), fs.GetStageCreateInfo()};
helper.pipeline_layout_ci_ = pipeline_layout_info;
};
CreatePipelineHelper::OneshotTest(*this, set_info, kErrorBit, "", true);
}
// Fragment entry point first
{
VkShaderObj const vs(m_device, frag_first, VK_SHADER_STAGE_VERTEX_BIT, this, "main_v");
VkShaderObj const fs(m_device, frag_first, VK_SHADER_STAGE_FRAGMENT_BIT, this, "main_f");
const auto set_info = [&](CreatePipelineHelper &helper) {
helper.shader_stages_ = {vs.GetStageCreateInfo(), fs.GetStageCreateInfo()};
helper.pipeline_layout_ci_ = pipeline_layout_info;
};
CreatePipelineHelper::OneshotTest(*this, set_info, kErrorBit, "", true);
}
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, PushConstantsCompatibilityGraphicsOnly) {
TEST_DESCRIPTION("Based on verified valid examples from internal Vulkan Spec issue #2168");
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, nullptr, VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT));
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
m_errorMonitor->ExpectSuccess();
char const *const vsSource = R"glsl(
#version 450
layout(push_constant, std430) uniform foo { float x[16]; } constants;
void main(){
gl_Position = vec4(constants.x[4]);
}
)glsl";
VkShaderObj const vs(m_device, vsSource, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj const fs(m_device, bindStateFragShaderText, VK_SHADER_STAGE_FRAGMENT_BIT, this);
// range A and B are the same while range C is different
const uint32_t pc_size = 32;
VkPushConstantRange range_a = {VK_SHADER_STAGE_VERTEX_BIT, 0, pc_size};
VkPushConstantRange range_b = {VK_SHADER_STAGE_VERTEX_BIT, 0, pc_size};
VkPushConstantRange range_c = {VK_SHADER_STAGE_VERTEX_BIT, 16, pc_size};
VkPipelineLayoutCreateInfo pipeline_layout_info_a = {
VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, nullptr, 0, 0, nullptr, 1, &range_a};
VkPipelineLayoutCreateInfo pipeline_layout_info_b = {
VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, nullptr, 0, 0, nullptr, 1, &range_b};
VkPipelineLayoutCreateInfo pipeline_layout_info_c = {
VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, nullptr, 0, 0, nullptr, 1, &range_c};
CreatePipelineHelper pipeline_helper_a(*this); // layout_a and range_a
CreatePipelineHelper pipeline_helper_b(*this); // layout_b and range_b
CreatePipelineHelper pipeline_helper_c(*this); // layout_c and range_c
pipeline_helper_a.InitInfo();
pipeline_helper_a.shader_stages_ = {vs.GetStageCreateInfo(), fs.GetStageCreateInfo()};
pipeline_helper_a.pipeline_layout_ci_ = pipeline_layout_info_a;
pipeline_helper_a.InitState();
pipeline_helper_a.CreateGraphicsPipeline();
pipeline_helper_b.InitInfo();
pipeline_helper_b.shader_stages_ = {vs.GetStageCreateInfo(), fs.GetStageCreateInfo()};
pipeline_helper_b.pipeline_layout_ci_ = pipeline_layout_info_b;
pipeline_helper_b.InitState();
pipeline_helper_b.CreateGraphicsPipeline();
pipeline_helper_c.InitInfo();
pipeline_helper_c.shader_stages_ = {vs.GetStageCreateInfo(), fs.GetStageCreateInfo()};
pipeline_helper_c.pipeline_layout_ci_ = pipeline_layout_info_c;
pipeline_helper_c.InitState();
pipeline_helper_c.CreateGraphicsPipeline();
// Easier to see in command buffers
const VkPipelineLayout layout_a = pipeline_helper_a.pipeline_layout_.handle();
const VkPipelineLayout layout_b = pipeline_helper_b.pipeline_layout_.handle();
const VkPipelineLayout layout_c = pipeline_helper_c.pipeline_layout_.handle();
const VkPipeline pipeline_a = pipeline_helper_a.pipeline_;
const VkPipeline pipeline_b = pipeline_helper_b.pipeline_;
const VkPipeline pipeline_c = pipeline_helper_c.pipeline_;
const float data[16] = {}; // dummy data to match shader size
const float vbo_data[3] = {1.f, 0.f, 1.f};
VkConstantBufferObj vbo(m_device, sizeof(vbo_data), (const void *)&vbo_data, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
// case 1 - bind different layout with the same range
m_commandBuffer->begin();
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
m_commandBuffer->BindVertexBuffer(&vbo, 0, 1);
vk::CmdPushConstants(m_commandBuffer->handle(), layout_a, VK_SHADER_STAGE_VERTEX_BIT, 0, pc_size, data);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_b);
m_commandBuffer->Draw(1, 0, 0, 0);
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
// case 2 - bind layout with same range then push different range
m_commandBuffer->begin();
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
m_commandBuffer->BindVertexBuffer(&vbo, 0, 1);
vk::CmdPushConstants(m_commandBuffer->handle(), layout_b, VK_SHADER_STAGE_VERTEX_BIT, 0, pc_size, data);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_b);
m_commandBuffer->Draw(1, 0, 0, 0);
vk::CmdPushConstants(m_commandBuffer->handle(), layout_a, VK_SHADER_STAGE_VERTEX_BIT, 0, pc_size, data);
m_commandBuffer->Draw(1, 0, 0, 0);
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
// case 3 - same range same layout then same range from a different layout and same range from the same layout
m_commandBuffer->begin();
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
m_commandBuffer->BindVertexBuffer(&vbo, 0, 1);
vk::CmdPushConstants(m_commandBuffer->handle(), layout_a, VK_SHADER_STAGE_VERTEX_BIT, 0, pc_size, data);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_a);
vk::CmdPushConstants(m_commandBuffer->handle(), layout_b, VK_SHADER_STAGE_VERTEX_BIT, 0, pc_size, data);
vk::CmdPushConstants(m_commandBuffer->handle(), layout_a, VK_SHADER_STAGE_VERTEX_BIT, 0, pc_size, data);
m_commandBuffer->Draw(1, 0, 0, 0);
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
// case 4 - same range same layout then diff range and same range update
m_commandBuffer->begin();
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
m_commandBuffer->BindVertexBuffer(&vbo, 0, 1);
vk::CmdPushConstants(m_commandBuffer->handle(), layout_a, VK_SHADER_STAGE_VERTEX_BIT, 0, pc_size, data);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_a);
vk::CmdPushConstants(m_commandBuffer->handle(), layout_c, VK_SHADER_STAGE_VERTEX_BIT, 16, pc_size, data);
vk::CmdPushConstants(m_commandBuffer->handle(), layout_a, VK_SHADER_STAGE_VERTEX_BIT, 0, pc_size, data);
m_commandBuffer->Draw(1, 0, 0, 0);
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
// case 5 - update push constant bind different layout with the same range then bind correct layout
m_commandBuffer->begin();
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
m_commandBuffer->BindVertexBuffer(&vbo, 0, 1);
vk::CmdPushConstants(m_commandBuffer->handle(), layout_a, VK_SHADER_STAGE_VERTEX_BIT, 0, pc_size, data);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_b);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_a);
m_commandBuffer->Draw(1, 0, 0, 0);
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
// case 6 - update push constant then bind different layout with overlapping range then bind correct layout
m_commandBuffer->begin();
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
m_commandBuffer->BindVertexBuffer(&vbo, 0, 1);
vk::CmdPushConstants(m_commandBuffer->handle(), layout_a, VK_SHADER_STAGE_VERTEX_BIT, 0, pc_size, data);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_c);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_a);
m_commandBuffer->Draw(1, 0, 0, 0);
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
// case 7 - bind different layout with different range then update push constant and bind correct layout
m_commandBuffer->begin();
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
m_commandBuffer->BindVertexBuffer(&vbo, 0, 1);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_c);
vk::CmdPushConstants(m_commandBuffer->handle(), layout_a, VK_SHADER_STAGE_VERTEX_BIT, 0, pc_size, data);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_a);
m_commandBuffer->Draw(1, 0, 0, 0);
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, PushConstantsStaticallyUnused) {
TEST_DESCRIPTION("Test cases where creating pipeline with no use of push constants but still has ranges in layout");
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, nullptr, VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT));
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
m_errorMonitor->ExpectSuccess();
// Create set of Pipeline Layouts that cover variations of ranges
VkPushConstantRange push_constant_range = {VK_SHADER_STAGE_VERTEX_BIT, 0, 4};
VkPipelineLayoutCreateInfo pipeline_layout_info = {
VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, nullptr, 0, 0, nullptr, 1, &push_constant_range};
char const *vsSourceUnused = R"glsl(
#version 450
layout(push_constant, std430) uniform foo { float x; } consts;
void main(){
gl_Position = vec4(1.0);
}
)glsl";
char const *vsSourceEmpty = R"glsl(
#version 450
void main(){
gl_Position = vec4(1.0);
}
)glsl";
VkShaderObj vsUnused(m_device, vsSourceUnused, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj vsEmpty(m_device, vsSourceEmpty, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj fs(m_device, bindStateFragShaderText, VK_SHADER_STAGE_FRAGMENT_BIT, this);
// Just in layout
CreatePipelineHelper pipeline_unused(*this);
pipeline_unused.InitInfo();
pipeline_unused.shader_stages_ = {vsUnused.GetStageCreateInfo(), fs.GetStageCreateInfo()};
pipeline_unused.pipeline_layout_ci_ = pipeline_layout_info;
pipeline_unused.InitState();
pipeline_unused.CreateGraphicsPipeline();
// Shader never had a reference
CreatePipelineHelper pipeline_empty(*this);
pipeline_empty.InitInfo();
pipeline_empty.shader_stages_ = {vsEmpty.GetStageCreateInfo(), fs.GetStageCreateInfo()};
pipeline_empty.pipeline_layout_ci_ = pipeline_layout_info;
pipeline_empty.InitState();
pipeline_empty.CreateGraphicsPipeline();
const float vbo_data[3] = {1.f, 0.f, 1.f};
VkConstantBufferObj vbo(m_device, sizeof(vbo_data), (const void *)&vbo_data, VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
// Draw without ever pushing to the unused and empty pipelines
m_commandBuffer->begin();
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
m_commandBuffer->BindVertexBuffer(&vbo, 0, 1);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_unused.pipeline_);
m_commandBuffer->Draw(1, 0, 0, 0);
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
m_commandBuffer->begin();
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
m_commandBuffer->BindVertexBuffer(&vbo, 0, 1);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_empty.pipeline_);
m_commandBuffer->Draw(1, 0, 0, 0);
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, CreatePipelineSpecializeInt8) {
TEST_DESCRIPTION("Test int8 specialization.");
m_errorMonitor->ExpectSuccess();
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
} else {
printf("%s Did not find required instance extension %s; skipped.\n", kSkipPrefix,
VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
if (DeviceExtensionSupported(gpu(), nullptr, VK_KHR_SHADER_FLOAT16_INT8_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_KHR_SHADER_FLOAT16_INT8_EXTENSION_NAME);
} else {
printf("%s %s Extension not supported, skipping tests\n", kSkipPrefix, VK_KHR_SHADER_FLOAT16_INT8_EXTENSION_NAME);
return;
}
PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR =
(PFN_vkGetPhysicalDeviceFeatures2KHR)vk::GetInstanceProcAddr(instance(), "vkGetPhysicalDeviceFeatures2KHR");
ASSERT_TRUE(vkGetPhysicalDeviceFeatures2KHR != nullptr);
auto float16int8_features = LvlInitStruct<VkPhysicalDeviceFloat16Int8FeaturesKHR>();
auto features2 = LvlInitStruct<VkPhysicalDeviceFeatures2KHR>(&float16int8_features);
vkGetPhysicalDeviceFeatures2KHR(gpu(), &features2);
if (float16int8_features.shaderInt8 == VK_FALSE) {
printf("%s shaderInt8 feature not supported.\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
std::string const fs_src = R"(
OpCapability Shader
OpCapability Int8
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main"
OpExecutionMode %main OriginUpperLeft
OpSource GLSL 450
OpName %main "main"
OpName %v "v"
OpDecorate %v SpecId 0
%void = OpTypeVoid
%3 = OpTypeFunction %void
%int = OpTypeInt 8 1
%v = OpSpecConstant %int 0
%main = OpFunction %void None %3
%5 = OpLabel
OpReturn
OpFunctionEnd
)";
VkShaderObj const fs(m_device, fs_src, VK_SHADER_STAGE_FRAGMENT_BIT, this);
const VkSpecializationMapEntry entry = {
0, // id
0, // offset
sizeof(uint8_t) // size
};
uint8_t const data = 0x42;
const VkSpecializationInfo specialization_info = {
1,
&entry,
1 * sizeof(uint8_t),
&data,
};
CreatePipelineHelper pipe(*this);
pipe.InitInfo();
pipe.shader_stages_ = {pipe.vs_->GetStageCreateInfo(), fs.GetStageCreateInfo()};
pipe.shader_stages_[1].pSpecializationInfo = &specialization_info;
pipe.InitState();
pipe.CreateGraphicsPipeline();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, CreatePipelineSpecializeInt16) {
TEST_DESCRIPTION("Test int16 specialization.");
m_errorMonitor->ExpectSuccess();
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
} else {
printf("%s Did not find required instance extension %s; skipped.\n", kSkipPrefix,
VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR =
(PFN_vkGetPhysicalDeviceFeatures2KHR)vk::GetInstanceProcAddr(instance(), "vkGetPhysicalDeviceFeatures2KHR");
ASSERT_TRUE(vkGetPhysicalDeviceFeatures2KHR != nullptr);
auto features2 = LvlInitStruct<VkPhysicalDeviceFeatures2KHR>();
vkGetPhysicalDeviceFeatures2KHR(gpu(), &features2);
if (features2.features.shaderInt16 == VK_FALSE) {
printf("%s shaderInt16 feature not supported.\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
std::string const fs_src = R"(
OpCapability Shader
OpCapability Int16
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main"
OpExecutionMode %main OriginUpperLeft
OpSource GLSL 450
OpName %main "main"
OpName %v "v"
OpDecorate %v SpecId 0
%void = OpTypeVoid
%3 = OpTypeFunction %void
%int = OpTypeInt 16 1
%v = OpSpecConstant %int 0
%main = OpFunction %void None %3
%5 = OpLabel
OpReturn
OpFunctionEnd
)";
VkShaderObj const fs(m_device, fs_src, VK_SHADER_STAGE_FRAGMENT_BIT, this);
const VkSpecializationMapEntry entry = {
0, // id
0, // offset
sizeof(uint16_t) // size
};
uint16_t const data = 0x4342;
const VkSpecializationInfo specialization_info = {
1,
&entry,
1 * sizeof(uint16_t),
&data,
};
CreatePipelineHelper pipe(*this);
pipe.InitInfo();
pipe.shader_stages_ = {pipe.vs_->GetStageCreateInfo(), fs.GetStageCreateInfo()};
pipe.shader_stages_[1].pSpecializationInfo = &specialization_info;
pipe.InitState();
pipe.CreateGraphicsPipeline();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, CreatePipelineSpecializeInt32) {
TEST_DESCRIPTION("Test int32 specialization.");
m_errorMonitor->ExpectSuccess();
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
std::string const fs_src = R"(
OpCapability Shader
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main"
OpExecutionMode %main OriginUpperLeft
OpSource GLSL 450
OpName %main "main"
OpName %v "v"
OpDecorate %v SpecId 0
%void = OpTypeVoid
%3 = OpTypeFunction %void
%int = OpTypeInt 32 1
%v = OpSpecConstant %int 0
%main = OpFunction %void None %3
%5 = OpLabel
OpReturn
OpFunctionEnd
)";
VkShaderObj const fs(m_device, fs_src, VK_SHADER_STAGE_FRAGMENT_BIT, this);
const VkSpecializationMapEntry entry = {
0, // id
0, // offset
sizeof(uint32_t) // size
};
uint32_t const data = 0x45444342;
const VkSpecializationInfo specialization_info = {
1,
&entry,
1 * sizeof(uint32_t),
&data,
};
CreatePipelineHelper pipe(*this);
pipe.InitInfo();
pipe.shader_stages_ = {pipe.vs_->GetStageCreateInfo(), fs.GetStageCreateInfo()};
pipe.shader_stages_[1].pSpecializationInfo = &specialization_info;
pipe.InitState();
pipe.CreateGraphicsPipeline();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, CreatePipelineSpecializeInt64) {
TEST_DESCRIPTION("Test int64 specialization.");
m_errorMonitor->ExpectSuccess();
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
} else {
printf("%s Did not find required instance extension %s; skipped.\n", kSkipPrefix,
VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR =
(PFN_vkGetPhysicalDeviceFeatures2KHR)vk::GetInstanceProcAddr(instance(), "vkGetPhysicalDeviceFeatures2KHR");
ASSERT_TRUE(vkGetPhysicalDeviceFeatures2KHR != nullptr);
auto features2 = LvlInitStruct<VkPhysicalDeviceFeatures2KHR>();
vkGetPhysicalDeviceFeatures2KHR(gpu(), &features2);
if (features2.features.shaderInt64 == VK_FALSE) {
printf("%s shaderInt64 feature not supported.\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
std::string const fs_src = R"(
OpCapability Shader
OpCapability Int64
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint Fragment %main "main"
OpExecutionMode %main OriginUpperLeft
OpSource GLSL 450
OpName %main "main"
OpName %v "v"
OpDecorate %v SpecId 0
%void = OpTypeVoid
%3 = OpTypeFunction %void
%int = OpTypeInt 64 1
%v = OpSpecConstant %int 0
%main = OpFunction %void None %3
%5 = OpLabel
OpReturn
OpFunctionEnd
)";
VkShaderObj const fs(m_device, fs_src, VK_SHADER_STAGE_FRAGMENT_BIT, this);
const VkSpecializationMapEntry entry = {
0, // id
0, // offset
sizeof(uint64_t) // size
};
uint64_t const data = 0x4948474645444342;
const VkSpecializationInfo specialization_info = {
1,
&entry,
1 * sizeof(uint64_t),
&data,
};
CreatePipelineHelper pipe(*this);
pipe.InitInfo();
pipe.shader_stages_ = {pipe.vs_->GetStageCreateInfo(), fs.GetStageCreateInfo()};
pipe.shader_stages_[1].pSpecializationInfo = &specialization_info;
pipe.InitState();
pipe.CreateGraphicsPipeline();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, SeparateDepthStencilSubresourceLayout) {
TEST_DESCRIPTION("Test that separate depth stencil layouts are tracked correctly.");
SetTargetApiVersion(VK_API_VERSION_1_1);
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
m_errorMonitor->ExpectSuccess(kErrorBit | kWarningBit);
if (DeviceExtensionSupported(gpu(), nullptr, VK_KHR_SEPARATE_DEPTH_STENCIL_LAYOUTS_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_KHR_SEPARATE_DEPTH_STENCIL_LAYOUTS_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_CREATE_RENDERPASS_2_EXTENSION_NAME);
} else {
printf("%s %s Extension not supported, skipping tests\n", kSkipPrefix,
VK_KHR_SEPARATE_DEPTH_STENCIL_LAYOUTS_EXTENSION_NAME);
return;
}
VkPhysicalDeviceFeatures features = {};
VkPhysicalDeviceFeatures2 features2 = {VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2};
VkPhysicalDeviceSeparateDepthStencilLayoutsFeatures separate_features = {
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SEPARATE_DEPTH_STENCIL_LAYOUTS_FEATURES};
features2.pNext = &separate_features;
vk::GetPhysicalDeviceFeatures2(gpu(), &features2);
if (!separate_features.separateDepthStencilLayouts) {
printf("separateDepthStencilLayouts feature not supported, skipping tests\n");
return;
}
m_errorMonitor->VerifyNotFound();
m_errorMonitor->ExpectSuccess(kErrorBit | kWarningBit);
ASSERT_NO_FATAL_FAILURE(InitState(&features, &features2, VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT));
VkFormat ds_format = VK_FORMAT_D24_UNORM_S8_UINT;
VkFormatProperties props;
vk::GetPhysicalDeviceFormatProperties(gpu(), ds_format, &props);
if ((props.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) == 0) {
ds_format = VK_FORMAT_D32_SFLOAT_S8_UINT;
vk::GetPhysicalDeviceFormatProperties(gpu(), ds_format, &props);
ASSERT_TRUE((props.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT) != 0);
}
auto image_ci = vk_testing::Image::create_info();
image_ci.imageType = VK_IMAGE_TYPE_2D;
image_ci.extent.width = 64;
image_ci.extent.height = 64;
image_ci.mipLevels = 1;
image_ci.arrayLayers = 6;
image_ci.format = ds_format;
image_ci.tiling = VK_IMAGE_TILING_OPTIMAL;
image_ci.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
vk_testing::Image image;
image.init(*m_device, image_ci);
const auto depth_range = image.subresource_range(VK_IMAGE_ASPECT_DEPTH_BIT);
const auto stencil_range = image.subresource_range(VK_IMAGE_ASPECT_STENCIL_BIT);
const auto depth_stencil_range = image.subresource_range(VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT);
vk_testing::ImageView view;
VkImageViewCreateInfo view_info = {VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO};
view_info.image = image.handle();
view_info.subresourceRange = depth_stencil_range;
view_info.viewType = VK_IMAGE_VIEW_TYPE_2D_ARRAY;
view_info.format = ds_format;
view.init(*m_device, view_info);
std::vector<VkImageMemoryBarrier> barriers;
{
m_commandBuffer->begin();
auto depth_barrier =
image.image_memory_barrier(0, 0, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, depth_range);
auto stencil_barrier =
image.image_memory_barrier(0, 0, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL, stencil_range);
vk::CmdPipelineBarrier(m_commandBuffer->handle(), VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0,
0, nullptr, 0, nullptr, 1, &depth_barrier);
vk::CmdPipelineBarrier(m_commandBuffer->handle(), VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0,
0, nullptr, 0, nullptr, 1, &stencil_barrier);
m_commandBuffer->end();
m_commandBuffer->QueueCommandBuffer(false);
m_commandBuffer->reset();
}
m_commandBuffer->begin();
// Test that we handle initial layout in command buffer.
barriers.push_back(image.image_memory_barrier(0, 0, VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, depth_stencil_range));
// Test that we can transition aspects separately and use specific layouts.
barriers.push_back(image.image_memory_barrier(0, 0, VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL, depth_range));
barriers.push_back(image.image_memory_barrier(0, 0, VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL, stencil_range));
// Test that transition from UNDEFINED on depth aspect does not clobber stencil layout.
barriers.push_back(
image.image_memory_barrier(0, 0, VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL, depth_range));
// Test that we can transition aspects separately and use combined layouts. (Only care about the aspect in question).
barriers.push_back(image.image_memory_barrier(0, 0, VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL, depth_range));
barriers.push_back(image.image_memory_barrier(0, 0, VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, stencil_range));
// Test that we can transition back again with combined layout.
barriers.push_back(image.image_memory_barrier(0, 0, VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL, depth_stencil_range));
VkRenderPassBeginInfo rp_begin_info = {VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO};
VkRenderPassCreateInfo2 rp2 = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2};
VkAttachmentDescription2 desc = {VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_2};
VkSubpassDescription2 sub = {VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION_2};
VkAttachmentReference2 att = {VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_2};
VkAttachmentDescriptionStencilLayout stencil_desc = {VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION_STENCIL_LAYOUT};
VkAttachmentReferenceStencilLayout stencil_att = {VK_STRUCTURE_TYPE_ATTACHMENT_REFERENCE_STENCIL_LAYOUT};
// Test that we can discard stencil layout.
stencil_desc.stencilInitialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
stencil_desc.stencilFinalLayout = VK_IMAGE_LAYOUT_STENCIL_READ_ONLY_OPTIMAL;
stencil_att.stencilLayout = VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL;
desc.format = ds_format;
desc.initialLayout = VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL;
desc.finalLayout = VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL;
desc.loadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
desc.storeOp = VK_ATTACHMENT_STORE_OP_STORE;
desc.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_LOAD;
desc.stencilStoreOp = VK_ATTACHMENT_STORE_OP_STORE;
desc.samples = VK_SAMPLE_COUNT_1_BIT;
desc.pNext = &stencil_desc;
att.layout = VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_OPTIMAL;
att.attachment = 0;
att.pNext = &stencil_att;
sub.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS;
sub.pDepthStencilAttachment = &att;
rp2.subpassCount = 1;
rp2.pSubpasses = &sub;
rp2.attachmentCount = 1;
rp2.pAttachments = &desc;
VkRenderPass render_pass_separate{};
VkFramebuffer framebuffer_separate{};
VkRenderPass render_pass_combined{};
VkFramebuffer framebuffer_combined{};
PFN_vkCreateRenderPass2KHR vkCreateRenderPass2KHR =
(PFN_vkCreateRenderPass2KHR)vk::GetDeviceProcAddr(device(), "vkCreateRenderPass2KHR");
vkCreateRenderPass2KHR(device(), &rp2, nullptr, &render_pass_separate);
desc.initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_READ_ONLY_OPTIMAL;
desc.finalLayout = desc.initialLayout;
desc.pNext = nullptr;
att.layout = desc.initialLayout;
att.pNext = nullptr;
vkCreateRenderPass2KHR(device(), &rp2, nullptr, &render_pass_combined);
VkFramebufferCreateInfo fb_info = {VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO};
fb_info.renderPass = render_pass_separate;
fb_info.width = 1;
fb_info.height = 1;
fb_info.layers = 1;
fb_info.attachmentCount = 1;
fb_info.pAttachments = &view.handle();
vk::CreateFramebuffer(device(), &fb_info, nullptr, &framebuffer_separate);
fb_info.renderPass = render_pass_combined;
vk::CreateFramebuffer(device(), &fb_info, nullptr, &framebuffer_combined);
for (auto &barrier : barriers) {
vk::CmdPipelineBarrier(m_commandBuffer->handle(), VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, 0,
0, nullptr, 0, nullptr, 1, &barrier);
}
rp_begin_info.renderPass = render_pass_separate;
rp_begin_info.framebuffer = framebuffer_separate;
rp_begin_info.renderArea.extent = {1, 1};
vk::CmdBeginRenderPass(m_commandBuffer->handle(), &rp_begin_info, VK_SUBPASS_CONTENTS_INLINE);
vk::CmdEndRenderPass(m_commandBuffer->handle());
rp_begin_info.renderPass = render_pass_combined;
rp_begin_info.framebuffer = framebuffer_combined;
vk::CmdBeginRenderPass(m_commandBuffer->handle(), &rp_begin_info, VK_SUBPASS_CONTENTS_INLINE);
vk::CmdEndRenderPass(m_commandBuffer->handle());
m_commandBuffer->end();
m_commandBuffer->QueueCommandBuffer(false);
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, SwapchainImageFormatProps) {
TEST_DESCRIPTION("Try using special format props on a swapchain image");
if (!AddSurfaceInstanceExtension()) {
printf("%s surface extensions not supported, skipping CmdCopySwapchainImage test\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework());
if (!AddSwapchainDeviceExtension()) {
printf("%s swapchain extensions not supported, skipping CmdCopySwapchainImage test\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState());
if (!InitSwapchain()) {
printf("%s Cannot create surface or swapchain, skipping CmdCopySwapchainImage test\n", kSkipPrefix);
return;
}
// HACK: I know InitSwapchain() will pick first supported format
VkSurfaceFormatKHR format_tmp;
{
uint32_t format_count = 1;
const VkResult err = vk::GetPhysicalDeviceSurfaceFormatsKHR(gpu(), m_surface, &format_count, &format_tmp);
ASSERT_TRUE(err == VK_SUCCESS || err == VK_INCOMPLETE) << vk_result_string(err);
}
const VkFormat format = format_tmp.format;
VkFormatProperties format_props;
vk::GetPhysicalDeviceFormatProperties(gpu(), format, &format_props);
if (!(format_props.optimalTilingFeatures & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT)) {
printf("%s We need VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BLEND_BIT feature. Skipping test.\n", kSkipPrefix);
return;
}
VkShaderObj vs(DeviceObj(), bindStateVertShaderText, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj fs(DeviceObj(), bindStateFragShaderText, VK_SHADER_STAGE_FRAGMENT_BIT, this);
VkPipelineLayoutObj pipeline_layout(DeviceObj());
VkRenderpassObj render_pass(DeviceObj(), format);
VkPipelineObj pipeline(DeviceObj());
pipeline.AddShader(&vs);
pipeline.AddShader(&fs);
VkPipelineColorBlendAttachmentState pcbas = {};
pcbas.blendEnable = VK_TRUE; // !!!
pcbas.colorWriteMask =
VK_COLOR_COMPONENT_R_BIT | VK_COLOR_COMPONENT_G_BIT | VK_COLOR_COMPONENT_B_BIT | VK_COLOR_COMPONENT_A_BIT;
pipeline.AddColorAttachment(0, pcbas);
pipeline.MakeDynamic(VK_DYNAMIC_STATE_VIEWPORT);
pipeline.MakeDynamic(VK_DYNAMIC_STATE_SCISSOR);
ASSERT_VK_SUCCESS(pipeline.CreateVKPipeline(pipeline_layout.handle(), render_pass.handle()));
uint32_t image_count;
ASSERT_VK_SUCCESS(vk::GetSwapchainImagesKHR(device(), m_swapchain, &image_count, nullptr));
std::vector<VkImage> swapchain_images(image_count);
ASSERT_VK_SUCCESS(vk::GetSwapchainImagesKHR(device(), m_swapchain, &image_count, swapchain_images.data()));
VkFenceObj fence;
fence.init(*DeviceObj(), VkFenceObj::create_info());
uint32_t image_index;
ASSERT_VK_SUCCESS(vk::AcquireNextImageKHR(device(), m_swapchain, UINT64_MAX, VK_NULL_HANDLE, fence.handle(), &image_index));
fence.wait(UINT32_MAX);
VkImageViewCreateInfo ivci = {};
ivci.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
ivci.image = swapchain_images[image_index];
ivci.viewType = VK_IMAGE_VIEW_TYPE_2D;
ivci.format = format;
ivci.subresourceRange = {VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
VkImageView image_view;
ASSERT_VK_SUCCESS(vk::CreateImageView(device(), &ivci, nullptr, &image_view));
VkFramebufferCreateInfo fbci = {};
fbci.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
fbci.renderPass = render_pass.handle();
fbci.attachmentCount = 1;
fbci.pAttachments = &image_view;
fbci.width = 1;
fbci.height = 1;
fbci.layers = 1;
VkFramebuffer framebuffer;
ASSERT_VK_SUCCESS(vk::CreateFramebuffer(device(), &fbci, nullptr, &framebuffer));
VkCommandBufferObj cmdbuff(DeviceObj(), m_commandPool);
cmdbuff.begin();
VkRenderPassBeginInfo rpbi = {};
rpbi.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO;
rpbi.renderPass = render_pass.handle();
rpbi.framebuffer = framebuffer;
rpbi.renderArea = {{0, 0}, {1, 1}};
cmdbuff.BeginRenderPass(rpbi);
Monitor().ExpectSuccess();
vk::CmdBindPipeline(cmdbuff.handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline.handle());
Monitor().VerifyNotFound();
// teardown
vk::DestroyImageView(device(), image_view, nullptr);
vk::DestroyFramebuffer(device(), framebuffer, nullptr);
DestroySwapchain();
}
TEST_F(VkPositiveLayerTest, SwapchainExclusiveModeQueueFamilyPropertiesReferences) {
TEST_DESCRIPTION("Try using special format props on a swapchain image");
if (!AddSurfaceInstanceExtension()) {
printf("%s surface extensions not supported, skipping CmdCopySwapchainImage test\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework());
if (!AddSwapchainDeviceExtension()) {
printf("%s swapchain extensions not supported, skipping CmdCopySwapchainImage test\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState());
if (!InitSurface()) {
printf("%s Cannot create surface, skipping test\n", kSkipPrefix);
return;
}
InitSwapchainInfo();
m_errorMonitor->ExpectSuccess();
VkBool32 supported;
vk::GetPhysicalDeviceSurfaceSupportKHR(gpu(), m_device->graphics_queue_node_index_, m_surface, &supported);
if (!supported) {
printf("%s Graphics queue does not support present, skipping test\n", kSkipPrefix);
return;
}
auto surface = m_surface;
VkImageUsageFlags imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
VkSurfaceTransformFlagBitsKHR preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
VkSwapchainCreateInfoKHR swapchain_create_info = LvlInitStruct<VkSwapchainCreateInfoKHR>();
swapchain_create_info.surface = surface;
swapchain_create_info.minImageCount = m_surface_capabilities.minImageCount;
swapchain_create_info.imageFormat = m_surface_formats[0].format;
swapchain_create_info.imageColorSpace = m_surface_formats[0].colorSpace;
swapchain_create_info.imageExtent = {m_surface_capabilities.minImageExtent.width, m_surface_capabilities.minImageExtent.height};
swapchain_create_info.imageArrayLayers = 1;
swapchain_create_info.imageUsage = imageUsage;
swapchain_create_info.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
swapchain_create_info.preTransform = preTransform;
swapchain_create_info.compositeAlpha = m_surface_composite_alpha;
swapchain_create_info.presentMode = m_surface_non_shared_present_mode;
swapchain_create_info.clipped = VK_FALSE;
swapchain_create_info.oldSwapchain = 0;
swapchain_create_info.queueFamilyIndexCount = 4094967295; // This SHOULD get ignored
uint32_t bogus_int = 99;
swapchain_create_info.pQueueFamilyIndices = &bogus_int;
vk::CreateSwapchainKHR(device(), &swapchain_create_info, nullptr, &m_swapchain);
// Create another device, create another swapchain, and use this one for oldSwapchain
// It is legal to include an 'oldSwapchain' object that is from a different device
const float q_priority[] = {1.0f};
VkDeviceQueueCreateInfo queue_ci = LvlInitStruct<VkDeviceQueueCreateInfo>();
queue_ci.queueFamilyIndex = 0;
queue_ci.queueCount = 1;
queue_ci.pQueuePriorities = q_priority;
VkDeviceCreateInfo device_ci = LvlInitStruct<VkDeviceCreateInfo>();
device_ci.queueCreateInfoCount = 1;
device_ci.pQueueCreateInfos = &queue_ci;
device_ci.ppEnabledExtensionNames = m_device_extension_names.data();
device_ci.enabledExtensionCount = m_device_extension_names.size();
VkDevice test_device;
vk::CreateDevice(gpu(), &device_ci, nullptr, &test_device);
swapchain_create_info.oldSwapchain = m_swapchain;
VkSwapchainKHR new_swapchain = VK_NULL_HANDLE;
vk::CreateSwapchainKHR(test_device, &swapchain_create_info, nullptr, &new_swapchain);
if (new_swapchain != VK_NULL_HANDLE) {
vk::DestroySwapchainKHR(test_device, new_swapchain, nullptr);
}
vk::DestroyDevice(test_device, nullptr);
if (m_surface != VK_NULL_HANDLE) {
vk::DestroySurfaceKHR(instance(), m_surface, nullptr);
m_surface = VK_NULL_HANDLE;
}
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, ProtectedAndUnprotectedQueue) {
TEST_DESCRIPTION("Test creating 2 queues, 1 protected, and getting both with vkGetDeviceQueue2");
SetTargetApiVersion(VK_API_VERSION_1_1);
m_errorMonitor->ExpectSuccess();
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
} else {
printf("%s Did not find VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME; skipped.\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
// NOTE (ncesario): This appears to be failing in the driver on the Shield.
// It's clear what is causing this; more investigation is necessary.
if (IsPlatform(kShieldTV) || IsPlatform(kShieldTVb)) {
printf("%s Test not supported by Shield TV, skipping test case.\n", kSkipPrefix);
return;
}
// Needed for both protected memory and vkGetDeviceQueue2
if (DeviceValidationVersion() < VK_API_VERSION_1_1) {
printf("%s test requires Vulkan 1.1 extensions, not available. Skipping.\n", kSkipPrefix);
return;
}
PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR =
(PFN_vkGetPhysicalDeviceFeatures2KHR)vk::GetInstanceProcAddr(instance(), "vkGetPhysicalDeviceFeatures2KHR");
ASSERT_TRUE(vkGetPhysicalDeviceFeatures2KHR != nullptr);
auto protected_features = LvlInitStruct<VkPhysicalDeviceProtectedMemoryFeatures>();
auto features2 = LvlInitStruct<VkPhysicalDeviceFeatures2>(&protected_features);
vkGetPhysicalDeviceFeatures2KHR(gpu(), &features2);
if (protected_features.protectedMemory == VK_FALSE) {
printf("%s test requires protectedMemory, not available. Skipping.\n", kSkipPrefix);
return;
}
// Try to find a protected queue family type
bool protected_queue = false;
VkQueueFamilyProperties queue_properties; // selected queue family used
uint32_t queue_family_index = 0;
uint32_t queue_family_count = 0;
vk::GetPhysicalDeviceQueueFamilyProperties(gpu(), &queue_family_count, nullptr);
std::vector<VkQueueFamilyProperties> queue_families(queue_family_count);
vk::GetPhysicalDeviceQueueFamilyProperties(gpu(), &queue_family_count, queue_families.data());
for (size_t i = 0; i < queue_families.size(); i++) {
// need to have at least 2 queues to use
if (((queue_families[i].queueFlags & VK_QUEUE_PROTECTED_BIT) != 0) && (queue_families[i].queueCount > 1)) {
protected_queue = true;
queue_family_index = i;
queue_properties = queue_families[i];
break;
}
}
if (protected_queue == false) {
printf("%s test requires queue family with VK_QUEUE_PROTECTED_BIT and 2 queues, not available. Skipping.\n", kSkipPrefix);
return;
}
float queue_priority = 1.0;
VkDeviceQueueCreateInfo queue_create_info[2];
queue_create_info[0] = LvlInitStruct<VkDeviceQueueCreateInfo>();
queue_create_info[0].flags = VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT;
queue_create_info[0].queueFamilyIndex = queue_family_index;
queue_create_info[0].queueCount = 1;
queue_create_info[0].pQueuePriorities = &queue_priority;
queue_create_info[1] = LvlInitStruct<VkDeviceQueueCreateInfo>();
queue_create_info[1].flags = 0; // unprotected because the protected flag is not set
queue_create_info[1].queueFamilyIndex = queue_family_index;
queue_create_info[1].queueCount = 1;
queue_create_info[1].pQueuePriorities = &queue_priority;
VkDevice test_device = VK_NULL_HANDLE;
VkDeviceCreateInfo device_create_info = LvlInitStruct<VkDeviceCreateInfo>(&protected_features);
device_create_info.flags = 0;
device_create_info.pQueueCreateInfos = queue_create_info;
device_create_info.queueCreateInfoCount = 2;
device_create_info.pEnabledFeatures = nullptr;
device_create_info.enabledLayerCount = 0;
device_create_info.enabledExtensionCount = 0;
ASSERT_VK_SUCCESS(vk::CreateDevice(gpu(), &device_create_info, nullptr, &test_device));
VkQueue test_queue_protected = VK_NULL_HANDLE;
VkQueue test_queue_unprotected = VK_NULL_HANDLE;
PFN_vkGetDeviceQueue2 vkGetDeviceQueue2 = (PFN_vkGetDeviceQueue2)vk::GetDeviceProcAddr(test_device, "vkGetDeviceQueue2");
ASSERT_TRUE(vkGetDeviceQueue2 != nullptr);
VkDeviceQueueInfo2 queue_info_2 = LvlInitStruct<VkDeviceQueueInfo2>();
queue_info_2.flags = VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT;
queue_info_2.queueFamilyIndex = queue_family_index;
queue_info_2.queueIndex = 0;
vkGetDeviceQueue2(test_device, &queue_info_2, &test_queue_protected);
queue_info_2.flags = 0;
queue_info_2.queueIndex = 0;
vkGetDeviceQueue2(test_device, &queue_info_2, &test_queue_unprotected);
vk::DestroyDevice(test_device, nullptr);
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, ShaderFloatControl) {
TEST_DESCRIPTION("Test VK_KHR_float_controls");
m_errorMonitor->ExpectSuccess();
// Need 1.1 to get SPIR-V 1.3 since OpExecutionModeId was added in SPIR-V 1.2
SetTargetApiVersion(VK_API_VERSION_1_1);
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
} else {
printf("%s Extension %s is not supported.\n", kSkipPrefix, VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
if (DeviceValidationVersion() < VK_API_VERSION_1_1) {
printf("%s test requires Vulkan 1.1+, skipping test\n", kSkipPrefix);
return;
}
// The issue with revision 4 of this extension should not be an issue with the tests
if (DeviceExtensionSupported(gpu(), nullptr, VK_KHR_SHADER_FLOAT_CONTROLS_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_KHR_SHADER_FLOAT_CONTROLS_EXTENSION_NAME);
} else {
printf("%s Extension %s is not supported.\n", kSkipPrefix, VK_KHR_SHADER_FLOAT_CONTROLS_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
PFN_vkGetPhysicalDeviceProperties2KHR vkGetPhysicalDeviceProperties2KHR =
(PFN_vkGetPhysicalDeviceProperties2KHR)vk::GetInstanceProcAddr(instance(), "vkGetPhysicalDeviceProperties2KHR");
ASSERT_TRUE(vkGetPhysicalDeviceProperties2KHR != nullptr);
auto shader_float_control = LvlInitStruct<VkPhysicalDeviceFloatControlsProperties>();
auto properties2 = LvlInitStruct<VkPhysicalDeviceProperties2KHR>(&shader_float_control);
vkGetPhysicalDeviceProperties2KHR(gpu(), &properties2);
bool signed_zero_inf_nan_preserve = (shader_float_control.shaderSignedZeroInfNanPreserveFloat32 == VK_TRUE);
bool denorm_preserve = (shader_float_control.shaderDenormPreserveFloat32 == VK_TRUE);
bool denorm_flush_to_zero = (shader_float_control.shaderDenormFlushToZeroFloat32 == VK_TRUE);
bool rounding_mode_rte = (shader_float_control.shaderRoundingModeRTEFloat32 == VK_TRUE);
bool rounding_mode_rtz = (shader_float_control.shaderRoundingModeRTZFloat32 == VK_TRUE);
// same body for each shader, only the start is different
// this is just "float a = 1.0 + 2.0;" in SPIR-V
const std::string source_body = R"(
OpExecutionMode %main LocalSize 1 1 1
OpSource GLSL 450
OpName %main "main"
%void = OpTypeVoid
%3 = OpTypeFunction %void
%float = OpTypeFloat 32
%pFunction = OpTypePointer Function %float
%float_3 = OpConstant %float 3
%main = OpFunction %void None %3
%5 = OpLabel
%6 = OpVariable %pFunction Function
OpStore %6 %float_3
OpReturn
OpFunctionEnd
)";
if (signed_zero_inf_nan_preserve) {
const std::string spv_source = R"(
OpCapability Shader
OpCapability SignedZeroInfNanPreserve
OpExtension "SPV_KHR_float_controls"
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint GLCompute %main "main"
OpExecutionMode %main SignedZeroInfNanPreserve 32
)" + source_body;
const auto set_info = [&](CreateComputePipelineHelper &helper) {
helper.cs_.reset(
new VkShaderObj(m_device, spv_source, VK_SHADER_STAGE_COMPUTE_BIT, this, "main", nullptr, SPV_ENV_VULKAN_1_1));
};
CreateComputePipelineHelper::OneshotTest(*this, set_info, kErrorBit, "", true);
}
if (denorm_preserve) {
const std::string spv_source = R"(
OpCapability Shader
OpCapability DenormPreserve
OpExtension "SPV_KHR_float_controls"
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint GLCompute %main "main"
OpExecutionMode %main DenormPreserve 32
)" + source_body;
const auto set_info = [&](CreateComputePipelineHelper &helper) {
helper.cs_.reset(
new VkShaderObj(m_device, spv_source, VK_SHADER_STAGE_COMPUTE_BIT, this, "main", nullptr, SPV_ENV_VULKAN_1_1));
};
CreateComputePipelineHelper::OneshotTest(*this, set_info, kErrorBit, "", true);
}
if (denorm_flush_to_zero) {
const std::string spv_source = R"(
OpCapability Shader
OpCapability DenormFlushToZero
OpExtension "SPV_KHR_float_controls"
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint GLCompute %main "main"
OpExecutionMode %main DenormFlushToZero 32
)" + source_body;
const auto set_info = [&](CreateComputePipelineHelper &helper) {
helper.cs_.reset(
new VkShaderObj(m_device, spv_source, VK_SHADER_STAGE_COMPUTE_BIT, this, "main", nullptr, SPV_ENV_VULKAN_1_1));
};
CreateComputePipelineHelper::OneshotTest(*this, set_info, kErrorBit, "", true);
}
if (rounding_mode_rte) {
const std::string spv_source = R"(
OpCapability Shader
OpCapability RoundingModeRTE
OpExtension "SPV_KHR_float_controls"
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint GLCompute %main "main"
OpExecutionMode %main RoundingModeRTE 32
)" + source_body;
const auto set_info = [&](CreateComputePipelineHelper &helper) {
helper.cs_.reset(
new VkShaderObj(m_device, spv_source, VK_SHADER_STAGE_COMPUTE_BIT, this, "main", nullptr, SPV_ENV_VULKAN_1_1));
};
CreateComputePipelineHelper::OneshotTest(*this, set_info, kErrorBit, "", true);
}
if (rounding_mode_rtz) {
const std::string spv_source = R"(
OpCapability Shader
OpCapability RoundingModeRTZ
OpExtension "SPV_KHR_float_controls"
%1 = OpExtInstImport "GLSL.std.450"
OpMemoryModel Logical GLSL450
OpEntryPoint GLCompute %main "main"
OpExecutionMode %main RoundingModeRTZ 32
)" + source_body;
const auto set_info = [&](CreateComputePipelineHelper &helper) {
helper.cs_.reset(
new VkShaderObj(m_device, spv_source, VK_SHADER_STAGE_COMPUTE_BIT, this, "main", nullptr, SPV_ENV_VULKAN_1_1));
};
CreateComputePipelineHelper::OneshotTest(*this, set_info, kErrorBit, "", true);
}
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, Storage8and16bit) {
TEST_DESCRIPTION("Test VK_KHR_8bit_storage and VK_KHR_16bit_storage");
m_errorMonitor->ExpectSuccess();
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
} else {
printf("%s Extension %s is not supported.\n", kSkipPrefix, VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
bool support_8_bit = DeviceExtensionSupported(gpu(), nullptr, VK_KHR_8BIT_STORAGE_EXTENSION_NAME);
bool support_16_bit = DeviceExtensionSupported(gpu(), nullptr, VK_KHR_16BIT_STORAGE_EXTENSION_NAME);
if ((support_8_bit == false) && (support_16_bit == false)) {
printf("%s Extension %s and %s are not supported.\n", kSkipPrefix, VK_KHR_8BIT_STORAGE_EXTENSION_NAME,
VK_KHR_16BIT_STORAGE_EXTENSION_NAME);
return;
} else if (DeviceExtensionSupported(gpu(), nullptr, VK_KHR_SHADER_FLOAT16_INT8_EXTENSION_NAME) == false) {
// need for all shaders, but not guaranteed from driver to have support
printf("%s Extension %s is not supported.\n", kSkipPrefix, VK_KHR_SHADER_FLOAT16_INT8_EXTENSION_NAME);
return;
} else {
m_device_extension_names.push_back(VK_KHR_SHADER_FLOAT16_INT8_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_STORAGE_BUFFER_STORAGE_CLASS_EXTENSION_NAME);
if (support_8_bit == true) {
m_device_extension_names.push_back(VK_KHR_8BIT_STORAGE_EXTENSION_NAME);
}
if (support_16_bit == true) {
m_device_extension_names.push_back(VK_KHR_16BIT_STORAGE_EXTENSION_NAME);
}
}
PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR =
(PFN_vkGetPhysicalDeviceFeatures2KHR)vk::GetInstanceProcAddr(instance(), "vkGetPhysicalDeviceFeatures2KHR");
ASSERT_TRUE(vkGetPhysicalDeviceFeatures2KHR != nullptr);
auto storage_8_bit_features = LvlInitStruct<VkPhysicalDevice8BitStorageFeaturesKHR>();
auto storage_16_bit_features = LvlInitStruct<VkPhysicalDevice16BitStorageFeaturesKHR>(&storage_8_bit_features);
auto float_16_int_8_features = LvlInitStruct<VkPhysicalDeviceShaderFloat16Int8Features>(&storage_16_bit_features);
auto features2 = LvlInitStruct<VkPhysicalDeviceFeatures2KHR>(&float_16_int_8_features);
vkGetPhysicalDeviceFeatures2KHR(gpu(), &features2);
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
// 8 bit int test (not 8 bit float support in Vulkan)
if ((support_8_bit == true) && (float_16_int_8_features.shaderInt8 == VK_TRUE)) {
if (storage_8_bit_features.storageBuffer8BitAccess == VK_TRUE) {
char const *vsSource = R"glsl(
#version 450
#extension GL_EXT_shader_8bit_storage: enable
#extension GL_EXT_shader_explicit_arithmetic_types_int8: enable
layout(set = 0, binding = 0) buffer SSBO { int8_t x; } data;
void main(){
int8_t a = data.x + data.x;
gl_Position = vec4(float(a) * 0.0);
}
)glsl";
VkShaderObj vs(m_device, vsSource, VK_SHADER_STAGE_VERTEX_BIT, this);
const auto set_info = [&](CreatePipelineHelper &helper) {
helper.shader_stages_ = {vs.GetStageCreateInfo(), helper.fs_->GetStageCreateInfo()};
helper.dsl_bindings_ = {{0, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_ALL, nullptr}};
};
CreatePipelineHelper::OneshotTest(*this, set_info, kErrorBit, "", true);
}
if (storage_8_bit_features.uniformAndStorageBuffer8BitAccess == VK_TRUE) {
char const *vsSource = R"glsl(
#version 450
#extension GL_EXT_shader_8bit_storage: enable
#extension GL_EXT_shader_explicit_arithmetic_types_int8: enable
layout(set = 0, binding = 0) uniform UBO { int8_t x; } data;
void main(){
int8_t a = data.x + data.x;
gl_Position = vec4(float(a) * 0.0);
}
)glsl";
VkShaderObj vs(m_device, vsSource, VK_SHADER_STAGE_VERTEX_BIT, this);
const auto set_info = [&](CreatePipelineHelper &helper) {
helper.shader_stages_ = {vs.GetStageCreateInfo(), helper.fs_->GetStageCreateInfo()};
helper.dsl_bindings_ = {{0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_ALL, nullptr}};
};
CreatePipelineHelper::OneshotTest(*this, set_info, kErrorBit, "", true);
}
if (storage_8_bit_features.storagePushConstant8 == VK_TRUE) {
char const *vsSource = R"glsl(
#version 450
#extension GL_EXT_shader_8bit_storage: enable
#extension GL_EXT_shader_explicit_arithmetic_types_int8: enable
layout(push_constant) uniform PushConstant { int8_t x; } data;
void main(){
int8_t a = data.x + data.x;
gl_Position = vec4(float(a) * 0.0);
}
)glsl";
VkShaderObj vs(m_device, vsSource, VK_SHADER_STAGE_VERTEX_BIT, this);
VkPushConstantRange push_constant_range = {VK_SHADER_STAGE_VERTEX_BIT, 0, 4};
VkPipelineLayoutCreateInfo pipeline_layout_info{
VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, nullptr, 0, 0, nullptr, 1, &push_constant_range};
const auto set_info = [&](CreatePipelineHelper &helper) {
helper.shader_stages_ = {vs.GetStageCreateInfo(), helper.fs_->GetStageCreateInfo()};
helper.pipeline_layout_ci_ = pipeline_layout_info;
};
CreatePipelineHelper::OneshotTest(*this, set_info, kErrorBit, "", true);
}
}
// 16 bit float tests
if ((support_16_bit == true) && (float_16_int_8_features.shaderFloat16 == VK_TRUE)) {
if (storage_16_bit_features.storageBuffer16BitAccess == VK_TRUE) {
char const *vsSource = R"glsl(
#version 450
#extension GL_EXT_shader_16bit_storage: enable
#extension GL_EXT_shader_explicit_arithmetic_types_float16: enable
layout(set = 0, binding = 0) buffer SSBO { float16_t x; } data;
void main(){
float16_t a = data.x + data.x;
gl_Position = vec4(float(a) * 0.0);
}
)glsl";
VkShaderObj vs(m_device, vsSource, VK_SHADER_STAGE_VERTEX_BIT, this);
const auto set_info = [&](CreatePipelineHelper &helper) {
helper.shader_stages_ = {vs.GetStageCreateInfo(), helper.fs_->GetStageCreateInfo()};
helper.dsl_bindings_ = {{0, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_ALL, nullptr}};
};
CreatePipelineHelper::OneshotTest(*this, set_info, kErrorBit, "", true);
}
if (storage_16_bit_features.uniformAndStorageBuffer16BitAccess == VK_TRUE) {
char const *vsSource = R"glsl(
#version 450
#extension GL_EXT_shader_16bit_storage: enable
#extension GL_EXT_shader_explicit_arithmetic_types_float16: enable
layout(set = 0, binding = 0) uniform UBO { float16_t x; } data;
void main(){
float16_t a = data.x + data.x;
gl_Position = vec4(float(a) * 0.0);
}
)glsl";
VkShaderObj vs(m_device, vsSource, VK_SHADER_STAGE_VERTEX_BIT, this);
const auto set_info = [&](CreatePipelineHelper &helper) {
helper.shader_stages_ = {vs.GetStageCreateInfo(), helper.fs_->GetStageCreateInfo()};
helper.dsl_bindings_ = {{0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_ALL, nullptr}};
};
CreatePipelineHelper::OneshotTest(*this, set_info, kErrorBit, "", true);
}
if (storage_16_bit_features.storagePushConstant16 == VK_TRUE) {
char const *vsSource = R"glsl(
#version 450
#extension GL_EXT_shader_16bit_storage: enable
#extension GL_EXT_shader_explicit_arithmetic_types_float16: enable
layout(push_constant) uniform PushConstant { float16_t x; } data;
void main(){
float16_t a = data.x + data.x;
gl_Position = vec4(float(a) * 0.0);
}
)glsl";
VkShaderObj vs(m_device, vsSource, VK_SHADER_STAGE_VERTEX_BIT, this);
VkPushConstantRange push_constant_range = {VK_SHADER_STAGE_VERTEX_BIT, 0, 4};
VkPipelineLayoutCreateInfo pipeline_layout_info{
VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, nullptr, 0, 0, nullptr, 1, &push_constant_range};
const auto set_info = [&](CreatePipelineHelper &helper) {
helper.shader_stages_ = {vs.GetStageCreateInfo(), helper.fs_->GetStageCreateInfo()};
helper.pipeline_layout_ci_ = pipeline_layout_info;
};
CreatePipelineHelper::OneshotTest(*this, set_info, kErrorBit, "", true);
}
if (storage_16_bit_features.storageInputOutput16 == VK_TRUE) {
char const *vsSource = R"glsl(
#version 450
#extension GL_EXT_shader_16bit_storage: enable
#extension GL_EXT_shader_explicit_arithmetic_types_float16: enable
layout(location = 0) out float16_t outData;
void main(){
outData = float16_t(1);
gl_Position = vec4(0.0);
}
)glsl";
VkShaderObj vs(m_device, vsSource, VK_SHADER_STAGE_VERTEX_BIT, this);
// Need to match in/out
char const *fsSource = R"glsl(
#version 450
#extension GL_EXT_shader_16bit_storage: enable
#extension GL_EXT_shader_explicit_arithmetic_types_float16: enable
layout(location = 0) in float16_t x;
layout(location = 0) out vec4 uFragColor;
void main(){
uFragColor = vec4(0,1,0,1);
}
)glsl";
VkShaderObj fs(m_device, fsSource, VK_SHADER_STAGE_FRAGMENT_BIT, this);
const auto set_info = [&](CreatePipelineHelper &helper) {
helper.shader_stages_ = {vs.GetStageCreateInfo(), fs.GetStageCreateInfo()};
};
CreatePipelineHelper::OneshotTest(*this, set_info, kErrorBit, "", true);
}
}
// 16 bit int tests
if ((support_16_bit == true) && (features2.features.shaderInt16 == VK_TRUE)) {
if (storage_16_bit_features.storageBuffer16BitAccess == VK_TRUE) {
char const *vsSource = R"glsl(
#version 450
#extension GL_EXT_shader_16bit_storage: enable
#extension GL_EXT_shader_explicit_arithmetic_types_int16: enable
layout(set = 0, binding = 0) buffer SSBO { int16_t x; } data;
void main(){
int16_t a = data.x + data.x;
gl_Position = vec4(float(a) * 0.0);
}
)glsl";
VkShaderObj vs(m_device, vsSource, VK_SHADER_STAGE_VERTEX_BIT, this);
const auto set_info = [&](CreatePipelineHelper &helper) {
helper.shader_stages_ = {vs.GetStageCreateInfo(), helper.fs_->GetStageCreateInfo()};
helper.dsl_bindings_ = {{0, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_ALL, nullptr}};
};
CreatePipelineHelper::OneshotTest(*this, set_info, kErrorBit, "", true);
}
if (storage_16_bit_features.uniformAndStorageBuffer16BitAccess == VK_TRUE) {
char const *vsSource = R"glsl(
#version 450
#extension GL_EXT_shader_16bit_storage: enable
#extension GL_EXT_shader_explicit_arithmetic_types_int16: enable
layout(set = 0, binding = 0) uniform UBO { int16_t x; } data;
void main(){
int16_t a = data.x + data.x;
gl_Position = vec4(float(a) * 0.0);
}
)glsl";
VkShaderObj vs(m_device, vsSource, VK_SHADER_STAGE_VERTEX_BIT, this);
const auto set_info = [&](CreatePipelineHelper &helper) {
helper.shader_stages_ = {vs.GetStageCreateInfo(), helper.fs_->GetStageCreateInfo()};
helper.dsl_bindings_ = {{0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_ALL, nullptr}};
};
CreatePipelineHelper::OneshotTest(*this, set_info, kErrorBit, "", true);
}
if (storage_16_bit_features.storagePushConstant16 == VK_TRUE) {
char const *vsSource = R"glsl(
#version 450
#extension GL_EXT_shader_16bit_storage: enable
#extension GL_EXT_shader_explicit_arithmetic_types_int16: enable
layout(push_constant) uniform PushConstant { int16_t x; } data;
void main(){
int16_t a = data.x + data.x;
gl_Position = vec4(float(a) * 0.0);
}
)glsl";
VkShaderObj vs(m_device, vsSource, VK_SHADER_STAGE_VERTEX_BIT, this);
VkPushConstantRange push_constant_range = {VK_SHADER_STAGE_VERTEX_BIT, 0, 4};
VkPipelineLayoutCreateInfo pipeline_layout_info{
VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, nullptr, 0, 0, nullptr, 1, &push_constant_range};
const auto set_info = [&](CreatePipelineHelper &helper) {
helper.shader_stages_ = {vs.GetStageCreateInfo(), helper.fs_->GetStageCreateInfo()};
helper.pipeline_layout_ci_ = pipeline_layout_info;
};
CreatePipelineHelper::OneshotTest(*this, set_info, kErrorBit, "", true);
}
if (storage_16_bit_features.storageInputOutput16 == VK_TRUE) {
char const *vsSource = R"glsl(
#version 450
#extension GL_EXT_shader_16bit_storage: enable
#extension GL_EXT_shader_explicit_arithmetic_types_int16: enable
layout(location = 0) out int16_t outData;
void main(){
outData = int16_t(1);
gl_Position = vec4(0.0);
}
)glsl";
VkShaderObj vs(m_device, vsSource, VK_SHADER_STAGE_VERTEX_BIT, this);
// Need to match in/out
char const *fsSource = R"glsl(
#version 450
#extension GL_EXT_shader_16bit_storage: enable
#extension GL_EXT_shader_explicit_arithmetic_types_int16: enable
layout(location = 0) flat in int16_t x;
layout(location = 0) out vec4 uFragColor;
void main(){
uFragColor = vec4(0,1,0,1);
}
)glsl";
VkShaderObj fs(m_device, fsSource, VK_SHADER_STAGE_FRAGMENT_BIT, this);
const auto set_info = [&](CreatePipelineHelper &helper) {
helper.shader_stages_ = {vs.GetStageCreateInfo(), fs.GetStageCreateInfo()};
};
CreatePipelineHelper::OneshotTest(*this, set_info, kErrorBit, "", true);
}
}
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, ReadShaderClock) {
TEST_DESCRIPTION("Test VK_KHR_shader_clock");
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
} else {
printf("%s Extension %s is not supported.\n", kSkipPrefix, VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
if (DeviceExtensionSupported(gpu(), nullptr, VK_KHR_SHADER_CLOCK_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_KHR_SHADER_CLOCK_EXTENSION_NAME);
} else {
printf("%s Extension %s is not supported.\n", kSkipPrefix, VK_KHR_SHADER_CLOCK_EXTENSION_NAME);
return;
}
PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR =
(PFN_vkGetPhysicalDeviceFeatures2KHR)vk::GetInstanceProcAddr(instance(), "vkGetPhysicalDeviceFeatures2KHR");
ASSERT_TRUE(vkGetPhysicalDeviceFeatures2KHR != nullptr);
auto shader_clock_features = LvlInitStruct<VkPhysicalDeviceShaderClockFeaturesKHR>();
auto features2 = LvlInitStruct<VkPhysicalDeviceFeatures2KHR>(&shader_clock_features);
vkGetPhysicalDeviceFeatures2KHR(gpu(), &features2);
if ((shader_clock_features.shaderDeviceClock == VK_FALSE) && (shader_clock_features.shaderSubgroupClock == VK_FALSE)) {
// shaderSubgroupClock should be supported, but extra check
printf("%s no support for shaderDeviceClock or shaderSubgroupClock.\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
// Device scope using GL_EXT_shader_realtime_clock
char const *vsSourceDevice = R"glsl(
#version 450
#extension GL_EXT_shader_realtime_clock: enable
void main(){
uvec2 a = clockRealtime2x32EXT();
gl_Position = vec4(float(a.x) * 0.0);
}
)glsl";
VkShaderObj vs_device(m_device, vsSourceDevice, VK_SHADER_STAGE_VERTEX_BIT, this);
// Subgroup scope using ARB_shader_clock
char const *vsSourceScope = R"glsl(
#version 450
#extension GL_ARB_shader_clock: enable
void main(){
uvec2 a = clock2x32ARB();
gl_Position = vec4(float(a.x) * 0.0);
}
)glsl";
VkShaderObj vs_subgroup(m_device, vsSourceScope, VK_SHADER_STAGE_VERTEX_BIT, this);
if (shader_clock_features.shaderDeviceClock == VK_TRUE) {
const auto set_info = [&](CreatePipelineHelper &helper) {
helper.shader_stages_ = {vs_device.GetStageCreateInfo(), helper.fs_->GetStageCreateInfo()};
};
CreatePipelineHelper::OneshotTest(*this, set_info, kErrorBit, "", true);
}
if (shader_clock_features.shaderSubgroupClock == VK_TRUE) {
const auto set_info = [&](CreatePipelineHelper &helper) {
helper.shader_stages_ = {vs_subgroup.GetStageCreateInfo(), helper.fs_->GetStageCreateInfo()};
};
CreatePipelineHelper::OneshotTest(*this, set_info, kErrorBit, "", true);
}
}
// Android Hardware Buffer Positive Tests
#include "android_ndk_types.h"
#ifdef AHB_VALIDATION_SUPPORT
TEST_F(VkPositiveLayerTest, AndroidHardwareBufferMemoryRequirements) {
TEST_DESCRIPTION("Verify AndroidHardwareBuffer doesn't conflict with memory requirements.");
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
if (IsPlatform(kGalaxyS10)) {
printf("%s This test should not run on Galaxy S10\n", kSkipPrefix);
return;
}
if ((DeviceExtensionSupported(gpu(), nullptr, VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME)) &&
// Also skip on devices that advertise AHB, but not the pre-requisite foreign_queue extension
(DeviceExtensionSupported(gpu(), nullptr, VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME))) {
m_device_extension_names.push_back(VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_MAINTENANCE_1_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME);
m_device_extension_names.push_back(VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME);
} else {
printf("%s %s extension not supported, skipping tests\n", kSkipPrefix,
VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState());
PFN_vkGetAndroidHardwareBufferPropertiesANDROID pfn_GetAHBProps =
(PFN_vkGetAndroidHardwareBufferPropertiesANDROID)vk::GetDeviceProcAddr(m_device->device(),
"vkGetAndroidHardwareBufferPropertiesANDROID");
ASSERT_TRUE(pfn_GetAHBProps != nullptr);
// Allocate an AHardwareBuffer
AHardwareBuffer *ahb;
AHardwareBuffer_Desc ahb_desc = {};
ahb_desc.format = AHARDWAREBUFFER_FORMAT_BLOB;
ahb_desc.usage = AHARDWAREBUFFER_USAGE_GPU_DATA_BUFFER;
ahb_desc.width = 64;
ahb_desc.height = 1;
ahb_desc.layers = 1;
ahb_desc.stride = 1;
AHardwareBuffer_allocate(&ahb_desc, &ahb);
VkExternalMemoryBufferCreateInfo ext_buf_info = LvlInitStruct<VkExternalMemoryBufferCreateInfo>();
ext_buf_info.handleTypes = VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID;
VkBufferCreateInfo buffer_create_info = LvlInitStruct<VkBufferCreateInfo>(&ext_buf_info);
buffer_create_info.size = 512;
buffer_create_info.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
VkBuffer buffer = VK_NULL_HANDLE;
vk::CreateBuffer(m_device->device(), &buffer_create_info, nullptr, &buffer);
VkImportAndroidHardwareBufferInfoANDROID import_ahb_Info = LvlInitStruct<VkImportAndroidHardwareBufferInfoANDROID>();
import_ahb_Info.buffer = ahb;
VkAndroidHardwareBufferPropertiesANDROID ahb_props = LvlInitStruct<VkAndroidHardwareBufferPropertiesANDROID>();
pfn_GetAHBProps(m_device->device(), ahb, &ahb_props);
VkMemoryAllocateInfo memory_allocate_info = LvlInitStruct<VkMemoryAllocateInfo>(&import_ahb_Info);
memory_allocate_info.allocationSize = ahb_props.allocationSize;
// Set index to match one of the bits in ahb_props that is also only Device Local
// Android implemenetations "should have" a DEVICE_LOCAL only index designed for AHB
VkMemoryPropertyFlagBits property = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
VkPhysicalDeviceMemoryProperties gpu_memory_props;
vk::GetPhysicalDeviceMemoryProperties(gpu(), &gpu_memory_props);
memory_allocate_info.memoryTypeIndex = gpu_memory_props.memoryTypeCount + 1;
for (uint32_t i = 0; i < gpu_memory_props.memoryTypeCount; i++) {
if ((ahb_props.memoryTypeBits & (1 << i)) && ((gpu_memory_props.memoryTypes[i].propertyFlags & property) == property)) {
memory_allocate_info.memoryTypeIndex = i;
break;
}
}
if (memory_allocate_info.memoryTypeIndex >= gpu_memory_props.memoryTypeCount) {
printf("%s No invalid memory type index could be found; skipped.\n", kSkipPrefix);
AHardwareBuffer_release(ahb);
vk::DestroyBuffer(m_device->device(), buffer, nullptr);
return;
}
// Should be able to bind memory with no error
VkDeviceMemory memory;
m_errorMonitor->ExpectSuccess();
vk::AllocateMemory(m_device->device(), &memory_allocate_info, nullptr, &memory);
vk::BindBufferMemory(m_device->device(), buffer, memory, 0);
m_errorMonitor->VerifyNotFound();
vk::DestroyBuffer(m_device->device(), buffer, nullptr);
vk::FreeMemory(m_device->device(), memory, nullptr);
}
TEST_F(VkPositiveLayerTest, AndroidHardwareBufferDepthStencil) {
TEST_DESCRIPTION("Verify AndroidHardwareBuffer can import Depth/Stencil");
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
if (IsPlatform(kGalaxyS10) || IsPlatform(kShieldTV) || IsPlatform(kShieldTVb)) {
printf("%s This test should not run on Galaxy S10 or the ShieldTV\n", kSkipPrefix);
return;
}
if ((DeviceExtensionSupported(gpu(), nullptr, VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME)) &&
// Also skip on devices that advertise AHB, but not the pre-requisite foreign_queue extension
(DeviceExtensionSupported(gpu(), nullptr, VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME))) {
m_device_extension_names.push_back(VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_MAINTENANCE_1_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME);
m_device_extension_names.push_back(VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME);
} else {
printf("%s %s extension not supported, skipping tests\n", kSkipPrefix,
VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState());
PFN_vkGetAndroidHardwareBufferPropertiesANDROID pfn_GetAHBProps =
(PFN_vkGetAndroidHardwareBufferPropertiesANDROID)vk::GetDeviceProcAddr(m_device->device(),
"vkGetAndroidHardwareBufferPropertiesANDROID");
ASSERT_TRUE(pfn_GetAHBProps != nullptr);
// Allocate an AHardwareBuffer
AHardwareBuffer *ahb;
AHardwareBuffer_Desc ahb_desc = {};
ahb_desc.format = AHARDWAREBUFFER_FORMAT_D16_UNORM;
ahb_desc.usage = AHARDWAREBUFFER_USAGE_GPU_FRAMEBUFFER;
ahb_desc.width = 64;
ahb_desc.height = 1;
ahb_desc.layers = 1;
ahb_desc.stride = 1;
AHardwareBuffer_allocate(&ahb_desc, &ahb);
VkAndroidHardwareBufferFormatPropertiesANDROID ahb_fmt_props = LvlInitStruct<VkAndroidHardwareBufferFormatPropertiesANDROID>();
VkAndroidHardwareBufferPropertiesANDROID ahb_props = LvlInitStruct<VkAndroidHardwareBufferPropertiesANDROID>(&ahb_fmt_props);
pfn_GetAHBProps(m_device->device(), ahb, &ahb_props);
VkExternalMemoryImageCreateInfo ext_image_info = LvlInitStruct<VkExternalMemoryImageCreateInfo>();
ext_image_info.handleTypes = VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID;
// Create a Depth/Stencil image
VkImage dsImage;
VkImageCreateInfo image_create_info = LvlInitStruct<VkImageCreateInfo>(&ext_image_info);
image_create_info.flags = 0;
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = ahb_fmt_props.format;
image_create_info.extent = {64, 1, 1};
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_LINEAR;
image_create_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
image_create_info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
image_create_info.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
vk::CreateImage(m_device->device(), &image_create_info, nullptr, &dsImage);
VkMemoryDedicatedAllocateInfo memory_dedicated_info = LvlInitStruct<VkMemoryDedicatedAllocateInfo>();
memory_dedicated_info.image = dsImage;
memory_dedicated_info.buffer = VK_NULL_HANDLE;
VkImportAndroidHardwareBufferInfoANDROID import_ahb_Info =
LvlInitStruct<VkImportAndroidHardwareBufferInfoANDROID>(&memory_dedicated_info);
import_ahb_Info.buffer = ahb;
VkMemoryAllocateInfo memory_allocate_info = LvlInitStruct<VkMemoryAllocateInfo>(&import_ahb_Info);
memory_allocate_info.allocationSize = ahb_props.allocationSize;
// Set index to match one of the bits in ahb_props that is also only Device Local
// Android implemenetations "should have" a DEVICE_LOCAL only index designed for AHB
VkMemoryPropertyFlagBits property = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
VkPhysicalDeviceMemoryProperties gpu_memory_props;
vk::GetPhysicalDeviceMemoryProperties(gpu(), &gpu_memory_props);
memory_allocate_info.memoryTypeIndex = gpu_memory_props.memoryTypeCount + 1;
for (uint32_t i = 0; i < gpu_memory_props.memoryTypeCount; i++) {
if ((ahb_props.memoryTypeBits & (1 << i)) && ((gpu_memory_props.memoryTypes[i].propertyFlags & property) == property)) {
memory_allocate_info.memoryTypeIndex = i;
break;
}
}
if (memory_allocate_info.memoryTypeIndex >= gpu_memory_props.memoryTypeCount) {
printf("%s No invalid memory type index could be found; skipped.\n", kSkipPrefix);
AHardwareBuffer_release(ahb);
vk::DestroyImage(m_device->device(), dsImage, nullptr);
return;
}
VkDeviceMemory memory;
m_errorMonitor->ExpectSuccess();
vk::AllocateMemory(m_device->device(), &memory_allocate_info, nullptr, &memory);
vk::BindImageMemory(m_device->device(), dsImage, memory, 0);
m_errorMonitor->VerifyNotFound();
vk::DestroyImage(m_device->device(), dsImage, nullptr);
vk::FreeMemory(m_device->device(), memory, nullptr);
}
TEST_F(VkPositiveLayerTest, AndroidHardwareBufferBindBufferMemory) {
TEST_DESCRIPTION("Verify AndroidHardwareBuffer Buffers can be queried for mem requirements while unbound.");
SetTargetApiVersion(VK_API_VERSION_1_1);
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
if (IsPlatform(kGalaxyS10)) {
printf("%s This test should not run on Galaxy S10\n", kSkipPrefix);
return;
}
if ((DeviceExtensionSupported(gpu(), nullptr, VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME)) &&
// Also skip on devices that advertise AHB, but not the pre-requisite foreign_queue extension
(DeviceExtensionSupported(gpu(), nullptr, VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME))) {
m_device_extension_names.push_back(VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_MAINTENANCE_1_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME);
m_device_extension_names.push_back(VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME);
} else {
printf("%s %s extension not supported, skipping tests\n", kSkipPrefix,
VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState());
PFN_vkGetAndroidHardwareBufferPropertiesANDROID pfn_GetAHBProps =
(PFN_vkGetAndroidHardwareBufferPropertiesANDROID)vk::GetDeviceProcAddr(m_device->device(),
"vkGetAndroidHardwareBufferPropertiesANDROID");
ASSERT_TRUE(pfn_GetAHBProps != nullptr);
// Allocate an AHardwareBuffer
AHardwareBuffer *ahb;
AHardwareBuffer_Desc ahb_desc = {};
ahb_desc.format = AHARDWAREBUFFER_FORMAT_BLOB;
ahb_desc.usage = AHARDWAREBUFFER_USAGE_GPU_DATA_BUFFER;
ahb_desc.width = 64;
ahb_desc.height = 1;
ahb_desc.layers = 1;
ahb_desc.stride = 1;
AHardwareBuffer_allocate(&ahb_desc, &ahb);
VkExternalMemoryBufferCreateInfo ext_buf_info = LvlInitStruct<VkExternalMemoryBufferCreateInfo>();
ext_buf_info.handleTypes = VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID;
VkBufferCreateInfo buffer_create_info = LvlInitStruct<VkBufferCreateInfo>(&ext_buf_info);
buffer_create_info.size = 8192; // greater than the 4k AHB usually are
buffer_create_info.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
VkBuffer buffer = VK_NULL_HANDLE;
vk::CreateBuffer(m_device->device(), &buffer_create_info, nullptr, &buffer);
m_errorMonitor->ExpectSuccess();
// Try to get memory requirements prior to binding memory
VkMemoryRequirements mem_reqs;
vk::GetBufferMemoryRequirements(m_device->device(), buffer, &mem_reqs);
// Test bind memory 2 extension
VkBufferMemoryRequirementsInfo2 buffer_mem_reqs2 = LvlInitStruct<VkBufferMemoryRequirementsInfo2>();
buffer_mem_reqs2.buffer = buffer;
VkMemoryRequirements2 mem_reqs2 = LvlInitStruct<VkMemoryRequirements2>();
vk::GetBufferMemoryRequirements2(m_device->device(), &buffer_mem_reqs2, &mem_reqs2);
VkImportAndroidHardwareBufferInfoANDROID import_ahb_Info = LvlInitStruct<VkImportAndroidHardwareBufferInfoANDROID>();
import_ahb_Info.buffer = ahb;
VkMemoryAllocateInfo memory_info = LvlInitStruct<VkMemoryAllocateInfo>(&import_ahb_Info);
memory_info.allocationSize = mem_reqs.size + mem_reqs.alignment; // save room for offset
bool has_memtype = m_device->phy().set_memory_type(mem_reqs.memoryTypeBits, &memory_info, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
if (!has_memtype) {
printf("%s No invalid memory type index could be found; skipped.\n", kSkipPrefix);
AHardwareBuffer_release(ahb);
vk::DestroyBuffer(m_device->device(), buffer, nullptr);
return;
}
// Some drivers don't return exact size in getBufferMemory as getAHB
m_errorMonitor->SetUnexpectedError("VUID-VkMemoryAllocateInfo-allocationSize-02383");
VkDeviceMemory memory;
vk::AllocateMemory(m_device->device(), &memory_info, NULL, &memory);
vk::BindBufferMemory(m_device->device(), buffer, memory, mem_reqs.alignment);
m_errorMonitor->VerifyNotFound();
vk::DestroyBuffer(m_device->device(), buffer, nullptr);
vk::FreeMemory(m_device->device(), memory, nullptr);
}
TEST_F(VkPositiveLayerTest, AndroidHardwareBufferExportBuffer) {
TEST_DESCRIPTION("Verify VkBuffers can export to an AHB.");
SetTargetApiVersion(VK_API_VERSION_1_1);
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
if ((DeviceExtensionSupported(gpu(), nullptr, VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME)) &&
// Also skip on devices that advertise AHB, but not the pre-requisite foreign_queue extension
(DeviceExtensionSupported(gpu(), nullptr, VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME))) {
m_device_extension_names.push_back(VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_MAINTENANCE_1_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME);
m_device_extension_names.push_back(VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME);
} else {
printf("%s %s extension not supported, skipping tests\n", kSkipPrefix,
VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState());
PFN_vkGetMemoryAndroidHardwareBufferANDROID vkGetMemoryAndroidHardwareBufferANDROID =
(PFN_vkGetMemoryAndroidHardwareBufferANDROID)vk::GetDeviceProcAddr(device(), "vkGetMemoryAndroidHardwareBufferANDROID");
ASSERT_TRUE(vkGetMemoryAndroidHardwareBufferANDROID != nullptr);
m_errorMonitor->ExpectSuccess();
// Create VkBuffer to be exported to an AHB
VkBuffer buffer = VK_NULL_HANDLE;
VkExternalMemoryBufferCreateInfo ext_buf_info = LvlInitStruct<VkExternalMemoryBufferCreateInfo>();
ext_buf_info.handleTypes = VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID;
VkBufferCreateInfo buffer_create_info = LvlInitStruct<VkBufferCreateInfo>(&ext_buf_info);
buffer_create_info.size = 4096;
buffer_create_info.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
vk::CreateBuffer(device(), &buffer_create_info, nullptr, &buffer);
VkMemoryRequirements mem_reqs;
vk::GetBufferMemoryRequirements(device(), buffer, &mem_reqs);
VkExportMemoryAllocateInfo export_memory_info = LvlInitStruct<VkExportMemoryAllocateInfo>();
export_memory_info.handleTypes = VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID;
VkMemoryAllocateInfo memory_info = LvlInitStruct<VkMemoryAllocateInfo>(&export_memory_info);
memory_info.allocationSize = mem_reqs.size;
bool has_memtype = m_device->phy().set_memory_type(mem_reqs.memoryTypeBits, &memory_info, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
if (!has_memtype) {
printf("%s No invalid memory type index could be found; skipped.\n", kSkipPrefix);
vk::DestroyBuffer(device(), buffer, nullptr);
return;
}
VkDeviceMemory memory = VK_NULL_HANDLE;
vk::AllocateMemory(device(), &memory_info, NULL, &memory);
vk::BindBufferMemory(device(), buffer, memory, 0);
// Export memory to AHB
AHardwareBuffer *ahb = nullptr;
VkMemoryGetAndroidHardwareBufferInfoANDROID get_ahb_info = LvlInitStruct<VkMemoryGetAndroidHardwareBufferInfoANDROID>();
get_ahb_info.memory = memory;
vkGetMemoryAndroidHardwareBufferANDROID(device(), &get_ahb_info, &ahb);
m_errorMonitor->VerifyNotFound();
// App in charge of releasing after exporting
AHardwareBuffer_release(ahb);
vk::FreeMemory(device(), memory, NULL);
vk::DestroyBuffer(device(), buffer, nullptr);
}
TEST_F(VkPositiveLayerTest, AndroidHardwareBufferExportImage) {
TEST_DESCRIPTION("Verify VkImages can export to an AHB.");
SetTargetApiVersion(VK_API_VERSION_1_1);
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
if ((DeviceExtensionSupported(gpu(), nullptr, VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME)) &&
// Also skip on devices that advertise AHB, but not the pre-requisite foreign_queue extension
(DeviceExtensionSupported(gpu(), nullptr, VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME))) {
m_device_extension_names.push_back(VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_MAINTENANCE_1_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME);
m_device_extension_names.push_back(VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME);
} else {
printf("%s %s extension not supported, skipping tests\n", kSkipPrefix,
VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState());
PFN_vkGetMemoryAndroidHardwareBufferANDROID vkGetMemoryAndroidHardwareBufferANDROID =
(PFN_vkGetMemoryAndroidHardwareBufferANDROID)vk::GetDeviceProcAddr(device(), "vkGetMemoryAndroidHardwareBufferANDROID");
ASSERT_TRUE(vkGetMemoryAndroidHardwareBufferANDROID != nullptr);
m_errorMonitor->ExpectSuccess();
// Create VkImage to be exported to an AHB
VkExternalMemoryImageCreateInfo ext_image_info = LvlInitStruct<VkExternalMemoryImageCreateInfo>();
ext_image_info.handleTypes = VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID;
VkImage image = VK_NULL_HANDLE;
VkImageCreateInfo image_create_info = LvlInitStruct<VkImageCreateInfo>(&ext_image_info);
image_create_info.flags = 0;
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = VK_FORMAT_R8G8B8A8_UNORM;
image_create_info.extent = {64, 1, 1};
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_LINEAR;
image_create_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
image_create_info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
image_create_info.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
vk::CreateImage(device(), &image_create_info, nullptr, &image);
VkMemoryDedicatedAllocateInfo memory_dedicated_info = LvlInitStruct<VkMemoryDedicatedAllocateInfo>();
memory_dedicated_info.image = image;
memory_dedicated_info.buffer = VK_NULL_HANDLE;
VkExportMemoryAllocateInfo export_memory_info = LvlInitStruct<VkExportMemoryAllocateInfo>(&memory_dedicated_info);
export_memory_info.handleTypes = VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID;
VkMemoryAllocateInfo memory_info = LvlInitStruct<VkMemoryAllocateInfo>(&export_memory_info);
// "When allocating new memory for an image that can be exported to an Android hardware buffer, the memory’s allocationSize must
// be zero":
memory_info.allocationSize = 0;
// Use any DEVICE_LOCAL memory found
bool has_memtype = m_device->phy().set_memory_type(0xFFFFFFFF, &memory_info, VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT);
if (!has_memtype) {
printf("%s No invalid memory type index could be found; skipped.\n", kSkipPrefix);
vk::DestroyImage(device(), image, nullptr);
return;
}
VkDeviceMemory memory = VK_NULL_HANDLE;
vk::AllocateMemory(device(), &memory_info, NULL, &memory);
vk::BindImageMemory(device(), image, memory, 0);
// Export memory to AHB
AHardwareBuffer *ahb = nullptr;
VkMemoryGetAndroidHardwareBufferInfoANDROID get_ahb_info = LvlInitStruct<VkMemoryGetAndroidHardwareBufferInfoANDROID>();
get_ahb_info.memory = memory;
vkGetMemoryAndroidHardwareBufferANDROID(device(), &get_ahb_info, &ahb);
m_errorMonitor->VerifyNotFound();
// App in charge of releasing after exporting
AHardwareBuffer_release(ahb);
vk::FreeMemory(device(), memory, NULL);
vk::DestroyImage(device(), image, nullptr);
}
TEST_F(VkPositiveLayerTest, AndroidHardwareBufferExternalImage) {
TEST_DESCRIPTION("Verify AndroidHardwareBuffer can import AHB with external format");
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
if (IsPlatform(kGalaxyS10)) {
printf("%s This test should not run on Galaxy S10\n", kSkipPrefix);
return;
}
if ((DeviceExtensionSupported(gpu(), nullptr, VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME)) &&
// Also skip on devices that advertise AHB, but not the pre-requisite foreign_queue extension
(DeviceExtensionSupported(gpu(), nullptr, VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME))) {
m_device_extension_names.push_back(VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_MAINTENANCE_1_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME);
m_device_extension_names.push_back(VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME);
} else {
printf("%s %s extension not supported, skipping tests\n", kSkipPrefix,
VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState());
PFN_vkGetAndroidHardwareBufferPropertiesANDROID pfn_GetAHBProps =
(PFN_vkGetAndroidHardwareBufferPropertiesANDROID)vk::GetDeviceProcAddr(m_device->device(),
"vkGetAndroidHardwareBufferPropertiesANDROID");
ASSERT_TRUE(pfn_GetAHBProps != nullptr);
// FORMAT_Y8Cb8Cr8_420 is a known/public valid AHB Format but does not have a Vulkan mapping to it
// Will use the external image feature to get access to it
AHardwareBuffer *ahb;
AHardwareBuffer_Desc ahb_desc = {};
ahb_desc.format = AHARDWAREBUFFER_FORMAT_Y8Cb8Cr8_420;
ahb_desc.usage = AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE;
ahb_desc.width = 64;
ahb_desc.height = 64;
ahb_desc.layers = 1;
ahb_desc.stride = 1;
int result = AHardwareBuffer_allocate(&ahb_desc, &ahb);
if (result != 0) {
printf("%s could not allocate AHARDWAREBUFFER_FORMAT_Y8Cb8Cr8_420, skipping tests\n", kSkipPrefix);
return;
}
VkAndroidHardwareBufferFormatPropertiesANDROID ahb_fmt_props = LvlInitStruct<VkAndroidHardwareBufferFormatPropertiesANDROID>();
VkAndroidHardwareBufferPropertiesANDROID ahb_props = LvlInitStruct<VkAndroidHardwareBufferPropertiesANDROID>(&ahb_fmt_props);
pfn_GetAHBProps(m_device->device(), ahb, &ahb_props);
// The spec says the driver must not return zero, even if a VkFormat is returned with it, some older drivers do as a driver bug
if (ahb_fmt_props.externalFormat == 0) {
printf("%s externalFormat was zero which is not valid, skipping tests\n", kSkipPrefix);
return;
}
// Create an image w/ external format
VkExternalFormatANDROID ext_format = LvlInitStruct<VkExternalFormatANDROID>();
ext_format.externalFormat = ahb_fmt_props.externalFormat;
VkExternalMemoryImageCreateInfo ext_image_info = LvlInitStruct<VkExternalMemoryImageCreateInfo>(&ext_format);
ext_image_info.handleTypes = VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID;
VkImage image = VK_NULL_HANDLE;
VkImageCreateInfo image_create_info = LvlInitStruct<VkImageCreateInfo>(&ext_image_info);
image_create_info.flags = 0;
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = VK_FORMAT_UNDEFINED;
image_create_info.extent = {64, 64, 1};
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
image_create_info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
image_create_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
vk::CreateImage(m_device->device(), &image_create_info, nullptr, &image);
if (image == VK_NULL_HANDLE) {
printf("%s could not create image with external format, skipping tests\n", kSkipPrefix);
return;
}
VkMemoryDedicatedAllocateInfo memory_dedicated_info = LvlInitStruct<VkMemoryDedicatedAllocateInfo>();
memory_dedicated_info.image = image;
memory_dedicated_info.buffer = VK_NULL_HANDLE;
VkImportAndroidHardwareBufferInfoANDROID import_ahb_Info =
LvlInitStruct<VkImportAndroidHardwareBufferInfoANDROID>(&memory_dedicated_info);
import_ahb_Info.buffer = ahb;
VkMemoryAllocateInfo memory_allocate_info = LvlInitStruct<VkMemoryAllocateInfo>(&import_ahb_Info);
memory_allocate_info.allocationSize = ahb_props.allocationSize;
// Set index to match one of the bits in ahb_props that is also only Device Local
// Android implemenetations "should have" a DEVICE_LOCAL only index designed for AHB
VkMemoryPropertyFlagBits property = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
VkPhysicalDeviceMemoryProperties gpu_memory_props;
vk::GetPhysicalDeviceMemoryProperties(gpu(), &gpu_memory_props);
memory_allocate_info.memoryTypeIndex = gpu_memory_props.memoryTypeCount + 1;
for (uint32_t i = 0; i < gpu_memory_props.memoryTypeCount; i++) {
if ((ahb_props.memoryTypeBits & (1 << i)) && ((gpu_memory_props.memoryTypes[i].propertyFlags & property) == property)) {
memory_allocate_info.memoryTypeIndex = i;
break;
}
}
if (memory_allocate_info.memoryTypeIndex >= gpu_memory_props.memoryTypeCount) {
printf("%s No invalid memory type index could be found; skipped.\n", kSkipPrefix);
AHardwareBuffer_release(ahb);
vk::DestroyImage(m_device->device(), image, nullptr);
return;
}
VkDeviceMemory memory;
m_errorMonitor->ExpectSuccess();
vk::AllocateMemory(m_device->device(), &memory_allocate_info, nullptr, &memory);
vk::BindImageMemory(m_device->device(), image, memory, 0);
m_errorMonitor->VerifyNotFound();
vk::DestroyImage(m_device->device(), image, nullptr);
vk::FreeMemory(m_device->device(), memory, nullptr);
}
TEST_F(VkPositiveLayerTest, AndroidHardwareBufferExternalCameraFormat) {
TEST_DESCRIPTION("Verify AndroidHardwareBuffer can import AHB with external format");
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
if (IsPlatform(kGalaxyS10)) {
printf("%s This test should not run on Galaxy S10\n", kSkipPrefix);
return;
}
if ((DeviceExtensionSupported(gpu(), nullptr, VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME)) &&
// Also skip on devices that advertise AHB, but not the pre-requisite foreign_queue extension
(DeviceExtensionSupported(gpu(), nullptr, VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME))) {
m_device_extension_names.push_back(VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_SAMPLER_YCBCR_CONVERSION_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_MAINTENANCE_1_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_GET_MEMORY_REQUIREMENTS_2_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME);
m_device_extension_names.push_back(VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME);
m_device_extension_names.push_back(VK_KHR_DEDICATED_ALLOCATION_EXTENSION_NAME);
} else {
printf("%s %s extension not supported, skipping tests\n", kSkipPrefix,
VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState());
PFN_vkGetAndroidHardwareBufferPropertiesANDROID pfn_GetAHBProps =
(PFN_vkGetAndroidHardwareBufferPropertiesANDROID)vk::GetDeviceProcAddr(m_device->device(),
"vkGetAndroidHardwareBufferPropertiesANDROID");
ASSERT_TRUE(pfn_GetAHBProps != nullptr);
m_errorMonitor->ExpectSuccess();
// Simulate camera usage of AHB
AHardwareBuffer *ahb;
AHardwareBuffer_Desc ahb_desc = {};
ahb_desc.format = AHARDWAREBUFFER_FORMAT_IMPLEMENTATION_DEFINED;
ahb_desc.usage =
AHARDWAREBUFFER_USAGE_CAMERA_WRITE | AHARDWAREBUFFER_USAGE_GPU_SAMPLED_IMAGE | AHARDWAREBUFFER_USAGE_CPU_WRITE_OFTEN;
ahb_desc.width = 64;
ahb_desc.height = 64;
ahb_desc.layers = 1;
ahb_desc.stride = 1;
int result = AHardwareBuffer_allocate(&ahb_desc, &ahb);
if (result != 0) {
printf("%s could not allocate AHARDWAREBUFFER_FORMAT_IMPLEMENTATION_DEFINED, skipping tests\n", kSkipPrefix);
return;
}
VkAndroidHardwareBufferFormatPropertiesANDROID ahb_fmt_props = LvlInitStruct<VkAndroidHardwareBufferFormatPropertiesANDROID>();
VkAndroidHardwareBufferPropertiesANDROID ahb_props = LvlInitStruct<VkAndroidHardwareBufferPropertiesANDROID>(&ahb_fmt_props);
pfn_GetAHBProps(m_device->device(), ahb, &ahb_props);
// The spec says the driver must not return zero, even if a VkFormat is returned with it, some older drivers do as a driver bug
if (ahb_fmt_props.externalFormat == 0) {
printf("%s externalFormat was zero which is not valid, skipping tests\n", kSkipPrefix);
return;
}
// Create an image w/ external format
VkExternalFormatANDROID ext_format = LvlInitStruct<VkExternalFormatANDROID>();
ext_format.externalFormat = ahb_fmt_props.externalFormat;
VkExternalMemoryImageCreateInfo ext_image_info = LvlInitStruct<VkExternalMemoryImageCreateInfo>(&ext_format);
ext_image_info.handleTypes = VK_EXTERNAL_MEMORY_HANDLE_TYPE_ANDROID_HARDWARE_BUFFER_BIT_ANDROID;
VkImage image = VK_NULL_HANDLE;
VkImageCreateInfo image_create_info = LvlInitStruct<VkImageCreateInfo>(&ext_image_info);
image_create_info.flags = 0;
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = VK_FORMAT_UNDEFINED;
image_create_info.extent = {64, 64, 1};
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
image_create_info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
image_create_info.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
vk::CreateImage(m_device->device(), &image_create_info, nullptr, &image);
if (image == VK_NULL_HANDLE) {
printf("%s could not create image with external format, skipping tests\n", kSkipPrefix);
return;
}
VkMemoryDedicatedAllocateInfo memory_dedicated_info = LvlInitStruct<VkMemoryDedicatedAllocateInfo>();
memory_dedicated_info.image = image;
memory_dedicated_info.buffer = VK_NULL_HANDLE;
VkImportAndroidHardwareBufferInfoANDROID import_ahb_Info =
LvlInitStruct<VkImportAndroidHardwareBufferInfoANDROID>(&memory_dedicated_info);
import_ahb_Info.buffer = ahb;
VkMemoryAllocateInfo memory_allocate_info = LvlInitStruct<VkMemoryAllocateInfo>(&import_ahb_Info);
memory_allocate_info.allocationSize = ahb_props.allocationSize;
// Set index to match one of the bits in ahb_props that is also only Device Local
// Android implemenetations "should have" a DEVICE_LOCAL only index designed for AHB
VkMemoryPropertyFlagBits property = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
VkPhysicalDeviceMemoryProperties gpu_memory_props;
vk::GetPhysicalDeviceMemoryProperties(gpu(), &gpu_memory_props);
memory_allocate_info.memoryTypeIndex = gpu_memory_props.memoryTypeCount + 1;
for (uint32_t i = 0; i < gpu_memory_props.memoryTypeCount; i++) {
if ((ahb_props.memoryTypeBits & (1 << i)) && ((gpu_memory_props.memoryTypes[i].propertyFlags & property) == property)) {
memory_allocate_info.memoryTypeIndex = i;
break;
}
}
if (memory_allocate_info.memoryTypeIndex >= gpu_memory_props.memoryTypeCount) {
printf("%s No invalid memory type index could be found; skipped.\n", kSkipPrefix);
AHardwareBuffer_release(ahb);
vk::DestroyImage(m_device->device(), image, nullptr);
return;
}
VkDeviceMemory memory;
vk::AllocateMemory(m_device->device(), &memory_allocate_info, nullptr, &memory);
vk::BindImageMemory(m_device->device(), image, memory, 0);
m_errorMonitor->VerifyNotFound();
vk::DestroyImage(m_device->device(), image, nullptr);
vk::FreeMemory(m_device->device(), memory, nullptr);
}
#endif // AHB_VALIDATION_SUPPORT
TEST_F(VkPositiveLayerTest, PhysicalStorageBuffer) {
TEST_DESCRIPTION("Reproduces Github issue #2467 and effectively #2465 as well.");
app_info_.apiVersion = VK_API_VERSION_1_2;
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
std::vector<const char *> exts = {
"VK_EXT_buffer_device_address", // TODO (ncesario) why does VK_KHR_buffer_device_address not work?
"VK_KHR_shader_non_semantic_info",
"VK_EXT_scalar_block_layout",
};
for (const auto *ext : exts) {
if (DeviceExtensionSupported(gpu(), nullptr, ext)) {
m_device_extension_names.push_back(ext);
} else {
printf("%s %s extension not supported. Skipping.", kSkipPrefix, ext);
return;
}
}
auto features12 = LvlInitStruct<VkPhysicalDeviceVulkan12Features>();
auto features2 = LvlInitStruct<VkPhysicalDeviceFeatures2>(&features12);
vk::GetPhysicalDeviceFeatures2(gpu(), &features2);
if (VK_TRUE != features12.bufferDeviceAddress) {
printf("%s VkPhysicalDeviceVulkan12Features::bufferDeviceAddress not supported and is required. Skipping.", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
const char *vertex_source = R"glsl(
#version 450
#extension GL_EXT_buffer_reference : enable
#extension GL_EXT_scalar_block_layout : enable
layout(buffer_reference, buffer_reference_align=16, scalar) readonly buffer VectorBuffer {
vec3 v;
};
layout(push_constant, scalar) uniform pc {
VectorBuffer vb;
} pcs;
void main() {
gl_Position = vec4(pcs.vb.v, 1.0);
}
)glsl";
const VkShaderObj vs(m_device, vertex_source, VK_SHADER_STAGE_VERTEX_BIT, this);
const char *fragment_source = R"glsl(
#version 450
#extension GL_EXT_buffer_reference : enable
#extension GL_EXT_scalar_block_layout : enable
layout(buffer_reference, buffer_reference_align=16, scalar) readonly buffer VectorBuffer {
vec3 v;
};
layout(push_constant, scalar) uniform pushConstants {
layout(offset=8) VectorBuffer vb;
} pcs;
layout(location=0) out vec4 o;
void main() {
o = vec4(pcs.vb.v, 1.0);
}
)glsl";
const VkShaderObj fs(m_device, fragment_source, VK_SHADER_STAGE_FRAGMENT_BIT, this);
m_errorMonitor->ExpectSuccess();
std::array<VkPushConstantRange, 2> push_ranges;
push_ranges[0].stageFlags = VK_SHADER_STAGE_VERTEX_BIT;
push_ranges[0].size = sizeof(uint64_t);
push_ranges[0].offset = 0;
push_ranges[1].stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT;
push_ranges[1].size = sizeof(uint64_t);
push_ranges[1].offset = sizeof(uint64_t);
VkPipelineLayoutCreateInfo const pipeline_layout_info{
VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO, nullptr, 0, 0, nullptr,
static_cast<uint32_t>(push_ranges.size()), push_ranges.data()};
CreatePipelineHelper pipe(*this);
pipe.InitInfo();
pipe.shader_stages_ = {vs.GetStageCreateInfo(), fs.GetStageCreateInfo()};
pipe.pipeline_layout_ci_ = pipeline_layout_info;
pipe.InitState();
m_errorMonitor->ExpectSuccess();
pipe.CreateGraphicsPipeline();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, OpCopyObjectSampler) {
TEST_DESCRIPTION("Reproduces a use case involving GL_EXT_nonuniform_qualifier and image samplers found in Doom Eternal trace");
// https://github.com/KhronosGroup/glslang/pull/1762 appears to be the change that introduces the OpCopyObject in this context.
SetTargetApiVersion(VK_API_VERSION_1_2);
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
auto features12 = LvlInitStruct<VkPhysicalDeviceVulkan12Features>();
auto features2 = LvlInitStruct<VkPhysicalDeviceFeatures2>(&features12);
vk::GetPhysicalDeviceFeatures2(gpu(), &features2);
if (VK_TRUE != features12.shaderStorageTexelBufferArrayNonUniformIndexing) {
printf(
"%s VkPhysicalDeviceVulkan12Features::shaderStorageTexelBufferArrayNonUniformIndexing not supported and is required. "
"Skipping.",
kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
const char *vertex_source = R"glsl(
#version 450
layout(location=0) out int idx;
void main() {
idx = 0;
gl_Position = vec4(0.0);
}
)glsl";
const VkShaderObj vs(m_device, vertex_source, VK_SHADER_STAGE_VERTEX_BIT, this);
const char *fragment_source = R"glsl(
#version 450
#extension GL_EXT_nonuniform_qualifier : require
layout(set=0, binding=0) uniform sampler s;
layout(set=0, binding=1) uniform texture2D t[1];
layout(location=0) in flat int idx;
layout(location=0) out vec4 frag_color;
void main() {
// Using nonuniformEXT on the index into the image array creates the OpCopyObject instead of an OpLoad, which
// was causing problems with how constants are identified.
frag_color = texture(sampler2D(t[nonuniformEXT(idx)], s), vec2(0.0));
}
)glsl";
const VkShaderObj fs(m_device, fragment_source, VK_SHADER_STAGE_FRAGMENT_BIT, this, "main", false, nullptr, SPV_ENV_VULKAN_1_2);
CreatePipelineHelper pipe(*this);
pipe.InitInfo();
pipe.dsl_bindings_ = {
{0, VK_DESCRIPTOR_TYPE_SAMPLER, 1, VK_SHADER_STAGE_FRAGMENT_BIT, nullptr},
{1, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, 1, VK_SHADER_STAGE_FRAGMENT_BIT, nullptr},
};
pipe.InitState();
pipe.shader_stages_ = {vs.GetStageCreateInfo(), fs.GetStageCreateInfo()};
m_errorMonitor->ExpectSuccess();
pipe.CreateGraphicsPipeline();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, InitSwapchain) {
TEST_DESCRIPTION("Make sure InitSwapchain is not producing anying invalid usage");
if (!AddSurfaceInstanceExtension()) {
printf("%s surface extensions not supported, skipping CmdCopySwapchainImage test\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
if (!AddSwapchainDeviceExtension()) {
printf("%s swapchain extensions not supported, skipping CmdCopySwapchainImage test\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState());
m_errorMonitor->ExpectSuccess();
if (InitSwapchain()) {
DestroySwapchain();
}
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, DestroySwapchainWithBoundImages) {
TEST_DESCRIPTION("Try destroying a swapchain which has multiple images");
if (!AddSurfaceInstanceExtension()) return;
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
// Check for VK_KHR_get_memory_requirements2 extension
if (DeviceExtensionSupported(gpu(), nullptr, VK_KHR_BIND_MEMORY_2_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_KHR_BIND_MEMORY_2_EXTENSION_NAME);
} else {
printf("%s %s not supported, skipping test\n", kSkipPrefix, VK_KHR_BIND_MEMORY_2_EXTENSION_NAME);
return;
}
if (!AddSwapchainDeviceExtension()) return;
ASSERT_NO_FATAL_FAILURE(InitState());
if (!InitSwapchain()) {
printf("%s Cannot create surface or swapchain, skipping test\n", kSkipPrefix);
return;
}
auto vkBindImageMemory2KHR =
reinterpret_cast<PFN_vkBindImageMemory2KHR>(vk::GetDeviceProcAddr(m_device->device(), "vkBindImageMemory2KHR"));
auto image_create_info = LvlInitStruct<VkImageCreateInfo>();
image_create_info.imageType = VK_IMAGE_TYPE_2D;
image_create_info.format = m_surface_formats[0].format;
image_create_info.extent.width = m_surface_capabilities.minImageExtent.width;
image_create_info.extent.height = m_surface_capabilities.minImageExtent.height;
image_create_info.extent.depth = 1;
image_create_info.mipLevels = 1;
image_create_info.arrayLayers = 1;
image_create_info.samples = VK_SAMPLE_COUNT_1_BIT;
image_create_info.tiling = VK_IMAGE_TILING_OPTIMAL;
image_create_info.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
image_create_info.usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
image_create_info.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
auto image_swapchain_create_info = LvlInitStruct<VkImageSwapchainCreateInfoKHR>();
image_swapchain_create_info.swapchain = m_swapchain;
image_create_info.pNext = &image_swapchain_create_info;
std::array<VkImage, 3> images;
m_errorMonitor->ExpectSuccess();
for (auto &image : images) {
vk::CreateImage(m_device->device(), &image_create_info, NULL, &image);
auto bind_swapchain_info = LvlInitStruct<VkBindImageMemorySwapchainInfoKHR>();
bind_swapchain_info.swapchain = m_swapchain;
bind_swapchain_info.imageIndex = 0;
auto bind_info = LvlInitStruct<VkBindImageMemoryInfo>(&bind_swapchain_info);
bind_info.image = image;
bind_info.memory = VK_NULL_HANDLE;
bind_info.memoryOffset = 0;
vkBindImageMemory2KHR(m_device->device(), 1, &bind_info);
}
DestroySwapchain();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, ProtectedSwapchainImageColorAttachment) {
TEST_DESCRIPTION(
"Make sure images from protected swapchain are considered protected image when writing to it as a color attachment");
#if !defined(ANDROID)
// Protected swapchains are guaranteed in Android Loader
// VK_KHR_surface_protected_capabilities is needed for other platforms
// Without device to test with, blocking this test from non-Android platforms for now
printf("%s VK_KHR_surface_protected_capabilities test logic not implemented, skipping test for non-Android\n", kSkipPrefix);
return;
#endif
m_errorMonitor->ExpectSuccess();
SetTargetApiVersion(VK_API_VERSION_1_1);
if (!AddSurfaceInstanceExtension()) {
printf("%s surface extensions not supported, skipping ProtectedSwapchainImageColorAttachment test\n", kSkipPrefix);
return;
}
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
} else {
printf("%s Did not find required instance extension %s; skipped.\n", kSkipPrefix,
VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
if (!AddSwapchainDeviceExtension()) {
printf("%s swapchain extensions not supported, skipping ProtectedSwapchainImageColorAttachment test\n", kSkipPrefix);
return;
}
PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR =
(PFN_vkGetPhysicalDeviceFeatures2KHR)vk::GetInstanceProcAddr(instance(), "vkGetPhysicalDeviceFeatures2KHR");
ASSERT_TRUE(vkGetPhysicalDeviceFeatures2KHR != nullptr);
auto protected_memory_features = LvlInitStruct<VkPhysicalDeviceProtectedMemoryFeatures>();
auto features2 = LvlInitStruct<VkPhysicalDeviceFeatures2KHR>(&protected_memory_features);
vkGetPhysicalDeviceFeatures2KHR(gpu(), &features2);
if (protected_memory_features.protectedMemory == VK_FALSE) {
printf("%s protectedMemory feature not supported, skipped.\n", kSkipPrefix);
return;
};
// Turns m_commandBuffer into a unprotected command buffer
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2));
if (DeviceValidationVersion() < VK_API_VERSION_1_1) {
printf("%s Tests requires Vulkan 1.1+, skipping test\n", kSkipPrefix);
return;
}
if (!InitSurface()) {
printf("%s Cannot create surface, skipping test\n", kSkipPrefix);
return;
}
InitSwapchainInfo();
// Create protected swapchain
VkBool32 supported;
vk::GetPhysicalDeviceSurfaceSupportKHR(gpu(), m_device->graphics_queue_node_index_, m_surface, &supported);
if (!supported) {
printf("%s Graphics queue does not support present, skipping test\n", kSkipPrefix);
return;
}
auto surface = m_surface;
VkImageUsageFlags imageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
VkSurfaceTransformFlagBitsKHR preTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
VkSwapchainCreateInfoKHR swapchain_create_info = {};
swapchain_create_info.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
swapchain_create_info.pNext = 0;
swapchain_create_info.flags = VK_SWAPCHAIN_CREATE_PROTECTED_BIT_KHR;
swapchain_create_info.surface = surface;
swapchain_create_info.minImageCount = m_surface_capabilities.minImageCount;
swapchain_create_info.imageFormat = m_surface_formats[0].format;
swapchain_create_info.imageColorSpace = m_surface_formats[0].colorSpace;
swapchain_create_info.imageExtent = {m_surface_capabilities.minImageExtent.width, m_surface_capabilities.minImageExtent.height};
swapchain_create_info.imageArrayLayers = 1;
swapchain_create_info.imageUsage = imageUsage;
swapchain_create_info.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
swapchain_create_info.preTransform = preTransform;
swapchain_create_info.compositeAlpha = m_surface_composite_alpha;
swapchain_create_info.presentMode = m_surface_non_shared_present_mode;
swapchain_create_info.clipped = VK_FALSE;
swapchain_create_info.oldSwapchain = 0;
swapchain_create_info.queueFamilyIndexCount = 4094967295; // This SHOULD get ignored
uint32_t bogus_int = 99;
swapchain_create_info.pQueueFamilyIndices = &bogus_int;
ASSERT_VK_SUCCESS(vk::CreateSwapchainKHR(device(), &swapchain_create_info, nullptr, &m_swapchain));
// Get VkImage from swapchain which should be protected
PFN_vkGetSwapchainImagesKHR vkGetSwapchainImagesKHR =
(PFN_vkGetSwapchainImagesKHR)vk::GetDeviceProcAddr(m_device->handle(), "vkGetSwapchainImagesKHR");
ASSERT_TRUE(vkGetSwapchainImagesKHR != nullptr);
uint32_t image_count;
std::vector<VkImage> swapchain_images;
vkGetSwapchainImagesKHR(device(), m_swapchain, &image_count, nullptr);
swapchain_images.resize(image_count, VK_NULL_HANDLE);
vkGetSwapchainImagesKHR(device(), m_swapchain, &image_count, swapchain_images.data());
VkImage protected_image = swapchain_images.at(0); // only need 1 image to test
// Create a protected image view
VkImageView image_view;
VkImageViewCreateInfo image_view_create_info = {
VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
nullptr,
0,
protected_image,
VK_IMAGE_VIEW_TYPE_2D,
swapchain_create_info.imageFormat,
{VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY,
VK_COMPONENT_SWIZZLE_IDENTITY},
{VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1},
};
ASSERT_VK_SUCCESS(vk::CreateImageView(device(), &image_view_create_info, nullptr, &image_view));
// A renderpass and framebuffer that contains a protected color image view
VkAttachmentDescription attachments[1] = {{0, swapchain_create_info.imageFormat, VK_SAMPLE_COUNT_1_BIT,
VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_IMAGE_LAYOUT_UNDEFINED, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL}};
VkAttachmentReference references[1] = {{0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL}};
VkSubpassDescription subpass = {0, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, nullptr, 1, references, nullptr, nullptr, 0, nullptr};
VkSubpassDependency dependency = {0,
0,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT,
VK_ACCESS_SHADER_WRITE_BIT,
VK_ACCESS_SHADER_WRITE_BIT,
VK_DEPENDENCY_BY_REGION_BIT};
// Use framework render pass and framebuffer so pipeline helper uses it
m_renderPass_info = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO, nullptr, 0, 1, attachments, 1, &subpass, 1, &dependency};
ASSERT_VK_SUCCESS(vk::CreateRenderPass(device(), &m_renderPass_info, nullptr, &m_renderPass));
m_framebuffer_info = {VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
nullptr,
0,
m_renderPass,
1,
&image_view,
swapchain_create_info.imageExtent.width,
swapchain_create_info.imageExtent.height,
1};
ASSERT_VK_SUCCESS(vk::CreateFramebuffer(device(), &m_framebuffer_info, nullptr, &m_framebuffer));
// basic pipeline to allow for a valid vkCmdDraw()
VkShaderObj vs(m_device, bindStateVertShaderText, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj fs(m_device, bindStateFragShaderText, VK_SHADER_STAGE_FRAGMENT_BIT, this);
CreatePipelineHelper pipe(*this);
pipe.InitInfo();
pipe.shader_stages_ = {vs.GetStageCreateInfo(), fs.GetStageCreateInfo()};
pipe.InitState();
pipe.CreateGraphicsPipeline();
// Create a protected command buffer/pool to use
VkCommandPoolObj protectedCommandPool(m_device, m_device->graphics_queue_node_index_, VK_COMMAND_POOL_CREATE_PROTECTED_BIT);
VkCommandBufferObj protectedCommandBuffer(m_device, &protectedCommandPool);
protectedCommandBuffer.begin();
VkRect2D render_area = {{0, 0}, swapchain_create_info.imageExtent};
VkRenderPassBeginInfo render_pass_begin = {
VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO, nullptr, m_renderPass, m_framebuffer, render_area, 0, nullptr};
vk::CmdBeginRenderPass(protectedCommandBuffer.handle(), &render_pass_begin, VK_SUBPASS_CONTENTS_INLINE);
vk::CmdBindPipeline(protectedCommandBuffer.handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.pipeline_);
// This should be valid since the framebuffer color attachment is a protected swapchain image
vk::CmdDraw(protectedCommandBuffer.handle(), 3, 1, 0, 0);
vk::CmdEndRenderPass(protectedCommandBuffer.handle());
protectedCommandBuffer.end();
DestroySwapchain();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, ImageDrmFormatModifier) {
// See https://github.com/KhronosGroup/Vulkan-ValidationLayers/pull/2610
TEST_DESCRIPTION("Create image and imageView using VK_EXT_image_drm_format_modifier");
SetTargetApiVersion(VK_API_VERSION_1_1); // for extension dependencies
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
if (IsPlatform(kMockICD)) {
printf("%s Test not supported by MockICD, skipping tests\n", kSkipPrefix);
return;
}
if (DeviceValidationVersion() < VK_API_VERSION_1_1) {
printf("%s Vulkan 1.1 not supported but required. Skipping\n", kSkipPrefix);
return;
}
if (!DeviceExtensionSupported(VK_EXT_IMAGE_DRM_FORMAT_MODIFIER_EXTENSION_NAME)) {
printf("%s VK_EXT_image_drm_format_modifier is not supported but required. Skipping\n", kSkipPrefix);
return;
}
m_device_extension_names.push_back(VK_EXT_IMAGE_DRM_FORMAT_MODIFIER_EXTENSION_NAME);
ASSERT_NO_FATAL_FAILURE(InitState());
// we just hope that one of these formats supports modifiers
// for more detailed checking, we could also check multi-planar formats.
auto format_list = {
VK_FORMAT_B8G8R8A8_UNORM,
VK_FORMAT_B8G8R8A8_SRGB,
VK_FORMAT_R8G8B8A8_UNORM,
VK_FORMAT_R8G8B8A8_SRGB,
};
for (auto format : format_list) {
std::vector<uint64_t> mods;
// get general features and modifiers
VkDrmFormatModifierPropertiesListEXT modp = {};
modp.sType = VK_STRUCTURE_TYPE_DRM_FORMAT_MODIFIER_PROPERTIES_LIST_EXT;
auto fmtp = LvlInitStruct<VkFormatProperties2>(&modp);
vk::GetPhysicalDeviceFormatProperties2(gpu(), format, &fmtp);
if (modp.drmFormatModifierCount > 0) {
// the first call to vkGetPhysicalDeviceFormatProperties2 did only
// retrieve the number of modifiers, we now have to retrieve
// the modifiers
std::vector<VkDrmFormatModifierPropertiesEXT> mod_props(modp.drmFormatModifierCount);
modp.pDrmFormatModifierProperties = mod_props.data();
vk::GetPhysicalDeviceFormatProperties2(gpu(), format, &fmtp);
for (auto i = 0u; i < modp.drmFormatModifierCount; ++i) {
auto &mod = modp.pDrmFormatModifierProperties[i];
auto features = VK_FORMAT_FEATURE_TRANSFER_DST_BIT | VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT;
if ((mod.drmFormatModifierTilingFeatures & features) != features) {
continue;
}
mods.push_back(mod.drmFormatModifier);
}
}
if (mods.empty()) {
continue;
}
// create image
auto ci = LvlInitStruct<VkImageCreateInfo>();
ci.flags = 0;
ci.imageType = VK_IMAGE_TYPE_2D;
ci.format = format;
ci.extent = {128, 128, 1};
ci.mipLevels = 1;
ci.arrayLayers = 1;
ci.samples = VK_SAMPLE_COUNT_1_BIT;
ci.tiling = VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT;
ci.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
ci.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
ci.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
VkImageDrmFormatModifierListCreateInfoEXT mod_list = {};
mod_list.sType = VK_STRUCTURE_TYPE_IMAGE_DRM_FORMAT_MODIFIER_LIST_CREATE_INFO_EXT;
mod_list.pDrmFormatModifiers = mods.data();
mod_list.drmFormatModifierCount = mods.size();
ci.pNext = &mod_list;
VkImage image;
m_errorMonitor->ExpectSuccess();
VkResult err = vk::CreateImage(device(), &ci, nullptr, &image);
ASSERT_VK_SUCCESS(err);
m_errorMonitor->VerifyNotFound();
// bind memory
VkPhysicalDeviceMemoryProperties phys_mem_props;
vk::GetPhysicalDeviceMemoryProperties(gpu(), &phys_mem_props);
VkMemoryRequirements mem_reqs;
vk::GetImageMemoryRequirements(device(), image, &mem_reqs);
VkDeviceMemory mem_obj = VK_NULL_HANDLE;
VkMemoryPropertyFlagBits mem_props = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
for (uint32_t type = 0; type < phys_mem_props.memoryTypeCount; type++) {
if ((mem_reqs.memoryTypeBits & (1 << type)) &&
((phys_mem_props.memoryTypes[type].propertyFlags & mem_props) == mem_props)) {
VkMemoryAllocateInfo alloc_info = {};
alloc_info.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
alloc_info.allocationSize = mem_reqs.size;
alloc_info.memoryTypeIndex = type;
ASSERT_VK_SUCCESS(vk::AllocateMemory(device(), &alloc_info, nullptr, &mem_obj));
break;
}
}
ASSERT_NE((VkDeviceMemory)VK_NULL_HANDLE, mem_obj);
ASSERT_VK_SUCCESS(vk::BindImageMemory(device(), image, mem_obj, 0));
// create image view
VkImageViewCreateInfo ivci = {
VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
nullptr,
0,
image,
VK_IMAGE_VIEW_TYPE_2D,
format,
{VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY, VK_COMPONENT_SWIZZLE_IDENTITY,
VK_COMPONENT_SWIZZLE_IDENTITY},
{VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1},
};
CreateImageViewTest(*this, &ivci);
// for more detailed checking, we could export the image to dmabuf
// and then import it again (using VkImageDrmFormatModifierExplicitCreateInfoEXT)
vk::FreeMemory(device(), mem_obj, nullptr);
vk::DestroyImage(device(), image, nullptr);
}
}
TEST_F(VkPositiveLayerTest, AllowedDuplicateStype) {
TEST_DESCRIPTION("Pass duplicate structs to whose vk.xml definition contains allowduplicate=true");
ASSERT_NO_FATAL_FAILURE(InitFramework());
VkInstance instance;
VkInstanceCreateInfo ici = {};
ici.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
ici.enabledLayerCount = instance_layers_.size();
ici.ppEnabledLayerNames = instance_layers_.data();
auto dbgUtils0 = LvlInitStruct<VkDebugUtilsMessengerCreateInfoEXT>();
auto dbgUtils1 = LvlInitStruct<VkDebugUtilsMessengerCreateInfoEXT>(&dbgUtils0);
ici.pNext = &dbgUtils1;
m_errorMonitor->ExpectSuccess();
ASSERT_VK_SUCCESS(vk::CreateInstance(&ici, nullptr, &instance));
m_errorMonitor->VerifyNotFound();
ASSERT_NO_FATAL_FAILURE(vk::DestroyInstance(instance, nullptr));
}
TEST_F(VkPositiveLayerTest, MeshShaderOnly) {
TEST_DESCRIPTION("Test using a mesh shader without a vertex shader.");
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
} else {
printf("%s Did not find required instance extension %s; skipped.\n", kSkipPrefix,
VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework());
std::array<const char *, 2> required_device_extensions = {
{VK_NV_MESH_SHADER_EXTENSION_NAME, VK_EXT_VERTEX_ATTRIBUTE_DIVISOR_EXTENSION_NAME}};
for (auto device_extension : required_device_extensions) {
if (DeviceExtensionSupported(gpu(), nullptr, device_extension)) {
m_device_extension_names.push_back(device_extension);
} else {
printf("%s %s Extension not supported, skipping tests\n", kSkipPrefix, device_extension);
return;
}
}
if (IsPlatform(kMockICD) || DeviceSimulation()) {
printf("%sNot suppored by MockICD, skipping tests\n", kSkipPrefix);
return;
}
PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR =
(PFN_vkGetPhysicalDeviceFeatures2KHR)vk::GetInstanceProcAddr(instance(), "vkGetPhysicalDeviceFeatures2KHR");
ASSERT_TRUE(vkGetPhysicalDeviceFeatures2KHR != nullptr);
// Create a device that enables mesh_shader
auto mesh_shader_features = LvlInitStruct<VkPhysicalDeviceMeshShaderFeaturesNV>();
auto features2 = LvlInitStruct<VkPhysicalDeviceFeatures2KHR>(&mesh_shader_features);
vkGetPhysicalDeviceFeatures2KHR(gpu(), &features2);
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2));
if (mesh_shader_features.meshShader != VK_TRUE) {
printf("%sMesh shader feature not supported\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
static const char meshShaderText[] = R"glsl(
#version 450
#extension GL_NV_mesh_shader : require
layout(local_size_x = 1) in;
layout(max_vertices = 3) out;
layout(max_primitives = 1) out;
layout(triangles) out;
void main() {
gl_MeshVerticesNV[0].gl_Position = vec4(-1.0, -1.0, 0, 1);
gl_MeshVerticesNV[1].gl_Position = vec4( 1.0, -1.0, 0, 1);
gl_MeshVerticesNV[2].gl_Position = vec4( 0.0, 1.0, 0, 1);
gl_PrimitiveIndicesNV[0] = 0;
gl_PrimitiveIndicesNV[1] = 1;
gl_PrimitiveIndicesNV[2] = 2;
gl_PrimitiveCountNV = 1;
}
)glsl";
VkShaderObj ms(m_device, meshShaderText, VK_SHADER_STAGE_MESH_BIT_NV, this);
VkShaderObj fs(m_device, bindStateFragShaderText, VK_SHADER_STAGE_FRAGMENT_BIT, this);
CreatePipelineHelper helper(*this);
helper.InitInfo();
helper.shader_stages_ = {ms.GetStageCreateInfo(), fs.GetStageCreateInfo()};
// Ensure pVertexInputState and pInputAssembly state are null, as these should be ignored.
helper.gp_ci_.pVertexInputState = nullptr;
helper.gp_ci_.pInputAssemblyState = nullptr;
helper.InitState();
m_errorMonitor->ExpectSuccess();
helper.CreateGraphicsPipeline();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, CopyImageSubresource) {
ASSERT_NO_FATAL_FAILURE(InitFramework());
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, nullptr, VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT));
VkImageUsageFlags usage =
VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
VkFormat format = VK_FORMAT_R8G8B8A8_UNORM;
VkImageObj image(m_device);
auto image_ci = VkImageObj::ImageCreateInfo2D(128, 128, 2, 5, format, usage, VK_IMAGE_TILING_OPTIMAL);
image.InitNoLayout(image_ci);
ASSERT_TRUE(image.initialized());
m_errorMonitor->ExpectSuccess();
VkImageSubresourceLayers src_layer{VK_IMAGE_ASPECT_COLOR_BIT, 0, 0, 1};
VkImageSubresourceLayers dst_layer{VK_IMAGE_ASPECT_COLOR_BIT, 1, 3, 1};
VkOffset3D zero_offset{0, 0, 0};
VkExtent3D full_extent{128 / 2, 128 / 2, 1}; // <-- image type is 2D
VkImageCopy region = {src_layer, zero_offset, dst_layer, zero_offset, full_extent};
auto init_layout = VK_IMAGE_LAYOUT_UNDEFINED;
auto src_layout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
auto dst_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
auto final_layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL;
m_commandBuffer->begin();
auto cb = m_commandBuffer->handle();
VkImageSubresourceRange src_range{VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
VkImageMemoryBarrier image_barriers[2];
image_barriers[0] = LvlInitStruct<VkImageMemoryBarrier>();
image_barriers[0].srcAccessMask = 0;
image_barriers[0].dstAccessMask = 0;
image_barriers[0].image = image.handle();
image_barriers[0].subresourceRange = src_range;
image_barriers[0].oldLayout = init_layout;
image_barriers[0].newLayout = dst_layout;
vk::CmdPipelineBarrier(cb, VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, 1,
image_barriers);
VkClearColorValue clear_color{};
vk::CmdClearColorImage(cb, image.handle(), dst_layout, &clear_color, 1, &src_range);
m_commandBuffer->end();
auto submit_info = LvlInitStruct<VkSubmitInfo>();
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &m_commandBuffer->handle();
vk::QueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE);
vk::QueueWaitIdle(m_device->m_queue);
m_commandBuffer->begin();
image_barriers[0].oldLayout = dst_layout;
image_barriers[0].newLayout = src_layout;
VkImageSubresourceRange dst_range{VK_IMAGE_ASPECT_COLOR_BIT, 1, 1, 3, 1};
image_barriers[1] = LvlInitStruct<VkImageMemoryBarrier>();
image_barriers[1].srcAccessMask = 0;
image_barriers[1].dstAccessMask = 0;
image_barriers[1].image = image.handle();
image_barriers[1].subresourceRange = dst_range;
image_barriers[1].oldLayout = init_layout;
image_barriers[1].newLayout = dst_layout;
vk::CmdPipelineBarrier(cb, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 0, nullptr, 0, nullptr, 2,
image_barriers);
vk::CmdCopyImage(cb, image.handle(), src_layout, image.handle(), dst_layout, 1, &region);
image_barriers[0].oldLayout = src_layout;
image_barriers[0].newLayout = final_layout;
image_barriers[1].oldLayout = dst_layout;
image_barriers[1].newLayout = final_layout;
vk::CmdPipelineBarrier(cb, VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, 0, 0, nullptr, 0, nullptr, 2,
image_barriers);
m_commandBuffer->end();
vk::QueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE);
vk::QueueWaitIdle(m_device->m_queue);
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, ImageDescriptorSubresourceLayout) {
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
bool maint2_support = DeviceExtensionSupported(gpu(), nullptr, VK_KHR_MAINTENANCE_2_EXTENSION_NAME);
if (maint2_support) {
m_device_extension_names.push_back(VK_KHR_MAINTENANCE_2_EXTENSION_NAME);
} else {
printf("%s Relaxed layout matching subtest requires API >= 1.1 or KHR_MAINTENANCE2 extension, unavailable - skipped.\n",
kSkipPrefix);
}
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, nullptr, VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT));
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
OneOffDescriptorSet descriptor_set(m_device,
{
{0, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_ALL, nullptr},
});
VkDescriptorSet descriptorSet = descriptor_set.set_;
const VkPipelineLayoutObj pipeline_layout(m_device, {&descriptor_set.layout_});
// Create image, view, and sampler
const VkFormat format = VK_FORMAT_B8G8R8A8_UNORM;
VkImageObj image(m_device);
auto usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
auto image_ci = VkImageObj::ImageCreateInfo2D(128, 128, 1, 5, format, usage, VK_IMAGE_TILING_OPTIMAL);
image.Init(image_ci);
ASSERT_TRUE(image.initialized());
VkImageSubresourceRange view_range{VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 3, 1};
VkImageSubresourceRange first_range{VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
VkImageSubresourceRange full_range{VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 5};
vk_testing::ImageView view;
auto image_view_create_info = lvl_init_struct<VkImageViewCreateInfo>();
image_view_create_info.image = image.handle();
image_view_create_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
image_view_create_info.format = format;
image_view_create_info.subresourceRange = view_range;
view.init(*m_device, image_view_create_info);
ASSERT_TRUE(view.initialized());
// Create Sampler
vk_testing::Sampler sampler;
VkSamplerCreateInfo sampler_ci = SafeSaneSamplerCreateInfo();
sampler.init(*m_device, sampler_ci);
ASSERT_TRUE(sampler.initialized());
// Setup structure for descriptor update with sampler, for update in do_test below
VkDescriptorImageInfo img_info = {};
img_info.sampler = sampler.handle();
VkWriteDescriptorSet descriptor_write;
memset(&descriptor_write, 0, sizeof(descriptor_write));
descriptor_write.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptor_write.dstSet = descriptorSet;
descriptor_write.dstBinding = 0;
descriptor_write.descriptorCount = 1;
descriptor_write.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
descriptor_write.pImageInfo = &img_info;
// Create PSO to be used for draw-time errors below
VkShaderObj vs(m_device, bindStateVertShaderText, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj fs(m_device, bindStateFragSamplerShaderText, VK_SHADER_STAGE_FRAGMENT_BIT, this);
VkPipelineObj pipe(m_device);
pipe.AddShader(&vs);
pipe.AddShader(&fs);
pipe.AddDefaultColorAttachment();
pipe.CreateVKPipeline(pipeline_layout.handle(), renderPass());
VkViewport viewport = {0, 0, 16, 16, 0, 1};
VkRect2D scissor = {{0, 0}, {16, 16}};
VkCommandBufferObj cmd_buf(m_device, m_commandPool);
VkSubmitInfo submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &cmd_buf.handle();
enum TestType {
kInternal, // Image layout mismatch is *within* a given command buffer
kExternal // Image layout mismatch is with the current state of the image, found at QueueSubmit
};
std::array<TestType, 2> test_list = {{kInternal, kExternal}};
auto do_test = [&](VkImageObj *image, vk_testing::ImageView *view, VkImageAspectFlags aspect_mask,
VkImageLayout descriptor_layout) {
// Set up the descriptor
img_info.imageView = view->handle();
img_info.imageLayout = descriptor_layout;
vk::UpdateDescriptorSets(m_device->device(), 1, &descriptor_write, 0, NULL);
for (TestType test_type : test_list) {
auto init_layout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
auto image_barrier = LvlInitStruct<VkImageMemoryBarrier>();
cmd_buf.begin();
m_errorMonitor->ExpectSuccess();
image_barrier.srcAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT;
image_barrier.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT;
image_barrier.image = image->handle();
image_barrier.subresourceRange = full_range;
image_barrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
image_barrier.newLayout = init_layout;
cmd_buf.PipelineBarrier(VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, 0, 0, nullptr, 0,
nullptr, 1, &image_barrier);
image_barrier.subresourceRange = first_range;
image_barrier.oldLayout = init_layout;
image_barrier.newLayout = descriptor_layout;
cmd_buf.PipelineBarrier(VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, 0, 0, nullptr, 0,
nullptr, 1, &image_barrier);
image_barrier.subresourceRange = view_range;
image_barrier.oldLayout = init_layout;
image_barrier.newLayout = descriptor_layout;
cmd_buf.PipelineBarrier(VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, 0, 0, nullptr, 0,
nullptr, 1, &image_barrier);
m_errorMonitor->VerifyNotFound();
if (test_type == kExternal) {
// The image layout is external to the command buffer we are recording to test. Submit to push to instance scope.
cmd_buf.end();
m_errorMonitor->ExpectSuccess();
vk::QueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE);
vk::QueueWaitIdle(m_device->m_queue);
m_errorMonitor->VerifyNotFound();
cmd_buf.begin();
}
m_errorMonitor->ExpectSuccess();
cmd_buf.BeginRenderPass(m_renderPassBeginInfo);
vk::CmdBindPipeline(cmd_buf.handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.handle());
vk::CmdBindDescriptorSets(cmd_buf.handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_layout.handle(), 0, 1,
&descriptorSet, 0, NULL);
vk::CmdSetViewport(cmd_buf.handle(), 0, 1, &viewport);
vk::CmdSetScissor(cmd_buf.handle(), 0, 1, &scissor);
cmd_buf.Draw(1, 0, 0, 0);
cmd_buf.EndRenderPass();
cmd_buf.end();
m_errorMonitor->VerifyNotFound();
// Submit cmd buffer
m_errorMonitor->ExpectSuccess();
vk::QueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE);
vk::QueueWaitIdle(m_device->m_queue);
m_errorMonitor->VerifyNotFound();
}
};
do_test(&image, &view, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
}
TEST_F(VkPositiveLayerTest, DevsimLoaderCrash) {
TEST_DESCRIPTION("Test to see if instance extensions are called during CreateInstance.");
// See https://github.com/KhronosGroup/Vulkan-Loader/issues/537 for more details.
// This is specifically meant to ensure a crash encountered in devsim does not occur, but also to
// attempt to ensure that no extension calls have been added to CreateInstance hooks.
// NOTE: it is certainly possible that a layer will call an extension during the Createinstance hook
// and the loader will _not_ crash (e.g., nvidia, android seem to not crash in this case, but AMD does).
// So, this test will only catch an erroneous extension _if_ run on HW/a driver that crashes in this use
// case.
for (const auto &ext : InstanceExtensions::get_info_map()) {
// Add all "real" instance extensions
if (InstanceExtensionSupported(ext.first.c_str())) {
m_instance_extension_names.emplace_back(ext.first.c_str());
}
}
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
}
TEST_F(VkPositiveLayerTest, ImageDescriptor3D2DSubresourceLayout) {
TEST_DESCRIPTION("Verify renderpass layout transitions for a 2d ImageView created from a 3d Image.");
m_errorMonitor->ExpectSuccess();
SetTargetApiVersion(VK_API_VERSION_1_1);
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
if (DeviceValidationVersion() < VK_API_VERSION_1_1) {
printf("%s Tests requires Vulkan 1.1+, skipping test\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, nullptr, VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT));
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
OneOffDescriptorSet descriptor_set(m_device,
{
{0, VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER, 1, VK_SHADER_STAGE_ALL, nullptr},
});
VkDescriptorSet descriptorSet = descriptor_set.set_;
const VkPipelineLayoutObj pipeline_layout(m_device, {&descriptor_set.layout_});
// Create image, view, and sampler
const VkFormat format = VK_FORMAT_B8G8R8A8_UNORM;
VkImageObj image_3d(m_device);
VkImageObj other_image(m_device);
auto usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT;
static const uint32_t kWidth = 128;
static const uint32_t kHeight = 128;
auto image_ci_3d = lvl_init_struct<VkImageCreateInfo>();
image_ci_3d.flags = VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT;
image_ci_3d.imageType = VK_IMAGE_TYPE_3D;
image_ci_3d.format = format;
image_ci_3d.extent.width = kWidth;
image_ci_3d.extent.height = kHeight;
image_ci_3d.extent.depth = 8;
image_ci_3d.mipLevels = 1;
image_ci_3d.arrayLayers = 1;
image_ci_3d.samples = VK_SAMPLE_COUNT_1_BIT;
image_ci_3d.tiling = VK_IMAGE_TILING_OPTIMAL;
image_ci_3d.usage = usage;
image_3d.Init(image_ci_3d);
ASSERT_TRUE(image_3d.initialized());
other_image.Init(kWidth, kHeight, 1, format, usage, VK_IMAGE_TILING_OPTIMAL, 0);
ASSERT_TRUE(other_image.initialized());
// The image view is a 2D slice of the 3D image at depth = 4, which we request by
// asking for arrayLayer = 4
VkImageSubresourceRange view_range{VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 4, 1};
// But, the spec says:
// Automatic layout transitions apply to the entire image subresource attached
// to the framebuffer. If the attachment view is a 2D or 2D array view of a
// 3D image, even if the attachment view only refers to a subset of the slices
// of the selected mip level of the 3D image, automatic layout transitions apply
// to the entire subresource referenced which is the entire mip level in this case.
VkImageSubresourceRange full_range{VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1};
vk_testing::ImageView view_2d, other_view;
auto image_view_create_info = lvl_init_struct<VkImageViewCreateInfo>();
image_view_create_info.image = image_3d.handle();
image_view_create_info.viewType = VK_IMAGE_VIEW_TYPE_2D;
image_view_create_info.format = format;
image_view_create_info.subresourceRange = view_range;
view_2d.init(*m_device, image_view_create_info);
ASSERT_TRUE(view_2d.initialized());
image_view_create_info.image = other_image.handle();
image_view_create_info.subresourceRange = full_range;
other_view.init(*m_device, image_view_create_info);
ASSERT_TRUE(other_view.initialized());
std::vector<VkAttachmentDescription> attachments = {
{0, format, VK_SAMPLE_COUNT_1_BIT, VK_ATTACHMENT_LOAD_OP_LOAD, VK_ATTACHMENT_STORE_OP_STORE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL},
};
std::vector<VkAttachmentReference> color = {
{0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL},
};
VkSubpassDescription subpass = {
0, VK_PIPELINE_BIND_POINT_GRAPHICS, 0, nullptr, (uint32_t)color.size(), color.data(), nullptr, nullptr, 0, nullptr};
std::vector<VkSubpassDependency> deps = {
{VK_SUBPASS_EXTERNAL, 0,
(VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT |
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT | VK_PIPELINE_STAGE_TRANSFER_BIT),
(VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT |
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT),
(VK_ACCESS_SHADER_WRITE_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
VK_ACCESS_TRANSFER_WRITE_BIT),
(VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_MEMORY_WRITE_BIT), 0},
{0, VK_SUBPASS_EXTERNAL, VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
(VK_PIPELINE_STAGE_VERTEX_SHADER_BIT | VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT), VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
(VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_MEMORY_READ_BIT), 0},
};
VkRenderPassCreateInfo rpci = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
nullptr,
0,
(uint32_t)attachments.size(),
attachments.data(),
1,
&subpass,
(uint32_t)deps.size(),
deps.data()};
// Create Sampler
vk_testing::Sampler sampler;
VkSamplerCreateInfo sampler_ci = SafeSaneSamplerCreateInfo();
sampler.init(*m_device, sampler_ci);
ASSERT_TRUE(sampler.initialized());
// Setup structure for descriptor update with sampler, for update in do_test below
VkDescriptorImageInfo img_info = {};
img_info.sampler = sampler.handle();
VkWriteDescriptorSet descriptor_write;
memset(&descriptor_write, 0, sizeof(descriptor_write));
descriptor_write.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
descriptor_write.dstSet = descriptorSet;
descriptor_write.dstBinding = 0;
descriptor_write.descriptorCount = 1;
descriptor_write.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
descriptor_write.pImageInfo = &img_info;
// Create PSO to be used for draw-time errors below
VkShaderObj vs(m_device, bindStateVertShaderText, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj fs(m_device, bindStateFragSamplerShaderText, VK_SHADER_STAGE_FRAGMENT_BIT, this);
VkPipelineObj pipe(m_device);
pipe.AddShader(&vs);
pipe.AddShader(&fs);
pipe.AddDefaultColorAttachment();
pipe.CreateVKPipeline(pipeline_layout.handle(), renderPass());
VkViewport viewport = {0, 0, kWidth, kHeight, 0, 1};
VkRect2D scissor = {{0, 0}, {kWidth, kHeight}};
VkCommandBufferObj cmd_buf(m_device, m_commandPool);
VkSubmitInfo submit_info = {};
submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
submit_info.commandBufferCount = 1;
submit_info.pCommandBuffers = &cmd_buf.handle();
enum TestType {
kInternal, // Image layout mismatch is *within* a given command buffer
kExternal // Image layout mismatch is with the current state of the image, found at QueueSubmit
};
std::array<TestType, 2> test_list = {{kInternal, kExternal}};
auto do_test = [&](VkImageObj *image, vk_testing::ImageView *view, VkImageObj *o_image, vk_testing::ImageView *o_view,
VkImageAspectFlags aspect_mask, VkImageLayout descriptor_layout) {
// Set up the descriptor
img_info.imageView = o_view->handle();
img_info.imageLayout = descriptor_layout;
vk::UpdateDescriptorSets(m_device->device(), 1, &descriptor_write, 0, NULL);
for (TestType test_type : test_list) {
auto image_barrier = LvlInitStruct<VkImageMemoryBarrier>();
VkRenderPass rp;
VkResult err = vk::CreateRenderPass(m_device->device(), &rpci, nullptr, &rp);
ASSERT_VK_SUCCESS(err);
VkFramebufferCreateInfo fbci = {
VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO, nullptr, 0, rp, 1, &view->handle(), kWidth, kHeight, 1};
VkFramebuffer fb;
err = vk::CreateFramebuffer(m_device->device(), &fbci, nullptr, &fb);
ASSERT_VK_SUCCESS(err);
cmd_buf.begin();
image_barrier.srcAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT;
image_barrier.dstAccessMask = VK_ACCESS_MEMORY_READ_BIT | VK_ACCESS_MEMORY_WRITE_BIT;
image_barrier.image = image->handle();
image_barrier.subresourceRange = full_range;
image_barrier.oldLayout = VK_IMAGE_LAYOUT_UNDEFINED;
image_barrier.newLayout = descriptor_layout;
cmd_buf.PipelineBarrier(VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, 0, 0, nullptr, 0,
nullptr, 1, &image_barrier);
image_barrier.image = o_image->handle();
cmd_buf.PipelineBarrier(VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT, 0, 0, nullptr, 0,
nullptr, 1, &image_barrier);
if (test_type == kExternal) {
// The image layout is external to the command buffer we are recording to test. Submit to push to instance scope.
cmd_buf.end();
vk::QueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE);
vk::QueueWaitIdle(m_device->m_queue);
cmd_buf.begin();
}
m_errorMonitor->ExpectSuccess();
m_renderPassBeginInfo.renderPass = rp;
m_renderPassBeginInfo.framebuffer = fb;
m_renderPassBeginInfo.renderArea = {{0, 0}, {kWidth, kHeight}};
cmd_buf.BeginRenderPass(m_renderPassBeginInfo);
vk::CmdBindPipeline(cmd_buf.handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.handle());
vk::CmdBindDescriptorSets(cmd_buf.handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline_layout.handle(), 0, 1,
&descriptorSet, 0, NULL);
vk::CmdSetViewport(cmd_buf.handle(), 0, 1, &viewport);
vk::CmdSetScissor(cmd_buf.handle(), 0, 1, &scissor);
cmd_buf.Draw(1, 0, 0, 0);
cmd_buf.EndRenderPass();
cmd_buf.end();
// Submit cmd buffer
vk::QueueSubmit(m_device->m_queue, 1, &submit_info, VK_NULL_HANDLE);
vk::QueueWaitIdle(m_device->m_queue);
vk::DestroyFramebuffer(m_device->device(), fb, nullptr);
vk::DestroyRenderPass(m_device->device(), rp, nullptr);
}
};
do_test(&image_3d, &view_2d, &other_image, &other_view, VK_IMAGE_ASPECT_COLOR_BIT, VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL);
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, RenderPassInputResolve) {
TEST_DESCRIPTION("Create render pass where input attachment == resolve attachment");
// Check for VK_KHR_get_physical_device_properties2
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
bool rp2Supported = CheckCreateRenderPass2Support(this, m_device_extension_names);
ASSERT_NO_FATAL_FAILURE(InitState());
std::vector<VkAttachmentDescription> attachments = {
// input attachments
{0, VK_FORMAT_R8G8B8A8_UNORM, VK_SAMPLE_COUNT_1_BIT, VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE, VK_IMAGE_LAYOUT_GENERAL, VK_IMAGE_LAYOUT_GENERAL},
// color attachments
{0, VK_FORMAT_R8G8B8A8_UNORM, VK_SAMPLE_COUNT_4_BIT, VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL},
// resolve attachment
{0, VK_FORMAT_R8G8B8A8_UNORM, VK_SAMPLE_COUNT_1_BIT, VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE,
VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_DONT_CARE, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL},
};
std::vector<VkAttachmentReference> input = {
{0, VK_IMAGE_LAYOUT_GENERAL},
};
std::vector<VkAttachmentReference> color = {
{1, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL},
};
std::vector<VkAttachmentReference> resolve = {
{0, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL},
{VK_ATTACHMENT_UNUSED, VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL},
};
VkSubpassDescription subpass = {0,
VK_PIPELINE_BIND_POINT_GRAPHICS,
(uint32_t)input.size(),
input.data(),
(uint32_t)color.size(),
color.data(),
resolve.data(),
nullptr,
0,
nullptr};
VkRenderPassCreateInfo rpci = {VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
nullptr,
0,
(uint32_t)attachments.size(),
attachments.data(),
1,
&subpass,
0,
nullptr};
PositiveTestRenderPassCreate(m_errorMonitor, m_device->device(), &rpci, rp2Supported);
}
TEST_F(VkPositiveLayerTest, SpecializationUnused) {
TEST_DESCRIPTION("Make sure an unused spec constant is valid to us");
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
// layout (constant_id = 2) const int a = 3;
std::string cs_src = R"(
OpCapability Shader
OpMemoryModel Logical GLSL450
OpEntryPoint GLCompute %main "main"
OpExecutionMode %main LocalSize 1 1 1
OpSource GLSL 450
OpDecorate %a SpecId 2
%void = OpTypeVoid
%func = OpTypeFunction %void
%int = OpTypeInt 32 1
%a = OpSpecConstant %int 3
%main = OpFunction %void None %func
%label = OpLabel
OpReturn
OpFunctionEnd
)";
VkSpecializationMapEntry entries[4] = {
{0, 0, 1}, // unused
{1, 0, 1}, // usued
{2, 0, 4}, // OpTypeInt 32
{3, 0, 4}, // usued
};
int32_t data = 0;
VkSpecializationInfo specialization_info = {
4,
entries,
1 * sizeof(decltype(data)),
&data,
};
const auto set_info = [&](CreateComputePipelineHelper &helper) {
helper.cs_.reset(new VkShaderObj(m_device, cs_src, VK_SHADER_STAGE_COMPUTE_BIT, this, "main", &specialization_info));
};
CreateComputePipelineHelper::OneshotTest(*this, set_info, kErrorBit | kWarningBit, "", true);
// Even if the ID is never seen in VkSpecializationMapEntry the OpSpecConstant will use the default and still is valid
specialization_info.mapEntryCount = 1;
CreateComputePipelineHelper::OneshotTest(*this, set_info, kErrorBit | kWarningBit, "", true);
// try another random unused value other than zero
entries[0].constantID = 100;
CreateComputePipelineHelper::OneshotTest(*this, set_info, kErrorBit | kWarningBit, "", true);
}
TEST_F(VkPositiveLayerTest, FillBufferCmdPoolTransferQueue) {
TEST_DESCRIPTION(
"Use a command buffer with vkCmdFillBuffer that was allocated from a command pool that does not support graphics or "
"compute opeartions");
uint32_t version = SetTargetApiVersion(VK_API_VERSION_1_1);
if (version < VK_API_VERSION_1_1) {
printf("%s At least Vulkan version 1.1 is required, skipping test.\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(Init());
if (DeviceValidationVersion() < VK_API_VERSION_1_1) {
printf("%s Tests requires Vulkan 1.1+, skipping test\n", kSkipPrefix);
return;
}
m_errorMonitor->ExpectSuccess();
uint32_t transfer = m_device->QueueFamilyWithoutCapabilities(VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT);
if (transfer == UINT32_MAX) {
printf("%s Required queue families not present (non-graphics non-compute capable required).\n", kSkipPrefix);
return;
}
VkQueueObj *queue = m_device->queue_family_queues(transfer)[0].get();
VkCommandPoolObj pool(m_device, transfer, VK_COMMAND_POOL_CREATE_RESET_COMMAND_BUFFER_BIT);
VkCommandBufferObj cb(m_device, &pool, VK_COMMAND_BUFFER_LEVEL_PRIMARY, queue);
VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
VkBufferObj buffer;
buffer.init_as_dst(*m_device, (VkDeviceSize)20, reqs);
cb.begin();
cb.FillBuffer(buffer.handle(), 0, 12, 0x11111111);
cb.end();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, ShaderAtomicInt64) {
TEST_DESCRIPTION("Test VK_KHR_shader_atomic_int64.");
SetTargetApiVersion(VK_API_VERSION_1_1);
if (InstanceExtensionSupported(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME)) {
m_instance_extension_names.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
} else {
printf("%s Did not find required instance extension %s; skipped.\n", kSkipPrefix,
VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
return;
}
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
if (DeviceExtensionSupported(gpu(), nullptr, VK_KHR_SHADER_ATOMIC_INT64_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_KHR_SHADER_ATOMIC_INT64_EXTENSION_NAME);
} else {
printf("%s Extension %s is not supported.\n", kSkipPrefix, VK_KHR_SHADER_ATOMIC_INT64_EXTENSION_NAME);
return;
}
PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR =
(PFN_vkGetPhysicalDeviceFeatures2KHR)vk::GetInstanceProcAddr(instance(), "vkGetPhysicalDeviceFeatures2KHR");
ASSERT_TRUE(vkGetPhysicalDeviceFeatures2KHR != nullptr);
auto atomic_int64_features = lvl_init_struct<VkPhysicalDeviceShaderAtomicInt64Features>();
auto features2 = lvl_init_struct<VkPhysicalDeviceFeatures2KHR>(&atomic_int64_features);
vkGetPhysicalDeviceFeatures2KHR(gpu(), &features2);
if (features2.features.shaderInt64 == VK_FALSE) {
printf("%s shaderInt64 feature not supported, skipping tests\n", kSkipPrefix);
return;
}
// at least shaderBufferInt64Atomics is guaranteed to be supported
if (atomic_int64_features.shaderBufferInt64Atomics == VK_FALSE) {
printf(
"%s shaderBufferInt64Atomics feature is required for VK_KHR_shader_atomic_int64 but not expose, likely driver bug, "
"skipping tests\n",
kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2));
if (m_device->props.apiVersion < VK_API_VERSION_1_1) {
printf("%s At least Vulkan version 1.1 is required for SPIR-V 1.3, skipping test.\n", kSkipPrefix);
return;
}
std::string cs_base = R"glsl(
#version 450
#extension GL_EXT_shader_explicit_arithmetic_types_int64 : enable
#extension GL_EXT_shader_atomic_int64 : enable
#extension GL_KHR_memory_scope_semantics : enable
shared uint64_t x;
layout(set = 0, binding = 0) buffer ssbo { uint64_t y; };
void main() {
)glsl";
// clang-format off
// StorageBuffer storage class
std::string cs_storage_buffer = cs_base + R"glsl(
atomicAdd(y, 1);
}
)glsl";
// StorageBuffer storage class using AtomicStore
// atomicStore is slightly different than other atomics, so good edge case
std::string cs_store = cs_base + R"glsl(
atomicStore(y, 1ul, gl_ScopeDevice, gl_StorageSemanticsBuffer, gl_SemanticsRelaxed);
}
)glsl";
// Workgroup storage class
std::string cs_workgroup = cs_base + R"glsl(
atomicAdd(x, 1);
barrier();
y = x + 1;
}
)glsl";
// clang-format on
const char *current_shader = nullptr;
const auto set_info = [&](CreateComputePipelineHelper &helper) {
// Requires SPIR-V 1.3 for SPV_KHR_storage_buffer_storage_class
helper.cs_.reset(new VkShaderObj(m_device, current_shader, VK_SHADER_STAGE_COMPUTE_BIT, this, "main", false, nullptr,
SPV_ENV_VULKAN_1_1));
helper.dsl_bindings_ = {{0, VK_DESCRIPTOR_TYPE_STORAGE_BUFFER, 1, VK_SHADER_STAGE_ALL, nullptr}};
};
current_shader = cs_storage_buffer.c_str();
CreateComputePipelineHelper::OneshotTest(*this, set_info, kErrorBit, "", true);
current_shader = cs_store.c_str();
CreateComputePipelineHelper::OneshotTest(*this, set_info, kErrorBit, "", true);
if (atomic_int64_features.shaderSharedInt64Atomics == VK_TRUE) {
current_shader = cs_workgroup.c_str();
CreateComputePipelineHelper::OneshotTest(*this, set_info, kErrorBit, "", true);
}
}
TEST_F(VkPositiveLayerTest, TopologyAtRasterizer) {
TEST_DESCRIPTION("Test topology set when creating a pipeline with tessellation and geometry shader.");
ASSERT_NO_FATAL_FAILURE(Init());
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
if (!m_device->phy().features().tessellationShader) {
printf("%s Device does not support tessellation shaders; skipped.\n", kSkipPrefix);
return;
}
m_errorMonitor->ExpectSuccess();
char const *tcsSource = R"glsl(
#version 450
layout(vertices = 3) out;
void main(){
gl_TessLevelOuter[0] = gl_TessLevelOuter[1] = gl_TessLevelOuter[2] = 1;
gl_TessLevelInner[0] = 1;
}
)glsl";
char const *tesSource = R"glsl(
#version 450
layout(isolines, equal_spacing, cw) in;
void main(){
gl_Position.xyz = gl_TessCoord;
gl_Position.w = 1.0f;
}
)glsl";
static char const *gsSource = R"glsl(
#version 450
layout (triangles) in;
layout (triangle_strip) out;
layout (max_vertices = 1) out;
void main() {
gl_Position = vec4(1.0, 0.5, 0.5, 0.0);
EmitVertex();
}
)glsl";
VkShaderObj tcs(m_device, tcsSource, VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT, this);
VkShaderObj tes(m_device, tesSource, VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT, this);
VkShaderObj gs(m_device, gsSource, VK_SHADER_STAGE_GEOMETRY_BIT, this);
VkPipelineInputAssemblyStateCreateInfo iasci{VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO, nullptr, 0,
VK_PRIMITIVE_TOPOLOGY_PATCH_LIST, VK_FALSE};
VkPipelineTessellationStateCreateInfo tsci{VK_STRUCTURE_TYPE_PIPELINE_TESSELLATION_STATE_CREATE_INFO, nullptr, 0, 3};
VkDynamicState dyn_state = VK_DYNAMIC_STATE_LINE_WIDTH;
VkPipelineDynamicStateCreateInfo dyn_state_ci = LvlInitStruct<VkPipelineDynamicStateCreateInfo>();
dyn_state_ci.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dyn_state_ci.dynamicStateCount = 1;
dyn_state_ci.pDynamicStates = &dyn_state;
CreatePipelineHelper pipe(*this);
pipe.InitInfo();
pipe.gp_ci_.pTessellationState = &tsci;
pipe.gp_ci_.pInputAssemblyState = &iasci;
pipe.shader_stages_.emplace_back(gs.GetStageCreateInfo());
pipe.shader_stages_.emplace_back(tcs.GetStageCreateInfo());
pipe.shader_stages_.emplace_back(tes.GetStageCreateInfo());
pipe.InitState();
pipe.dyn_state_ci_ = dyn_state_ci;
pipe.CreateGraphicsPipeline();
VkRenderPassBeginInfo rpbi = LvlInitStruct<VkRenderPassBeginInfo>();
rpbi.renderPass = m_renderPass;
rpbi.framebuffer = m_framebuffer;
rpbi.renderArea.offset.x = 0;
rpbi.renderArea.offset.y = 0;
rpbi.renderArea.extent.width = 32;
rpbi.renderArea.extent.height = 32;
rpbi.clearValueCount = static_cast<uint32_t>(m_renderPassClearValues.size());
rpbi.pClearValues = m_renderPassClearValues.data();
m_commandBuffer->begin();
vk::CmdBeginRenderPass(m_commandBuffer->handle(), &rpbi, VK_SUBPASS_CONTENTS_INLINE);
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.pipeline_);
vk::CmdDraw(m_commandBuffer->handle(), 4, 1, 0, 0);
vk::CmdEndRenderPass(m_commandBuffer->handle());
m_commandBuffer->end();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, TestDynamicVertexInput) {
TEST_DESCRIPTION("Test using dynamic vertex input and not setting pVertexInputState in the graphics pipeline create info");
SetTargetApiVersion(VK_API_VERSION_1_1);
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
if (DeviceValidationVersion() < VK_API_VERSION_1_1) {
printf("%s Tests requires Vulkan 1.1+, skipping test\n", kSkipPrefix);
return;
}
if (DeviceExtensionSupported(gpu(), nullptr, VK_EXT_VERTEX_INPUT_DYNAMIC_STATE_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_EXT_VERTEX_INPUT_DYNAMIC_STATE_EXTENSION_NAME);
} else {
printf("%s Extension %s is not supported.\n", kSkipPrefix, VK_EXT_VERTEX_INPUT_DYNAMIC_STATE_EXTENSION_NAME);
return;
}
auto vertex_input_dynamic_state_features = LvlInitStruct<VkPhysicalDeviceVertexInputDynamicStateFeaturesEXT>();
auto features2 = LvlInitStruct<VkPhysicalDeviceFeatures2>(&vertex_input_dynamic_state_features);
vk::GetPhysicalDeviceFeatures2(gpu(), &features2);
if (!vertex_input_dynamic_state_features.vertexInputDynamicState) {
printf("%s Feature vertexInputDynamicState is not supported.\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
CreatePipelineHelper pipe(*this);
pipe.InitInfo();
const VkDynamicState dyn_states[] = {VK_DYNAMIC_STATE_VERTEX_INPUT_EXT};
auto dyn_state_ci = LvlInitStruct<VkPipelineDynamicStateCreateInfo>();
dyn_state_ci.dynamicStateCount = size(dyn_states);
dyn_state_ci.pDynamicStates = dyn_states;
pipe.dyn_state_ci_ = dyn_state_ci;
pipe.InitState();
pipe.gp_ci_.pVertexInputState = nullptr;
m_errorMonitor->ExpectSuccess();
pipe.CreateGraphicsPipeline();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, TestCmdSetVertexInputEXT) {
TEST_DESCRIPTION("Test CmdSetVertexInputEXT");
SetTargetApiVersion(VK_API_VERSION_1_1);
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
if (DeviceValidationVersion() < VK_API_VERSION_1_1) {
printf("%s Tests requires Vulkan 1.1+, skipping test\n", kSkipPrefix);
return;
}
if (DeviceExtensionSupported(gpu(), nullptr, VK_EXT_VERTEX_INPUT_DYNAMIC_STATE_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_EXT_VERTEX_INPUT_DYNAMIC_STATE_EXTENSION_NAME);
} else {
printf("%s Extension %s is not supported.\n", kSkipPrefix, VK_EXT_VERTEX_INPUT_DYNAMIC_STATE_EXTENSION_NAME);
return;
}
auto vertex_input_dynamic_state_features = LvlInitStruct<VkPhysicalDeviceVertexInputDynamicStateFeaturesEXT>();
auto features2 = LvlInitStruct<VkPhysicalDeviceFeatures2>(&vertex_input_dynamic_state_features);
vk::GetPhysicalDeviceFeatures2(gpu(), &features2);
if (!vertex_input_dynamic_state_features.vertexInputDynamicState) {
printf("%s Feature vertexInputDynamicState is not supported.\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
auto vkCmdSetVertexInputEXT =
reinterpret_cast<PFN_vkCmdSetVertexInputEXT>(vk::GetDeviceProcAddr(m_device->device(), "vkCmdSetVertexInputEXT"));
CreatePipelineHelper pipe(*this);
pipe.InitInfo();
const VkDynamicState dyn_states[] = {VK_DYNAMIC_STATE_VERTEX_INPUT_EXT};
auto dyn_state_ci = LvlInitStruct<VkPipelineDynamicStateCreateInfo>();
dyn_state_ci.dynamicStateCount = size(dyn_states);
dyn_state_ci.pDynamicStates = dyn_states;
pipe.dyn_state_ci_ = dyn_state_ci;
pipe.InitState();
pipe.gp_ci_.pVertexInputState = nullptr;
pipe.CreateGraphicsPipeline();
VkVertexInputBindingDescription2EXT binding = LvlInitStruct<VkVertexInputBindingDescription2EXT>();
binding.binding = 0;
binding.stride = sizeof(float);
binding.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
binding.divisor = 1;
VkVertexInputAttributeDescription2EXT attribute = LvlInitStruct<VkVertexInputAttributeDescription2EXT>();
attribute.location = 0;
attribute.binding = 0;
attribute.format = VK_FORMAT_R32_SFLOAT;
attribute.offset = 0;
m_errorMonitor->ExpectSuccess();
m_commandBuffer->begin();
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.pipeline_);
vkCmdSetVertexInputEXT(m_commandBuffer->handle(), 1, &binding, 1, &attribute);
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
vk::CmdDraw(m_commandBuffer->handle(), 1, 0, 0, 0);
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, TestCmdSetVertexInputEXTStride) {
TEST_DESCRIPTION("Test CmdSetVertexInputEXT");
SetTargetApiVersion(VK_API_VERSION_1_1);
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
if (DeviceValidationVersion() < VK_API_VERSION_1_1) {
printf("%s Tests requires Vulkan 1.1+, skipping test\n", kSkipPrefix);
return;
}
if (DeviceExtensionSupported(gpu(), nullptr, VK_EXT_VERTEX_INPUT_DYNAMIC_STATE_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_EXT_VERTEX_INPUT_DYNAMIC_STATE_EXTENSION_NAME);
} else {
printf("%s Extension %s is not supported.\n", kSkipPrefix, VK_EXT_VERTEX_INPUT_DYNAMIC_STATE_EXTENSION_NAME);
return;
}
auto vertex_input_dynamic_state_features = LvlInitStruct<VkPhysicalDeviceVertexInputDynamicStateFeaturesEXT>();
auto features2 = LvlInitStruct<VkPhysicalDeviceFeatures2>(&vertex_input_dynamic_state_features);
vk::GetPhysicalDeviceFeatures2(gpu(), &features2);
if (!vertex_input_dynamic_state_features.vertexInputDynamicState) {
printf("%s Feature vertexInputDynamicState is not supported.\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
auto vkCmdSetVertexInputEXT =
reinterpret_cast<PFN_vkCmdSetVertexInputEXT>(vk::GetDeviceProcAddr(m_device->device(), "vkCmdSetVertexInputEXT"));
CreatePipelineHelper pipe(*this);
pipe.InitInfo();
const VkDynamicState dyn_states[] = {VK_DYNAMIC_STATE_VERTEX_INPUT_EXT, VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE_EXT};
auto dyn_state_ci = LvlInitStruct<VkPipelineDynamicStateCreateInfo>();
dyn_state_ci.dynamicStateCount = size(dyn_states);
dyn_state_ci.pDynamicStates = dyn_states;
pipe.dyn_state_ci_ = dyn_state_ci;
pipe.InitState();
pipe.gp_ci_.pVertexInputState = nullptr;
pipe.CreateGraphicsPipeline();
VkVertexInputBindingDescription2EXT binding = LvlInitStruct<VkVertexInputBindingDescription2EXT>();
binding.binding = 0;
binding.stride = sizeof(float);
binding.inputRate = VK_VERTEX_INPUT_RATE_VERTEX;
binding.divisor = 1;
VkVertexInputAttributeDescription2EXT attribute = LvlInitStruct<VkVertexInputAttributeDescription2EXT>();
attribute.location = 0;
attribute.binding = 0;
attribute.format = VK_FORMAT_R32_SFLOAT;
attribute.offset = 0;
m_errorMonitor->ExpectSuccess();
m_commandBuffer->begin();
vk::CmdBindPipeline(m_commandBuffer->handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.pipeline_);
vkCmdSetVertexInputEXT(m_commandBuffer->handle(), 1, &binding, 1, &attribute);
m_commandBuffer->BeginRenderPass(m_renderPassBeginInfo);
vk::CmdDraw(m_commandBuffer->handle(), 1, 0, 0, 0);
m_commandBuffer->EndRenderPass();
m_commandBuffer->end();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, TestPervertexNVShaderAttributes) {
TEST_DESCRIPTION("Test using TestRasterizationStateStreamCreateInfoEXT with invalid rasterizationStream.");
AddRequiredExtensions(VK_NV_FRAGMENT_SHADER_BARYCENTRIC_EXTENSION_NAME);
ASSERT_NO_FATAL_FAILURE(InitFramework(m_errorMonitor));
if (!AreRequestedExtensionsEnabled()) {
printf("%s Extension %s is not supported, skipping test.\n", kSkipPrefix, VK_NV_FRAGMENT_SHADER_BARYCENTRIC_EXTENSION_NAME);
return;
}
VkPhysicalDeviceFragmentShaderBarycentricFeaturesNV fragment_shader_barycentric_features =
LvlInitStruct<VkPhysicalDeviceFragmentShaderBarycentricFeaturesNV>();
fragment_shader_barycentric_features.fragmentShaderBarycentric = VK_TRUE;
auto features2 = LvlInitStruct<VkPhysicalDeviceFeatures2KHR>(&fragment_shader_barycentric_features);
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
char const *vsSource = R"glsl(
#version 450
layout(location = 0) out PerVertex {
vec3 vtxPos;
} outputs;
vec2 triangle_positions[3] = vec2[](
vec2(0.5, -0.5),
vec2(0.5, 0.5),
vec2(-0.5, 0.5)
);
void main() {
gl_Position = vec4(triangle_positions[gl_VertexIndex], 0.0, 1.0);
outputs.vtxPos = gl_Position.xyz;
}
)glsl";
char const *fsSource = R"glsl(
#version 450
#extension GL_NV_fragment_shader_barycentric : enable
layout(location = 0) in pervertexNV PerVertex {
vec3 vtxPos;
} inputs[3];
layout(location = 0) out vec4 out_color;
void main() {
vec3 b = gl_BaryCoordNV;
if (b.x > b.y && b.x > b.z) {
out_color = vec4(inputs[0].vtxPos, 1.0);
}
else if(b.y > b.z) {
out_color = vec4(inputs[1].vtxPos, 1.0);
}
else {
out_color = vec4(inputs[2].vtxPos, 1.0);
}
}
)glsl";
m_errorMonitor->ExpectSuccess();
VkShaderObj vs(m_device, vsSource, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj fs(m_device, fsSource, VK_SHADER_STAGE_FRAGMENT_BIT, this);
CreatePipelineHelper pipe(*this);
pipe.InitInfo();
pipe.shader_stages_ = {vs.GetStageCreateInfo(), fs.GetStageCreateInfo()};
pipe.InitState();
pipe.CreateGraphicsPipeline();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, RayTracingPipelineShaderGroupsKHR) {
TEST_DESCRIPTION("Test that no warning is produced when a library is referenced in the raytracing shader groups.");
SetTargetApiVersion(VK_API_VERSION_1_2);
if (!InitFrameworkForRayTracingTest(this, true, m_instance_extension_names, m_device_extension_names, m_errorMonitor, false,
false, true)) {
return;
}
m_errorMonitor->ExpectSuccess();
PFN_vkGetPhysicalDeviceFeatures2KHR vkGetPhysicalDeviceFeatures2KHR = reinterpret_cast<PFN_vkGetPhysicalDeviceFeatures2KHR>(
vk::GetInstanceProcAddr(instance(), "vkGetPhysicalDeviceFeatures2KHR"));
ASSERT_TRUE(vkGetPhysicalDeviceFeatures2KHR != nullptr);
auto ray_tracing_features = LvlInitStruct<VkPhysicalDeviceRayTracingPipelineFeaturesKHR>();
auto features2 = LvlInitStruct<VkPhysicalDeviceFeatures2KHR>(&ray_tracing_features);
vkGetPhysicalDeviceFeatures2KHR(gpu(), &features2);
if (!ray_tracing_features.rayTracingPipeline) {
printf("%s Feature rayTracing is not supported.\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2));
const VkPipelineLayoutObj empty_pipeline_layout(m_device, {});
const std::string empty_shader = R"glsl(
#version 460
#extension GL_EXT_ray_tracing : require
void main() {}
)glsl";
VkShaderObj rgen_shader(m_device, empty_shader.c_str(), VK_SHADER_STAGE_RAYGEN_BIT_KHR, this, "main", false, nullptr,
SPV_ENV_VULKAN_1_2);
VkShaderObj chit_shader(m_device, empty_shader.c_str(), VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR, this, "main", false, nullptr,
SPV_ENV_VULKAN_1_2);
PFN_vkCreateRayTracingPipelinesKHR vkCreateRayTracingPipelinesKHR =
reinterpret_cast<PFN_vkCreateRayTracingPipelinesKHR>(vk::GetInstanceProcAddr(instance(), "vkCreateRayTracingPipelinesKHR"));
ASSERT_TRUE(vkCreateRayTracingPipelinesKHR != nullptr);
PFN_vkDestroyPipeline vkDestroyPipeline =
reinterpret_cast<PFN_vkDestroyPipeline>(vk::GetInstanceProcAddr(instance(), "vkDestroyPipeline"));
ASSERT_TRUE(vkDestroyPipeline != nullptr);
VkPipeline pipeline = VK_NULL_HANDLE;
const VkPipelineLayoutObj pipeline_layout(m_device, {});
VkPipelineShaderStageCreateInfo stage_create_info = LvlInitStruct<VkPipelineShaderStageCreateInfo>();
stage_create_info.stage = VK_SHADER_STAGE_CLOSEST_HIT_BIT_KHR;
stage_create_info.module = chit_shader.handle();
stage_create_info.pName = "main";
VkRayTracingShaderGroupCreateInfoKHR group_create_info = LvlInitStruct<VkRayTracingShaderGroupCreateInfoKHR>();
group_create_info.type = VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR;
group_create_info.generalShader = VK_SHADER_UNUSED_KHR;
group_create_info.closestHitShader = 0;
group_create_info.anyHitShader = VK_SHADER_UNUSED_KHR;
group_create_info.intersectionShader = VK_SHADER_UNUSED_KHR;
VkRayTracingPipelineInterfaceCreateInfoKHR interface_ci = LvlInitStruct<VkRayTracingPipelineInterfaceCreateInfoKHR>();
interface_ci.maxPipelineRayHitAttributeSize = 4;
interface_ci.maxPipelineRayPayloadSize = 4;
VkRayTracingPipelineCreateInfoKHR library_pipeline = LvlInitStruct<VkRayTracingPipelineCreateInfoKHR>();
library_pipeline.flags = VK_PIPELINE_CREATE_LIBRARY_BIT_KHR;
library_pipeline.stageCount = 1;
library_pipeline.pStages = &stage_create_info;
library_pipeline.groupCount = 1;
library_pipeline.pGroups = &group_create_info;
library_pipeline.layout = pipeline_layout.handle();
library_pipeline.pLibraryInterface = &interface_ci;
VkPipeline library = VK_NULL_HANDLE;
vkCreateRayTracingPipelinesKHR(m_device->handle(), VK_NULL_HANDLE, VK_NULL_HANDLE, 1, &library_pipeline, nullptr, &library);
VkPipelineLibraryCreateInfoKHR library_info_one = LvlInitStruct<VkPipelineLibraryCreateInfoKHR>();
library_info_one.libraryCount = 1;
library_info_one.pLibraries = &library;
VkPipelineShaderStageCreateInfo stage_create_infos[1] = {};
stage_create_infos[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
stage_create_infos[0].stage = VK_SHADER_STAGE_RAYGEN_BIT_KHR;
stage_create_infos[0].module = rgen_shader.handle();
stage_create_infos[0].pName = "main";
VkRayTracingShaderGroupCreateInfoKHR group_create_infos[2] = {};
group_create_infos[0].sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR;
group_create_infos[0].type = VK_RAY_TRACING_SHADER_GROUP_TYPE_GENERAL_KHR;
group_create_infos[0].generalShader = 0;
group_create_infos[0].closestHitShader = VK_SHADER_UNUSED_KHR;
group_create_infos[0].anyHitShader = VK_SHADER_UNUSED_KHR;
group_create_infos[0].intersectionShader = VK_SHADER_UNUSED_KHR;
group_create_infos[1].sType = VK_STRUCTURE_TYPE_RAY_TRACING_SHADER_GROUP_CREATE_INFO_KHR;
group_create_infos[1].type = VK_RAY_TRACING_SHADER_GROUP_TYPE_TRIANGLES_HIT_GROUP_KHR;
group_create_infos[1].generalShader = VK_SHADER_UNUSED_KHR;
group_create_infos[1].closestHitShader = 1; // Index 1 corresponds to the closest hit shader from the library
group_create_infos[1].anyHitShader = VK_SHADER_UNUSED_KHR;
group_create_infos[1].intersectionShader = VK_SHADER_UNUSED_KHR;
VkRayTracingPipelineCreateInfoKHR pipeline_ci = LvlInitStruct<VkRayTracingPipelineCreateInfoKHR>();
pipeline_ci.pLibraryInfo = &library_info_one;
pipeline_ci.stageCount = 1;
pipeline_ci.pStages = stage_create_infos;
pipeline_ci.groupCount = 2;
pipeline_ci.pGroups = group_create_infos;
pipeline_ci.layout = empty_pipeline_layout.handle();
pipeline_ci.pLibraryInterface = &interface_ci;
VkResult err =
vkCreateRayTracingPipelinesKHR(m_device->handle(), VK_NULL_HANDLE, VK_NULL_HANDLE, 1, &pipeline_ci, nullptr, &pipeline);
m_errorMonitor->VerifyNotFound();
ASSERT_VK_SUCCESS(err);
ASSERT_NE(pipeline, VK_NULL_HANDLE);
vkDestroyPipeline(m_device->handle(), pipeline, nullptr);
vkDestroyPipeline(m_device->handle(), library, nullptr);
}
TEST_F(VkPositiveLayerTest, LineTopologyClasses) {
TEST_DESCRIPTION("Check different line topologies within the same topology class");
m_errorMonitor->ExpectSuccess();
SetTargetApiVersion(VK_API_VERSION_1_1);
AddRequiredExtensions(VK_EXT_EXTENDED_DYNAMIC_STATE_EXTENSION_NAME);
auto extended_dynamic_state_features = LvlInitStruct<VkPhysicalDeviceExtendedDynamicStateFeaturesEXT>();
auto features2 = LvlInitStruct<VkPhysicalDeviceFeatures2>(&extended_dynamic_state_features);
ASSERT_NO_FATAL_FAILURE(InitFrameworkAndRetrieveFeatures(features2));
if (DeviceValidationVersion() < VK_API_VERSION_1_1) {
printf("%s API version +1.1 required\n", kSkipPrefix);
}
if (!AreRequestedExtensionsEnabled()) {
printf("%s Extension %s is not supported.\n", kSkipPrefix, VK_EXT_EXTENDED_DYNAMIC_STATE_EXTENSION_NAME);
return;
}
if (!extended_dynamic_state_features.extendedDynamicState) {
printf("%s Test requires (unsupported) extendedDynamicState, skipping\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2));
auto vkCmdSetPrimitiveTopologyEXT = reinterpret_cast<PFN_vkCmdSetPrimitiveTopologyEXT>(
vk::GetDeviceProcAddr(m_device->device(), "vkCmdSetPrimitiveTopologyEXT"));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
const VkDynamicState dyn_states[1] = {
VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY_EXT,
};
// Verify each vkCmdSet command
CreatePipelineHelper pipe(*this);
pipe.InitInfo();
auto dyn_state_ci = LvlInitStruct<VkPipelineDynamicStateCreateInfo>();
dyn_state_ci.dynamicStateCount = size(dyn_states);
dyn_state_ci.pDynamicStates = dyn_states;
pipe.dyn_state_ci_ = dyn_state_ci;
pipe.vi_ci_.vertexBindingDescriptionCount = 1;
VkVertexInputBindingDescription inputBinding = {0, sizeof(float), VK_VERTEX_INPUT_RATE_VERTEX};
pipe.vi_ci_.pVertexBindingDescriptions = &inputBinding;
pipe.vi_ci_.vertexAttributeDescriptionCount = 1;
VkVertexInputAttributeDescription attribute = {0, 0, VK_FORMAT_R32_SFLOAT, 0};
pipe.vi_ci_.pVertexAttributeDescriptions = &attribute;
pipe.ia_ci_.topology = VK_PRIMITIVE_TOPOLOGY_LINE_LIST;
pipe.InitState();
pipe.CreateGraphicsPipeline();
const float vbo_data[3] = {0};
VkConstantBufferObj vb(m_device, sizeof(vbo_data), reinterpret_cast<const void *>(&vbo_data),
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT);
VkCommandBufferObj cb(m_device, m_commandPool);
cb.begin();
cb.BeginRenderPass(m_renderPassBeginInfo);
vk::CmdBindPipeline(cb.handle(), VK_PIPELINE_BIND_POINT_GRAPHICS, pipe.pipeline_);
cb.BindVertexBuffer(&vb, 0, 0);
vkCmdSetPrimitiveTopologyEXT(cb.handle(), VK_PRIMITIVE_TOPOLOGY_LINE_LIST_WITH_ADJACENCY);
vk::CmdDraw(cb.handle(), 1, 1, 0, 0);
cb.EndRenderPass();
cb.end();
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, CreateGraphicsPipelineDynamicRendering) {
TEST_DESCRIPTION("Test for a creating a pipeline with VK_KHR_dynamic_rendering enabled");
SetTargetApiVersion(VK_API_VERSION_1_1);
ASSERT_NO_FATAL_FAILURE(InitFramework());
if (DeviceExtensionSupported(VK_KHR_DYNAMIC_RENDERING_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_KHR_DYNAMIC_RENDERING_EXTENSION_NAME);
} else {
printf("%s Extension %s is not supported.\n", kSkipPrefix, VK_KHR_DYNAMIC_RENDERING_EXTENSION_NAME);
return;
}
m_errorMonitor->ExpectSuccess();
auto dynamic_rendering_features = LvlInitStruct<VkPhysicalDeviceDynamicRenderingFeaturesKHR>();
auto features2 = LvlInitStruct<VkPhysicalDeviceFeatures2>(&dynamic_rendering_features);
vk::GetPhysicalDeviceFeatures2(gpu(), &features2);
if (!dynamic_rendering_features.dynamicRendering) {
printf("%s Test requires (unsupported) dynamicRendering , skipping\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2));
char const *fsSource = R"glsl(
#version 450
layout(input_attachment_index=0, set=0, binding=0) uniform subpassInput x;
layout(location=0) out vec4 color;
void main() {
color = subpassLoad(x);
}
)glsl";
VkShaderObj vs(m_device, bindStateVertShaderText, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj fs(m_device, fsSource, VK_SHADER_STAGE_FRAGMENT_BIT, this);
VkPipelineObj pipe(m_device);
pipe.AddShader(&vs);
pipe.AddShader(&fs);
pipe.AddDefaultColorAttachment();
VkDescriptorSetLayoutBinding dslb = {0, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 1, VK_SHADER_STAGE_FRAGMENT_BIT, nullptr};
const VkDescriptorSetLayoutObj dsl(m_device, {dslb});
const VkPipelineLayoutObj pl(m_device, {&dsl});
VkFormat color_formats[2] = {VK_FORMAT_R8G8B8A8_UNORM, VK_FORMAT_R8G8B8A8_UNORM};
auto rendering_info = LvlInitStruct<VkPipelineRenderingCreateInfoKHR>();
rendering_info.colorAttachmentCount = 2;
rendering_info.pColorAttachmentFormats = color_formats;
auto create_info = LvlInitStruct<VkGraphicsPipelineCreateInfo>();
pipe.InitGraphicsPipelineCreateInfo(&create_info);
create_info.pNext = &rendering_info;
pipe.CreateVKPipeline(pl.handle(), VK_NULL_HANDLE, &create_info);
m_errorMonitor->VerifyNotFound();
}
TEST_F(VkPositiveLayerTest, CreateGraphicsPipelineDynamicRenderingNoInfo) {
TEST_DESCRIPTION("Test for a creating a pipeline with VK_KHR_dynamic_rendering enabled but no rendering info struct.");
SetTargetApiVersion(VK_API_VERSION_1_1);
ASSERT_NO_FATAL_FAILURE(InitFramework());
if (DeviceExtensionSupported(VK_KHR_DYNAMIC_RENDERING_EXTENSION_NAME)) {
m_device_extension_names.push_back(VK_KHR_DYNAMIC_RENDERING_EXTENSION_NAME);
} else {
printf("%s Extension %s is not supported.\n", kSkipPrefix, VK_KHR_DYNAMIC_RENDERING_EXTENSION_NAME);
return;
}
m_errorMonitor->ExpectSuccess();
auto dynamic_rendering_features = LvlInitStruct<VkPhysicalDeviceDynamicRenderingFeaturesKHR>();
auto features2 = LvlInitStruct<VkPhysicalDeviceFeatures2>(&dynamic_rendering_features);
vk::GetPhysicalDeviceFeatures2(gpu(), &features2);
if (!dynamic_rendering_features.dynamicRendering) {
printf("%s Test requires (unsupported) dynamicRendering , skipping\n", kSkipPrefix);
return;
}
ASSERT_NO_FATAL_FAILURE(InitState(nullptr, &features2));
char const *fsSource = R"glsl(
#version 450
layout(input_attachment_index=0, set=0, binding=0) uniform subpassInput x;
layout(location=0) out vec4 color;
void main() {
color = subpassLoad(x);
}
)glsl";
VkShaderObj vs(m_device, bindStateVertShaderText, VK_SHADER_STAGE_VERTEX_BIT, this);
VkShaderObj fs(m_device, fsSource, VK_SHADER_STAGE_FRAGMENT_BIT, this);
VkPipelineObj pipe(m_device);
pipe.AddShader(&vs);
pipe.AddShader(&fs);
pipe.AddDefaultColorAttachment();
VkDescriptorSetLayoutBinding dslb = {0, VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT, 1, VK_SHADER_STAGE_FRAGMENT_BIT, nullptr};
const VkDescriptorSetLayoutObj dsl(m_device, {dslb});
const VkPipelineLayoutObj pl(m_device, {&dsl});
auto create_info = LvlInitStruct<VkGraphicsPipelineCreateInfo>();
pipe.InitGraphicsPipelineCreateInfo(&create_info);
// if there isn't a VkPipelineRenderingCreateInfoKHR, the driver is supposed to use safe default values
pipe.CreateVKPipeline(pl.handle(), VK_NULL_HANDLE, &create_info);
m_errorMonitor->VerifyNotFound();
}