blob: ab645716450cc318db510f7286718c9876abc7da [file] [log] [blame]
/* Copyright (c) 2019-2021 The Khronos Group Inc.
* Copyright (c) 2019-2021 Valve Corporation
* Copyright (c) 2019-2021 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: John Zulauf <jzulauf@lunarg.com>
* Author: Locke Lin <locke@lunarg.com>
* Author: Jeremy Gebben <jeremyg@lunarg.com>
*/
#include <limits>
#include <vector>
#include <memory>
#include <bitset>
#include "synchronization_validation.h"
#include "sync_utils.h"
static bool SimpleBinding(const BINDABLE &bindable) { return !bindable.sparse && bindable.binding.mem_state; }
const static std::array<AccessAddressType, static_cast<size_t>(AccessAddressType::kTypeCount)> kAddressTypes = {
AccessAddressType::kLinear, AccessAddressType::kIdealized};
static constexpr AccessAddressType GetAccessAddressType(const BUFFER_STATE &) { return AccessAddressType::kLinear; };
static AccessAddressType GetAccessAddressType(const IMAGE_STATE &image) {
return SimpleBinding(image) ? AccessContext::ImageAddressType(image) : AccessAddressType::kIdealized;
}
static const char *string_SyncHazardVUID(SyncHazard hazard) {
switch (hazard) {
case SyncHazard::NONE:
return "SYNC-HAZARD-NONE";
break;
case SyncHazard::READ_AFTER_WRITE:
return "SYNC-HAZARD-READ_AFTER_WRITE";
break;
case SyncHazard::WRITE_AFTER_READ:
return "SYNC-HAZARD-WRITE_AFTER_READ";
break;
case SyncHazard::WRITE_AFTER_WRITE:
return "SYNC-HAZARD-WRITE_AFTER_WRITE";
break;
case SyncHazard::READ_RACING_WRITE:
return "SYNC-HAZARD-READ-RACING-WRITE";
break;
case SyncHazard::WRITE_RACING_WRITE:
return "SYNC-HAZARD-WRITE-RACING-WRITE";
break;
case SyncHazard::WRITE_RACING_READ:
return "SYNC-HAZARD-WRITE-RACING-READ";
break;
default:
assert(0);
}
return "SYNC-HAZARD-INVALID";
}
static bool IsHazardVsRead(SyncHazard hazard) {
switch (hazard) {
case SyncHazard::NONE:
return false;
break;
case SyncHazard::READ_AFTER_WRITE:
return false;
break;
case SyncHazard::WRITE_AFTER_READ:
return true;
break;
case SyncHazard::WRITE_AFTER_WRITE:
return false;
break;
case SyncHazard::READ_RACING_WRITE:
return false;
break;
case SyncHazard::WRITE_RACING_WRITE:
return false;
break;
case SyncHazard::WRITE_RACING_READ:
return true;
break;
default:
assert(0);
}
return false;
}
static const char *string_SyncHazard(SyncHazard hazard) {
switch (hazard) {
case SyncHazard::NONE:
return "NONR";
break;
case SyncHazard::READ_AFTER_WRITE:
return "READ_AFTER_WRITE";
break;
case SyncHazard::WRITE_AFTER_READ:
return "WRITE_AFTER_READ";
break;
case SyncHazard::WRITE_AFTER_WRITE:
return "WRITE_AFTER_WRITE";
break;
case SyncHazard::READ_RACING_WRITE:
return "READ_RACING_WRITE";
break;
case SyncHazard::WRITE_RACING_WRITE:
return "WRITE_RACING_WRITE";
break;
case SyncHazard::WRITE_RACING_READ:
return "WRITE_RACING_READ";
break;
default:
assert(0);
}
return "INVALID HAZARD";
}
static const SyncStageAccessInfoType *SyncStageAccessInfoFromMask(SyncStageAccessFlags flags) {
// Return the info for the first bit found
const SyncStageAccessInfoType *info = nullptr;
for (size_t i = 0; i < flags.size(); i++) {
if (flags.test(i)) {
info = &syncStageAccessInfoByStageAccessIndex[i];
break;
}
}
return info;
}
static std::string string_SyncStageAccessFlags(const SyncStageAccessFlags &flags, const char *sep = "|") {
std::string out_str;
if (flags.none()) {
out_str = "0";
} else {
for (size_t i = 0; i < syncStageAccessInfoByStageAccessIndex.size(); i++) {
const auto &info = syncStageAccessInfoByStageAccessIndex[i];
if ((flags & info.stage_access_bit).any()) {
if (!out_str.empty()) {
out_str.append(sep);
}
out_str.append(info.name);
}
}
if (out_str.length() == 0) {
out_str.append("Unhandled SyncStageAccess");
}
}
return out_str;
}
static std::string string_UsageTag(const ResourceUsageTag &tag) {
std::stringstream out;
out << "command: " << CommandTypeString(tag.command);
out << ", seq_no: " << tag.seq_num;
if (tag.sub_command != 0) {
out << ", subcmd: " << tag.sub_command;
}
return out.str();
}
std::string CommandBufferAccessContext::FormatUsage(const HazardResult &hazard) const {
const auto &tag = hazard.tag;
assert(hazard.usage_index < static_cast<SyncStageAccessIndex>(syncStageAccessInfoByStageAccessIndex.size()));
const auto &usage_info = syncStageAccessInfoByStageAccessIndex[hazard.usage_index];
std::stringstream out;
const auto *info = SyncStageAccessInfoFromMask(hazard.prior_access);
const char *stage_access_name = info ? info->name : "INVALID_STAGE_ACCESS";
out << "(usage: " << usage_info.name << ", prior_usage: " << stage_access_name;
if (IsHazardVsRead(hazard.hazard)) {
const auto barriers = hazard.access_state->GetReadBarriers(hazard.prior_access);
out << ", read_barriers: " << string_VkPipelineStageFlags(barriers);
} else {
SyncStageAccessFlags write_barrier = hazard.access_state->GetWriteBarriers();
out << ", write_barriers: " << string_SyncStageAccessFlags(write_barrier);
}
// PHASE2 TODO -- add comand buffer and reset from secondary if applicable
out << ", " << string_UsageTag(tag) << ", reset_no: " << reset_count_;
return out.str();
}
// NOTE: the attachement read flag is put *only* in the access scope and not in the exect scope, since the ordering
// rules apply only to this specific access for this stage, and not the stage as a whole. The ordering detection
// also reflects this special case for read hazard detection (using access instead of exec scope)
static constexpr VkPipelineStageFlags kColorAttachmentExecScope = VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT;
static const SyncStageAccessFlags kColorAttachmentAccessScope =
SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_READ_BIT |
SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_READ_NONCOHERENT_BIT_EXT |
SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE_BIT |
SYNC_FRAGMENT_SHADER_INPUT_ATTACHMENT_READ_BIT; // Note: this is intentionally not in the exec scope
static constexpr VkPipelineStageFlags kDepthStencilAttachmentExecScope =
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT;
static const SyncStageAccessFlags kDepthStencilAttachmentAccessScope =
SYNC_EARLY_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | SYNC_EARLY_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT |
SYNC_FRAGMENT_SHADER_INPUT_ATTACHMENT_READ_BIT; // Note: this is intentionally not in the exec scope
static constexpr VkPipelineStageFlags kRasterAttachmentExecScope = kDepthStencilAttachmentExecScope | kColorAttachmentExecScope;
static const SyncStageAccessFlags kRasterAttachmentAccessScope = kDepthStencilAttachmentAccessScope | kColorAttachmentAccessScope;
ResourceAccessState::OrderingBarriers ResourceAccessState::kOrderingRules = {
{{0U, SyncStageAccessFlags()},
{kColorAttachmentExecScope, kColorAttachmentAccessScope},
{kDepthStencilAttachmentExecScope, kDepthStencilAttachmentAccessScope},
{kRasterAttachmentExecScope, kRasterAttachmentAccessScope}}};
// Sometimes we have an internal access conflict, and we using the kCurrentCommandTag to set and detect in temporary/proxy contexts
static const ResourceUsageTag kCurrentCommandTag(ResourceUsageTag::kMaxIndex, ResourceUsageTag::kMaxCount,
ResourceUsageTag::kMaxCount, CMD_NONE);
static VkDeviceSize ResourceBaseAddress(const BINDABLE &bindable) {
return bindable.binding.offset + bindable.binding.mem_state->fake_base_address;
}
inline VkDeviceSize GetRealWholeSize(VkDeviceSize offset, VkDeviceSize size, VkDeviceSize whole_size) {
if (size == VK_WHOLE_SIZE) {
return (whole_size - offset);
}
return size;
}
static inline VkDeviceSize GetBufferWholeSize(const BUFFER_STATE &buf_state, VkDeviceSize offset, VkDeviceSize size) {
return GetRealWholeSize(offset, size, buf_state.createInfo.size);
}
template <typename T>
static ResourceAccessRange MakeRange(const T &has_offset_and_size) {
return ResourceAccessRange(has_offset_and_size.offset, (has_offset_and_size.offset + has_offset_and_size.size));
}
static ResourceAccessRange MakeRange(VkDeviceSize start, VkDeviceSize size) { return ResourceAccessRange(start, (start + size)); }
static inline ResourceAccessRange MakeRange(const BUFFER_STATE &buffer, VkDeviceSize offset, VkDeviceSize size) {
return MakeRange(offset, GetBufferWholeSize(buffer, offset, size));
}
static inline ResourceAccessRange MakeRange(const BUFFER_VIEW_STATE &buf_view_state) {
return MakeRange(*buf_view_state.buffer_state.get(), buf_view_state.create_info.offset, buf_view_state.create_info.range);
}
// Range generators for to allow event scope filtration to be limited to the top of the resource access traversal pipeline
//
// Note: there is no "begin/end" or reset facility. These are each written as "one time through" generators.
//
// Usage:
// Constructor() -- initializes the generator to point to the begin of the space declared.
// * -- the current range of the generator empty signfies end
// ++ -- advance to the next non-empty range (or end)
// A wrapper for a single range with the same semantics as the actual generators below
template <typename KeyType>
class SingleRangeGenerator {
public:
SingleRangeGenerator(const KeyType &range) : current_(range) {}
const KeyType &operator*() const { return current_; }
const KeyType *operator->() const { return &current_; }
SingleRangeGenerator &operator++() {
current_ = KeyType(); // just one real range
return *this;
}
bool operator==(const SingleRangeGenerator &other) const { return current_ == other.current_; }
private:
SingleRangeGenerator() = default;
const KeyType range_;
KeyType current_;
};
// Generate the ranges that are the intersection of range and the entries in the FilterMap
template <typename FilterMap, typename KeyType = typename FilterMap::key_type>
class FilteredRangeGenerator {
public:
// Default constructed is safe to dereference for "empty" test, but for no other operation.
FilteredRangeGenerator() : range_(), filter_(nullptr), filter_pos_(), current_() {
// Default construction for KeyType *must* be empty range
assert(current_.empty());
}
FilteredRangeGenerator(const FilterMap &filter, const KeyType &range)
: range_(range), filter_(&filter), filter_pos_(), current_() {
SeekBegin();
}
FilteredRangeGenerator(const FilteredRangeGenerator &from) = default;
const KeyType &operator*() const { return current_; }
const KeyType *operator->() const { return &current_; }
FilteredRangeGenerator &operator++() {
++filter_pos_;
UpdateCurrent();
return *this;
}
bool operator==(const FilteredRangeGenerator &other) const { return current_ == other.current_; }
private:
void UpdateCurrent() {
if (filter_pos_ != filter_->cend()) {
current_ = range_ & filter_pos_->first;
} else {
current_ = KeyType();
}
}
void SeekBegin() {
filter_pos_ = filter_->lower_bound(range_);
UpdateCurrent();
}
const KeyType range_;
const FilterMap *filter_;
typename FilterMap::const_iterator filter_pos_;
KeyType current_;
};
using SingleAccessRangeGenerator = SingleRangeGenerator<ResourceAccessRange>;
using EventSimpleRangeGenerator = FilteredRangeGenerator<SyncEventState::ScopeMap>;
// Templated to allow for different Range generators or map sources...
// Generate the ranges that are the intersection of the RangeGen ranges and the entries in the FilterMap
template <typename FilterMap, typename RangeGen, typename KeyType = typename FilterMap::key_type>
class FilteredGeneratorGenerator {
public:
// Default constructed is safe to dereference for "empty" test, but for no other operation.
FilteredGeneratorGenerator() : filter_(nullptr), gen_(), filter_pos_(), current_() {
// Default construction for KeyType *must* be empty range
assert(current_.empty());
}
FilteredGeneratorGenerator(const FilterMap &filter, RangeGen &gen) : filter_(&filter), gen_(gen), filter_pos_(), current_() {
SeekBegin();
}
FilteredGeneratorGenerator(const FilteredGeneratorGenerator &from) = default;
const KeyType &operator*() const { return current_; }
const KeyType *operator->() const { return &current_; }
FilteredGeneratorGenerator &operator++() {
KeyType gen_range = GenRange();
KeyType filter_range = FilterRange();
current_ = KeyType();
while (gen_range.non_empty() && filter_range.non_empty() && current_.empty()) {
if (gen_range.end > filter_range.end) {
// if the generated range is beyond the filter_range, advance the filter range
filter_range = AdvanceFilter();
} else {
gen_range = AdvanceGen();
}
current_ = gen_range & filter_range;
}
return *this;
}
bool operator==(const FilteredGeneratorGenerator &other) const { return current_ == other.current_; }
private:
KeyType AdvanceFilter() {
++filter_pos_;
auto filter_range = FilterRange();
if (filter_range.valid()) {
FastForwardGen(filter_range);
}
return filter_range;
}
KeyType AdvanceGen() {
++gen_;
auto gen_range = GenRange();
if (gen_range.valid()) {
FastForwardFilter(gen_range);
}
return gen_range;
}
KeyType FilterRange() const { return (filter_pos_ != filter_->cend()) ? filter_pos_->first : KeyType(); }
KeyType GenRange() const { return *gen_; }
KeyType FastForwardFilter(const KeyType &range) {
auto filter_range = FilterRange();
int retry_count = 0;
const static int kRetryLimit = 2; // TODO -- determine whether this limit is optimal
while (!filter_range.empty() && (filter_range.end <= range.begin)) {
if (retry_count < kRetryLimit) {
++filter_pos_;
filter_range = FilterRange();
retry_count++;
} else {
// Okay we've tried walking, do a seek.
filter_pos_ = filter_->lower_bound(range);
break;
}
}
return FilterRange();
}
// TODO: Consider adding "seek" (or an absolute bound "get" to range generators to make this walk
// faster.
KeyType FastForwardGen(const KeyType &range) {
auto gen_range = GenRange();
while (!gen_range.empty() && (gen_range.end <= range.begin)) {
++gen_;
gen_range = GenRange();
}
return gen_range;
}
void SeekBegin() {
auto gen_range = GenRange();
if (gen_range.empty()) {
current_ = KeyType();
filter_pos_ = filter_->cend();
} else {
filter_pos_ = filter_->lower_bound(gen_range);
current_ = gen_range & FilterRange();
}
}
const FilterMap *filter_;
RangeGen gen_;
typename FilterMap::const_iterator filter_pos_;
KeyType current_;
};
using EventImageRangeGenerator = FilteredGeneratorGenerator<SyncEventState::ScopeMap, subresource_adapter::ImageRangeGenerator>;
static const ResourceAccessRange kFullRange(std::numeric_limits<VkDeviceSize>::min(), std::numeric_limits<VkDeviceSize>::max());
ResourceAccessRange GetBufferRange(VkDeviceSize offset, VkDeviceSize buf_whole_size, uint32_t first_index, uint32_t count,
VkDeviceSize stride) {
VkDeviceSize range_start = offset + first_index * stride;
VkDeviceSize range_size = 0;
if (count == UINT32_MAX) {
range_size = buf_whole_size - range_start;
} else {
range_size = count * stride;
}
return MakeRange(range_start, range_size);
}
SyncStageAccessIndex GetSyncStageAccessIndexsByDescriptorSet(VkDescriptorType descriptor_type, const interface_var &descriptor_data,
VkShaderStageFlagBits stage_flag) {
if (descriptor_type == VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT) {
assert(stage_flag == VK_SHADER_STAGE_FRAGMENT_BIT);
return SYNC_FRAGMENT_SHADER_INPUT_ATTACHMENT_READ;
}
auto stage_access = syncStageAccessMaskByShaderStage.find(stage_flag);
if (stage_access == syncStageAccessMaskByShaderStage.end()) {
assert(0);
}
if (descriptor_type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER || descriptor_type == VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER_DYNAMIC) {
return stage_access->second.uniform_read;
}
// If the desriptorSet is writable, we don't need to care SHADER_READ. SHADER_WRITE is enough.
// Because if write hazard happens, read hazard might or might not happen.
// But if write hazard doesn't happen, read hazard is impossible to happen.
if (descriptor_data.is_writable) {
return stage_access->second.shader_write;
}
return stage_access->second.shader_read;
}
bool IsImageLayoutDepthWritable(VkImageLayout image_layout) {
return (image_layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
image_layout == VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_STENCIL_READ_ONLY_OPTIMAL ||
image_layout == VK_IMAGE_LAYOUT_DEPTH_ATTACHMENT_OPTIMAL)
? true
: false;
}
bool IsImageLayoutStencilWritable(VkImageLayout image_layout) {
return (image_layout == VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL ||
image_layout == VK_IMAGE_LAYOUT_DEPTH_READ_ONLY_STENCIL_ATTACHMENT_OPTIMAL ||
image_layout == VK_IMAGE_LAYOUT_STENCIL_ATTACHMENT_OPTIMAL)
? true
: false;
}
// Class AccessContext stores the state of accesses specific to a Command, Subpass, or Queue
template <typename Action>
static void ApplyOverImageRange(const IMAGE_STATE &image_state, const VkImageSubresourceRange &subresource_range_arg,
Action &action) {
// At this point the "apply over range" logic only supports a single memory binding
if (!SimpleBinding(image_state)) return;
auto subresource_range = NormalizeSubresourceRange(image_state.createInfo, subresource_range_arg);
const auto base_address = ResourceBaseAddress(image_state);
subresource_adapter::ImageRangeGenerator range_gen(*image_state.fragment_encoder.get(), subresource_range, {0, 0, 0},
image_state.createInfo.extent, base_address);
for (; range_gen->non_empty(); ++range_gen) {
action(*range_gen);
}
}
// Tranverse the attachment resolves for this a specific subpass, and do action() to them.
// Used by both validation and record operations
//
// The signature for Action() reflect the needs of both uses.
template <typename Action>
void ResolveOperation(Action &action, const RENDER_PASS_STATE &rp_state, const VkRect2D &render_area,
const std::vector<const IMAGE_VIEW_STATE *> &attachment_views, uint32_t subpass) {
VkExtent3D extent = CastTo3D(render_area.extent);
VkOffset3D offset = CastTo3D(render_area.offset);
const auto &rp_ci = rp_state.createInfo;
const auto *attachment_ci = rp_ci.pAttachments;
const auto &subpass_ci = rp_ci.pSubpasses[subpass];
// Color resolves -- require an inuse color attachment and a matching inuse resolve attachment
const auto *color_attachments = subpass_ci.pColorAttachments;
const auto *color_resolve = subpass_ci.pResolveAttachments;
if (color_resolve && color_attachments) {
for (uint32_t i = 0; i < subpass_ci.colorAttachmentCount; i++) {
const auto &color_attach = color_attachments[i].attachment;
const auto &resolve_attach = subpass_ci.pResolveAttachments[i].attachment;
if ((color_attach != VK_ATTACHMENT_UNUSED) && (resolve_attach != VK_ATTACHMENT_UNUSED)) {
action("color", "resolve read", color_attach, resolve_attach, attachment_views[color_attach],
SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_READ, SyncOrdering::kColorAttachment, offset, extent, 0);
action("color", "resolve write", color_attach, resolve_attach, attachment_views[resolve_attach],
SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE, SyncOrdering::kColorAttachment, offset, extent, 0);
}
}
}
// Depth stencil resolve only if the extension is present
const auto ds_resolve = LvlFindInChain<VkSubpassDescriptionDepthStencilResolve>(subpass_ci.pNext);
if (ds_resolve && ds_resolve->pDepthStencilResolveAttachment &&
(ds_resolve->pDepthStencilResolveAttachment->attachment != VK_ATTACHMENT_UNUSED) && subpass_ci.pDepthStencilAttachment &&
(subpass_ci.pDepthStencilAttachment->attachment != VK_ATTACHMENT_UNUSED)) {
const auto src_at = subpass_ci.pDepthStencilAttachment->attachment;
const auto src_ci = attachment_ci[src_at];
// The formats are required to match so we can pick either
const bool resolve_depth = (ds_resolve->depthResolveMode != VK_RESOLVE_MODE_NONE) && FormatHasDepth(src_ci.format);
const bool resolve_stencil = (ds_resolve->stencilResolveMode != VK_RESOLVE_MODE_NONE) && FormatHasStencil(src_ci.format);
const auto dst_at = ds_resolve->pDepthStencilResolveAttachment->attachment;
VkImageAspectFlags aspect_mask = 0u;
// Figure out which aspects are actually touched during resolve operations
const char *aspect_string = nullptr;
if (resolve_depth && resolve_stencil) {
// Validate all aspects together
aspect_mask = VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT;
aspect_string = "depth/stencil";
} else if (resolve_depth) {
// Validate depth only
aspect_mask = VK_IMAGE_ASPECT_DEPTH_BIT;
aspect_string = "depth";
} else if (resolve_stencil) {
// Validate all stencil only
aspect_mask = VK_IMAGE_ASPECT_STENCIL_BIT;
aspect_string = "stencil";
}
if (aspect_mask) {
action(aspect_string, "resolve read", src_at, dst_at, attachment_views[src_at],
SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_READ, SyncOrdering::kRaster, offset, extent, aspect_mask);
action(aspect_string, "resolve write", src_at, dst_at, attachment_views[dst_at],
SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE, SyncOrdering::kRaster, offset, extent, aspect_mask);
}
}
}
// Action for validating resolve operations
class ValidateResolveAction {
public:
ValidateResolveAction(VkRenderPass render_pass, uint32_t subpass, const AccessContext &context,
const CommandBufferAccessContext &cb_context, const char *func_name)
: render_pass_(render_pass),
subpass_(subpass),
context_(context),
cb_context_(cb_context),
func_name_(func_name),
skip_(false) {}
void operator()(const char *aspect_name, const char *attachment_name, uint32_t src_at, uint32_t dst_at,
const IMAGE_VIEW_STATE *view, SyncStageAccessIndex current_usage, SyncOrdering ordering_rule,
const VkOffset3D &offset, const VkExtent3D &extent, VkImageAspectFlags aspect_mask) {
HazardResult hazard;
hazard = context_.DetectHazard(view, current_usage, ordering_rule, offset, extent, aspect_mask);
if (hazard.hazard) {
skip_ |=
cb_context_.GetSyncState().LogError(render_pass_, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s in subpass %" PRIu32 "during %s %s, from attachment %" PRIu32
" to resolve attachment %" PRIu32 ". Access info %s.",
func_name_, string_SyncHazard(hazard.hazard), subpass_, aspect_name,
attachment_name, src_at, dst_at, cb_context_.FormatUsage(hazard).c_str());
}
}
// Providing a mechanism for the constructing caller to get the result of the validation
bool GetSkip() const { return skip_; }
private:
VkRenderPass render_pass_;
const uint32_t subpass_;
const AccessContext &context_;
const CommandBufferAccessContext &cb_context_;
const char *func_name_;
bool skip_;
};
// Update action for resolve operations
class UpdateStateResolveAction {
public:
UpdateStateResolveAction(AccessContext &context, const ResourceUsageTag &tag) : context_(context), tag_(tag) {}
void operator()(const char *aspect_name, const char *attachment_name, uint32_t src_at, uint32_t dst_at,
const IMAGE_VIEW_STATE *view, SyncStageAccessIndex current_usage, SyncOrdering ordering_rule,
const VkOffset3D &offset, const VkExtent3D &extent, VkImageAspectFlags aspect_mask) {
// Ignores validation only arguments...
context_.UpdateAccessState(view, current_usage, ordering_rule, offset, extent, aspect_mask, tag_);
}
private:
AccessContext &context_;
const ResourceUsageTag &tag_;
};
void HazardResult::Set(const ResourceAccessState *access_state_, SyncStageAccessIndex usage_index_, SyncHazard hazard_,
const SyncStageAccessFlags &prior_, const ResourceUsageTag &tag_) {
access_state = std::unique_ptr<const ResourceAccessState>(new ResourceAccessState(*access_state_));
usage_index = usage_index_;
hazard = hazard_;
prior_access = prior_;
tag = tag_;
}
AccessContext::AccessContext(uint32_t subpass, VkQueueFlags queue_flags,
const std::vector<SubpassDependencyGraphNode> &dependencies,
const std::vector<AccessContext> &contexts, const AccessContext *external_context) {
Reset();
const auto &subpass_dep = dependencies[subpass];
prev_.reserve(subpass_dep.prev.size());
prev_by_subpass_.resize(subpass, nullptr); // Can't be more prevs than the subpass we're on
for (const auto &prev_dep : subpass_dep.prev) {
const auto prev_pass = prev_dep.first->pass;
const auto &prev_barriers = prev_dep.second;
assert(prev_dep.second.size());
prev_.emplace_back(&contexts[prev_pass], queue_flags, prev_barriers);
prev_by_subpass_[prev_pass] = &prev_.back();
}
async_.reserve(subpass_dep.async.size());
for (const auto async_subpass : subpass_dep.async) {
async_.emplace_back(&contexts[async_subpass]);
}
if (subpass_dep.barrier_from_external.size()) {
src_external_ = TrackBack(external_context, queue_flags, subpass_dep.barrier_from_external);
}
if (subpass_dep.barrier_to_external.size()) {
dst_external_ = TrackBack(this, queue_flags, subpass_dep.barrier_to_external);
}
}
template <typename Detector>
HazardResult AccessContext::DetectPreviousHazard(AccessAddressType type, const Detector &detector,
const ResourceAccessRange &range) const {
ResourceAccessRangeMap descent_map;
ResolvePreviousAccess(type, range, &descent_map, nullptr);
HazardResult hazard;
for (auto prev = descent_map.begin(); prev != descent_map.end() && !hazard.hazard; ++prev) {
hazard = detector.Detect(prev);
}
return hazard;
}
template <typename Action>
void AccessContext::ForAll(Action &&action) {
for (const auto address_type : kAddressTypes) {
auto &accesses = GetAccessStateMap(address_type);
for (const auto &access : accesses) {
action(address_type, access);
}
}
}
// A recursive range walker for hazard detection, first for the current context and the (DetectHazardRecur) to walk
// the DAG of the contexts (for example subpasses)
template <typename Detector>
HazardResult AccessContext::DetectHazard(AccessAddressType type, const Detector &detector, const ResourceAccessRange &range,
DetectOptions options) const {
HazardResult hazard;
if (static_cast<uint32_t>(options) & DetectOptions::kDetectAsync) {
// Async checks don't require recursive lookups, as the async lists are exhaustive for the top-level context
// so we'll check these first
for (const auto &async_context : async_) {
hazard = async_context->DetectAsyncHazard(type, detector, range);
if (hazard.hazard) return hazard;
}
}
const bool detect_prev = (static_cast<uint32_t>(options) & DetectOptions::kDetectPrevious) != 0;
const auto &accesses = GetAccessStateMap(type);
const auto from = accesses.lower_bound(range);
const auto to = accesses.upper_bound(range);
ResourceAccessRange gap = {range.begin, range.begin};
for (auto pos = from; pos != to; ++pos) {
// Cover any leading gap, or gap between entries
if (detect_prev) {
// TODO: After profiling we may want to change the descent logic such that we don't recur per gap...
// Cover any leading gap, or gap between entries
gap.end = pos->first.begin; // We know this begin is < range.end
if (gap.non_empty()) {
// Recur on all gaps
hazard = DetectPreviousHazard(type, detector, gap);
if (hazard.hazard) return hazard;
}
// Set up for the next gap. If pos..end is >= range.end, loop will exit, and trailing gap will be empty
gap.begin = pos->first.end;
}
hazard = detector.Detect(pos);
if (hazard.hazard) return hazard;
}
if (detect_prev) {
// Detect in the trailing empty as needed
gap.end = range.end;
if (gap.non_empty()) {
hazard = DetectPreviousHazard(type, detector, gap);
}
}
return hazard;
}
// A non recursive range walker for the asynchronous contexts (those we have no barriers with)
template <typename Detector>
HazardResult AccessContext::DetectAsyncHazard(AccessAddressType type, const Detector &detector,
const ResourceAccessRange &range) const {
auto &accesses = GetAccessStateMap(type);
const auto from = accesses.lower_bound(range);
const auto to = accesses.upper_bound(range);
HazardResult hazard;
for (auto pos = from; pos != to && !hazard.hazard; ++pos) {
hazard = detector.DetectAsync(pos, start_tag_);
}
return hazard;
}
struct ApplySubpassTransitionBarriersAction {
explicit ApplySubpassTransitionBarriersAction(const std::vector<SyncBarrier> &barriers_) : barriers(barriers_) {}
void operator()(ResourceAccessState *access) const {
assert(access);
access->ApplyBarriers(barriers, true);
}
const std::vector<SyncBarrier> &barriers;
};
struct ApplyTrackbackBarriersAction {
explicit ApplyTrackbackBarriersAction(const std::vector<SyncBarrier> &barriers_) : barriers(barriers_) {}
void operator()(ResourceAccessState *access) const {
assert(access);
assert(!access->HasPendingState());
access->ApplyBarriers(barriers, false);
access->ApplyPendingBarriers(kCurrentCommandTag);
}
const std::vector<SyncBarrier> &barriers;
};
// Splits a single map entry into piece matching the entries in [first, last) the total range over [first, last) must be
// contained with entry. Entry must be an iterator pointing to dest, first and last must be iterators pointing to a
// *different* map from dest.
// Returns the position past the last resolved range -- the entry covering the remainder of entry->first not included in the
// range [first, last)
template <typename BarrierAction>
static void ResolveMapToEntry(ResourceAccessRangeMap *dest, ResourceAccessRangeMap::iterator entry,
ResourceAccessRangeMap::const_iterator first, ResourceAccessRangeMap::const_iterator last,
BarrierAction &barrier_action) {
auto at = entry;
for (auto pos = first; pos != last; ++pos) {
// Every member of the input iterator range must fit within the remaining portion of entry
assert(at->first.includes(pos->first));
assert(at != dest->end());
// Trim up at to the same size as the entry to resolve
at = sparse_container::split(at, *dest, pos->first);
auto access = pos->second; // intentional copy
barrier_action(&access);
at->second.Resolve(access);
++at; // Go to the remaining unused section of entry
}
}
static SyncBarrier MergeBarriers(const std::vector<SyncBarrier> &barriers) {
SyncBarrier merged = {};
for (const auto &barrier : barriers) {
merged.Merge(barrier);
}
return merged;
}
template <typename BarrierAction>
void AccessContext::ResolveAccessRange(AccessAddressType type, const ResourceAccessRange &range, BarrierAction &barrier_action,
ResourceAccessRangeMap *resolve_map, const ResourceAccessState *infill_state,
bool recur_to_infill) const {
if (!range.non_empty()) return;
ResourceRangeMergeIterator current(*resolve_map, GetAccessStateMap(type), range.begin);
while (current->range.non_empty() && range.includes(current->range.begin)) {
const auto current_range = current->range & range;
if (current->pos_B->valid) {
const auto &src_pos = current->pos_B->lower_bound;
auto access = src_pos->second; // intentional copy
barrier_action(&access);
if (current->pos_A->valid) {
const auto trimmed = sparse_container::split(current->pos_A->lower_bound, *resolve_map, current_range);
trimmed->second.Resolve(access);
current.invalidate_A(trimmed);
} else {
auto inserted = resolve_map->insert(current->pos_A->lower_bound, std::make_pair(current_range, access));
current.invalidate_A(inserted); // Update the parallel iterator to point at the insert segment
}
} else {
// we have to descend to fill this gap
if (recur_to_infill) {
if (current->pos_A->valid) {
// Dest is valid, so we need to accumulate along the DAG and then resolve... in an N-to-1 resolve operation
ResourceAccessRangeMap gap_map;
ResolvePreviousAccess(type, current_range, &gap_map, infill_state);
ResolveMapToEntry(resolve_map, current->pos_A->lower_bound, gap_map.begin(), gap_map.end(), barrier_action);
} else {
// There isn't anything in dest in current)range, so we can accumulate directly into it.
ResolvePreviousAccess(type, current_range, resolve_map, infill_state);
// Need to apply the barrier to the accesses we accumulated, noting that we haven't updated current
for (auto pos = resolve_map->lower_bound(current_range); pos != current->pos_A->lower_bound; ++pos) {
barrier_action(&pos->second);
}
}
// Given that there could be gaps we need to seek carefully to not repeatedly search the same gaps in the next
// iterator of the outer while.
// Set the parallel iterator to the end of this range s.t. ++ will move us to the next range whether or
// not the end of the range is a gap. For the seek to work, first we need to warn the parallel iterator
// we stepped on the dest map
const auto seek_to = current_range.end - 1; // The subtraction is safe as range can't be empty (loop condition)
current.invalidate_A(); // Changes current->range
current.seek(seek_to);
} else if (!current->pos_A->valid && infill_state) {
// If we didn't find anything in the current range, and we aren't reccuring... we infill if required
auto inserted = resolve_map->insert(current->pos_A->lower_bound, std::make_pair(current->range, *infill_state));
current.invalidate_A(inserted); // Update the parallel iterator to point at the correct segment after insert
}
}
++current;
}
// Infill if range goes passed both the current and resolve map prior contents
if (recur_to_infill && (current->range.end < range.end)) {
ResourceAccessRange trailing_fill_range = {current->range.end, range.end};
ResourceAccessRangeMap gap_map;
const auto the_end = resolve_map->end();
ResolvePreviousAccess(type, trailing_fill_range, &gap_map, infill_state);
for (auto &access : gap_map) {
barrier_action(&access.second);
resolve_map->insert(the_end, access);
}
}
}
void AccessContext::ResolvePreviousAccess(AccessAddressType type, const ResourceAccessRange &range,
ResourceAccessRangeMap *descent_map, const ResourceAccessState *infill_state) const {
if ((prev_.size() == 0) && (src_external_.context == nullptr)) {
if (range.non_empty() && infill_state) {
descent_map->insert(std::make_pair(range, *infill_state));
}
} else {
// Look for something to fill the gap further along.
for (const auto &prev_dep : prev_) {
const ApplyTrackbackBarriersAction barrier_action(prev_dep.barriers);
prev_dep.context->ResolveAccessRange(type, range, barrier_action, descent_map, infill_state);
}
if (src_external_.context) {
const ApplyTrackbackBarriersAction barrier_action(src_external_.barriers);
src_external_.context->ResolveAccessRange(type, range, barrier_action, descent_map, infill_state);
}
}
}
// Non-lazy import of all accesses, WaitEvents needs this.
void AccessContext::ResolvePreviousAccesses() {
ResourceAccessState default_state;
for (const auto address_type : kAddressTypes) {
ResolvePreviousAccess(address_type, kFullRange, &GetAccessStateMap(address_type), &default_state);
}
}
AccessAddressType AccessContext::ImageAddressType(const IMAGE_STATE &image) {
return (image.fragment_encoder->IsLinearImage()) ? AccessAddressType::kLinear : AccessAddressType::kIdealized;
}
static SyncStageAccessIndex ColorLoadUsage(VkAttachmentLoadOp load_op) {
const auto stage_access = (load_op == VK_ATTACHMENT_LOAD_OP_LOAD) ? SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_READ
: SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE;
return stage_access;
}
static SyncStageAccessIndex DepthStencilLoadUsage(VkAttachmentLoadOp load_op) {
const auto stage_access = (load_op == VK_ATTACHMENT_LOAD_OP_LOAD) ? SYNC_EARLY_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_READ
: SYNC_EARLY_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE;
return stage_access;
}
// Caller must manage returned pointer
static AccessContext *CreateStoreResolveProxyContext(const AccessContext &context, const RENDER_PASS_STATE &rp_state,
uint32_t subpass, const VkRect2D &render_area,
std::vector<const IMAGE_VIEW_STATE *> attachment_views) {
auto *proxy = new AccessContext(context);
proxy->UpdateAttachmentResolveAccess(rp_state, render_area, attachment_views, subpass, kCurrentCommandTag);
proxy->UpdateAttachmentStoreAccess(rp_state, render_area, attachment_views, subpass, kCurrentCommandTag);
return proxy;
}
template <typename BarrierAction>
class ResolveAccessRangeFunctor {
public:
ResolveAccessRangeFunctor(const AccessContext &context, AccessAddressType address_type, ResourceAccessRangeMap *descent_map,
const ResourceAccessState *infill_state, BarrierAction &barrier_action)
: context_(context),
address_type_(address_type),
descent_map_(descent_map),
infill_state_(infill_state),
barrier_action_(barrier_action) {}
ResolveAccessRangeFunctor() = delete;
void operator()(const ResourceAccessRange &range) const {
context_.ResolveAccessRange(address_type_, range, barrier_action_, descent_map_, infill_state_);
}
private:
const AccessContext &context_;
const AccessAddressType address_type_;
ResourceAccessRangeMap *const descent_map_;
const ResourceAccessState *infill_state_;
BarrierAction &barrier_action_;
};
template <typename BarrierAction>
void AccessContext::ResolveAccessRange(const IMAGE_STATE &image_state, const VkImageSubresourceRange &subresource_range,
BarrierAction &barrier_action, AccessAddressType address_type,
ResourceAccessRangeMap *descent_map, const ResourceAccessState *infill_state) const {
const ResolveAccessRangeFunctor<BarrierAction> action(*this, address_type, descent_map, infill_state, barrier_action);
ApplyOverImageRange(image_state, subresource_range, action);
}
// Layout transitions are handled as if the were occuring in the beginning of the next subpass
bool AccessContext::ValidateLayoutTransitions(const CommandBufferAccessContext &cb_context, const RENDER_PASS_STATE &rp_state,
const VkRect2D &render_area, uint32_t subpass,
const std::vector<const IMAGE_VIEW_STATE *> &attachment_views,
const char *func_name) const {
bool skip = false;
// As validation methods are const and precede the record/update phase, for any tranistions from the immediately
// previous subpass, we have to validate them against a copy of the AccessContext, with resolve operations applied, as
// those affects have not been recorded yet.
//
// Note: we could be more efficient by tracking whether or not we actually *have* any changes (e.g. attachment resolve)
// to apply and only copy then, if this proves a hot spot.
std::unique_ptr<AccessContext> proxy_for_prev;
TrackBack proxy_track_back;
const auto &transitions = rp_state.subpass_transitions[subpass];
for (const auto &transition : transitions) {
const bool prev_needs_proxy = transition.prev_pass != VK_SUBPASS_EXTERNAL && (transition.prev_pass + 1 == subpass);
const auto *track_back = GetTrackBackFromSubpass(transition.prev_pass);
if (prev_needs_proxy) {
if (!proxy_for_prev) {
proxy_for_prev.reset(CreateStoreResolveProxyContext(*track_back->context, rp_state, transition.prev_pass,
render_area, attachment_views));
proxy_track_back = *track_back;
proxy_track_back.context = proxy_for_prev.get();
}
track_back = &proxy_track_back;
}
auto hazard = DetectSubpassTransitionHazard(*track_back, attachment_views[transition.attachment]);
if (hazard.hazard) {
skip |= cb_context.GetSyncState().LogError(rp_state.renderPass, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s in subpass %" PRIu32 " for attachment %" PRIu32
" image layout transition (old_layout: %s, new_layout: %s). Access info %s.",
func_name, string_SyncHazard(hazard.hazard), subpass, transition.attachment,
string_VkImageLayout(transition.old_layout),
string_VkImageLayout(transition.new_layout),
cb_context.FormatUsage(hazard).c_str());
}
}
return skip;
}
bool AccessContext::ValidateLoadOperation(const CommandBufferAccessContext &cb_context, const RENDER_PASS_STATE &rp_state,
const VkRect2D &render_area, uint32_t subpass,
const std::vector<const IMAGE_VIEW_STATE *> &attachment_views,
const char *func_name) const {
bool skip = false;
const auto *attachment_ci = rp_state.createInfo.pAttachments;
VkExtent3D extent = CastTo3D(render_area.extent);
VkOffset3D offset = CastTo3D(render_area.offset);
for (uint32_t i = 0; i < rp_state.createInfo.attachmentCount; i++) {
if (subpass == rp_state.attachment_first_subpass[i]) {
if (attachment_views[i] == nullptr) continue;
const IMAGE_VIEW_STATE &view = *attachment_views[i];
const IMAGE_STATE *image = view.image_state.get();
if (image == nullptr) continue;
const auto &ci = attachment_ci[i];
// Need check in the following way
// 1) if the usage bit isn't in the dest_access_scope, and there is layout traniition for initial use, report hazard
// vs. transition
// 2) if there isn't a layout transition, we need to look at the external context with a "detect hazard" operation
// for each aspect loaded.
const bool has_depth = FormatHasDepth(ci.format);
const bool has_stencil = FormatHasStencil(ci.format);
const bool is_color = !(has_depth || has_stencil);
const SyncStageAccessIndex load_index = has_depth ? DepthStencilLoadUsage(ci.loadOp) : ColorLoadUsage(ci.loadOp);
const SyncStageAccessIndex stencil_load_index = has_stencil ? DepthStencilLoadUsage(ci.stencilLoadOp) : load_index;
HazardResult hazard;
const char *aspect = nullptr;
auto hazard_range = view.normalized_subresource_range;
bool checked_stencil = false;
if (is_color) {
hazard = DetectHazard(*image, load_index, view.normalized_subresource_range, SyncOrdering::kColorAttachment, offset,
extent);
aspect = "color";
} else {
if (has_depth) {
hazard_range.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
hazard = DetectHazard(*image, load_index, hazard_range, SyncOrdering::kDepthStencilAttachment, offset, extent);
aspect = "depth";
}
if (!hazard.hazard && has_stencil) {
hazard_range.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
hazard = DetectHazard(*image, stencil_load_index, hazard_range, SyncOrdering::kDepthStencilAttachment, offset,
extent);
aspect = "stencil";
checked_stencil = true;
}
}
if (hazard.hazard) {
auto load_op_string = string_VkAttachmentLoadOp(checked_stencil ? ci.stencilLoadOp : ci.loadOp);
const auto &sync_state = cb_context.GetSyncState();
if (hazard.tag == kCurrentCommandTag) {
// Hazard vs. ILT
skip |= sync_state.LogError(rp_state.renderPass, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s vs. layout transition in subpass %" PRIu32 " for attachment %" PRIu32
" aspect %s during load with loadOp %s.",
func_name, string_SyncHazard(hazard.hazard), subpass, i, aspect, load_op_string);
} else {
skip |= sync_state.LogError(rp_state.renderPass, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s in subpass %" PRIu32 " for attachment %" PRIu32
" aspect %s during load with loadOp %s. Access info %s.",
func_name, string_SyncHazard(hazard.hazard), subpass, i, aspect, load_op_string,
cb_context.FormatUsage(hazard).c_str());
}
}
}
}
return skip;
}
// Store operation validation can ignore resolve (before it) and layout tranistions after it. The first is ignored
// because of the ordering guarantees w.r.t. sample access and that the resolve validation hasn't altered the state, because
// store is part of the same Next/End operation.
// The latter is handled in layout transistion validation directly
bool AccessContext::ValidateStoreOperation(const CommandBufferAccessContext &cb_context, const RENDER_PASS_STATE &rp_state,
const VkRect2D &render_area, uint32_t subpass,
const std::vector<const IMAGE_VIEW_STATE *> &attachment_views,
const char *func_name) const {
bool skip = false;
const auto *attachment_ci = rp_state.createInfo.pAttachments;
VkExtent3D extent = CastTo3D(render_area.extent);
VkOffset3D offset = CastTo3D(render_area.offset);
for (uint32_t i = 0; i < rp_state.createInfo.attachmentCount; i++) {
if (subpass == rp_state.attachment_last_subpass[i]) {
if (attachment_views[i] == nullptr) continue;
const IMAGE_VIEW_STATE &view = *attachment_views[i];
const IMAGE_STATE *image = view.image_state.get();
if (image == nullptr) continue;
const auto &ci = attachment_ci[i];
// The spec states that "don't care" is an operation with VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
// so we assume that an implementation is *free* to write in that case, meaning that for correctness
// sake, we treat DONT_CARE as writing.
const bool has_depth = FormatHasDepth(ci.format);
const bool has_stencil = FormatHasStencil(ci.format);
const bool is_color = !(has_depth || has_stencil);
const bool store_op_stores = ci.storeOp != VK_ATTACHMENT_STORE_OP_NONE_QCOM;
if (!has_stencil && !store_op_stores) continue;
HazardResult hazard;
const char *aspect = nullptr;
bool checked_stencil = false;
if (is_color) {
hazard = DetectHazard(*image, SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE,
view.normalized_subresource_range, SyncOrdering::kRaster, offset, extent);
aspect = "color";
} else {
const bool stencil_op_stores = ci.stencilStoreOp != VK_ATTACHMENT_STORE_OP_NONE_QCOM;
auto hazard_range = view.normalized_subresource_range;
if (has_depth && store_op_stores) {
hazard_range.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
hazard = DetectHazard(*image, SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE, hazard_range,
SyncOrdering::kRaster, offset, extent);
aspect = "depth";
}
if (!hazard.hazard && has_stencil && stencil_op_stores) {
hazard_range.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
hazard = DetectHazard(*image, SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE, hazard_range,
SyncOrdering::kRaster, offset, extent);
aspect = "stencil";
checked_stencil = true;
}
}
if (hazard.hazard) {
const char *const op_type_string = checked_stencil ? "stencilStoreOp" : "storeOp";
const char *const store_op_string = string_VkAttachmentStoreOp(checked_stencil ? ci.stencilStoreOp : ci.storeOp);
skip |= cb_context.GetSyncState().LogError(rp_state.renderPass, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s in subpass %" PRIu32 " for attachment %" PRIu32
" %s aspect during store with %s %s. Access info %s",
func_name, string_SyncHazard(hazard.hazard), subpass, i, aspect,
op_type_string, store_op_string, cb_context.FormatUsage(hazard).c_str());
}
}
}
return skip;
}
bool AccessContext::ValidateResolveOperations(const CommandBufferAccessContext &cb_context, const RENDER_PASS_STATE &rp_state,
const VkRect2D &render_area,
const std::vector<const IMAGE_VIEW_STATE *> &attachment_views, const char *func_name,
uint32_t subpass) const {
ValidateResolveAction validate_action(rp_state.renderPass, subpass, *this, cb_context, func_name);
ResolveOperation(validate_action, rp_state, render_area, attachment_views, subpass);
return validate_action.GetSkip();
}
class HazardDetector {
SyncStageAccessIndex usage_index_;
public:
HazardResult Detect(const ResourceAccessRangeMap::const_iterator &pos) const { return pos->second.DetectHazard(usage_index_); }
HazardResult DetectAsync(const ResourceAccessRangeMap::const_iterator &pos, const ResourceUsageTag &start_tag) const {
return pos->second.DetectAsyncHazard(usage_index_, start_tag);
}
explicit HazardDetector(SyncStageAccessIndex usage) : usage_index_(usage) {}
};
class HazardDetectorWithOrdering {
const SyncStageAccessIndex usage_index_;
const SyncOrdering ordering_rule_;
public:
HazardResult Detect(const ResourceAccessRangeMap::const_iterator &pos) const {
return pos->second.DetectHazard(usage_index_, ordering_rule_);
}
HazardResult DetectAsync(const ResourceAccessRangeMap::const_iterator &pos, const ResourceUsageTag &start_tag) const {
return pos->second.DetectAsyncHazard(usage_index_, start_tag);
}
HazardDetectorWithOrdering(SyncStageAccessIndex usage, SyncOrdering ordering) : usage_index_(usage), ordering_rule_(ordering) {}
};
HazardResult AccessContext::DetectHazard(const BUFFER_STATE &buffer, SyncStageAccessIndex usage_index,
const ResourceAccessRange &range) const {
if (!SimpleBinding(buffer)) return HazardResult();
const auto base_address = ResourceBaseAddress(buffer);
HazardDetector detector(usage_index);
return DetectHazard(AccessAddressType::kLinear, detector, (range + base_address), DetectOptions::kDetectAll);
}
template <typename Detector>
HazardResult AccessContext::DetectHazard(Detector &detector, const IMAGE_STATE &image,
const VkImageSubresourceRange &subresource_range, const VkOffset3D &offset,
const VkExtent3D &extent, DetectOptions options) const {
if (!SimpleBinding(image)) return HazardResult();
const auto base_address = ResourceBaseAddress(image);
subresource_adapter::ImageRangeGenerator range_gen(*image.fragment_encoder.get(), subresource_range, offset, extent,
base_address);
const auto address_type = ImageAddressType(image);
for (; range_gen->non_empty(); ++range_gen) {
HazardResult hazard = DetectHazard(address_type, detector, *range_gen, options);
if (hazard.hazard) return hazard;
}
return HazardResult();
}
HazardResult AccessContext::DetectHazard(const IMAGE_STATE &image, SyncStageAccessIndex current_usage,
const VkImageSubresourceLayers &subresource, const VkOffset3D &offset,
const VkExtent3D &extent) const {
VkImageSubresourceRange subresource_range = {subresource.aspectMask, subresource.mipLevel, 1, subresource.baseArrayLayer,
subresource.layerCount};
return DetectHazard(image, current_usage, subresource_range, offset, extent);
}
HazardResult AccessContext::DetectHazard(const IMAGE_STATE &image, SyncStageAccessIndex current_usage,
const VkImageSubresourceRange &subresource_range, const VkOffset3D &offset,
const VkExtent3D &extent) const {
HazardDetector detector(current_usage);
return DetectHazard(detector, image, subresource_range, offset, extent, DetectOptions::kDetectAll);
}
HazardResult AccessContext::DetectHazard(const IMAGE_STATE &image, SyncStageAccessIndex current_usage,
const VkImageSubresourceRange &subresource_range, SyncOrdering ordering_rule,
const VkOffset3D &offset, const VkExtent3D &extent) const {
HazardDetectorWithOrdering detector(current_usage, ordering_rule);
return DetectHazard(detector, image, subresource_range, offset, extent, DetectOptions::kDetectAll);
}
// Some common code for looking at attachments, if there's anything wrong, we return no hazard, core validation
// should have reported the issue regarding an invalid attachment entry
HazardResult AccessContext::DetectHazard(const IMAGE_VIEW_STATE *view, SyncStageAccessIndex current_usage,
SyncOrdering ordering_rule, const VkOffset3D &offset, const VkExtent3D &extent,
VkImageAspectFlags aspect_mask) const {
if (view != nullptr) {
const IMAGE_STATE *image = view->image_state.get();
if (image != nullptr) {
auto *detect_range = &view->normalized_subresource_range;
VkImageSubresourceRange masked_range;
if (aspect_mask) { // If present and non-zero, restrict the normalized range to aspects present in aspect_mask
masked_range = view->normalized_subresource_range;
masked_range.aspectMask = aspect_mask & masked_range.aspectMask;
detect_range = &masked_range;
}
// NOTE: The range encoding code is not robust to invalid ranges, so we protect it from our change
if (detect_range->aspectMask) {
return DetectHazard(*image, current_usage, *detect_range, ordering_rule, offset, extent);
}
}
}
return HazardResult();
}
class BarrierHazardDetector {
public:
BarrierHazardDetector(SyncStageAccessIndex usage_index, VkPipelineStageFlags src_exec_scope,
SyncStageAccessFlags src_access_scope)
: usage_index_(usage_index), src_exec_scope_(src_exec_scope), src_access_scope_(src_access_scope) {}
HazardResult Detect(const ResourceAccessRangeMap::const_iterator &pos) const {
return pos->second.DetectBarrierHazard(usage_index_, src_exec_scope_, src_access_scope_);
}
HazardResult DetectAsync(const ResourceAccessRangeMap::const_iterator &pos, const ResourceUsageTag &start_tag) const {
// Async barrier hazard detection can use the same path as the usage index is not IsRead, but is IsWrite
return pos->second.DetectAsyncHazard(usage_index_, start_tag);
}
private:
SyncStageAccessIndex usage_index_;
VkPipelineStageFlags src_exec_scope_;
SyncStageAccessFlags src_access_scope_;
};
class EventBarrierHazardDetector {
public:
EventBarrierHazardDetector(SyncStageAccessIndex usage_index, VkPipelineStageFlags src_exec_scope,
SyncStageAccessFlags src_access_scope, const SyncEventState::ScopeMap &event_scope,
const ResourceUsageTag &scope_tag)
: usage_index_(usage_index),
src_exec_scope_(src_exec_scope),
src_access_scope_(src_access_scope),
event_scope_(event_scope),
scope_pos_(event_scope.cbegin()),
scope_end_(event_scope.cend()),
scope_tag_(scope_tag) {}
HazardResult Detect(const ResourceAccessRangeMap::const_iterator &pos) const {
// TODO NOTE: This is almost the slowest way to do this... need to intelligently walk this...
// Need to find a more efficient sync, since we know pos->first is strictly increasing call to call
// NOTE: "cached_lower_bound_impl" with upgrades could do this.
if (scope_pos_ == scope_end_) return HazardResult();
if (!scope_pos_->first.intersects(pos->first)) {
event_scope_.lower_bound(pos->first);
if ((scope_pos_ == scope_end_) || !scope_pos_->first.intersects(pos->first)) return HazardResult();
}
// Some portion of this pos is in the event_scope, so check for a barrier hazard
return pos->second.DetectBarrierHazard(usage_index_, src_exec_scope_, src_access_scope_, scope_tag_);
}
HazardResult DetectAsync(const ResourceAccessRangeMap::const_iterator &pos, const ResourceUsageTag &start_tag) const {
// Async barrier hazard detection can use the same path as the usage index is not IsRead, but is IsWrite
return pos->second.DetectAsyncHazard(usage_index_, start_tag);
}
private:
SyncStageAccessIndex usage_index_;
VkPipelineStageFlags src_exec_scope_;
SyncStageAccessFlags src_access_scope_;
const SyncEventState::ScopeMap &event_scope_;
SyncEventState::ScopeMap::const_iterator scope_pos_;
SyncEventState::ScopeMap::const_iterator scope_end_;
const ResourceUsageTag &scope_tag_;
};
HazardResult AccessContext::DetectImageBarrierHazard(const IMAGE_STATE &image, VkPipelineStageFlags src_exec_scope,
const SyncStageAccessFlags &src_access_scope,
const VkImageSubresourceRange &subresource_range,
const SyncEventState &sync_event, DetectOptions options) const {
// It's not particularly DRY to get the address type in this function as well as lower down, but we have to select the
// first access scope map to use, and there's no easy way to plumb it in below.
const auto address_type = ImageAddressType(image);
const auto &event_scope = sync_event.FirstScope(address_type);
EventBarrierHazardDetector detector(SyncStageAccessIndex::SYNC_IMAGE_LAYOUT_TRANSITION, src_exec_scope, src_access_scope,
event_scope, sync_event.first_scope_tag);
VkOffset3D zero_offset = {0, 0, 0};
return DetectHazard(detector, image, subresource_range, zero_offset, image.createInfo.extent, options);
}
HazardResult AccessContext::DetectImageBarrierHazard(const IMAGE_STATE &image, VkPipelineStageFlags src_exec_scope,
const SyncStageAccessFlags &src_access_scope,
const VkImageSubresourceRange &subresource_range,
const DetectOptions options) const {
BarrierHazardDetector detector(SyncStageAccessIndex::SYNC_IMAGE_LAYOUT_TRANSITION, src_exec_scope, src_access_scope);
VkOffset3D zero_offset = {0, 0, 0};
return DetectHazard(detector, image, subresource_range, zero_offset, image.createInfo.extent, options);
}
HazardResult AccessContext::DetectImageBarrierHazard(const IMAGE_STATE &image, VkPipelineStageFlags src_exec_scope,
const SyncStageAccessFlags &src_stage_accesses,
const VkImageMemoryBarrier &barrier) const {
auto subresource_range = NormalizeSubresourceRange(image.createInfo, barrier.subresourceRange);
const auto src_access_scope = SyncStageAccess::AccessScope(src_stage_accesses, barrier.srcAccessMask);
return DetectImageBarrierHazard(image, src_exec_scope, src_access_scope, subresource_range, kDetectAll);
}
HazardResult AccessContext::DetectImageBarrierHazard(const SyncImageMemoryBarrier &image_barrier) const {
return DetectImageBarrierHazard(*image_barrier.image.get(), image_barrier.barrier.src_exec_scope,
image_barrier.barrier.src_access_scope, image_barrier.range.subresource_range, kDetectAll);
}
template <typename Flags, typename Map>
SyncStageAccessFlags AccessScopeImpl(Flags flag_mask, const Map &map) {
SyncStageAccessFlags scope = 0;
for (const auto &bit_scope : map) {
if (flag_mask < bit_scope.first) break;
if (flag_mask & bit_scope.first) {
scope |= bit_scope.second;
}
}
return scope;
}
SyncStageAccessFlags SyncStageAccess::AccessScopeByStage(VkPipelineStageFlags stages) {
return AccessScopeImpl(stages, syncStageAccessMaskByStageBit);
}
SyncStageAccessFlags SyncStageAccess::AccessScopeByAccess(VkAccessFlags accesses) {
return AccessScopeImpl(accesses, syncStageAccessMaskByAccessBit);
}
// Getting from stage mask and access mask to stage/acess masks is something we need to be good at...
SyncStageAccessFlags SyncStageAccess::AccessScope(VkPipelineStageFlags stages, VkAccessFlags accesses) {
// The access scope is the intersection of all stage/access types possible for the enabled stages and the enables
// accesses (after doing a couple factoring of common terms the union of stage/access intersections is the intersections
// of the union of all stage/access types for all the stages and the same unions for the access mask...
return AccessScopeByStage(stages) & AccessScopeByAccess(accesses);
}
template <typename Action>
void UpdateMemoryAccessState(ResourceAccessRangeMap *accesses, const ResourceAccessRange &range, const Action &action) {
// TODO: Optimization for operations that do a pure overwrite (i.e. WRITE usages which rewrite the state, vs READ usages
// that do incrementalupdates
assert(accesses);
auto pos = accesses->lower_bound(range);
if (pos == accesses->end() || !pos->first.intersects(range)) {
// The range is empty, fill it with a default value.
pos = action.Infill(accesses, pos, range);
} else if (range.begin < pos->first.begin) {
// Leading empty space, infill
pos = action.Infill(accesses, pos, ResourceAccessRange(range.begin, pos->first.begin));
} else if (pos->first.begin < range.begin) {
// Trim the beginning if needed
pos = accesses->split(pos, range.begin, sparse_container::split_op_keep_both());
++pos;
}
const auto the_end = accesses->end();
while ((pos != the_end) && pos->first.intersects(range)) {
if (pos->first.end > range.end) {
pos = accesses->split(pos, range.end, sparse_container::split_op_keep_both());
}
pos = action(accesses, pos);
if (pos == the_end) break;
auto next = pos;
++next;
if ((pos->first.end < range.end) && (next != the_end) && !next->first.is_subsequent_to(pos->first)) {
// Need to infill if next is disjoint
VkDeviceSize limit = (next == the_end) ? range.end : std::min(range.end, next->first.begin);
ResourceAccessRange new_range(pos->first.end, limit);
next = action.Infill(accesses, next, new_range);
}
pos = next;
}
}
// Give a comparable interface for range generators and ranges
template <typename Action>
inline void UpdateMemoryAccessState(ResourceAccessRangeMap *accesses, const Action &action, ResourceAccessRange *range) {
assert(range);
UpdateMemoryAccessState(accesses, *range, action);
}
template <typename Action, typename RangeGen>
void UpdateMemoryAccessState(ResourceAccessRangeMap *accesses, const Action &action, RangeGen *range_gen_arg) {
assert(range_gen_arg);
RangeGen &range_gen = *range_gen_arg; // Non-const references must be * by style requirement but deref-ing * iterator is a pain
for (; range_gen->non_empty(); ++range_gen) {
UpdateMemoryAccessState(accesses, *range_gen, action);
}
}
struct UpdateMemoryAccessStateFunctor {
using Iterator = ResourceAccessRangeMap::iterator;
Iterator Infill(ResourceAccessRangeMap *accesses, Iterator pos, ResourceAccessRange range) const {
// this is only called on gaps, and never returns a gap.
ResourceAccessState default_state;
context.ResolvePreviousAccess(type, range, accesses, &default_state);
return accesses->lower_bound(range);
}
Iterator operator()(ResourceAccessRangeMap *accesses, Iterator pos) const {
auto &access_state = pos->second;
access_state.Update(usage, ordering_rule, tag);
return pos;
}
UpdateMemoryAccessStateFunctor(AccessAddressType type_, const AccessContext &context_, SyncStageAccessIndex usage_,
SyncOrdering ordering_rule_, const ResourceUsageTag &tag_)
: type(type_), context(context_), usage(usage_), ordering_rule(ordering_rule_), tag(tag_) {}
const AccessAddressType type;
const AccessContext &context;
const SyncStageAccessIndex usage;
const SyncOrdering ordering_rule;
const ResourceUsageTag &tag;
};
// The barrier operation for pipeline and subpass dependencies`
struct PipelineBarrierOp {
SyncBarrier barrier;
bool layout_transition;
PipelineBarrierOp(const SyncBarrier &barrier_, bool layout_transition_)
: barrier(barrier_), layout_transition(layout_transition_) {}
PipelineBarrierOp() = default;
PipelineBarrierOp(const PipelineBarrierOp &) = default;
void operator()(ResourceAccessState *access_state) const { access_state->ApplyBarrier(barrier, layout_transition); }
};
// The barrier operation for wait events
struct WaitEventBarrierOp {
const ResourceUsageTag *scope_tag;
SyncBarrier barrier;
bool layout_transition;
WaitEventBarrierOp(const ResourceUsageTag &scope_tag_, const SyncBarrier &barrier_, bool layout_transition_)
: scope_tag(&scope_tag_), barrier(barrier_), layout_transition(layout_transition_) {}
WaitEventBarrierOp() = default;
void operator()(ResourceAccessState *access_state) const {
assert(scope_tag); // Not valid to have a non-scope op executed, default construct included for std::vector support
access_state->ApplyBarrier(*scope_tag, barrier, layout_transition);
}
};
// This functor applies a collection of barriers, updating the "pending state" in each touched memory range, and optionally
// resolves the pending state. Suitable for processing Global memory barriers, or Subpass Barriers when the "final" barrier
// of a collection is known/present.
template <typename BarrierOp>
class ApplyBarrierOpsFunctor {
public:
using Iterator = ResourceAccessRangeMap::iterator;
inline Iterator Infill(ResourceAccessRangeMap *accesses, Iterator pos, ResourceAccessRange range) const { return pos; }
Iterator operator()(ResourceAccessRangeMap *accesses, Iterator pos) const {
auto &access_state = pos->second;
for (const auto &op : barrier_ops_) {
op(&access_state);
}
if (resolve_) {
// If this is the last (or only) batch, we can do the pending resolve as the last step in this operation to avoid
// another walk
access_state.ApplyPendingBarriers(tag_);
}
return pos;
}
// A valid tag is required IFF layout_transition is true, as transitions are write ops
ApplyBarrierOpsFunctor(bool resolve, size_t size_hint, const ResourceUsageTag &tag)
: resolve_(resolve), barrier_ops_(), tag_(tag) {
barrier_ops_.reserve(size_hint);
}
void EmplaceBack(const BarrierOp &op) { barrier_ops_.emplace_back(op); }
private:
bool resolve_;
std::vector<BarrierOp> barrier_ops_;
const ResourceUsageTag &tag_;
};
// This functor applies a single barrier, updating the "pending state" in each touched memory range, but does not
// resolve the pendinging state. Suitable for processing Image and Buffer barriers from PipelineBarriers or Events
template <typename BarrierOp>
class ApplyBarrierFunctor {
public:
using Iterator = ResourceAccessRangeMap::iterator;
inline Iterator Infill(ResourceAccessRangeMap *accesses, Iterator pos, ResourceAccessRange range) const { return pos; }
Iterator operator()(ResourceAccessRangeMap *accesses, Iterator pos) const {
auto &access_state = pos->second;
barrier_op_(&access_state);
return pos;
}
ApplyBarrierFunctor(const BarrierOp &barrier_op) : barrier_op_(barrier_op) {}
private:
BarrierOp barrier_op_;
};
// This functor resolves the pendinging state.
class ResolvePendingBarrierFunctor {
public:
using Iterator = ResourceAccessRangeMap::iterator;
inline Iterator Infill(ResourceAccessRangeMap *accesses, Iterator pos, ResourceAccessRange range) const { return pos; }
Iterator operator()(ResourceAccessRangeMap *accesses, Iterator pos) const {
auto &access_state = pos->second;
access_state.ApplyPendingBarriers(tag_);
return pos;
}
ResolvePendingBarrierFunctor(const ResourceUsageTag &tag) : tag_(tag) {}
private:
const ResourceUsageTag &tag_;
};
void AccessContext::UpdateAccessState(AccessAddressType type, SyncStageAccessIndex current_usage, SyncOrdering ordering_rule,
const ResourceAccessRange &range, const ResourceUsageTag &tag) {
UpdateMemoryAccessStateFunctor action(type, *this, current_usage, ordering_rule, tag);
UpdateMemoryAccessState(&GetAccessStateMap(type), range, action);
}
void AccessContext::UpdateAccessState(const BUFFER_STATE &buffer, SyncStageAccessIndex current_usage, SyncOrdering ordering_rule,
const ResourceAccessRange &range, const ResourceUsageTag &tag) {
if (!SimpleBinding(buffer)) return;
const auto base_address = ResourceBaseAddress(buffer);
UpdateAccessState(AccessAddressType::kLinear, current_usage, ordering_rule, range + base_address, tag);
}
void AccessContext::UpdateAccessState(const IMAGE_STATE &image, SyncStageAccessIndex current_usage, SyncOrdering ordering_rule,
const VkImageSubresourceRange &subresource_range, const VkOffset3D &offset,
const VkExtent3D &extent, const ResourceUsageTag &tag) {
if (!SimpleBinding(image)) return;
const auto base_address = ResourceBaseAddress(image);
subresource_adapter::ImageRangeGenerator range_gen(*image.fragment_encoder.get(), subresource_range, offset, extent,
base_address);
const auto address_type = ImageAddressType(image);
UpdateMemoryAccessStateFunctor action(address_type, *this, current_usage, ordering_rule, tag);
for (; range_gen->non_empty(); ++range_gen) {
UpdateMemoryAccessState(&GetAccessStateMap(address_type), *range_gen, action);
}
}
void AccessContext::UpdateAccessState(const IMAGE_VIEW_STATE *view, SyncStageAccessIndex current_usage, SyncOrdering ordering_rule,
const VkOffset3D &offset, const VkExtent3D &extent, VkImageAspectFlags aspect_mask,
const ResourceUsageTag &tag) {
if (view != nullptr) {
const IMAGE_STATE *image = view->image_state.get();
if (image != nullptr) {
auto *update_range = &view->normalized_subresource_range;
VkImageSubresourceRange masked_range;
if (aspect_mask) { // If present and non-zero, restrict the normalized range to aspects present in aspect_mask
masked_range = view->normalized_subresource_range;
masked_range.aspectMask = aspect_mask & masked_range.aspectMask;
update_range = &masked_range;
}
UpdateAccessState(*image, current_usage, ordering_rule, *update_range, offset, extent, tag);
}
}
}
void AccessContext::UpdateAccessState(const IMAGE_STATE &image, SyncStageAccessIndex current_usage, SyncOrdering ordering_rule,
const VkImageSubresourceLayers &subresource, const VkOffset3D &offset,
const VkExtent3D &extent, const ResourceUsageTag &tag) {
VkImageSubresourceRange subresource_range = {subresource.aspectMask, subresource.mipLevel, 1, subresource.baseArrayLayer,
subresource.layerCount};
UpdateAccessState(image, current_usage, ordering_rule, subresource_range, offset, extent, tag);
}
template <typename Action>
void AccessContext::UpdateResourceAccess(const BUFFER_STATE &buffer, const ResourceAccessRange &range, const Action action) {
if (!SimpleBinding(buffer)) return;
const auto base_address = ResourceBaseAddress(buffer);
UpdateMemoryAccessState(&GetAccessStateMap(AccessAddressType::kLinear), (range + base_address), action);
}
template <typename Action>
void AccessContext::UpdateResourceAccess(const IMAGE_STATE &image, const VkImageSubresourceRange &subresource_range,
const Action action) {
if (!SimpleBinding(image)) return;
const auto address_type = ImageAddressType(image);
auto *accesses = &GetAccessStateMap(address_type);
const auto base_address = ResourceBaseAddress(image);
subresource_adapter::ImageRangeGenerator range_gen(*image.fragment_encoder.get(), subresource_range, {0, 0, 0},
image.createInfo.extent, base_address);
for (; range_gen->non_empty(); ++range_gen) {
UpdateMemoryAccessState(accesses, *range_gen, action);
}
}
void AccessContext::UpdateAttachmentResolveAccess(const RENDER_PASS_STATE &rp_state, const VkRect2D &render_area,
const std::vector<const IMAGE_VIEW_STATE *> &attachment_views, uint32_t subpass,
const ResourceUsageTag &tag) {
UpdateStateResolveAction update(*this, tag);
ResolveOperation(update, rp_state, render_area, attachment_views, subpass);
}
void AccessContext::UpdateAttachmentStoreAccess(const RENDER_PASS_STATE &rp_state, const VkRect2D &render_area,
const std::vector<const IMAGE_VIEW_STATE *> &attachment_views, uint32_t subpass,
const ResourceUsageTag &tag) {
const auto *attachment_ci = rp_state.createInfo.pAttachments;
VkExtent3D extent = CastTo3D(render_area.extent);
VkOffset3D offset = CastTo3D(render_area.offset);
for (uint32_t i = 0; i < rp_state.createInfo.attachmentCount; i++) {
if (rp_state.attachment_last_subpass[i] == subpass) {
if (attachment_views[i] == nullptr) continue; // UNUSED
const auto &view = *attachment_views[i];
const IMAGE_STATE *image = view.image_state.get();
if (image == nullptr) continue;
const auto &ci = attachment_ci[i];
const bool has_depth = FormatHasDepth(ci.format);
const bool has_stencil = FormatHasStencil(ci.format);
const bool is_color = !(has_depth || has_stencil);
const bool store_op_stores = ci.storeOp != VK_ATTACHMENT_STORE_OP_NONE_QCOM;
if (is_color && store_op_stores) {
UpdateAccessState(*image, SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE, SyncOrdering::kRaster,
view.normalized_subresource_range, offset, extent, tag);
} else {
auto update_range = view.normalized_subresource_range;
if (has_depth && store_op_stores) {
update_range.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
UpdateAccessState(*image, SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE, SyncOrdering::kRaster,
update_range, offset, extent, tag);
}
const bool stencil_op_stores = ci.stencilStoreOp != VK_ATTACHMENT_STORE_OP_NONE_QCOM;
if (has_stencil && stencil_op_stores) {
update_range.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
UpdateAccessState(*image, SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE, SyncOrdering::kRaster,
update_range, offset, extent, tag);
}
}
}
}
}
template <typename Action>
void AccessContext::ApplyToContext(const Action &barrier_action) {
// Note: Barriers do *not* cross context boundaries, applying to accessess within.... (at least for renderpass subpasses)
for (const auto address_type : kAddressTypes) {
UpdateMemoryAccessState(&GetAccessStateMap(address_type), kFullRange, barrier_action);
}
}
void AccessContext::ResolveChildContexts(const std::vector<AccessContext> &contexts) {
for (uint32_t subpass_index = 0; subpass_index < contexts.size(); subpass_index++) {
auto &context = contexts[subpass_index];
ApplyTrackbackBarriersAction barrier_action(context.GetDstExternalTrackBack().barriers);
for (const auto address_type : kAddressTypes) {
context.ResolveAccessRange(address_type, kFullRange, barrier_action, &GetAccessStateMap(address_type), nullptr, false);
}
}
}
// Suitable only for *subpass* access contexts
HazardResult AccessContext::DetectSubpassTransitionHazard(const TrackBack &track_back, const IMAGE_VIEW_STATE *attach_view) const {
if (!attach_view) return HazardResult();
const auto image_state = attach_view->image_state.get();
if (!image_state) return HazardResult();
// We should never ask for a transition from a context we don't have
assert(track_back.context);
// Do the detection against the specific prior context independent of other contexts. (Synchronous only)
// Hazard detection for the transition can be against the merged of the barriers (it only uses src_...)
const auto merged_barrier = MergeBarriers(track_back.barriers);
HazardResult hazard =
track_back.context->DetectImageBarrierHazard(*image_state, merged_barrier.src_exec_scope, merged_barrier.src_access_scope,
attach_view->normalized_subresource_range, kDetectPrevious);
if (!hazard.hazard) {
// The Async hazard check is against the current context's async set.
hazard = DetectImageBarrierHazard(*image_state, merged_barrier.src_exec_scope, merged_barrier.src_access_scope,
attach_view->normalized_subresource_range, kDetectAsync);
}
return hazard;
}
void AccessContext::RecordLayoutTransitions(const RENDER_PASS_STATE &rp_state, uint32_t subpass,
const std::vector<const IMAGE_VIEW_STATE *> &attachment_views,
const ResourceUsageTag &tag) {
const auto &transitions = rp_state.subpass_transitions[subpass];
const ResourceAccessState empty_infill;
for (const auto &transition : transitions) {
const auto prev_pass = transition.prev_pass;
const auto attachment_view = attachment_views[transition.attachment];
if (!attachment_view) continue;
const auto *image = attachment_view->image_state.get();
if (!image) continue;
if (!SimpleBinding(*image)) continue;
const auto *trackback = GetTrackBackFromSubpass(prev_pass);
assert(trackback);
// Import the attachments into the current context
const auto *prev_context = trackback->context;
assert(prev_context);
const auto address_type = ImageAddressType(*image);
auto &target_map = GetAccessStateMap(address_type);
ApplySubpassTransitionBarriersAction barrier_action(trackback->barriers);
prev_context->ResolveAccessRange(*image, attachment_view->normalized_subresource_range, barrier_action, address_type,
&target_map, &empty_infill);
}
// If there were no transitions skip this global map walk
if (transitions.size()) {
ResolvePendingBarrierFunctor apply_pending_action(tag);
ApplyToContext(apply_pending_action);
}
}
void CommandBufferAccessContext::ApplyGlobalBarriersToEvents(const SyncExecScope &src, const SyncExecScope &dst) {
const bool all_commands_bit = 0 != (src.mask_param & VK_PIPELINE_STAGE_ALL_COMMANDS_BIT);
auto *events_context = GetCurrentEventsContext();
assert(events_context);
for (auto &event_pair : *events_context) {
assert(event_pair.second); // Shouldn't be storing empty
auto &sync_event = *event_pair.second;
// Events don't happen at a stage, so we need to check and store the unexpanded ALL_COMMANDS if set for inter-event-calls
if ((sync_event.barriers & src.exec_scope) || all_commands_bit) {
sync_event.barriers |= dst.exec_scope;
sync_event.barriers |= dst.mask_param & VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
}
}
}
// Class CommandBufferAccessContext: Keep track of resource access state information for a specific command buffer
bool CommandBufferAccessContext::ValidateBeginRenderPass(const RENDER_PASS_STATE &rp_state,
const VkRenderPassBeginInfo *pRenderPassBegin,
const VkSubpassBeginInfo *pSubpassBeginInfo, const char *func_name) const {
// Check if any of the layout transitions are hazardous.... but we don't have the renderpass context to work with, so we
bool skip = false;
assert(pRenderPassBegin);
if (nullptr == pRenderPassBegin) return skip;
const uint32_t subpass = 0;
// Construct the state we can use to validate against... (since validation is const and RecordCmdBeginRenderPass
// hasn't happened yet)
const std::vector<AccessContext> empty_context_vector;
AccessContext temp_context(subpass, queue_flags_, rp_state.subpass_dependencies, empty_context_vector,
const_cast<AccessContext *>(&cb_access_context_));
// Create a view list
const auto fb_state = sync_state_->Get<FRAMEBUFFER_STATE>(pRenderPassBegin->framebuffer);
assert(fb_state);
if (nullptr == fb_state) return skip;
// NOTE: Must not use COMMAND_BUFFER_STATE variant of this as RecordCmdBeginRenderPass hasn't run and thus
// the activeRenderPass.* fields haven't been set.
const auto views = sync_state_->GetAttachmentViews(*pRenderPassBegin, *fb_state);
// Validate transitions
skip |= temp_context.ValidateLayoutTransitions(*this, rp_state, pRenderPassBegin->renderArea, subpass, views, func_name);
// Validate load operations if there were no layout transition hazards
if (!skip) {
temp_context.RecordLayoutTransitions(rp_state, subpass, views, kCurrentCommandTag);
skip |= temp_context.ValidateLoadOperation(*this, rp_state, pRenderPassBegin->renderArea, subpass, views, func_name);
}
return skip;
}
bool CommandBufferAccessContext::ValidateDispatchDrawDescriptorSet(VkPipelineBindPoint pipelineBindPoint,
const char *func_name) const {
bool skip = false;
const PIPELINE_STATE *pipe = nullptr;
const std::vector<LAST_BOUND_STATE::PER_SET> *per_sets = nullptr;
GetCurrentPipelineAndDesriptorSetsFromCommandBuffer(*cb_state_.get(), pipelineBindPoint, &pipe, &per_sets);
if (!pipe || !per_sets) {
return skip;
}
using DescriptorClass = cvdescriptorset::DescriptorClass;
using BufferDescriptor = cvdescriptorset::BufferDescriptor;
using ImageDescriptor = cvdescriptorset::ImageDescriptor;
using ImageSamplerDescriptor = cvdescriptorset::ImageSamplerDescriptor;
using TexelDescriptor = cvdescriptorset::TexelDescriptor;
for (const auto &stage_state : pipe->stage_state) {
if (stage_state.stage_flag == VK_SHADER_STAGE_FRAGMENT_BIT && pipe->graphicsPipelineCI.pRasterizationState &&
pipe->graphicsPipelineCI.pRasterizationState->rasterizerDiscardEnable) {
continue;
}
for (const auto &set_binding : stage_state.descriptor_uses) {
cvdescriptorset::DescriptorSet *descriptor_set = (*per_sets)[set_binding.first.first].bound_descriptor_set;
cvdescriptorset::DescriptorSetLayout::ConstBindingIterator binding_it(descriptor_set->GetLayout().get(),
set_binding.first.second);
const auto descriptor_type = binding_it.GetType();
cvdescriptorset::IndexRange index_range = binding_it.GetGlobalIndexRange();
auto array_idx = 0;
if (binding_it.IsVariableDescriptorCount()) {
index_range.end = index_range.start + descriptor_set->GetVariableDescriptorCount();
}
SyncStageAccessIndex sync_index =
GetSyncStageAccessIndexsByDescriptorSet(descriptor_type, set_binding.second, stage_state.stage_flag);
for (uint32_t i = index_range.start; i < index_range.end; ++i, ++array_idx) {
uint32_t index = i - index_range.start;
const auto *descriptor = descriptor_set->GetDescriptorFromGlobalIndex(i);
switch (descriptor->GetClass()) {
case DescriptorClass::ImageSampler:
case DescriptorClass::Image: {
const IMAGE_VIEW_STATE *img_view_state = nullptr;
VkImageLayout image_layout;
if (descriptor->GetClass() == DescriptorClass::ImageSampler) {
const auto image_sampler_descriptor = static_cast<const ImageSamplerDescriptor *>(descriptor);
img_view_state = image_sampler_descriptor->GetImageViewState();
image_layout = image_sampler_descriptor->GetImageLayout();
} else {
const auto image_descriptor = static_cast<const ImageDescriptor *>(descriptor);
img_view_state = image_descriptor->GetImageViewState();
image_layout = image_descriptor->GetImageLayout();
}
if (!img_view_state) continue;
const IMAGE_STATE *img_state = img_view_state->image_state.get();
VkExtent3D extent = {};
VkOffset3D offset = {};
if (sync_index == SYNC_FRAGMENT_SHADER_INPUT_ATTACHMENT_READ) {
extent = CastTo3D(cb_state_->activeRenderPassBeginInfo.renderArea.extent);
offset = CastTo3D(cb_state_->activeRenderPassBeginInfo.renderArea.offset);
} else {
extent = img_state->createInfo.extent;
}
HazardResult hazard;
const auto &subresource_range = img_view_state->normalized_subresource_range;
if (descriptor_type == VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT) {
// Input attachments are subject to raster ordering rules
hazard = current_context_->DetectHazard(*img_state, sync_index, subresource_range,
SyncOrdering::kRaster, offset, extent);
} else {
hazard = current_context_->DetectHazard(*img_state, sync_index, subresource_range, offset, extent);
}
if (hazard.hazard && !sync_state_->SupressedBoundDescriptorWAW(hazard)) {
skip |= sync_state_->LogError(
img_view_state->image_view, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for %s, in %s, and %s, %s, type: %s, imageLayout: %s, binding #%" PRIu32
", index %" PRIu32 ". Access info %s.",
func_name, string_SyncHazard(hazard.hazard),
sync_state_->report_data->FormatHandle(img_view_state->image_view).c_str(),
sync_state_->report_data->FormatHandle(cb_state_->commandBuffer).c_str(),
sync_state_->report_data->FormatHandle(pipe->pipeline).c_str(),
sync_state_->report_data->FormatHandle(descriptor_set->GetSet()).c_str(),
string_VkDescriptorType(descriptor_type), string_VkImageLayout(image_layout),
set_binding.first.second, index, FormatUsage(hazard).c_str());
}
break;
}
case DescriptorClass::TexelBuffer: {
auto buf_view_state = static_cast<const TexelDescriptor *>(descriptor)->GetBufferViewState();
if (!buf_view_state) continue;
const BUFFER_STATE *buf_state = buf_view_state->buffer_state.get();
const ResourceAccessRange range = MakeRange(*buf_view_state);
auto hazard = current_context_->DetectHazard(*buf_state, sync_index, range);
if (hazard.hazard && !sync_state_->SupressedBoundDescriptorWAW(hazard)) {
skip |= sync_state_->LogError(
buf_view_state->buffer_view, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for %s in %s, %s, and %s, type: %s, binding #%d index %d. Access info %s.",
func_name, string_SyncHazard(hazard.hazard),
sync_state_->report_data->FormatHandle(buf_view_state->buffer_view).c_str(),
sync_state_->report_data->FormatHandle(cb_state_->commandBuffer).c_str(),
sync_state_->report_data->FormatHandle(pipe->pipeline).c_str(),
sync_state_->report_data->FormatHandle(descriptor_set->GetSet()).c_str(),
string_VkDescriptorType(descriptor_type), set_binding.first.second, index,
FormatUsage(hazard).c_str());
}
break;
}
case DescriptorClass::GeneralBuffer: {
const auto *buffer_descriptor = static_cast<const BufferDescriptor *>(descriptor);
auto buf_state = buffer_descriptor->GetBufferState();
if (!buf_state) continue;
const ResourceAccessRange range =
MakeRange(*buf_state, buffer_descriptor->GetOffset(), buffer_descriptor->GetRange());
auto hazard = current_context_->DetectHazard(*buf_state, sync_index, range);
if (hazard.hazard && !sync_state_->SupressedBoundDescriptorWAW(hazard)) {
skip |= sync_state_->LogError(
buf_state->buffer, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for %s in %s, %s, and %s, type: %s, binding #%d index %d. Access info %s.",
func_name, string_SyncHazard(hazard.hazard),
sync_state_->report_data->FormatHandle(buf_state->buffer).c_str(),
sync_state_->report_data->FormatHandle(cb_state_->commandBuffer).c_str(),
sync_state_->report_data->FormatHandle(pipe->pipeline).c_str(),
sync_state_->report_data->FormatHandle(descriptor_set->GetSet()).c_str(),
string_VkDescriptorType(descriptor_type), set_binding.first.second, index,
FormatUsage(hazard).c_str());
}
break;
}
// TODO: INLINE_UNIFORM_BLOCK_EXT, ACCELERATION_STRUCTURE_KHR
default:
break;
}
}
}
}
return skip;
}
void CommandBufferAccessContext::RecordDispatchDrawDescriptorSet(VkPipelineBindPoint pipelineBindPoint,
const ResourceUsageTag &tag) {
const PIPELINE_STATE *pipe = nullptr;
const std::vector<LAST_BOUND_STATE::PER_SET> *per_sets = nullptr;
GetCurrentPipelineAndDesriptorSetsFromCommandBuffer(*cb_state_.get(), pipelineBindPoint, &pipe, &per_sets);
if (!pipe || !per_sets) {
return;
}
using DescriptorClass = cvdescriptorset::DescriptorClass;
using BufferDescriptor = cvdescriptorset::BufferDescriptor;
using ImageDescriptor = cvdescriptorset::ImageDescriptor;
using ImageSamplerDescriptor = cvdescriptorset::ImageSamplerDescriptor;
using TexelDescriptor = cvdescriptorset::TexelDescriptor;
for (const auto &stage_state : pipe->stage_state) {
if (stage_state.stage_flag == VK_SHADER_STAGE_FRAGMENT_BIT && pipe->graphicsPipelineCI.pRasterizationState &&
pipe->graphicsPipelineCI.pRasterizationState->rasterizerDiscardEnable) {
continue;
}
for (const auto &set_binding : stage_state.descriptor_uses) {
cvdescriptorset::DescriptorSet *descriptor_set = (*per_sets)[set_binding.first.first].bound_descriptor_set;
cvdescriptorset::DescriptorSetLayout::ConstBindingIterator binding_it(descriptor_set->GetLayout().get(),
set_binding.first.second);
const auto descriptor_type = binding_it.GetType();
cvdescriptorset::IndexRange index_range = binding_it.GetGlobalIndexRange();
auto array_idx = 0;
if (binding_it.IsVariableDescriptorCount()) {
index_range.end = index_range.start + descriptor_set->GetVariableDescriptorCount();
}
SyncStageAccessIndex sync_index =
GetSyncStageAccessIndexsByDescriptorSet(descriptor_type, set_binding.second, stage_state.stage_flag);
for (uint32_t i = index_range.start; i < index_range.end; ++i, ++array_idx) {
const auto *descriptor = descriptor_set->GetDescriptorFromGlobalIndex(i);
switch (descriptor->GetClass()) {
case DescriptorClass::ImageSampler:
case DescriptorClass::Image: {
const IMAGE_VIEW_STATE *img_view_state = nullptr;
if (descriptor->GetClass() == DescriptorClass::ImageSampler) {
img_view_state = static_cast<const ImageSamplerDescriptor *>(descriptor)->GetImageViewState();
} else {
img_view_state = static_cast<const ImageDescriptor *>(descriptor)->GetImageViewState();
}
if (!img_view_state) continue;
const IMAGE_STATE *img_state = img_view_state->image_state.get();
VkExtent3D extent = {};
VkOffset3D offset = {};
if (sync_index == SYNC_FRAGMENT_SHADER_INPUT_ATTACHMENT_READ) {
extent = CastTo3D(cb_state_->activeRenderPassBeginInfo.renderArea.extent);
offset = CastTo3D(cb_state_->activeRenderPassBeginInfo.renderArea.offset);
} else {
extent = img_state->createInfo.extent;
}
SyncOrdering ordering_rule = (descriptor_type == VK_DESCRIPTOR_TYPE_INPUT_ATTACHMENT)
? SyncOrdering::kRaster
: SyncOrdering::kNonAttachment;
current_context_->UpdateAccessState(*img_state, sync_index, ordering_rule,
img_view_state->normalized_subresource_range, offset, extent, tag);
break;
}
case DescriptorClass::TexelBuffer: {
auto buf_view_state = static_cast<const TexelDescriptor *>(descriptor)->GetBufferViewState();
if (!buf_view_state) continue;
const BUFFER_STATE *buf_state = buf_view_state->buffer_state.get();
const ResourceAccessRange range = MakeRange(*buf_view_state);
current_context_->UpdateAccessState(*buf_state, sync_index, SyncOrdering::kNonAttachment, range, tag);
break;
}
case DescriptorClass::GeneralBuffer: {
const auto *buffer_descriptor = static_cast<const BufferDescriptor *>(descriptor);
auto buf_state = buffer_descriptor->GetBufferState();
if (!buf_state) continue;
const ResourceAccessRange range =
MakeRange(*buf_state, buffer_descriptor->GetOffset(), buffer_descriptor->GetRange());
current_context_->UpdateAccessState(*buf_state, sync_index, SyncOrdering::kNonAttachment, range, tag);
break;
}
// TODO: INLINE_UNIFORM_BLOCK_EXT, ACCELERATION_STRUCTURE_KHR
default:
break;
}
}
}
}
}
bool CommandBufferAccessContext::ValidateDrawVertex(uint32_t vertexCount, uint32_t firstVertex, const char *func_name) const {
bool skip = false;
const auto *pipe = GetCurrentPipelineFromCommandBuffer(*cb_state_.get(), VK_PIPELINE_BIND_POINT_GRAPHICS);
if (!pipe) {
return skip;
}
const auto &binding_buffers = cb_state_->current_vertex_buffer_binding_info.vertex_buffer_bindings;
const auto &binding_buffers_size = binding_buffers.size();
const auto &binding_descriptions_size = pipe->vertex_binding_descriptions_.size();
for (size_t i = 0; i < binding_descriptions_size; ++i) {
const auto &binding_description = pipe->vertex_binding_descriptions_[i];
if (binding_description.binding < binding_buffers_size) {
const auto &binding_buffer = binding_buffers[binding_description.binding];
if (binding_buffer.buffer_state == nullptr || binding_buffer.buffer_state->destroyed) continue;
auto *buf_state = binding_buffer.buffer_state.get();
const ResourceAccessRange range = GetBufferRange(binding_buffer.offset, buf_state->createInfo.size, firstVertex,
vertexCount, binding_description.stride);
auto hazard = current_context_->DetectHazard(*buf_state, SYNC_VERTEX_INPUT_VERTEX_ATTRIBUTE_READ, range);
if (hazard.hazard) {
skip |= sync_state_->LogError(
buf_state->buffer, string_SyncHazardVUID(hazard.hazard), "%s: Hazard %s for vertex %s in %s. Access info %s.",
func_name, string_SyncHazard(hazard.hazard), sync_state_->report_data->FormatHandle(buf_state->buffer).c_str(),
sync_state_->report_data->FormatHandle(cb_state_->commandBuffer).c_str(), FormatUsage(hazard).c_str());
}
}
}
return skip;
}
void CommandBufferAccessContext::RecordDrawVertex(uint32_t vertexCount, uint32_t firstVertex, const ResourceUsageTag &tag) {
const auto *pipe = GetCurrentPipelineFromCommandBuffer(*cb_state_.get(), VK_PIPELINE_BIND_POINT_GRAPHICS);
if (!pipe) {
return;
}
const auto &binding_buffers = cb_state_->current_vertex_buffer_binding_info.vertex_buffer_bindings;
const auto &binding_buffers_size = binding_buffers.size();
const auto &binding_descriptions_size = pipe->vertex_binding_descriptions_.size();
for (size_t i = 0; i < binding_descriptions_size; ++i) {
const auto &binding_description = pipe->vertex_binding_descriptions_[i];
if (binding_description.binding < binding_buffers_size) {
const auto &binding_buffer = binding_buffers[binding_description.binding];
if (binding_buffer.buffer_state == nullptr || binding_buffer.buffer_state->destroyed) continue;
auto *buf_state = binding_buffer.buffer_state.get();
const ResourceAccessRange range = GetBufferRange(binding_buffer.offset, buf_state->createInfo.size, firstVertex,
vertexCount, binding_description.stride);
current_context_->UpdateAccessState(*buf_state, SYNC_VERTEX_INPUT_VERTEX_ATTRIBUTE_READ, SyncOrdering::kNonAttachment,
range, tag);
}
}
}
bool CommandBufferAccessContext::ValidateDrawVertexIndex(uint32_t indexCount, uint32_t firstIndex, const char *func_name) const {
bool skip = false;
if (cb_state_->index_buffer_binding.buffer_state == nullptr || cb_state_->index_buffer_binding.buffer_state->destroyed) {
return skip;
}
auto *index_buf_state = cb_state_->index_buffer_binding.buffer_state.get();
const auto index_size = GetIndexAlignment(cb_state_->index_buffer_binding.index_type);
const ResourceAccessRange range = GetBufferRange(cb_state_->index_buffer_binding.offset, index_buf_state->createInfo.size,
firstIndex, indexCount, index_size);
auto hazard = current_context_->DetectHazard(*index_buf_state, SYNC_VERTEX_INPUT_INDEX_READ, range);
if (hazard.hazard) {
skip |= sync_state_->LogError(
index_buf_state->buffer, string_SyncHazardVUID(hazard.hazard), "%s: Hazard %s for index %s in %s. Access info %s.",
func_name, string_SyncHazard(hazard.hazard), sync_state_->report_data->FormatHandle(index_buf_state->buffer).c_str(),
sync_state_->report_data->FormatHandle(cb_state_->commandBuffer).c_str(), FormatUsage(hazard).c_str());
}
// TODO: For now, we detect the whole vertex buffer. Index buffer could be changed until SubmitQueue.
// We will detect more accurate range in the future.
skip |= ValidateDrawVertex(UINT32_MAX, 0, func_name);
return skip;
}
void CommandBufferAccessContext::RecordDrawVertexIndex(uint32_t indexCount, uint32_t firstIndex, const ResourceUsageTag &tag) {
if (cb_state_->index_buffer_binding.buffer_state == nullptr || cb_state_->index_buffer_binding.buffer_state->destroyed) return;
auto *index_buf_state = cb_state_->index_buffer_binding.buffer_state.get();
const auto index_size = GetIndexAlignment(cb_state_->index_buffer_binding.index_type);
const ResourceAccessRange range = GetBufferRange(cb_state_->index_buffer_binding.offset, index_buf_state->createInfo.size,
firstIndex, indexCount, index_size);
current_context_->UpdateAccessState(*index_buf_state, SYNC_VERTEX_INPUT_INDEX_READ, SyncOrdering::kNonAttachment, range, tag);
// TODO: For now, we detect the whole vertex buffer. Index buffer could be changed until SubmitQueue.
// We will detect more accurate range in the future.
RecordDrawVertex(UINT32_MAX, 0, tag);
}
bool CommandBufferAccessContext::ValidateDrawSubpassAttachment(const char *func_name) const {
bool skip = false;
if (!current_renderpass_context_) return skip;
skip |= current_renderpass_context_->ValidateDrawSubpassAttachment(*this, *cb_state_.get(),
cb_state_->activeRenderPassBeginInfo.renderArea, func_name);
return skip;
}
void CommandBufferAccessContext::RecordDrawSubpassAttachment(const ResourceUsageTag &tag) {
if (current_renderpass_context_) {
current_renderpass_context_->RecordDrawSubpassAttachment(*cb_state_.get(), cb_state_->activeRenderPassBeginInfo.renderArea,
tag);
}
}
bool CommandBufferAccessContext::ValidateNextSubpass(const char *func_name) const {
bool skip = false;
if (!current_renderpass_context_) return skip;
skip |= current_renderpass_context_->ValidateNextSubpass(*this, cb_state_->activeRenderPassBeginInfo.renderArea, func_name);
return skip;
}
bool CommandBufferAccessContext::ValidateEndRenderpass(const char *func_name) const {
// TODO: Things to add here.
// Validate Preserve attachments
bool skip = false;
if (!current_renderpass_context_) return skip;
skip |= current_renderpass_context_->ValidateEndRenderPass(*this, cb_state_->activeRenderPassBeginInfo.renderArea, func_name);
return skip;
}
void CommandBufferAccessContext::RecordBeginRenderPass(const ResourceUsageTag &tag) {
assert(sync_state_);
if (!cb_state_) return;
// Create an access context the current renderpass.
render_pass_contexts_.emplace_back();
current_renderpass_context_ = &render_pass_contexts_.back();
current_renderpass_context_->RecordBeginRenderPass(*sync_state_, *cb_state_, &cb_access_context_, queue_flags_, tag);
current_context_ = &current_renderpass_context_->CurrentContext();
}
void CommandBufferAccessContext::RecordNextSubpass(const RENDER_PASS_STATE &rp_state, CMD_TYPE command) {
assert(current_renderpass_context_);
auto prev_tag = NextCommandTag(command);
auto next_tag = NextSubcommandTag(command);
current_renderpass_context_->RecordNextSubpass(cb_state_->activeRenderPassBeginInfo.renderArea, prev_tag, next_tag);
current_context_ = &current_renderpass_context_->CurrentContext();
}
void CommandBufferAccessContext::RecordEndRenderPass(const RENDER_PASS_STATE &render_pass, CMD_TYPE command) {
assert(current_renderpass_context_);
if (!current_renderpass_context_) return;
current_renderpass_context_->RecordEndRenderPass(&cb_access_context_, cb_state_->activeRenderPassBeginInfo.renderArea,
NextCommandTag(command));
current_context_ = &cb_access_context_;
current_renderpass_context_ = nullptr;
}
bool CommandBufferAccessContext::ValidateSetEvent(VkCommandBuffer commandBuffer, VkEvent event,
VkPipelineStageFlags stageMask) const {
// I'll put this here just in case we need to pass this in for future extension support
const auto cmd = CMD_SETEVENT;
bool skip = false;
const auto *event_state = sync_state_->Get<EVENT_STATE>(event);
if (!event_state) return skip;
const auto *sync_event = GetCurrentEventsContext()->Get(event_state);
if (!sync_event) return false; // Core, Lifetimes, or Param check needs to catch invalid events.
const char *const reset_set =
"%s: %s %s operation following %s without intervening execution barrier, is a race condition and may result in data "
"hazards.";
const char *const wait =
"%s: %s %s operation following %s without intervening vkCmdResetEvent, may result in data hazard and is ignored.";
const auto exec_scope = sync_utils::WithEarlierPipelineStages(sync_utils::ExpandPipelineStages(stageMask, GetQueueFlags()));
if (!sync_event->HasBarrier(stageMask, exec_scope)) {
const char *vuid = nullptr;
const char *message = nullptr;
switch (sync_event->last_command) {
case CMD_RESETEVENT:
// Needs a barrier between reset and set
vuid = "SYNC-vkCmdSetEvent-missingbarrier-reset";
message = reset_set;
break;
case CMD_SETEVENT:
// Needs a barrier between set and set
vuid = "SYNC-vkCmdSetEvent-missingbarrier-set";
message = reset_set;
break;
case CMD_WAITEVENTS:
// Needs a barrier or is in second execution scope
vuid = "SYNC-vkCmdSetEvent-missingbarrier-wait";
message = wait;
break;
default:
// The only other valid last command that wasn't one.
assert(sync_event->last_command == CMD_NONE);
break;
}
if (vuid) {
assert(nullptr != message);
const char *const cmd_name = CommandTypeString(cmd);
skip |= sync_state_->LogError(event, vuid, message, cmd_name, sync_state_->report_data->FormatHandle(event).c_str(),
cmd_name, CommandTypeString(sync_event->last_command));
}
}
return skip;
}
void CommandBufferAccessContext::RecordSetEvent(VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags stageMask,
const ResourceUsageTag &tag) {
auto event_state_shared = sync_state_->GetShared<EVENT_STATE>(event);
if (!event_state_shared.get()) return; // Core, Lifetimes, or Param check needs to catch invalid events.
auto *sync_event = GetCurrentEventsContext()->GetFromShared(event_state_shared);
if (!sync_event) return; // Core, Lifetimes, or Param check needs to catch invalid events.
// NOTE: We're going to simply record the sync scope here, as anything else would be implementation defined/undefined
// and we're issuing errors re: missing barriers between event commands, which if the user fixes would fix
// any issues caused by naive scope setting here.
// What happens with two SetEvent is that one cannot know what group of operations will be waited for.
// Given:
// Stuff1; SetEvent; Stuff2; SetEvent; WaitEvents;
// WaitEvents cannot know which of Stuff1, Stuff2, or both has completed execution.
auto scope = SyncExecScope::MakeSrc(GetQueueFlags(), stageMask);
if (!sync_event->HasBarrier(stageMask, scope.exec_scope)) {
sync_event->unsynchronized_set = sync_event->last_command;
sync_event->ResetFirstScope();
} else if (sync_event->scope.exec_scope == 0) {
// We only set the scope if there isn't one
sync_event->scope = scope;
auto set_scope = [&sync_event](AccessAddressType address_type, const ResourceAccessRangeMap::value_type &access) {
auto &scope_map = sync_event->first_scope[static_cast<size_t>(address_type)];
if (access.second.InSourceScopeOrChain(sync_event->scope.exec_scope, sync_event->scope.valid_accesses)) {
scope_map.insert(scope_map.end(), std::make_pair(access.first, true));
}
};
GetCurrentAccessContext()->ForAll(set_scope);
sync_event->unsynchronized_set = CMD_NONE;
sync_event->first_scope_tag = tag;
}
sync_event->last_command = CMD_SETEVENT;
sync_event->barriers = 0U;
}
bool CommandBufferAccessContext::ValidateResetEvent(VkCommandBuffer commandBuffer, VkEvent event,
VkPipelineStageFlags stageMask) const {
// I'll put this here just in case we need to pass this in for future extension support
const auto cmd = CMD_RESETEVENT;
bool skip = false;
// TODO: EVENTS:
// What is it we need to check... that we've had a reset since a set? Set/Set seems ill formed...
auto event_state = sync_state_->Get<EVENT_STATE>(event);
if (!event_state) return skip; // Core, Lifetimes, or Param check needs to catch invalid events.
const auto *sync_event = GetCurrentEventsContext()->Get(event_state);
if (!sync_event) return false; // Core, Lifetimes, or Param check needs to catch invalid events.
const char *const set_wait =
"%s: %s %s operation following %s without intervening execution barrier, is a race condition and may result in data "
"hazards.";
const char *message = set_wait; // Only one message this call.
const auto exec_scope = sync_utils::WithEarlierPipelineStages(sync_utils::ExpandPipelineStages(stageMask, GetQueueFlags()));
if (!sync_event->HasBarrier(stageMask, exec_scope)) {
const char *vuid = nullptr;
switch (sync_event->last_command) {
case CMD_SETEVENT:
// Needs a barrier between set and reset
vuid = "SYNC-vkCmdResetEvent-missingbarrier-set";
break;
case CMD_WAITEVENTS: {
// Needs to be in the barriers chain (either because of a barrier, or because of dstStageMask
vuid = "SYNC-vkCmdResetEvent-missingbarrier-wait";
break;
}
default:
// The only other valid last command that wasn't one.
assert((sync_event->last_command == CMD_NONE) || (sync_event->last_command == CMD_RESETEVENT));
break;
}
if (vuid) {
const char *const cmd_name = CommandTypeString(cmd);
skip |= sync_state_->LogError(event, vuid, message, cmd_name, sync_state_->report_data->FormatHandle(event).c_str(),
cmd_name, CommandTypeString(sync_event->last_command));
}
}
return skip;
}
void CommandBufferAccessContext::RecordResetEvent(VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags stageMask) {
const auto cmd = CMD_RESETEVENT;
auto event_state_shared = sync_state_->GetShared<EVENT_STATE>(event);
if (!event_state_shared.get()) return; // Core, Lifetimes, or Param check needs to catch invalid events.
auto *sync_event = GetCurrentEventsContext()->GetFromShared(event_state_shared);
if (!sync_event) return;
// Clear out the first sync scope, any races vs. wait or set are reported, so we'll keep the bookkeeping simple assuming
// the safe case
for (const auto address_type : kAddressTypes) {
sync_event->first_scope[static_cast<size_t>(address_type)].clear();
}
// Update the event state
sync_event->last_command = cmd;
sync_event->unsynchronized_set = CMD_NONE;
sync_event->ResetFirstScope();
sync_event->barriers = 0U;
}
void CommandBufferAccessContext::RecordDestroyEvent(VkEvent event) {
// Erase is okay with the key not being
const auto *event_state = sync_state_->Get<EVENT_STATE>(event);
if (event_state) {
GetCurrentEventsContext()->Destroy(event_state);
}
}
bool RenderPassAccessContext::ValidateDrawSubpassAttachment(const CommandBufferAccessContext &cb_context,
const CMD_BUFFER_STATE &cmd, const VkRect2D &render_area,
const char *func_name) const {
bool skip = false;
const auto &sync_state = cb_context.GetSyncState();
const auto *pipe = GetCurrentPipelineFromCommandBuffer(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS);
if (!pipe ||
(pipe->graphicsPipelineCI.pRasterizationState && pipe->graphicsPipelineCI.pRasterizationState->rasterizerDiscardEnable)) {
return skip;
}
const auto &list = pipe->fragmentShader_writable_output_location_list;
const auto &subpass = rp_state_->createInfo.pSubpasses[current_subpass_];
VkExtent3D extent = CastTo3D(render_area.extent);
VkOffset3D offset = CastTo3D(render_area.offset);
const auto &current_context = CurrentContext();
// Subpass's inputAttachment has been done in ValidateDispatchDrawDescriptorSet
if (subpass.pColorAttachments && subpass.colorAttachmentCount && !list.empty()) {
for (const auto location : list) {
if (location >= subpass.colorAttachmentCount ||
subpass.pColorAttachments[location].attachment == VK_ATTACHMENT_UNUSED) {
continue;
}
const IMAGE_VIEW_STATE *img_view_state = attachment_views_[subpass.pColorAttachments[location].attachment];
HazardResult hazard = current_context.DetectHazard(img_view_state, SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE,
SyncOrdering::kColorAttachment, offset, extent);
if (hazard.hazard) {
skip |= sync_state.LogError(img_view_state->image_view, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for %s in %s, Subpass #%d, and pColorAttachments #%d. Access info %s.",
func_name, string_SyncHazard(hazard.hazard),
sync_state.report_data->FormatHandle(img_view_state->image_view).c_str(),
sync_state.report_data->FormatHandle(cmd.commandBuffer).c_str(), cmd.activeSubpass,
location, cb_context.FormatUsage(hazard).c_str());
}
}
}
// PHASE1 TODO: Add layout based read/vs. write selection.
// PHASE1 TODO: Read operations for both depth and stencil are possible in the future.
if (pipe->graphicsPipelineCI.pDepthStencilState && subpass.pDepthStencilAttachment &&
subpass.pDepthStencilAttachment->attachment != VK_ATTACHMENT_UNUSED) {
const IMAGE_VIEW_STATE *img_view_state = attachment_views_[subpass.pDepthStencilAttachment->attachment];
bool depth_write = false, stencil_write = false;
// PHASE1 TODO: These validation should be in core_checks.
if (!FormatIsStencilOnly(img_view_state->create_info.format) &&
pipe->graphicsPipelineCI.pDepthStencilState->depthTestEnable &&
pipe->graphicsPipelineCI.pDepthStencilState->depthWriteEnable &&
IsImageLayoutDepthWritable(subpass.pDepthStencilAttachment->layout)) {
depth_write = true;
}
// PHASE1 TODO: It needs to check if stencil is writable.
// If failOp, passOp, or depthFailOp are not KEEP, and writeMask isn't 0, it's writable.
// If depth test is disable, it's considered depth test passes, and then depthFailOp doesn't run.
// PHASE1 TODO: These validation should be in core_checks.
if (!FormatIsDepthOnly(img_view_state->create_info.format) &&
pipe->graphicsPipelineCI.pDepthStencilState->stencilTestEnable &&
IsImageLayoutStencilWritable(subpass.pDepthStencilAttachment->layout)) {
stencil_write = true;
}
// PHASE1 TODO: Add EARLY stage detection based on ExecutionMode.
if (depth_write) {
HazardResult hazard =
current_context.DetectHazard(img_view_state, SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE,
SyncOrdering::kDepthStencilAttachment, offset, extent, VK_IMAGE_ASPECT_DEPTH_BIT);
if (hazard.hazard) {
skip |= sync_state.LogError(
img_view_state->image_view, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for %s in %s, Subpass #%d, and depth part of pDepthStencilAttachment. Access info %s.",
func_name, string_SyncHazard(hazard.hazard),
sync_state.report_data->FormatHandle(img_view_state->image_view).c_str(),
sync_state.report_data->FormatHandle(cmd.commandBuffer).c_str(), cmd.activeSubpass,
cb_context.FormatUsage(hazard).c_str());
}
}
if (stencil_write) {
HazardResult hazard =
current_context.DetectHazard(img_view_state, SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE,
SyncOrdering::kDepthStencilAttachment, offset, extent, VK_IMAGE_ASPECT_STENCIL_BIT);
if (hazard.hazard) {
skip |= sync_state.LogError(
img_view_state->image_view, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for %s in %s, Subpass #%d, and stencil part of pDepthStencilAttachment. Access info %s.",
func_name, string_SyncHazard(hazard.hazard),
sync_state.report_data->FormatHandle(img_view_state->image_view).c_str(),
sync_state.report_data->FormatHandle(cmd.commandBuffer).c_str(), cmd.activeSubpass,
cb_context.FormatUsage(hazard).c_str());
}
}
}
return skip;
}
void RenderPassAccessContext::RecordDrawSubpassAttachment(const CMD_BUFFER_STATE &cmd, const VkRect2D &render_area,
const ResourceUsageTag &tag) {
const auto *pipe = GetCurrentPipelineFromCommandBuffer(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS);
if (!pipe ||
(pipe->graphicsPipelineCI.pRasterizationState && pipe->graphicsPipelineCI.pRasterizationState->rasterizerDiscardEnable)) {
return;
}
const auto &list = pipe->fragmentShader_writable_output_location_list;
const auto &subpass = rp_state_->createInfo.pSubpasses[current_subpass_];
VkExtent3D extent = CastTo3D(render_area.extent);
VkOffset3D offset = CastTo3D(render_area.offset);
auto &current_context = CurrentContext();
// Subpass's inputAttachment has been done in RecordDispatchDrawDescriptorSet
if (subpass.pColorAttachments && subpass.colorAttachmentCount && !list.empty()) {
for (const auto location : list) {
if (location >= subpass.colorAttachmentCount ||
subpass.pColorAttachments[location].attachment == VK_ATTACHMENT_UNUSED) {
continue;
}
const IMAGE_VIEW_STATE *img_view_state = attachment_views_[subpass.pColorAttachments[location].attachment];
current_context.UpdateAccessState(img_view_state, SYNC_COLOR_ATTACHMENT_OUTPUT_COLOR_ATTACHMENT_WRITE,
SyncOrdering::kColorAttachment, offset, extent, 0, tag);
}
}
// PHASE1 TODO: Add layout based read/vs. write selection.
// PHASE1 TODO: Read operations for both depth and stencil are possible in the future.
if (pipe->graphicsPipelineCI.pDepthStencilState && subpass.pDepthStencilAttachment &&
subpass.pDepthStencilAttachment->attachment != VK_ATTACHMENT_UNUSED) {
const IMAGE_VIEW_STATE *img_view_state = attachment_views_[subpass.pDepthStencilAttachment->attachment];
bool depth_write = false, stencil_write = false;
// PHASE1 TODO: These validation should be in core_checks.
if (!FormatIsStencilOnly(img_view_state->create_info.format) &&
pipe->graphicsPipelineCI.pDepthStencilState->depthTestEnable &&
pipe->graphicsPipelineCI.pDepthStencilState->depthWriteEnable &&
IsImageLayoutDepthWritable(subpass.pDepthStencilAttachment->layout)) {
depth_write = true;
}
// PHASE1 TODO: It needs to check if stencil is writable.
// If failOp, passOp, or depthFailOp are not KEEP, and writeMask isn't 0, it's writable.
// If depth test is disable, it's considered depth test passes, and then depthFailOp doesn't run.
// PHASE1 TODO: These validation should be in core_checks.
if (!FormatIsDepthOnly(img_view_state->create_info.format) &&
pipe->graphicsPipelineCI.pDepthStencilState->stencilTestEnable &&
IsImageLayoutStencilWritable(subpass.pDepthStencilAttachment->layout)) {
stencil_write = true;
}
// PHASE1 TODO: Add EARLY stage detection based on ExecutionMode.
if (depth_write) {
current_context.UpdateAccessState(img_view_state, SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE,
SyncOrdering::kDepthStencilAttachment, offset, extent, VK_IMAGE_ASPECT_DEPTH_BIT,
tag);
}
if (stencil_write) {
current_context.UpdateAccessState(img_view_state, SYNC_LATE_FRAGMENT_TESTS_DEPTH_STENCIL_ATTACHMENT_WRITE,
SyncOrdering::kDepthStencilAttachment, offset, extent, VK_IMAGE_ASPECT_STENCIL_BIT,
tag);
}
}
}
bool RenderPassAccessContext::ValidateNextSubpass(const CommandBufferAccessContext &cb_context, const VkRect2D &render_area,
const char *func_name) const {
// PHASE1 TODO: Add Validate Preserve attachments
bool skip = false;
skip |= CurrentContext().ValidateResolveOperations(cb_context, *rp_state_, render_area, attachment_views_, func_name,
current_subpass_);
skip |= CurrentContext().ValidateStoreOperation(cb_context, *rp_state_, render_area, current_subpass_, attachment_views_,
func_name);
const auto next_subpass = current_subpass_ + 1;
const auto &next_context = subpass_contexts_[next_subpass];
skip |= next_context.ValidateLayoutTransitions(cb_context, *rp_state_, render_area, next_subpass, attachment_views_, func_name);
if (!skip) {
// To avoid complex (and buggy) duplication of the affect of layout transitions on load operations, we'll record them
// on a copy of the (empty) next context.
// Note: The resource access map should be empty so hopefully this copy isn't too horrible from a perf POV.
AccessContext temp_context(next_context);
temp_context.RecordLayoutTransitions(*rp_state_, next_subpass, attachment_views_, kCurrentCommandTag);
skip |= temp_context.ValidateLoadOperation(cb_context, *rp_state_, render_area, next_subpass, attachment_views_, func_name);
}
return skip;
}
bool RenderPassAccessContext::ValidateEndRenderPass(const CommandBufferAccessContext &cb_context, const VkRect2D &render_area,
const char *func_name) const {
// PHASE1 TODO: Validate Preserve
bool skip = false;
skip |= CurrentContext().ValidateResolveOperations(cb_context, *rp_state_, render_area, attachment_views_, func_name,
current_subpass_);
skip |= CurrentContext().ValidateStoreOperation(cb_context, *rp_state_, render_area, current_subpass_, attachment_views_,
func_name);
skip |= ValidateFinalSubpassLayoutTransitions(cb_context, render_area, func_name);
return skip;
}
AccessContext *RenderPassAccessContext::CreateStoreResolveProxy(const VkRect2D &render_area) const {
return CreateStoreResolveProxyContext(CurrentContext(), *rp_state_, current_subpass_, render_area, attachment_views_);
}
bool RenderPassAccessContext::ValidateFinalSubpassLayoutTransitions(const CommandBufferAccessContext &cb_context,
const VkRect2D &render_area, const char *func_name) const {
bool skip = false;
// As validation methods are const and precede the record/update phase, for any tranistions from the current (last)
// subpass, we have to validate them against a copy of the current AccessContext, with resolve operations applied.
// Note: we could be more efficient by tracking whether or not we actually *have* any changes (e.g. attachment resolve)
// to apply and only copy then, if this proves a hot spot.
std::unique_ptr<AccessContext> proxy_for_current;
// Validate the "finalLayout" transitions to external
// Get them from where there we're hidding in the extra entry.
const auto &final_transitions = rp_state_->subpass_transitions.back();
for (const auto &transition : final_transitions) {
const auto &attach_view = attachment_views_[transition.attachment];
const auto &trackback = subpass_contexts_[transition.prev_pass].GetDstExternalTrackBack();
assert(trackback.context); // Transitions are given implicit transitions if the StateTracker is working correctly
auto *context = trackback.context;
if (transition.prev_pass == current_subpass_) {
if (!proxy_for_current) {
// We haven't recorded resolve ofor the current_subpass, so we need to copy current and update it *as if*
proxy_for_current.reset(CreateStoreResolveProxy(render_area));
}
context = proxy_for_current.get();
}
// Use the merged barrier for the hazard check (safe since it just considers the src (first) scope.
const auto merged_barrier = MergeBarriers(trackback.barriers);
auto hazard = context->DetectImageBarrierHazard(*attach_view->image_state, merged_barrier.src_exec_scope,
merged_barrier.src_access_scope, attach_view->normalized_subresource_range,
AccessContext::DetectOptions::kDetectPrevious);
if (hazard.hazard) {
skip |= cb_context.GetSyncState().LogError(
rp_state_->renderPass, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s with last use subpass %" PRIu32 " for attachment %" PRIu32
" final image layout transition (old_layout: %s, new_layout: %s). Access info %s.",
func_name, string_SyncHazard(hazard.hazard), transition.prev_pass, transition.attachment,
string_VkImageLayout(transition.old_layout), string_VkImageLayout(transition.new_layout),
cb_context.FormatUsage(hazard).c_str());
}
}
return skip;
}
void RenderPassAccessContext::RecordLayoutTransitions(const ResourceUsageTag &tag) {
// Add layout transitions...
subpass_contexts_[current_subpass_].RecordLayoutTransitions(*rp_state_, current_subpass_, attachment_views_, tag);
}
void RenderPassAccessContext::RecordLoadOperations(const VkRect2D &render_area, const ResourceUsageTag &tag) {
const auto *attachment_ci = rp_state_->createInfo.pAttachments;
auto &subpass_context = subpass_contexts_[current_subpass_];
VkExtent3D extent = CastTo3D(render_area.extent);
VkOffset3D offset = CastTo3D(render_area.offset);
for (uint32_t i = 0; i < rp_state_->createInfo.attachmentCount; i++) {
if (rp_state_->attachment_first_subpass[i] == current_subpass_) {
if (attachment_views_[i] == nullptr) continue; // UNUSED
const auto &view = *attachment_views_[i];
const IMAGE_STATE *image = view.image_state.get();
if (image == nullptr) continue;
const auto &ci = attachment_ci[i];
const bool has_depth = FormatHasDepth(ci.format);
const bool has_stencil = FormatHasStencil(ci.format);
const bool is_color = !(has_depth || has_stencil);
if (is_color) {
subpass_context.UpdateAccessState(*image, ColorLoadUsage(ci.loadOp), SyncOrdering::kColorAttachment,
view.normalized_subresource_range, offset, extent, tag);
} else {
auto update_range = view.normalized_subresource_range;
if (has_depth) {
update_range.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
subpass_context.UpdateAccessState(*image, DepthStencilLoadUsage(ci.loadOp),
SyncOrdering::kDepthStencilAttachment, update_range, offset, extent, tag);
}
if (has_stencil) {
update_range.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
subpass_context.UpdateAccessState(*image, DepthStencilLoadUsage(ci.stencilLoadOp),
SyncOrdering::kDepthStencilAttachment, update_range, offset, extent, tag);
}
}
}
}
}
void RenderPassAccessContext::RecordBeginRenderPass(const SyncValidator &state, const CMD_BUFFER_STATE &cb_state,
const AccessContext *external_context, VkQueueFlags queue_flags,
const ResourceUsageTag &tag) {
current_subpass_ = 0;
rp_state_ = cb_state.activeRenderPass.get();
subpass_contexts_.reserve(rp_state_->createInfo.subpassCount);
// Add this for all subpasses here so that they exsist during next subpass validation
for (uint32_t pass = 0; pass < rp_state_->createInfo.subpassCount; pass++) {
subpass_contexts_.emplace_back(pass, queue_flags, rp_state_->subpass_dependencies, subpass_contexts_, external_context);
}
attachment_views_ = state.GetCurrentAttachmentViews(cb_state);
subpass_contexts_[current_subpass_].SetStartTag(tag);
RecordLayoutTransitions(tag);
RecordLoadOperations(cb_state.activeRenderPassBeginInfo.renderArea, tag);
}
void RenderPassAccessContext::RecordNextSubpass(const VkRect2D &render_area, const ResourceUsageTag &prev_subpass_tag,
const ResourceUsageTag &next_subpass_tag) {
// Resolves are against *prior* subpass context and thus *before* the subpass increment
CurrentContext().UpdateAttachmentResolveAccess(*rp_state_, render_area, attachment_views_, current_subpass_, prev_subpass_tag);
CurrentContext().UpdateAttachmentStoreAccess(*rp_state_, render_area, attachment_views_, current_subpass_, prev_subpass_tag);
// Move to the next sub-command for the new subpass. The resolve and store are logically part of the previous
// subpass, so their tag needs to be different from the layout and load operations below.
current_subpass_++;
assert(current_subpass_ < subpass_contexts_.size());
subpass_contexts_[current_subpass_].SetStartTag(next_subpass_tag);
RecordLayoutTransitions(next_subpass_tag);
RecordLoadOperations(render_area, next_subpass_tag);
}
void RenderPassAccessContext::RecordEndRenderPass(AccessContext *external_context, const VkRect2D &render_area,
const ResourceUsageTag &tag) {
// Add the resolve and store accesses
CurrentContext().UpdateAttachmentResolveAccess(*rp_state_, render_area, attachment_views_, current_subpass_, tag);
CurrentContext().UpdateAttachmentStoreAccess(*rp_state_, render_area, attachment_views_, current_subpass_, tag);
// Export the accesses from the renderpass...
external_context->ResolveChildContexts(subpass_contexts_);
// Add the "finalLayout" transitions to external
// Get them from where there we're hidding in the extra entry.
// Not that since *final* always comes from *one* subpass per view, we don't have to accumulate the barriers
// TODO Aliasing we may need to reconsider barrier accumulation... though I don't know that it would be valid for aliasing
// that had mulitple final layout transistions from mulitple final subpasses.
const auto &final_transitions = rp_state_->subpass_transitions.back();
for (const auto &transition : final_transitions) {
const auto &attachment = attachment_views_[transition.attachment];
const auto &last_trackback = subpass_contexts_[transition.prev_pass].GetDstExternalTrackBack();
assert(&subpass_contexts_[transition.prev_pass] == last_trackback.context);
ApplyBarrierOpsFunctor<PipelineBarrierOp> barrier_action(true /* resolve */, last_trackback.barriers.size(), tag);
for (const auto &barrier : last_trackback.barriers) {
barrier_action.EmplaceBack(PipelineBarrierOp(barrier, true));
}
external_context->UpdateResourceAccess(*attachment->image_state, attachment->normalized_subresource_range, barrier_action);
}
}
SyncExecScope SyncExecScope::MakeSrc(VkQueueFlags queue_flags, VkPipelineStageFlags mask_param) {
SyncExecScope result;
result.mask_param = mask_param;
result.expanded_mask = sync_utils::ExpandPipelineStages(mask_param, queue_flags);
result.exec_scope = sync_utils::WithEarlierPipelineStages(result.expanded_mask);
result.valid_accesses = SyncStageAccess::AccessScopeByStage(result.exec_scope);
return result;
}
SyncExecScope SyncExecScope::MakeDst(VkQueueFlags queue_flags, VkPipelineStageFlags mask_param) {
SyncExecScope result;
result.mask_param = mask_param;
result.expanded_mask = sync_utils::ExpandPipelineStages(mask_param, queue_flags);
result.exec_scope = sync_utils::WithLaterPipelineStages(result.expanded_mask);
result.valid_accesses = SyncStageAccess::AccessScopeByStage(result.exec_scope);
return result;
}
SyncBarrier::SyncBarrier(const SyncExecScope &src, const SyncExecScope &dst) {
src_exec_scope = src.exec_scope;
src_access_scope = 0;
dst_exec_scope = dst.exec_scope;
dst_access_scope = 0;
}
template <typename Barrier>
SyncBarrier::SyncBarrier(const Barrier &barrier, const SyncExecScope &src, const SyncExecScope &dst) {
src_exec_scope = src.exec_scope;
src_access_scope = SyncStageAccess::AccessScope(src.valid_accesses, barrier.srcAccessMask);
dst_exec_scope = dst.exec_scope;
dst_access_scope = SyncStageAccess::AccessScope(dst.valid_accesses, barrier.dstAccessMask);
}
SyncBarrier::SyncBarrier(VkQueueFlags queue_flags, const VkSubpassDependency2 &subpass) {
auto src = SyncExecScope::MakeSrc(queue_flags, subpass.srcStageMask);
src_exec_scope = src.exec_scope;
src_access_scope = SyncStageAccess::AccessScope(src.valid_accesses, subpass.srcAccessMask);
auto dst = SyncExecScope::MakeDst(queue_flags, subpass.dstStageMask);
dst_exec_scope = dst.exec_scope;
dst_access_scope = SyncStageAccess::AccessScope(dst.valid_accesses, subpass.dstAccessMask);
}
// Apply a list of barriers, without resolving pending state, useful for subpass layout transitions
void ResourceAccessState::ApplyBarriers(const std::vector<SyncBarrier> &barriers, bool layout_transition) {
for (const auto &barrier : barriers) {
ApplyBarrier(barrier, layout_transition);
}
}
// ApplyBarriers is design for *fully* inclusive barrier lists without layout tranistions. Designed use was for
// inter-subpass barriers for lazy-evaluation of parent context memory ranges. Subpass layout transistions are *not* done
// lazily, s.t. no previous access reports should need layout transitions.
void ResourceAccessState::ApplyBarriers(const std::vector<SyncBarrier> &barriers, const ResourceUsageTag &tag) {
assert(!pending_layout_transition); // This should never be call in the middle of another barrier application
assert(pending_write_barriers.none());
assert(!pending_write_dep_chain);
for (const auto &barrier : barriers) {
ApplyBarrier(barrier, false);
}
ApplyPendingBarriers(tag);
}
HazardResult ResourceAccessState::DetectHazard(SyncStageAccessIndex usage_index) const {
HazardResult hazard;
auto usage = FlagBit(usage_index);
const auto usage_stage = PipelineStageBit(usage_index);
if (IsRead(usage)) {
if (IsRAWHazard(usage_stage, usage)) {
hazard.Set(this, usage_index, READ_AFTER_WRITE, last_write, write_tag);
}
} else {
// Write operation:
// Check for read operations more recent than last_write (as setting last_write clears reads, that would be *any*
// If reads exists -- test only against them because either:
// * the reads were hazards, and we've reported the hazard, so just test the current write vs. the read operations
// * the read weren't hazards, and thus if the write is safe w.r.t. the reads, no hazard vs. last_write is possible if
// the current write happens after the reads, so just test the write against the reades
// Otherwise test against last_write
//
// Look for casus belli for WAR
if (last_reads.size()) {
for (const auto &read_access : last_reads) {
if (IsReadHazard(usage_stage, read_access)) {
hazard.Set(this, usage_index, WRITE_AFTER_READ, read_access.access, read_access.tag);
break;
}
}
} else if (last_write.any() && IsWriteHazard(usage)) {
// Write-After-Write check -- if we have a previous write to test against
hazard.Set(this, usage_index, WRITE_AFTER_WRITE, last_write, write_tag);
}
}
return hazard;
}
HazardResult ResourceAccessState::DetectHazard(SyncStageAccessIndex usage_index, const SyncOrdering &ordering_rule) const {
const auto &ordering = GetOrderingRules(ordering_rule);
// The ordering guarantees act as barriers to the last accesses, independent of synchronization operations
HazardResult hazard;
const auto usage_bit = FlagBit(usage_index);
const auto usage_stage = PipelineStageBit(usage_index);
const bool input_attachment_ordering = (ordering.access_scope & SYNC_FRAGMENT_SHADER_INPUT_ATTACHMENT_READ_BIT).any();
const bool last_write_is_ordered = (last_write & ordering.access_scope).any();
if (IsRead(usage_bit)) {
// Exclude RAW if no write, or write not most "most recent" operation w.r.t. usage;
bool is_raw_hazard = IsRAWHazard(usage_stage, usage_bit);
if (is_raw_hazard) {
// NOTE: we know last_write is non-zero
// See if the ordering rules save us from the simple RAW check above
// First check to see if the current usage is covered by the ordering rules
const bool usage_is_input_attachment = (usage_index == SYNC_FRAGMENT_SHADER_INPUT_ATTACHMENT_READ);
const bool usage_is_ordered =
(input_attachment_ordering && usage_is_input_attachment) || (0 != (usage_stage & ordering.exec_scope));
if (usage_is_ordered) {
// Now see of the most recent write (or a subsequent read) are ordered
const bool most_recent_is_ordered = last_write_is_ordered || (0 != GetOrderedStages(ordering));
is_raw_hazard = !most_recent_is_ordered;
}
}
if (is_raw_hazard) {
hazard.Set(this, usage_index, READ_AFTER_WRITE, last_write, write_tag);
}
} else {
// Only check for WAW if there are no reads since last_write
bool usage_write_is_ordered = (usage_bit & ordering.access_scope).any();
if (last_reads.size()) {
// Look for any WAR hazards outside the ordered set of stages
VkPipelineStageFlags ordered_stages = 0;
if (usage_write_is_ordered) {
// If the usage is ordered, we can ignore all ordered read stages w.r.t. WAR)
ordered_stages = GetOrderedStages(ordering);
}
// If we're tracking any reads that aren't ordered against the current write, got to check 'em all.
if ((ordered_stages & last_read_stages) != last_read_stages) {
for (const auto &read_access : last_reads) {
if (read_access.stage & ordered_stages) continue; // but we can skip the ordered ones
if (IsReadHazard(usage_stage, read_access)) {
hazard.Set(this, usage_index, WRITE_AFTER_READ, read_access.access, read_access.tag);
break;
}
}
}
} else if (!(last_write_is_ordered && usage_write_is_ordered)) {
if (last_write.any() && IsWriteHazard(usage_bit)) {
hazard.Set(this, usage_index, WRITE_AFTER_WRITE, last_write, write_tag);
}
}
}
return hazard;
}
// Asynchronous Hazards occur between subpasses with no connection through the DAG
HazardResult ResourceAccessState::DetectAsyncHazard(SyncStageAccessIndex usage_index, const ResourceUsageTag &start_tag) const {
HazardResult hazard;
auto usage = FlagBit(usage_index);
// Async checks need to not go back further than the start of the subpass, as we only want to find hazards between the async
// subpasses. Anything older than that should have been checked at the start of each subpass, taking into account all of
// the raster ordering rules.
if (IsRead(usage)) {
if (last_write.any() && (write_tag.index >= start_tag.index)) {
hazard.Set(this, usage_index, READ_RACING_WRITE, last_write, write_tag);
}
} else {
if (last_write.any() && (write_tag.index >= start_tag.index)) {
hazard.Set(this, usage_index, WRITE_RACING_WRITE, last_write, write_tag);
} else if (last_reads.size() > 0) {
// Any reads during the other subpass will conflict with this write, so we need to check them all.
for (const auto &read_access : last_reads) {
if (read_access.tag.index >= start_tag.index) {
hazard.Set(this, usage_index, WRITE_RACING_READ, read_access.access, read_access.tag);
break;
}
}
}
}
return hazard;
}
HazardResult ResourceAccessState::DetectBarrierHazard(SyncStageAccessIndex usage_index, VkPipelineStageFlags src_exec_scope,
const SyncStageAccessFlags &src_access_scope) const {
// Only supporting image layout transitions for now
assert(usage_index == SyncStageAccessIndex::SYNC_IMAGE_LAYOUT_TRANSITION);
HazardResult hazard;
// only test for WAW if there no intervening read operations.
// See DetectHazard(SyncStagetAccessIndex) above for more details.
if (last_reads.size()) {
// Look at the reads if any
for (const auto &read_access : last_reads) {
if (read_access.IsReadBarrierHazard(src_exec_scope)) {
hazard.Set(this, usage_index, WRITE_AFTER_READ, read_access.access, read_access.tag);
break;
}
}
} else if (last_write.any() && IsWriteBarrierHazard(src_exec_scope, src_access_scope)) {
hazard.Set(this, usage_index, WRITE_AFTER_WRITE, last_write, write_tag);
}
return hazard;
}
HazardResult ResourceAccessState::DetectBarrierHazard(SyncStageAccessIndex usage_index, VkPipelineStageFlags src_exec_scope,
const SyncStageAccessFlags &src_access_scope,
const ResourceUsageTag &event_tag) const {
// Only supporting image layout transitions for now
assert(usage_index == SyncStageAccessIndex::SYNC_IMAGE_LAYOUT_TRANSITION);
HazardResult hazard;
// only test for WAW if there no intervening read operations.
// See DetectHazard(SyncStagetAccessIndex) above for more details.
if (last_reads.size()) {
// Look at the reads if any... if reads exist, they are either the resaon the access is in the event
// first scope, or they are a hazard.
for (const auto &read_access : last_reads) {
if (read_access.tag.IsBefore(event_tag)) {
// The read is in the events first synchronization scope, so we use a barrier hazard check
// If the read stage is not in the src sync scope
// *AND* not execution chained with an existing sync barrier (that's the or)
// then the barrier access is unsafe (R/W after R)
if (read_access.IsReadBarrierHazard(src_exec_scope)) {
hazard.Set(this, usage_index, WRITE_AFTER_READ, read_access.access, read_access.tag);
break;
}
} else {
// The read not in the event first sync scope and so is a hazard vs. the layout transition
hazard.Set(this, usage_index, WRITE_AFTER_READ, read_access.access, read_access.tag);
}
}
} else if (last_write.any()) {
// if there are no reads, the write is either the reason the access is in the event scope... they are a hazard
if (write_tag.IsBefore(event_tag)) {
// The write is in the first sync scope of the event (sync their aren't any reads to be the reason)
// So do a normal barrier hazard check
if (IsWriteBarrierHazard(src_exec_scope, src_access_scope)) {
hazard.Set(this, usage_index, WRITE_AFTER_WRITE, last_write, write_tag);
}
} else {
// The write isn't in scope, and is thus a hazard to the layout transistion for wait
hazard.Set(this, usage_index, WRITE_AFTER_WRITE, last_write, write_tag);
}
}
return hazard;
}
// The logic behind resolves is the same as update, we assume that earlier hazards have be reported, and that no
// tranistive hazard can exists with a hazard between the earlier operations. Yes, an early hazard can mask that another
// exists, but if you fix *that* hazard it either fixes or unmasks the subsequent ones.
void ResourceAccessState::Resolve(const ResourceAccessState &other) {
if (write_tag.IsBefore(other.write_tag)) {
// If this is a later write, we've reported any exsiting hazard, and we can just overwrite as the more recent
// operation
*this = other;
} else if (!other.write_tag.IsBefore(write_tag)) {
// This is the *equals* case for write operations, we merged the write barriers and the read state (but without the
// dependency chaining logic or any stage expansion)
write_barriers |= other.write_barriers;
pending_write_barriers |= other.pending_write_barriers;
pending_layout_transition |= other.pending_layout_transition;
pending_write_dep_chain |= other.pending_write_dep_chain;
// Merge the read states
const auto pre_merge_count = last_reads.size();
const auto pre_merge_stages = last_read_stages;
for (uint32_t other_read_index = 0; other_read_index < other.last_reads.size(); other_read_index++) {
auto &other_read = other.last_reads[other_read_index];
if (pre_merge_stages & other_read.stage) {
// Merge in the barriers for read stages that exist in *both* this and other
// TODO: This is N^2 with stages... perhaps the ReadStates should be sorted by stage index.
// but we should wait on profiling data for that.
for (uint32_t my_read_index = 0; my_read_index < pre_merge_count; my_read_index++) {
auto &my_read = last_reads[my_read_index];
if (other_read.stage == my_read.stage) {
if (my_read.tag.IsBefore(other_read.tag)) {
// Other is more recent, copy in the state
my_read.access = other_read.access;
my_read.tag = other_read.tag;
my_read.pending_dep_chain = other_read.pending_dep_chain;
// TODO: Phase 2 -- review the state merge logic to avoid false positive from overwriting the barriers
// May require tracking more than one access per stage.
my_read.barriers = other_read.barriers;
if (my_read.stage == VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT) {
// Since I'm overwriting the fragement stage read, also update the input attachment info
// as this is the only stage that affects it.
input_attachment_read = other.input_attachment_read;
}
} else if (other_read.tag.IsBefore(my_read.tag)) {
// The read tags match so merge the barriers
my_read.barriers |= other_read.barriers;
my_read.pending_dep_chain |= other_read.pending_dep_chain;
}
break;
}
}
} else {
// The other read stage doesn't exist in this, so add it.
last_reads.emplace_back(other_read);
last_read_stages |= other_read.stage;
if (other_read.stage == VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT) {
input_attachment_read = other.input_attachment_read;
}
}
}
read_execution_barriers |= other.read_execution_barriers;
} // the else clause would be that other write is before this write... in which case we supercede the other state and
// ignore it.
// Merge first access information by making a copy of this first_access and reconstructing with a shuffle
// of the copy and other into this using the update first logic.
// NOTE: All sorts of additional cleverness could be put into short circuts. (for example back is write and is before front
// of the other first_accesses... )
if (!(first_accesses_ == other.first_accesses_) && !other.first_accesses_.empty()) {
FirstAccesses firsts(std::move(first_accesses_));
first_accesses_.clear();
first_read_stages_ = 0U;
auto a = firsts.begin();
auto a_end = firsts.end();
for (auto &b : other.first_accesses_) {
// TODO: Determine whether "IsBefore" or "IsGloballyBefore" is needed...
while (a != a_end && a->tag.IsBefore(b.tag)) {
UpdateFirst(a->tag, a->usage_index, a->ordering_rule);
++a;
}
UpdateFirst(b.tag, b.usage_index, b.ordering_rule);
}
for (; a != a_end; ++a) {
UpdateFirst(a->tag, a->usage_index, a->ordering_rule);
}
}
}
void ResourceAccessState::Update(SyncStageAccessIndex usage_index, SyncOrdering ordering_rule, const ResourceUsageTag &tag) {
// Move this logic in the ResourceStateTracker as methods, thereof (or we'll repeat it for every flavor of resource...
const auto usage_bit = FlagBit(usage_index);
if (IsRead(usage_index)) {
// Mulitple outstanding reads may be of interest and do dependency chains independently
// However, for purposes of barrier tracking, only one read per pipeline stage matters
const auto usage_stage = PipelineStageBit(usage_index);
if (usage_stage & last_read_stages) {
for (auto &read_access : last_reads) {
if (read_access.stage == usage_stage) {
read_access.Set(usage_stage, usage_bit, 0, tag);
break;
}
}
} else {
last_reads.emplace_back(usage_stage, usage_bit, 0, tag);
last_read_stages |= usage_stage;
}
// Fragment shader reads come in two flavors, and we need to track if the one we're tracking is the special one.
if (usage_stage == VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT) {
// TODO Revisit re: multiple reads for a given stage
input_attachment_read = (usage_bit == SYNC_FRAGMENT_SHADER_INPUT_ATTACHMENT_READ_BIT);
}
} else {
// Assume write
// TODO determine what to do with READ-WRITE operations if any
SetWrite(usage_bit, tag);
}
UpdateFirst(tag, usage_index, ordering_rule);
}
// Clobber last read and all barriers... because all we have is DANGER, DANGER, WILL ROBINSON!!!
// if the last_reads/last_write were unsafe, we've reported them, in either case the prior access is irrelevant.
// We can overwrite them as *this* write is now after them.
//
// Note: intentionally ignore pending barriers and chains (i.e. don't apply or clear them), let ApplyPendingBarriers handle them.
void ResourceAccessState::SetWrite(const SyncStageAccessFlags &usage_bit, const ResourceUsageTag &tag) {
last_reads.clear();
last_read_stages = 0;
read_execution_barriers = 0;
input_attachment_read = false; // Denotes no outstanding input attachment read after the last write.
write_barriers = 0;
write_dependency_chain = 0;
write_tag = tag;
last_write = usage_bit;
}
// Apply the memory barrier without updating the existing barriers. The execution barrier
// changes the "chaining" state, but to keep barriers independent, we defer this until all barriers
// of the batch have been processed. Also, depending on whether layout transition happens, we'll either
// replace the current write barriers or add to them, so accumulate to pending as well.
void ResourceAccessState::ApplyBarrier(const SyncBarrier &barrier, bool layout_transition) {
// For independent barriers we need to track what the new barriers and dependency chain *will* be when we're done
// applying the memory barriers
// NOTE: We update the write barrier if the write is in the first access scope or if there is a layout
// transistion, under the theory of "most recent access". If the read/write *isn't* safe
// vs. this layout transition DetectBarrierHazard should report it. We treat the layout
// transistion *as* a write and in scope with the barrier (it's before visibility).
if (layout_transition || WriteInSourceScopeOrChain(barrier.src_exec_scope, barrier.src_access_scope)) {
pending_write_barriers |= barrier.dst_access_scope;
pending_write_dep_chain |= barrier.dst_exec_scope;
}
// Track layout transistion as pending as we can't modify last_write until all barriers processed
pending_layout_transition |= layout_transition;
if (!pending_layout_transition) {
// Once we're dealing with a layout transition (which is modelled as a *write*) then the last reads/writes/chains
// don't need to be tracked as we're just going to zero them.
for (auto &read_access : last_reads) {
// The | implements the "dependency chain" logic for this access, as the barriers field stores the second sync scope
if (barrier.src_exec_scope & (read_access.stage | read_access.barriers)) {
read_access.pending_dep_chain |= barrier.dst_exec_scope;
}
}
}
}
// Apply the tag scoped memory barrier without updating the existing barriers. The execution barrier
// changes the "chaining" state, but to keep barriers independent. See discussion above.
void ResourceAccessState::ApplyBarrier(const ResourceUsageTag &scope_tag, const SyncBarrier &barrier, bool layout_transition) {
// The scope logic for events is, if we're here, the resource usage was flagged as "in the first execution scope" at
// the time of the SetEvent, thus all we need check is whether the access is the same one (i.e. before the scope tag
// in order to know if it's in the excecution scope
// Notice that the layout transition sets the pending barriers *regardless*, as any lack of src_access_scope to
// guard against the layout transition should be reported in the detect barrier hazard phase, and we only report
// errors w.r.t. "most recent" accesses.
if (layout_transition || ((write_tag.IsBefore(scope_tag)) && (barrier.src_access_scope & last_write).any())) {
pending_write_barriers |= barrier.dst_access_scope;
pending_write_dep_chain |= barrier.dst_exec_scope;
}
// Track layout transistion as pending as we can't modify last_write until all barriers processed
pending_layout_transition |= layout_transition;
if (!pending_layout_transition) {
// Once we're dealing with a layout transition (which is modelled as a *write*) then the last reads/writes/chains
// don't need to be tracked as we're just going to zero them.
for (auto &read_access : last_reads) {
// If this read is the same one we included in the set event and in scope, then apply the execution barrier...
// NOTE: That's not really correct... this read stage might *not* have been included in the setevent, and the barriers
// representing the chain might have changed since then (that would be an odd usage), so as a first approximation
// we'll assume the barriers *haven't* been changed since (if the tag hasn't), and while this could be a false
// positive in the case of Set; SomeBarrier; Wait; we'll live with it until we can add more state to the first scope
// capture (the specific write and read stages that *were* in scope at the moment of SetEvents.
// TODO: eliminate the false positive by including write/read-stages "in scope" information in SetEvents first_scope
if (read_access.tag.IsBefore(scope_tag) && (barrier.src_exec_scope & (read_access.stage | read_access.barriers))) {
read_access.pending_dep_chain |= barrier.dst_exec_scope;
}
}
}
}
void ResourceAccessState::ApplyPendingBarriers(const ResourceUsageTag &tag) {
if (pending_layout_transition) {
// SetWrite clobbers the read count, and thus we don't have to clear the read_state out.
SetWrite(SYNC_IMAGE_LAYOUT_TRANSITION_BIT, tag); // Side effect notes below
UpdateFirst(tag, SYNC_IMAGE_LAYOUT_TRANSITION, SyncOrdering::kNonAttachment);
pending_layout_transition = false;
}
// Apply the accumulate execution barriers (and thus update chaining information)
// for layout transition, read count is zeroed by SetWrite, so this will be skipped.
for (auto &read_access : last_reads) {
read_access.barriers |= read_access.pending_dep_chain;
read_execution_barriers |= read_access.barriers;
read_access.pending_dep_chain = 0;
}
// We OR in the accumulated write chain and barriers even in the case of a layout transition as SetWrite zeros them.
write_dependency_chain |= pending_write_dep_chain;
write_barriers |= pending_write_barriers;
pending_write_dep_chain = 0;
pending_write_barriers = 0;
}
// This should be just Bits or Index, but we don't have an invalid state for Index
VkPipelineStageFlags ResourceAccessState::GetReadBarriers(const SyncStageAccessFlags &usage_bit) const {
VkPipelineStageFlags barriers = 0U;
for (const auto &read_access : last_reads) {
if ((read_access.access & usage_bit).any()) {
barriers = read_access.barriers;
break;
}
}
return barriers;
}
inline bool ResourceAccessState::IsRAWHazard(VkPipelineStageFlagBits usage_stage, const SyncStageAccessFlags &usage) const {
assert(IsRead(usage));
// Only RAW vs. last_write if it doesn't happen-after any other read because either:
// * the previous reads are not hazards, and thus last_write must be visible and available to
// any reads that happen after.
// * the previous reads *are* hazards to last_write, have been reported, and if that hazard is fixed
// the current read will be also not be a hazard, thus reporting a hazard here adds no needed information.
return last_write.any() && (0 == (read_execution_barriers & usage_stage)) && IsWriteHazard(usage);
}
VkPipelineStageFlags ResourceAccessState::GetOrderedStages(const OrderingBarrier &ordering) const {
// Whether the stage are in the ordering scope only matters if the current write is ordered
VkPipelineStageFlags ordered_stages = last_read_stages & ordering.exec_scope;
// Special input attachment handling as always (not encoded in exec_scop)
const bool input_attachment_ordering = (ordering.access_scope & SYNC_FRAGMENT_SHADER_INPUT_ATTACHMENT_READ_BIT).any();
if (input_attachment_ordering && input_attachment_read) {
// If we have an input attachment in last_reads and input attachments are ordered we all that stage
ordered_stages |= VK_PIPELINE_STAGE_FRAGMENT_SHADER_BIT;
}
return ordered_stages;
}
void ResourceAccessState::UpdateFirst(const ResourceUsageTag &tag, SyncStageAccessIndex usage_index, SyncOrdering ordering_rule) {
// Only record until we record a write.
if (first_accesses_.empty() || IsRead(first_accesses_.back().usage_index)) {
const VkPipelineStageFlags usage_stage =
IsRead(usage_index) ? static_cast<VkPipelineStageFlags>(PipelineStageBit(usage_index)) : 0U;
if (0 == (usage_stage & first_read_stages_)) {
// If this is a read we haven't seen or a write, record.
first_read_stages_ |= usage_stage;
first_accesses_.emplace_back(tag, usage_index, ordering_rule);
}
}
}
void SyncValidator::ResetCommandBufferCallback(VkCommandBuffer command_buffer) {
auto *access_context = GetAccessContextNoInsert(command_buffer);
if (access_context) {
access_context->Reset();
}
}
void SyncValidator::FreeCommandBufferCallback(VkCommandBuffer command_buffer) {
auto access_found = cb_access_state.find(command_buffer);
if (access_found != cb_access_state.end()) {
access_found->second->Reset();
cb_access_state.erase(access_found);
}
}
bool SyncValidator::PreCallValidateCmdCopyBuffer(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkBuffer dstBuffer,
uint32_t regionCount, const VkBufferCopy *pRegions) const {
bool skip = false;
const auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context) return skip;
const auto *context = cb_context->GetCurrentAccessContext();
// If we have no previous accesses, we have no hazards
const auto *src_buffer = Get<BUFFER_STATE>(srcBuffer);
const auto *dst_buffer = Get<BUFFER_STATE>(dstBuffer);
for (uint32_t region = 0; region < regionCount; region++) {
const auto &copy_region = pRegions[region];
if (src_buffer) {
const ResourceAccessRange src_range = MakeRange(*src_buffer, copy_region.srcOffset, copy_region.size);
auto hazard = context->DetectHazard(*src_buffer, SYNC_TRANSFER_TRANSFER_READ, src_range);
if (hazard.hazard) {
skip |= LogError(srcBuffer, string_SyncHazardVUID(hazard.hazard),
"vkCmdCopyBuffer: Hazard %s for srcBuffer %s, region %" PRIu32 ". Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(srcBuffer).c_str(), region,
cb_context->FormatUsage(hazard).c_str());
}
}
if (dst_buffer && !skip) {
const ResourceAccessRange dst_range = MakeRange(*dst_buffer, copy_region.dstOffset, copy_region.size);
auto hazard = context->DetectHazard(*dst_buffer, SYNC_TRANSFER_TRANSFER_WRITE, dst_range);
if (hazard.hazard) {
skip |= LogError(dstBuffer, string_SyncHazardVUID(hazard.hazard),
"vkCmdCopyBuffer: Hazard %s for dstBuffer %s, region %" PRIu32 ". Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(dstBuffer).c_str(), region,
cb_context->FormatUsage(hazard).c_str());
}
}
if (skip) break;
}
return skip;
}
void SyncValidator::PreCallRecordCmdCopyBuffer(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkBuffer dstBuffer,
uint32_t regionCount, const VkBufferCopy *pRegions) {
auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
const auto tag = cb_context->NextCommandTag(CMD_COPYBUFFER);
auto *context = cb_context->GetCurrentAccessContext();
const auto *src_buffer = Get<BUFFER_STATE>(srcBuffer);
const auto *dst_buffer = Get<BUFFER_STATE>(dstBuffer);
for (uint32_t region = 0; region < regionCount; region++) {
const auto &copy_region = pRegions[region];
if (src_buffer) {
const ResourceAccessRange src_range = MakeRange(*src_buffer, copy_region.srcOffset, copy_region.size);
context->UpdateAccessState(*src_buffer, SYNC_TRANSFER_TRANSFER_READ, SyncOrdering::kNonAttachment, src_range, tag);
}
if (dst_buffer) {
const ResourceAccessRange dst_range = MakeRange(*dst_buffer, copy_region.dstOffset, copy_region.size);
context->UpdateAccessState(*dst_buffer, SYNC_TRANSFER_TRANSFER_WRITE, SyncOrdering::kNonAttachment, dst_range, tag);
}
}
}
void SyncValidator::PreCallRecordDestroyEvent(VkDevice device, VkEvent event, const VkAllocationCallbacks *pAllocator) {
// Clear out events from the command buffer contexts
for (auto &cb_context : cb_access_state) {
cb_context.second->RecordDestroyEvent(event);
}
}
bool SyncValidator::PreCallValidateCmdCopyBuffer2KHR(VkCommandBuffer commandBuffer,
const VkCopyBufferInfo2KHR *pCopyBufferInfos) const {
bool skip = false;
const auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context) return skip;
const auto *context = cb_context->GetCurrentAccessContext();
// If we have no previous accesses, we have no hazards
const auto *src_buffer = Get<BUFFER_STATE>(pCopyBufferInfos->srcBuffer);
const auto *dst_buffer = Get<BUFFER_STATE>(pCopyBufferInfos->dstBuffer);
for (uint32_t region = 0; region < pCopyBufferInfos->regionCount; region++) {
const auto &copy_region = pCopyBufferInfos->pRegions[region];
if (src_buffer) {
const ResourceAccessRange src_range = MakeRange(*src_buffer, copy_region.srcOffset, copy_region.size);
auto hazard = context->DetectHazard(*src_buffer, SYNC_TRANSFER_TRANSFER_READ, src_range);
if (hazard.hazard) {
// TODO -- add tag information to log msg when useful.
skip |= LogError(pCopyBufferInfos->srcBuffer, string_SyncHazardVUID(hazard.hazard),
"vkCmdCopyBuffer2KHR(): Hazard %s for srcBuffer %s, region %" PRIu32 ". Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(pCopyBufferInfos->srcBuffer).c_str(),
region, cb_context->FormatUsage(hazard).c_str());
}
}
if (dst_buffer && !skip) {
const ResourceAccessRange dst_range = MakeRange(*dst_buffer, copy_region.dstOffset, copy_region.size);
auto hazard = context->DetectHazard(*dst_buffer, SYNC_TRANSFER_TRANSFER_WRITE, dst_range);
if (hazard.hazard) {
skip |= LogError(pCopyBufferInfos->dstBuffer, string_SyncHazardVUID(hazard.hazard),
"vkCmdCopyBuffer2KHR(): Hazard %s for dstBuffer %s, region %" PRIu32 ". Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(pCopyBufferInfos->dstBuffer).c_str(),
region, cb_context->FormatUsage(hazard).c_str());
}
}
if (skip) break;
}
return skip;
}
void SyncValidator::PreCallRecordCmdCopyBuffer2KHR(VkCommandBuffer commandBuffer, const VkCopyBufferInfo2KHR *pCopyBufferInfos) {
auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
const auto tag = cb_context->NextCommandTag(CMD_COPYBUFFER2KHR);
auto *context = cb_context->GetCurrentAccessContext();
const auto *src_buffer = Get<BUFFER_STATE>(pCopyBufferInfos->srcBuffer);
const auto *dst_buffer = Get<BUFFER_STATE>(pCopyBufferInfos->dstBuffer);
for (uint32_t region = 0; region < pCopyBufferInfos->regionCount; region++) {
const auto &copy_region = pCopyBufferInfos->pRegions[region];
if (src_buffer) {
const ResourceAccessRange src_range = MakeRange(*src_buffer, copy_region.srcOffset, copy_region.size);
context->UpdateAccessState(*src_buffer, SYNC_TRANSFER_TRANSFER_READ, SyncOrdering::kNonAttachment, src_range, tag);
}
if (dst_buffer) {
const ResourceAccessRange dst_range = MakeRange(*dst_buffer, copy_region.dstOffset, copy_region.size);
context->UpdateAccessState(*dst_buffer, SYNC_TRANSFER_TRANSFER_WRITE, SyncOrdering::kNonAttachment, dst_range, tag);
}
}
}
bool SyncValidator::PreCallValidateCmdCopyImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount,
const VkImageCopy *pRegions) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
const auto *src_image = Get<IMAGE_STATE>(srcImage);
const auto *dst_image = Get<IMAGE_STATE>(dstImage);
for (uint32_t region = 0; region < regionCount; region++) {
const auto &copy_region = pRegions[region];
if (src_image) {
auto hazard = context->DetectHazard(*src_image, SYNC_TRANSFER_TRANSFER_READ, copy_region.srcSubresource,
copy_region.srcOffset, copy_region.extent);
if (hazard.hazard) {
skip |= LogError(srcImage, string_SyncHazardVUID(hazard.hazard),
"vkCmdCopyImage: Hazard %s for srcImage %s, region %" PRIu32 ". Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(srcImage).c_str(), region,
cb_access_context->FormatUsage(hazard).c_str());
}
}
if (dst_image) {
VkExtent3D dst_copy_extent =
GetAdjustedDestImageExtent(src_image->createInfo.format, dst_image->createInfo.format, copy_region.extent);
auto hazard = context->DetectHazard(*dst_image, SYNC_TRANSFER_TRANSFER_WRITE, copy_region.dstSubresource,
copy_region.dstOffset, dst_copy_extent);
if (hazard.hazard) {
skip |= LogError(dstImage, string_SyncHazardVUID(hazard.hazard),
"vkCmdCopyImage: Hazard %s for dstImage %s, region %" PRIu32 ". Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(dstImage).c_str(), region,
cb_access_context->FormatUsage(hazard).c_str());
}
if (skip) break;
}
}
return skip;
}
void SyncValidator::PreCallRecordCmdCopyImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount,
const VkImageCopy *pRegions) {
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_COPYIMAGE);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto *src_image = Get<IMAGE_STATE>(srcImage);
auto *dst_image = Get<IMAGE_STATE>(dstImage);
for (uint32_t region = 0; region < regionCount; region++) {
const auto &copy_region = pRegions[region];
if (src_image) {
context->UpdateAccessState(*src_image, SYNC_TRANSFER_TRANSFER_READ, SyncOrdering::kNonAttachment,
copy_region.srcSubresource, copy_region.srcOffset, copy_region.extent, tag);
}
if (dst_image) {
VkExtent3D dst_copy_extent =
GetAdjustedDestImageExtent(src_image->createInfo.format, dst_image->createInfo.format, copy_region.extent);
context->UpdateAccessState(*dst_image, SYNC_TRANSFER_TRANSFER_WRITE, SyncOrdering::kNonAttachment,
copy_region.dstSubresource, copy_region.dstOffset, dst_copy_extent, tag);
}
}
}
bool SyncValidator::PreCallValidateCmdCopyImage2KHR(VkCommandBuffer commandBuffer,
const VkCopyImageInfo2KHR *pCopyImageInfo) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
const auto *src_image = Get<IMAGE_STATE>(pCopyImageInfo->srcImage);
const auto *dst_image = Get<IMAGE_STATE>(pCopyImageInfo->dstImage);
for (uint32_t region = 0; region < pCopyImageInfo->regionCount; region++) {
const auto &copy_region = pCopyImageInfo->pRegions[region];
if (src_image) {
auto hazard = context->DetectHazard(*src_image, SYNC_TRANSFER_TRANSFER_READ, copy_region.srcSubresource,
copy_region.srcOffset, copy_region.extent);
if (hazard.hazard) {
skip |= LogError(pCopyImageInfo->srcImage, string_SyncHazardVUID(hazard.hazard),
"vkCmdCopyImage2KHR: Hazard %s for srcImage %s, region %" PRIu32 ". Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(pCopyImageInfo->srcImage).c_str(),
region, cb_access_context->FormatUsage(hazard).c_str());
}
}
if (dst_image) {
VkExtent3D dst_copy_extent =
GetAdjustedDestImageExtent(src_image->createInfo.format, dst_image->createInfo.format, copy_region.extent);
auto hazard = context->DetectHazard(*dst_image, SYNC_TRANSFER_TRANSFER_WRITE, copy_region.dstSubresource,
copy_region.dstOffset, dst_copy_extent);
if (hazard.hazard) {
skip |= LogError(pCopyImageInfo->dstImage, string_SyncHazardVUID(hazard.hazard),
"vkCmdCopyImage2KHR: Hazard %s for dstImage %s, region %" PRIu32 ". Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(pCopyImageInfo->dstImage).c_str(),
region, cb_access_context->FormatUsage(hazard).c_str());
}
if (skip) break;
}
}
return skip;
}
void SyncValidator::PreCallRecordCmdCopyImage2KHR(VkCommandBuffer commandBuffer, const VkCopyImageInfo2KHR *pCopyImageInfo) {
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_COPYIMAGE2KHR);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto *src_image = Get<IMAGE_STATE>(pCopyImageInfo->srcImage);
auto *dst_image = Get<IMAGE_STATE>(pCopyImageInfo->dstImage);
for (uint32_t region = 0; region < pCopyImageInfo->regionCount; region++) {
const auto &copy_region = pCopyImageInfo->pRegions[region];
if (src_image) {
context->UpdateAccessState(*src_image, SYNC_TRANSFER_TRANSFER_READ, SyncOrdering::kNonAttachment,
copy_region.srcSubresource, copy_region.srcOffset, copy_region.extent, tag);
}
if (dst_image) {
VkExtent3D dst_copy_extent =
GetAdjustedDestImageExtent(src_image->createInfo.format, dst_image->createInfo.format, copy_region.extent);
context->UpdateAccessState(*dst_image, SYNC_TRANSFER_TRANSFER_WRITE, SyncOrdering::kNonAttachment,
copy_region.dstSubresource, copy_region.dstOffset, dst_copy_extent, tag);
}
}
}
bool SyncValidator::PreCallValidateCmdPipelineBarrier(VkCommandBuffer commandBuffer, VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask, VkDependencyFlags dependencyFlags,
uint32_t memoryBarrierCount, const VkMemoryBarrier *pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
SyncOpPipelineBarrier pipeline_barrier(*this, cb_access_context->GetQueueFlags(), srcStageMask, dstStageMask, dependencyFlags,
memoryBarrierCount, pMemoryBarriers, bufferMemoryBarrierCount, pBufferMemoryBarriers,
imageMemoryBarrierCount, pImageMemoryBarriers);
skip = pipeline_barrier.Validate(*cb_access_context);
return skip;
}
void SyncValidator::PreCallRecordCmdPipelineBarrier(VkCommandBuffer commandBuffer, VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask, VkDependencyFlags dependencyFlags,
uint32_t memoryBarrierCount, const VkMemoryBarrier *pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers) {
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return;
SyncOpPipelineBarrier pipeline_barrier(*this, cb_access_context->GetQueueFlags(), srcStageMask, dstStageMask, dependencyFlags,
memoryBarrierCount, pMemoryBarriers, bufferMemoryBarrierCount, pBufferMemoryBarriers,
imageMemoryBarrierCount, pImageMemoryBarriers);
pipeline_barrier.Record(cb_access_context, cb_access_context->NextCommandTag(CMD_PIPELINEBARRIER));
}
void SyncValidator::PostCallRecordCreateDevice(VkPhysicalDevice gpu, const VkDeviceCreateInfo *pCreateInfo,
const VkAllocationCallbacks *pAllocator, VkDevice *pDevice, VkResult result) {
// The state tracker sets up the device state
StateTracker::PostCallRecordCreateDevice(gpu, pCreateInfo, pAllocator, pDevice, result);
// Add the callback hooks for the functions that are either broadly or deeply used and that the ValidationStateTracker
// refactor would be messier without.
// TODO: Find a good way to do this hooklessly.
ValidationObject *device_object = GetLayerDataPtr(get_dispatch_key(*pDevice), layer_data_map);
ValidationObject *validation_data = GetValidationObject(device_object->object_dispatch, LayerObjectTypeSyncValidation);
SyncValidator *sync_device_state = static_cast<SyncValidator *>(validation_data);
sync_device_state->SetCommandBufferResetCallback([sync_device_state](VkCommandBuffer command_buffer) -> void {
sync_device_state->ResetCommandBufferCallback(command_buffer);
});
sync_device_state->SetCommandBufferFreeCallback([sync_device_state](VkCommandBuffer command_buffer) -> void {
sync_device_state->FreeCommandBufferCallback(command_buffer);
});
}
bool SyncValidator::ValidateBeginRenderPass(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo *pRenderPassBegin,
const VkSubpassBeginInfo *pSubpassBeginInfo, const char *func_name) const {
bool skip = false;
const auto rp_state = Get<RENDER_PASS_STATE>(pRenderPassBegin->renderPass);
auto cb_context = GetAccessContext(commandBuffer);
if (rp_state && cb_context) {
skip |= cb_context->ValidateBeginRenderPass(*rp_state, pRenderPassBegin, pSubpassBeginInfo, func_name);
}
return skip;
}
bool SyncValidator::PreCallValidateCmdBeginRenderPass(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo *pRenderPassBegin,
VkSubpassContents contents) const {
bool skip = StateTracker::PreCallValidateCmdBeginRenderPass(commandBuffer, pRenderPassBegin, contents);
auto subpass_begin_info = LvlInitStruct<VkSubpassBeginInfo>();
subpass_begin_info.contents = contents;
skip |= ValidateBeginRenderPass(commandBuffer, pRenderPassBegin, &subpass_begin_info, "vkCmdBeginRenderPass");
return skip;
}
bool SyncValidator::PreCallValidateCmdBeginRenderPass2(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo *pRenderPassBegin,
const VkSubpassBeginInfo *pSubpassBeginInfo) const {
bool skip = StateTracker::PreCallValidateCmdBeginRenderPass2(commandBuffer, pRenderPassBegin, pSubpassBeginInfo);
skip |= ValidateBeginRenderPass(commandBuffer, pRenderPassBegin, pSubpassBeginInfo, "vkCmdBeginRenderPass2");
return skip;
}
bool SyncValidator::PreCallValidateCmdBeginRenderPass2KHR(VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfo *pRenderPassBegin,
const VkSubpassBeginInfo *pSubpassBeginInfo) const {
bool skip = StateTracker::PreCallValidateCmdBeginRenderPass2KHR(commandBuffer, pRenderPassBegin, pSubpassBeginInfo);
skip |= ValidateBeginRenderPass(commandBuffer, pRenderPassBegin, pSubpassBeginInfo, "vkCmdBeginRenderPass2KHR");
return skip;
}
void SyncValidator::PostCallRecordBeginCommandBuffer(VkCommandBuffer commandBuffer, const VkCommandBufferBeginInfo *pBeginInfo,
VkResult result) {
// The state tracker sets up the command buffer state
StateTracker::PostCallRecordBeginCommandBuffer(commandBuffer, pBeginInfo, result);
// Create/initialize the structure that trackers accesses at the command buffer scope.
auto cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
cb_access_context->Reset();
}
void SyncValidator::RecordCmdBeginRenderPass(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo *pRenderPassBegin,
const VkSubpassBeginInfo *pSubpassBeginInfo, CMD_TYPE command) {
auto cb_context = GetAccessContext(commandBuffer);
if (cb_context) {
cb_context->RecordBeginRenderPass(cb_context->NextCommandTag(command));
}
}
void SyncValidator::PostCallRecordCmdBeginRenderPass(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo *pRenderPassBegin,
VkSubpassContents contents) {
StateTracker::PostCallRecordCmdBeginRenderPass(commandBuffer, pRenderPassBegin, contents);
auto subpass_begin_info = LvlInitStruct<VkSubpassBeginInfo>();
subpass_begin_info.contents = contents;
RecordCmdBeginRenderPass(commandBuffer, pRenderPassBegin, &subpass_begin_info, CMD_BEGINRENDERPASS);
}
void SyncValidator::PostCallRecordCmdBeginRenderPass2(VkCommandBuffer commandBuffer, const VkRenderPassBeginInfo *pRenderPassBegin,
const VkSubpassBeginInfo *pSubpassBeginInfo) {
StateTracker::PostCallRecordCmdBeginRenderPass2(commandBuffer, pRenderPassBegin, pSubpassBeginInfo);
RecordCmdBeginRenderPass(commandBuffer, pRenderPassBegin, pSubpassBeginInfo, CMD_BEGINRENDERPASS2);
}
void SyncValidator::PostCallRecordCmdBeginRenderPass2KHR(VkCommandBuffer commandBuffer,
const VkRenderPassBeginInfo *pRenderPassBegin,
const VkSubpassBeginInfo *pSubpassBeginInfo) {
StateTracker::PostCallRecordCmdBeginRenderPass2KHR(commandBuffer, pRenderPassBegin, pSubpassBeginInfo);
RecordCmdBeginRenderPass(commandBuffer, pRenderPassBegin, pSubpassBeginInfo, CMD_BEGINRENDERPASS2);
}
bool SyncValidator::ValidateCmdNextSubpass(VkCommandBuffer commandBuffer, const VkSubpassBeginInfo *pSubpassBeginInfo,
const VkSubpassEndInfo *pSubpassEndInfo, const char *func_name) const {
bool skip = false;
auto cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
auto cb_state = cb_context->GetCommandBufferState();
if (!cb_state) return skip;
auto rp_state = cb_state->activeRenderPass;
if (!rp_state) return skip;
skip |= cb_context->ValidateNextSubpass(func_name);
return skip;
}
bool SyncValidator::PreCallValidateCmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents) const {
bool skip = StateTracker::PreCallValidateCmdNextSubpass(commandBuffer, contents);
auto subpass_begin_info = LvlInitStruct<VkSubpassBeginInfo>();
subpass_begin_info.contents = contents;
skip |= ValidateCmdNextSubpass(commandBuffer, &subpass_begin_info, nullptr, "vkCmdNextSubpass");
return skip;
}
bool SyncValidator::PreCallValidateCmdNextSubpass2KHR(VkCommandBuffer commandBuffer, const VkSubpassBeginInfo *pSubpassBeginInfo,
const VkSubpassEndInfo *pSubpassEndInfo) const {
bool skip = StateTracker::PreCallValidateCmdNextSubpass2KHR(commandBuffer, pSubpassBeginInfo, pSubpassEndInfo);
skip |= ValidateCmdNextSubpass(commandBuffer, pSubpassBeginInfo, pSubpassEndInfo, "vkCmdNextSubpass2KHR");
return skip;
}
bool SyncValidator::PreCallValidateCmdNextSubpass2(VkCommandBuffer commandBuffer, const VkSubpassBeginInfo *pSubpassBeginInfo,
const VkSubpassEndInfo *pSubpassEndInfo) const {
bool skip = StateTracker::PreCallValidateCmdNextSubpass2(commandBuffer, pSubpassBeginInfo, pSubpassEndInfo);
skip |= ValidateCmdNextSubpass(commandBuffer, pSubpassBeginInfo, pSubpassEndInfo, "vkCmdNextSubpass2");
return skip;
}
void SyncValidator::RecordCmdNextSubpass(VkCommandBuffer commandBuffer, const VkSubpassBeginInfo *pSubpassBeginInfo,
const VkSubpassEndInfo *pSubpassEndInfo, CMD_TYPE command) {
auto cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
auto cb_state = cb_context->GetCommandBufferState();
if (!cb_state) return;
auto rp_state = cb_state->activeRenderPass;
if (!rp_state) return;
cb_context->RecordNextSubpass(*rp_state, command);
}
void SyncValidator::PostCallRecordCmdNextSubpass(VkCommandBuffer commandBuffer, VkSubpassContents contents) {
StateTracker::PostCallRecordCmdNextSubpass(commandBuffer, contents);
auto subpass_begin_info = LvlInitStruct<VkSubpassBeginInfo>();
subpass_begin_info.contents = contents;
RecordCmdNextSubpass(commandBuffer, &subpass_begin_info, nullptr, CMD_NEXTSUBPASS);
}
void SyncValidator::PostCallRecordCmdNextSubpass2(VkCommandBuffer commandBuffer, const VkSubpassBeginInfo *pSubpassBeginInfo,
const VkSubpassEndInfo *pSubpassEndInfo) {
StateTracker::PostCallRecordCmdNextSubpass2(commandBuffer, pSubpassBeginInfo, pSubpassEndInfo);
RecordCmdNextSubpass(commandBuffer, pSubpassBeginInfo, pSubpassEndInfo, CMD_NEXTSUBPASS2);
}
void SyncValidator::PostCallRecordCmdNextSubpass2KHR(VkCommandBuffer commandBuffer, const VkSubpassBeginInfo *pSubpassBeginInfo,
const VkSubpassEndInfo *pSubpassEndInfo) {
StateTracker::PostCallRecordCmdNextSubpass2KHR(commandBuffer, pSubpassBeginInfo, pSubpassEndInfo);
RecordCmdNextSubpass(commandBuffer, pSubpassBeginInfo, pSubpassEndInfo, CMD_NEXTSUBPASS2);
}
bool SyncValidator::ValidateCmdEndRenderPass(VkCommandBuffer commandBuffer, const VkSubpassEndInfo *pSubpassEndInfo,
const char *func_name) const {
bool skip = false;
auto cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
auto cb_state = cb_context->GetCommandBufferState();
if (!cb_state) return skip;
auto rp_state = cb_state->activeRenderPass;
if (!rp_state) return skip;
skip |= cb_context->ValidateEndRenderpass(func_name);
return skip;
}
bool SyncValidator::PreCallValidateCmdEndRenderPass(VkCommandBuffer commandBuffer) const {
bool skip = StateTracker::PreCallValidateCmdEndRenderPass(commandBuffer);
skip |= ValidateCmdEndRenderPass(commandBuffer, nullptr, "vkEndRenderPass");
return skip;
}
bool SyncValidator::PreCallValidateCmdEndRenderPass2(VkCommandBuffer commandBuffer, const VkSubpassEndInfo *pSubpassEndInfo) const {
bool skip = StateTracker::PreCallValidateCmdEndRenderPass2(commandBuffer, pSubpassEndInfo);
skip |= ValidateCmdEndRenderPass(commandBuffer, pSubpassEndInfo, "vkEndRenderPass2");
return skip;
}
bool SyncValidator::PreCallValidateCmdEndRenderPass2KHR(VkCommandBuffer commandBuffer,
const VkSubpassEndInfo *pSubpassEndInfo) const {
bool skip = StateTracker::PreCallValidateCmdEndRenderPass2KHR(commandBuffer, pSubpassEndInfo);
skip |= ValidateCmdEndRenderPass(commandBuffer, pSubpassEndInfo, "vkEndRenderPass2KHR");
return skip;
}
void SyncValidator::RecordCmdEndRenderPass(VkCommandBuffer commandBuffer, const VkSubpassEndInfo *pSubpassEndInfo,
CMD_TYPE command) {
// Resolve the all subpass contexts to the command buffer contexts
auto cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
auto cb_state = cb_context->GetCommandBufferState();
if (!cb_state) return;
const auto *rp_state = cb_state->activeRenderPass.get();
if (!rp_state) return;
cb_context->RecordEndRenderPass(*rp_state, command);
}
// Simple heuristic rule to detect WAW operations representing algorithmically safe or increment
// updates to a resource which do not conflict at the byte level.
// TODO: Revisit this rule to see if it needs to be tighter or looser
// TODO: Add programatic control over suppression heuristics
bool SyncValidator::SupressedBoundDescriptorWAW(const HazardResult &hazard) const {
return (hazard.hazard == WRITE_AFTER_WRITE) && (FlagBit(hazard.usage_index) == hazard.prior_access);
}
void SyncValidator::PostCallRecordCmdEndRenderPass(VkCommandBuffer commandBuffer) {
RecordCmdEndRenderPass(commandBuffer, nullptr, CMD_ENDRENDERPASS);
StateTracker::PostCallRecordCmdEndRenderPass(commandBuffer);
}
void SyncValidator::PostCallRecordCmdEndRenderPass2(VkCommandBuffer commandBuffer, const VkSubpassEndInfo *pSubpassEndInfo) {
RecordCmdEndRenderPass(commandBuffer, pSubpassEndInfo, CMD_ENDRENDERPASS2);
StateTracker::PostCallRecordCmdEndRenderPass2(commandBuffer, pSubpassEndInfo);
}
void SyncValidator::PostCallRecordCmdEndRenderPass2KHR(VkCommandBuffer commandBuffer, const VkSubpassEndInfo *pSubpassEndInfo) {
RecordCmdEndRenderPass(commandBuffer, pSubpassEndInfo, CMD_ENDRENDERPASS2);
StateTracker::PostCallRecordCmdEndRenderPass2KHR(commandBuffer, pSubpassEndInfo);
}
template <typename BufferImageCopyRegionType>
bool SyncValidator::ValidateCmdCopyBufferToImage(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkImage dstImage,
VkImageLayout dstImageLayout, uint32_t regionCount,
const BufferImageCopyRegionType *pRegions, CopyCommandVersion version) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const bool is_2khr = (version == COPY_COMMAND_VERSION_2);
const char *func_name = is_2khr ? "vkCmdCopyBufferToImage2KHR()" : "vkCmdCopyBufferToImage()";
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
const auto *src_buffer = Get<BUFFER_STATE>(srcBuffer);
const auto *dst_image = Get<IMAGE_STATE>(dstImage);
for (uint32_t region = 0; region < regionCount; region++) {
const auto &copy_region = pRegions[region];
HazardResult hazard;
if (dst_image) {
if (src_buffer) {
ResourceAccessRange src_range =
MakeRange(copy_region.bufferOffset, GetBufferSizeFromCopyImage(copy_region, dst_image->createInfo.format));
hazard = context->DetectHazard(*src_buffer, SYNC_TRANSFER_TRANSFER_READ, src_range);
if (hazard.hazard) {
// PHASE1 TODO -- add tag information to log msg when useful.
skip |= LogError(srcBuffer, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for srcBuffer %s, region %" PRIu32 ". Access info %s.", func_name,
string_SyncHazard(hazard.hazard), report_data->FormatHandle(srcBuffer).c_str(), region,
cb_access_context->FormatUsage(hazard).c_str());
}
}
hazard = context->DetectHazard(*dst_image, SYNC_TRANSFER_TRANSFER_WRITE, copy_region.imageSubresource,
copy_region.imageOffset, copy_region.imageExtent);
if (hazard.hazard) {
skip |= LogError(dstImage, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for dstImage %s, region %" PRIu32 ". Access info %s.", func_name,
string_SyncHazard(hazard.hazard), report_data->FormatHandle(dstImage).c_str(), region,
cb_access_context->FormatUsage(hazard).c_str());
}
if (skip) break;
}
if (skip) break;
}
return skip;
}
bool SyncValidator::PreCallValidateCmdCopyBufferToImage(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkImage dstImage,
VkImageLayout dstImageLayout, uint32_t regionCount,
const VkBufferImageCopy *pRegions) const {
return ValidateCmdCopyBufferToImage(commandBuffer, srcBuffer, dstImage, dstImageLayout, regionCount, pRegions,
COPY_COMMAND_VERSION_1);
}
bool SyncValidator::PreCallValidateCmdCopyBufferToImage2KHR(VkCommandBuffer commandBuffer,
const VkCopyBufferToImageInfo2KHR *pCopyBufferToImageInfo) const {
return ValidateCmdCopyBufferToImage(commandBuffer, pCopyBufferToImageInfo->srcBuffer, pCopyBufferToImageInfo->dstImage,
pCopyBufferToImageInfo->dstImageLayout, pCopyBufferToImageInfo->regionCount,
pCopyBufferToImageInfo->pRegions, COPY_COMMAND_VERSION_2);
}
template <typename BufferImageCopyRegionType>
void SyncValidator::RecordCmdCopyBufferToImage(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkImage dstImage,
VkImageLayout dstImageLayout, uint32_t regionCount,
const BufferImageCopyRegionType *pRegions, CopyCommandVersion version) {
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const bool is_2khr = (version == COPY_COMMAND_VERSION_2);
const CMD_TYPE cmd_type = is_2khr ? CMD_COPYBUFFERTOIMAGE2KHR : CMD_COPYBUFFERTOIMAGE;
const auto tag = cb_access_context->NextCommandTag(cmd_type);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
const auto *src_buffer = Get<BUFFER_STATE>(srcBuffer);
const auto *dst_image = Get<IMAGE_STATE>(dstImage);
for (uint32_t region = 0; region < regionCount; region++) {
const auto &copy_region = pRegions[region];
if (dst_image) {
if (src_buffer) {
ResourceAccessRange src_range =
MakeRange(copy_region.bufferOffset, GetBufferSizeFromCopyImage(copy_region, dst_image->createInfo.format));
context->UpdateAccessState(*src_buffer, SYNC_TRANSFER_TRANSFER_READ, SyncOrdering::kNonAttachment, src_range, tag);
}
context->UpdateAccessState(*dst_image, SYNC_TRANSFER_TRANSFER_WRITE, SyncOrdering::kNonAttachment,
copy_region.imageSubresource, copy_region.imageOffset, copy_region.imageExtent, tag);
}
}
}
void SyncValidator::PreCallRecordCmdCopyBufferToImage(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkImage dstImage,
VkImageLayout dstImageLayout, uint32_t regionCount,
const VkBufferImageCopy *pRegions) {
StateTracker::PreCallRecordCmdCopyBufferToImage(commandBuffer, srcBuffer, dstImage, dstImageLayout, regionCount, pRegions);
RecordCmdCopyBufferToImage(commandBuffer, srcBuffer, dstImage, dstImageLayout, regionCount, pRegions, COPY_COMMAND_VERSION_1);
}
void SyncValidator::PreCallRecordCmdCopyBufferToImage2KHR(VkCommandBuffer commandBuffer,
const VkCopyBufferToImageInfo2KHR *pCopyBufferToImageInfo) {
StateTracker::PreCallRecordCmdCopyBufferToImage2KHR(commandBuffer, pCopyBufferToImageInfo);
RecordCmdCopyBufferToImage(commandBuffer, pCopyBufferToImageInfo->srcBuffer, pCopyBufferToImageInfo->dstImage,
pCopyBufferToImageInfo->dstImageLayout, pCopyBufferToImageInfo->regionCount,
pCopyBufferToImageInfo->pRegions, COPY_COMMAND_VERSION_2);
}
template <typename BufferImageCopyRegionType>
bool SyncValidator::ValidateCmdCopyImageToBuffer(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkBuffer dstBuffer, uint32_t regionCount,
const BufferImageCopyRegionType *pRegions, CopyCommandVersion version) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const bool is_2khr = (version == COPY_COMMAND_VERSION_2);
const char *func_name = is_2khr ? "vkCmdCopyImageToBuffer2KHR()" : "vkCmdCopyImageToBuffer()";
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
const auto *src_image = Get<IMAGE_STATE>(srcImage);
const auto *dst_buffer = Get<BUFFER_STATE>(dstBuffer);
const auto dst_mem = (dst_buffer && !dst_buffer->sparse) ? dst_buffer->binding.mem_state->mem : VK_NULL_HANDLE;
for (uint32_t region = 0; region < regionCount; region++) {
const auto &copy_region = pRegions[region];
if (src_image) {
auto hazard = context->DetectHazard(*src_image, SYNC_TRANSFER_TRANSFER_READ, copy_region.imageSubresource,
copy_region.imageOffset, copy_region.imageExtent);
if (hazard.hazard) {
skip |= LogError(srcImage, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for srcImage %s, region %" PRIu32 ". Access info %s.", func_name,
string_SyncHazard(hazard.hazard), report_data->FormatHandle(srcImage).c_str(), region,
cb_access_context->FormatUsage(hazard).c_str());
}
if (dst_mem) {
ResourceAccessRange dst_range =
MakeRange(copy_region.bufferOffset, GetBufferSizeFromCopyImage(copy_region, src_image->createInfo.format));
hazard = context->DetectHazard(*dst_buffer, SYNC_TRANSFER_TRANSFER_WRITE, dst_range);
if (hazard.hazard) {
skip |= LogError(dstBuffer, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for dstBuffer %s, region %" PRIu32 ". Access info %s.", func_name,
string_SyncHazard(hazard.hazard), report_data->FormatHandle(dstBuffer).c_str(), region,
cb_access_context->FormatUsage(hazard).c_str());
}
}
}
if (skip) break;
}
return skip;
}
bool SyncValidator::PreCallValidateCmdCopyImageToBuffer(VkCommandBuffer commandBuffer, VkImage srcImage,
VkImageLayout srcImageLayout, VkBuffer dstBuffer, uint32_t regionCount,
const VkBufferImageCopy *pRegions) const {
return ValidateCmdCopyImageToBuffer(commandBuffer, srcImage, srcImageLayout, dstBuffer, regionCount, pRegions,
COPY_COMMAND_VERSION_1);
}
bool SyncValidator::PreCallValidateCmdCopyImageToBuffer2KHR(VkCommandBuffer commandBuffer,
const VkCopyImageToBufferInfo2KHR *pCopyImageToBufferInfo) const {
return ValidateCmdCopyImageToBuffer(commandBuffer, pCopyImageToBufferInfo->srcImage, pCopyImageToBufferInfo->srcImageLayout,
pCopyImageToBufferInfo->dstBuffer, pCopyImageToBufferInfo->regionCount,
pCopyImageToBufferInfo->pRegions, COPY_COMMAND_VERSION_2);
}
template <typename BufferImageCopyRegionType>
void SyncValidator::RecordCmdCopyImageToBuffer(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkBuffer dstBuffer, uint32_t regionCount, const BufferImageCopyRegionType *pRegions,
CopyCommandVersion version) {
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const bool is_2khr = (version == COPY_COMMAND_VERSION_2);
const CMD_TYPE cmd_type = is_2khr ? CMD_COPYIMAGETOBUFFER2KHR : CMD_COPYIMAGETOBUFFER;
const auto tag = cb_access_context->NextCommandTag(cmd_type);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
const auto *src_image = Get<IMAGE_STATE>(srcImage);
auto *dst_buffer = Get<BUFFER_STATE>(dstBuffer);
const auto dst_mem = (dst_buffer && !dst_buffer->sparse) ? dst_buffer->binding.mem_state->mem : VK_NULL_HANDLE;
const VulkanTypedHandle dst_handle(dst_mem, kVulkanObjectTypeDeviceMemory);
for (uint32_t region = 0; region < regionCount; region++) {
const auto &copy_region = pRegions[region];
if (src_image) {
context->UpdateAccessState(*src_image, SYNC_TRANSFER_TRANSFER_READ, SyncOrdering::kNonAttachment,
copy_region.imageSubresource, copy_region.imageOffset, copy_region.imageExtent, tag);
if (dst_buffer) {
ResourceAccessRange dst_range =
MakeRange(copy_region.bufferOffset, GetBufferSizeFromCopyImage(copy_region, src_image->createInfo.format));
context->UpdateAccessState(*dst_buffer, SYNC_TRANSFER_TRANSFER_WRITE, SyncOrdering::kNonAttachment, dst_range, tag);
}
}
}
}
void SyncValidator::PreCallRecordCmdCopyImageToBuffer(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkBuffer dstBuffer, uint32_t regionCount, const VkBufferImageCopy *pRegions) {
StateTracker::PreCallRecordCmdCopyImageToBuffer(commandBuffer, srcImage, srcImageLayout, dstBuffer, regionCount, pRegions);
RecordCmdCopyImageToBuffer(commandBuffer, srcImage, srcImageLayout, dstBuffer, regionCount, pRegions, COPY_COMMAND_VERSION_1);
}
void SyncValidator::PreCallRecordCmdCopyImageToBuffer2KHR(VkCommandBuffer commandBuffer,
const VkCopyImageToBufferInfo2KHR *pCopyImageToBufferInfo) {
StateTracker::PreCallRecordCmdCopyImageToBuffer2KHR(commandBuffer, pCopyImageToBufferInfo);
RecordCmdCopyImageToBuffer(commandBuffer, pCopyImageToBufferInfo->srcImage, pCopyImageToBufferInfo->srcImageLayout,
pCopyImageToBufferInfo->dstBuffer, pCopyImageToBufferInfo->regionCount,
pCopyImageToBufferInfo->pRegions, COPY_COMMAND_VERSION_2);
}
template <typename RegionType>
bool SyncValidator::ValidateCmdBlitImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount,
const RegionType *pRegions, VkFilter filter, const char *apiName) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
const auto *src_image = Get<IMAGE_STATE>(srcImage);
const auto *dst_image = Get<IMAGE_STATE>(dstImage);
for (uint32_t region = 0; region < regionCount; region++) {
const auto &blit_region = pRegions[region];
if (src_image) {
VkOffset3D offset = {std::min(blit_region.srcOffsets[0].x, blit_region.srcOffsets[1].x),
std::min(blit_region.srcOffsets[0].y, blit_region.srcOffsets[1].y),
std::min(blit_region.srcOffsets[0].z, blit_region.srcOffsets[1].z)};
VkExtent3D extent = {static_cast<uint32_t>(abs(blit_region.srcOffsets[1].x - blit_region.srcOffsets[0].x)),
static_cast<uint32_t>(abs(blit_region.srcOffsets[1].y - blit_region.srcOffsets[0].y)),
static_cast<uint32_t>(abs(blit_region.srcOffsets[1].z - blit_region.srcOffsets[0].z))};
auto hazard =
context->DetectHazard(*src_image, SYNC_TRANSFER_TRANSFER_READ, blit_region.srcSubresource, offset, extent);
if (hazard.hazard) {
skip |= LogError(srcImage, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for srcImage %s, region %" PRIu32 ". Access info %s.", apiName,
string_SyncHazard(hazard.hazard), report_data->FormatHandle(srcImage).c_str(), region,
cb_access_context->FormatUsage(hazard).c_str());
}
}
if (dst_image) {
VkOffset3D offset = {std::min(blit_region.dstOffsets[0].x, blit_region.dstOffsets[1].x),
std::min(blit_region.dstOffsets[0].y, blit_region.dstOffsets[1].y),
std::min(blit_region.dstOffsets[0].z, blit_region.dstOffsets[1].z)};
VkExtent3D extent = {static_cast<uint32_t>(abs(blit_region.dstOffsets[1].x - blit_region.dstOffsets[0].x)),
static_cast<uint32_t>(abs(blit_region.dstOffsets[1].y - blit_region.dstOffsets[0].y)),
static_cast<uint32_t>(abs(blit_region.dstOffsets[1].z - blit_region.dstOffsets[0].z))};
auto hazard =
context->DetectHazard(*dst_image, SYNC_TRANSFER_TRANSFER_WRITE, blit_region.dstSubresource, offset, extent);
if (hazard.hazard) {
skip |= LogError(dstImage, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for dstImage %s, region %" PRIu32 ". Access info %s.", apiName,
string_SyncHazard(hazard.hazard), report_data->FormatHandle(dstImage).c_str(), region,
cb_access_context->FormatUsage(hazard).c_str());
}
if (skip) break;
}
}
return skip;
}
bool SyncValidator::PreCallValidateCmdBlitImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount,
const VkImageBlit *pRegions, VkFilter filter) const {
return ValidateCmdBlitImage(commandBuffer, srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions, filter,
"vkCmdBlitImage");
}
bool SyncValidator::PreCallValidateCmdBlitImage2KHR(VkCommandBuffer commandBuffer,
const VkBlitImageInfo2KHR *pBlitImageInfo) const {
return ValidateCmdBlitImage(commandBuffer, pBlitImageInfo->srcImage, pBlitImageInfo->srcImageLayout, pBlitImageInfo->dstImage,
pBlitImageInfo->dstImageLayout, pBlitImageInfo->regionCount, pBlitImageInfo->pRegions,
pBlitImageInfo->filter, "vkCmdBlitImage2KHR");
}
template <typename RegionType>
void SyncValidator::RecordCmdBlitImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount,
const RegionType *pRegions, VkFilter filter, ResourceUsageTag tag) {
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto *src_image = Get<IMAGE_STATE>(srcImage);
auto *dst_image = Get<IMAGE_STATE>(dstImage);
for (uint32_t region = 0; region < regionCount; region++) {
const auto &blit_region = pRegions[region];
if (src_image) {
VkOffset3D offset = {std::min(blit_region.srcOffsets[0].x, blit_region.srcOffsets[1].x),
std::min(blit_region.srcOffsets[0].y, blit_region.srcOffsets[1].y),
std::min(blit_region.srcOffsets[0].z, blit_region.srcOffsets[1].z)};
VkExtent3D extent = {static_cast<uint32_t>(abs(blit_region.srcOffsets[1].x - blit_region.srcOffsets[0].x)),
static_cast<uint32_t>(abs(blit_region.srcOffsets[1].y - blit_region.srcOffsets[0].y)),
static_cast<uint32_t>(abs(blit_region.srcOffsets[1].z - blit_region.srcOffsets[0].z))};
context->UpdateAccessState(*src_image, SYNC_TRANSFER_TRANSFER_READ, SyncOrdering::kNonAttachment,
blit_region.srcSubresource, offset, extent, tag);
}
if (dst_image) {
VkOffset3D offset = {std::min(blit_region.dstOffsets[0].x, blit_region.dstOffsets[1].x),
std::min(blit_region.dstOffsets[0].y, blit_region.dstOffsets[1].y),
std::min(blit_region.dstOffsets[0].z, blit_region.dstOffsets[1].z)};
VkExtent3D extent = {static_cast<uint32_t>(abs(blit_region.dstOffsets[1].x - blit_region.dstOffsets[0].x)),
static_cast<uint32_t>(abs(blit_region.dstOffsets[1].y - blit_region.dstOffsets[0].y)),
static_cast<uint32_t>(abs(blit_region.dstOffsets[1].z - blit_region.dstOffsets[0].z))};
context->UpdateAccessState(*dst_image, SYNC_TRANSFER_TRANSFER_WRITE, SyncOrdering::kNonAttachment,
blit_region.dstSubresource, offset, extent, tag);
}
}
}
void SyncValidator::PreCallRecordCmdBlitImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount,
const VkImageBlit *pRegions, VkFilter filter) {
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_BLITIMAGE);
StateTracker::PreCallRecordCmdBlitImage(commandBuffer, srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount,
pRegions, filter);
RecordCmdBlitImage(commandBuffer, srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount, pRegions, filter, tag);
}
void SyncValidator::PreCallRecordCmdBlitImage2KHR(VkCommandBuffer commandBuffer, const VkBlitImageInfo2KHR *pBlitImageInfo) {
StateTracker::PreCallRecordCmdBlitImage2KHR(commandBuffer, pBlitImageInfo);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_BLITIMAGE2KHR);
RecordCmdBlitImage(commandBuffer, pBlitImageInfo->srcImage, pBlitImageInfo->srcImageLayout, pBlitImageInfo->dstImage,
pBlitImageInfo->dstImageLayout, pBlitImageInfo->regionCount, pBlitImageInfo->pRegions,
pBlitImageInfo->filter, tag);
}
bool SyncValidator::ValidateIndirectBuffer(const CommandBufferAccessContext &cb_context, const AccessContext &context,
VkCommandBuffer commandBuffer, const VkDeviceSize struct_size, const VkBuffer buffer,
const VkDeviceSize offset, const uint32_t drawCount, const uint32_t stride,
const char *function) const {
bool skip = false;
if (drawCount == 0) return skip;
const auto *buf_state = Get<BUFFER_STATE>(buffer);
VkDeviceSize size = struct_size;
if (drawCount == 1 || stride == size) {
if (drawCount > 1) size *= drawCount;
const ResourceAccessRange range = MakeRange(offset, size);
auto hazard = context.DetectHazard(*buf_state, SYNC_DRAW_INDIRECT_INDIRECT_COMMAND_READ, range);
if (hazard.hazard) {
skip |= LogError(buf_state->buffer, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for indirect %s in %s. Access info %s.", function, string_SyncHazard(hazard.hazard),
report_data->FormatHandle(buffer).c_str(), report_data->FormatHandle(commandBuffer).c_str(),
cb_context.FormatUsage(hazard).c_str());
}
} else {
for (uint32_t i = 0; i < drawCount; ++i) {
const ResourceAccessRange range = MakeRange(offset + i * stride, size);
auto hazard = context.DetectHazard(*buf_state, SYNC_DRAW_INDIRECT_INDIRECT_COMMAND_READ, range);
if (hazard.hazard) {
skip |= LogError(buf_state->buffer, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for indirect %s in %s. Access info %s.", function, string_SyncHazard(hazard.hazard),
report_data->FormatHandle(buffer).c_str(), report_data->FormatHandle(commandBuffer).c_str(),
cb_context.FormatUsage(hazard).c_str());
break;
}
}
}
return skip;
}
void SyncValidator::RecordIndirectBuffer(AccessContext &context, const ResourceUsageTag &tag, const VkDeviceSize struct_size,
const VkBuffer buffer, const VkDeviceSize offset, const uint32_t drawCount,
uint32_t stride) {
const auto *buf_state = Get<BUFFER_STATE>(buffer);
VkDeviceSize size = struct_size;
if (drawCount == 1 || stride == size) {
if (drawCount > 1) size *= drawCount;
const ResourceAccessRange range = MakeRange(offset, size);
context.UpdateAccessState(*buf_state, SYNC_DRAW_INDIRECT_INDIRECT_COMMAND_READ, SyncOrdering::kNonAttachment, range, tag);
} else {
for (uint32_t i = 0; i < drawCount; ++i) {
const ResourceAccessRange range = MakeRange(offset + i * stride, size);
context.UpdateAccessState(*buf_state, SYNC_DRAW_INDIRECT_INDIRECT_COMMAND_READ, SyncOrdering::kNonAttachment, range,
tag);
}
}
}
bool SyncValidator::ValidateCountBuffer(const CommandBufferAccessContext &cb_context, const AccessContext &context,
VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
const char *function) const {
bool skip = false;
const auto *count_buf_state = Get<BUFFER_STATE>(buffer);
const ResourceAccessRange range = MakeRange(offset, 4);
auto hazard = context.DetectHazard(*count_buf_state, SYNC_DRAW_INDIRECT_INDIRECT_COMMAND_READ, range);
if (hazard.hazard) {
skip |= LogError(count_buf_state->buffer, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for countBuffer %s in %s. Access info %s.", function, string_SyncHazard(hazard.hazard),
report_data->FormatHandle(buffer).c_str(), report_data->FormatHandle(commandBuffer).c_str(),
cb_context.FormatUsage(hazard).c_str());
}
return skip;
}
void SyncValidator::RecordCountBuffer(AccessContext &context, const ResourceUsageTag &tag, VkBuffer buffer, VkDeviceSize offset) {
const auto *count_buf_state = Get<BUFFER_STATE>(buffer);
const ResourceAccessRange range = MakeRange(offset, 4);
context.UpdateAccessState(*count_buf_state, SYNC_DRAW_INDIRECT_INDIRECT_COMMAND_READ, SyncOrdering::kNonAttachment, range, tag);
}
bool SyncValidator::PreCallValidateCmdDispatch(VkCommandBuffer commandBuffer, uint32_t x, uint32_t y, uint32_t z) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
skip |= cb_access_context->ValidateDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_COMPUTE, "vkCmdDispatch");
return skip;
}
void SyncValidator::PreCallRecordCmdDispatch(VkCommandBuffer commandBuffer, uint32_t x, uint32_t y, uint32_t z) {
StateTracker::PreCallRecordCmdDispatch(commandBuffer, x, y, z);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_DISPATCH);
cb_access_context->RecordDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_COMPUTE, tag);
}
bool SyncValidator::PreCallValidateCmdDispatchIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
skip |= cb_access_context->ValidateDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_COMPUTE, "vkCmdDispatchIndirect");
skip |= ValidateIndirectBuffer(*cb_access_context, *context, commandBuffer, sizeof(VkDispatchIndirectCommand), buffer, offset,
1, sizeof(VkDispatchIndirectCommand), "vkCmdDispatchIndirect");
return skip;
}
void SyncValidator::PreCallRecordCmdDispatchIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset) {
StateTracker::PreCallRecordCmdDispatchIndirect(commandBuffer, buffer, offset);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_DISPATCHINDIRECT);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
cb_access_context->RecordDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_COMPUTE, tag);
RecordIndirectBuffer(*context, tag, sizeof(VkDispatchIndirectCommand), buffer, offset, 1, sizeof(VkDispatchIndirectCommand));
}
bool SyncValidator::PreCallValidateCmdDraw(VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount,
uint32_t firstVertex, uint32_t firstInstance) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
skip |= cb_access_context->ValidateDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, "vkCmdDraw");
skip |= cb_access_context->ValidateDrawVertex(vertexCount, firstVertex, "vkCmdDraw");
skip |= cb_access_context->ValidateDrawSubpassAttachment("vkCmdDraw");
return skip;
}
void SyncValidator::PreCallRecordCmdDraw(VkCommandBuffer commandBuffer, uint32_t vertexCount, uint32_t instanceCount,
uint32_t firstVertex, uint32_t firstInstance) {
StateTracker::PreCallRecordCmdDraw(commandBuffer, vertexCount, instanceCount, firstVertex, firstInstance);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_DRAW);
cb_access_context->RecordDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, tag);
cb_access_context->RecordDrawVertex(vertexCount, firstVertex, tag);
cb_access_context->RecordDrawSubpassAttachment(tag);
}
bool SyncValidator::PreCallValidateCmdDrawIndexed(VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount,
uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
skip |= cb_access_context->ValidateDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, "vkCmdDrawIndexed");
skip |= cb_access_context->ValidateDrawVertexIndex(indexCount, firstIndex, "vkCmdDrawIndexed");
skip |= cb_access_context->ValidateDrawSubpassAttachment("vkCmdDrawIndexed");
return skip;
}
void SyncValidator::PreCallRecordCmdDrawIndexed(VkCommandBuffer commandBuffer, uint32_t indexCount, uint32_t instanceCount,
uint32_t firstIndex, int32_t vertexOffset, uint32_t firstInstance) {
StateTracker::PreCallRecordCmdDrawIndexed(commandBuffer, indexCount, instanceCount, firstIndex, vertexOffset, firstInstance);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_DRAWINDEXED);
cb_access_context->RecordDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, tag);
cb_access_context->RecordDrawVertexIndex(indexCount, firstIndex, tag);
cb_access_context->RecordDrawSubpassAttachment(tag);
}
bool SyncValidator::PreCallValidateCmdDrawIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t drawCount, uint32_t stride) const {
bool skip = false;
if (drawCount == 0) return skip;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
skip |= cb_access_context->ValidateDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, "vkCmdDrawIndirect");
skip |= cb_access_context->ValidateDrawSubpassAttachment("vkCmdDrawIndirect");
skip |= ValidateIndirectBuffer(*cb_access_context, *context, commandBuffer, sizeof(VkDrawIndirectCommand), buffer, offset,
drawCount, stride, "vkCmdDrawIndirect");
// TODO: For now, we validate the whole vertex buffer. It might cause some false positive.
// VkDrawIndirectCommand buffer could be changed until SubmitQueue.
// We will validate the vertex buffer in SubmitQueue in the future.
skip |= cb_access_context->ValidateDrawVertex(UINT32_MAX, 0, "vkCmdDrawIndirect");
return skip;
}
void SyncValidator::PreCallRecordCmdDrawIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t drawCount, uint32_t stride) {
StateTracker::PreCallRecordCmdDrawIndirect(commandBuffer, buffer, offset, drawCount, stride);
if (drawCount == 0) return;
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_DRAWINDIRECT);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
cb_access_context->RecordDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, tag);
cb_access_context->RecordDrawSubpassAttachment(tag);
RecordIndirectBuffer(*context, tag, sizeof(VkDrawIndirectCommand), buffer, offset, drawCount, stride);
// TODO: For now, we record the whole vertex buffer. It might cause some false positive.
// VkDrawIndirectCommand buffer could be changed until SubmitQueue.
// We will record the vertex buffer in SubmitQueue in the future.
cb_access_context->RecordDrawVertex(UINT32_MAX, 0, tag);
}
bool SyncValidator::PreCallValidateCmdDrawIndexedIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t drawCount, uint32_t stride) const {
bool skip = false;
if (drawCount == 0) return skip;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
skip |= cb_access_context->ValidateDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, "vkCmdDrawIndexedIndirect");
skip |= cb_access_context->ValidateDrawSubpassAttachment("vkCmdDrawIndexedIndirect");
skip |= ValidateIndirectBuffer(*cb_access_context, *context, commandBuffer, sizeof(VkDrawIndexedIndirectCommand), buffer,
offset, drawCount, stride, "vkCmdDrawIndexedIndirect");
// TODO: For now, we validate the whole index and vertex buffer. It might cause some false positive.
// VkDrawIndexedIndirectCommand buffer could be changed until SubmitQueue.
// We will validate the index and vertex buffer in SubmitQueue in the future.
skip |= cb_access_context->ValidateDrawVertexIndex(UINT32_MAX, 0, "vkCmdDrawIndexedIndirect");
return skip;
}
void SyncValidator::PreCallRecordCmdDrawIndexedIndirect(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
uint32_t drawCount, uint32_t stride) {
StateTracker::PreCallRecordCmdDrawIndexedIndirect(commandBuffer, buffer, offset, drawCount, stride);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_DRAWINDEXEDINDIRECT);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
cb_access_context->RecordDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, tag);
cb_access_context->RecordDrawSubpassAttachment(tag);
RecordIndirectBuffer(*context, tag, sizeof(VkDrawIndexedIndirectCommand), buffer, offset, drawCount, stride);
// TODO: For now, we record the whole index and vertex buffer. It might cause some false positive.
// VkDrawIndexedIndirectCommand buffer could be changed until SubmitQueue.
// We will record the index and vertex buffer in SubmitQueue in the future.
cb_access_context->RecordDrawVertexIndex(UINT32_MAX, 0, tag);
}
bool SyncValidator::ValidateCmdDrawIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride, const char *function) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
skip |= cb_access_context->ValidateDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, function);
skip |= cb_access_context->ValidateDrawSubpassAttachment(function);
skip |= ValidateIndirectBuffer(*cb_access_context, *context, commandBuffer, sizeof(VkDrawIndirectCommand), buffer, offset,
maxDrawCount, stride, function);
skip |= ValidateCountBuffer(*cb_access_context, *context, commandBuffer, countBuffer, countBufferOffset, function);
// TODO: For now, we validate the whole vertex buffer. It might cause some false positive.
// VkDrawIndirectCommand buffer could be changed until SubmitQueue.
// We will validate the vertex buffer in SubmitQueue in the future.
skip |= cb_access_context->ValidateDrawVertex(UINT32_MAX, 0, function);
return skip;
}
bool SyncValidator::PreCallValidateCmdDrawIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride) const {
return ValidateCmdDrawIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride,
"vkCmdDrawIndirectCount");
}
void SyncValidator::PreCallRecordCmdDrawIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride) {
StateTracker::PreCallRecordCmdDrawIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount,
stride);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_DRAWINDIRECTCOUNT);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
cb_access_context->RecordDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, tag);
cb_access_context->RecordDrawSubpassAttachment(tag);
RecordIndirectBuffer(*context, tag, sizeof(VkDrawIndirectCommand), buffer, offset, 1, stride);
RecordCountBuffer(*context, tag, countBuffer, countBufferOffset);
// TODO: For now, we record the whole vertex buffer. It might cause some false positive.
// VkDrawIndirectCommand buffer could be changed until SubmitQueue.
// We will record the vertex buffer in SubmitQueue in the future.
cb_access_context->RecordDrawVertex(UINT32_MAX, 0, tag);
}
bool SyncValidator::PreCallValidateCmdDrawIndirectCountKHR(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) const {
return ValidateCmdDrawIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride,
"vkCmdDrawIndirectCountKHR");
}
void SyncValidator::PreCallRecordCmdDrawIndirectCountKHR(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
StateTracker::PreCallRecordCmdDrawIndirectCountKHR(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount,
stride);
PreCallRecordCmdDrawIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride);
}
bool SyncValidator::PreCallValidateCmdDrawIndirectCountAMD(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) const {
return ValidateCmdDrawIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride,
"vkCmdDrawIndirectCountAMD");
}
void SyncValidator::PreCallRecordCmdDrawIndirectCountAMD(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
StateTracker::PreCallRecordCmdDrawIndirectCountAMD(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount,
stride);
PreCallRecordCmdDrawIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride);
}
bool SyncValidator::ValidateCmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride, const char *function) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
skip |= cb_access_context->ValidateDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, function);
skip |= cb_access_context->ValidateDrawSubpassAttachment(function);
skip |= ValidateIndirectBuffer(*cb_access_context, *context, commandBuffer, sizeof(VkDrawIndexedIndirectCommand), buffer,
offset, maxDrawCount, stride, function);
skip |= ValidateCountBuffer(*cb_access_context, *context, commandBuffer, countBuffer, countBufferOffset, function);
// TODO: For now, we validate the whole index and vertex buffer. It might cause some false positive.
// VkDrawIndexedIndirectCommand buffer could be changed until SubmitQueue.
// We will validate the index and vertex buffer in SubmitQueue in the future.
skip |= cb_access_context->ValidateDrawVertexIndex(UINT32_MAX, 0, function);
return skip;
}
bool SyncValidator::PreCallValidateCmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) const {
return ValidateCmdDrawIndexedIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride,
"vkCmdDrawIndexedIndirectCount");
}
void SyncValidator::PreCallRecordCmdDrawIndexedIndirectCount(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
StateTracker::PreCallRecordCmdDrawIndexedIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset,
maxDrawCount, stride);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_DRAWINDEXEDINDIRECTCOUNT);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
cb_access_context->RecordDispatchDrawDescriptorSet(VK_PIPELINE_BIND_POINT_GRAPHICS, tag);
cb_access_context->RecordDrawSubpassAttachment(tag);
RecordIndirectBuffer(*context, tag, sizeof(VkDrawIndexedIndirectCommand), buffer, offset, 1, stride);
RecordCountBuffer(*context, tag, countBuffer, countBufferOffset);
// TODO: For now, we record the whole index and vertex buffer. It might cause some false positive.
// VkDrawIndexedIndirectCommand buffer could be changed until SubmitQueue.
// We will update the index and vertex buffer in SubmitQueue in the future.
cb_access_context->RecordDrawVertexIndex(UINT32_MAX, 0, tag);
}
bool SyncValidator::PreCallValidateCmdDrawIndexedIndirectCountKHR(VkCommandBuffer commandBuffer, VkBuffer buffer,
VkDeviceSize offset, VkBuffer countBuffer,
VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride) const {
return ValidateCmdDrawIndexedIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride,
"vkCmdDrawIndexedIndirectCountKHR");
}
void SyncValidator::PreCallRecordCmdDrawIndexedIndirectCountKHR(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
StateTracker::PreCallRecordCmdDrawIndexedIndirectCountKHR(commandBuffer, buffer, offset, countBuffer, countBufferOffset,
maxDrawCount, stride);
PreCallRecordCmdDrawIndexedIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride);
}
bool SyncValidator::PreCallValidateCmdDrawIndexedIndirectCountAMD(VkCommandBuffer commandBuffer, VkBuffer buffer,
VkDeviceSize offset, VkBuffer countBuffer,
VkDeviceSize countBufferOffset, uint32_t maxDrawCount,
uint32_t stride) const {
return ValidateCmdDrawIndexedIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride,
"vkCmdDrawIndexedIndirectCountAMD");
}
void SyncValidator::PreCallRecordCmdDrawIndexedIndirectCountAMD(VkCommandBuffer commandBuffer, VkBuffer buffer, VkDeviceSize offset,
VkBuffer countBuffer, VkDeviceSize countBufferOffset,
uint32_t maxDrawCount, uint32_t stride) {
StateTracker::PreCallRecordCmdDrawIndexedIndirectCountAMD(commandBuffer, buffer, offset, countBuffer, countBufferOffset,
maxDrawCount, stride);
PreCallRecordCmdDrawIndexedIndirectCount(commandBuffer, buffer, offset, countBuffer, countBufferOffset, maxDrawCount, stride);
}
bool SyncValidator::PreCallValidateCmdClearColorImage(VkCommandBuffer commandBuffer, VkImage image, VkImageLayout imageLayout,
const VkClearColorValue *pColor, uint32_t rangeCount,
const VkImageSubresourceRange *pRanges) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
const auto *image_state = Get<IMAGE_STATE>(image);
for (uint32_t index = 0; index < rangeCount; index++) {
const auto &range = pRanges[index];
if (image_state) {
auto hazard =
context->DetectHazard(*image_state, SYNC_TRANSFER_TRANSFER_WRITE, range, {0, 0, 0}, image_state->createInfo.extent);
if (hazard.hazard) {
skip |= LogError(image, string_SyncHazardVUID(hazard.hazard),
"vkCmdClearColorImage: Hazard %s for %s, range index %" PRIu32 ". Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(image).c_str(), index,
cb_access_context->FormatUsage(hazard).c_str());
}
}
}
return skip;
}
void SyncValidator::PreCallRecordCmdClearColorImage(VkCommandBuffer commandBuffer, VkImage image, VkImageLayout imageLayout,
const VkClearColorValue *pColor, uint32_t rangeCount,
const VkImageSubresourceRange *pRanges) {
StateTracker::PreCallRecordCmdClearColorImage(commandBuffer, image, imageLayout, pColor, rangeCount, pRanges);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_CLEARCOLORIMAGE);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
const auto *image_state = Get<IMAGE_STATE>(image);
for (uint32_t index = 0; index < rangeCount; index++) {
const auto &range = pRanges[index];
if (image_state) {
context->UpdateAccessState(*image_state, SYNC_TRANSFER_TRANSFER_WRITE, SyncOrdering::kNonAttachment, range, {0, 0, 0},
image_state->createInfo.extent, tag);
}
}
}
bool SyncValidator::PreCallValidateCmdClearDepthStencilImage(VkCommandBuffer commandBuffer, VkImage image,
VkImageLayout imageLayout,
const VkClearDepthStencilValue *pDepthStencil, uint32_t rangeCount,
const VkImageSubresourceRange *pRanges) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
const auto *image_state = Get<IMAGE_STATE>(image);
for (uint32_t index = 0; index < rangeCount; index++) {
const auto &range = pRanges[index];
if (image_state) {
auto hazard =
context->DetectHazard(*image_state, SYNC_TRANSFER_TRANSFER_WRITE, range, {0, 0, 0}, image_state->createInfo.extent);
if (hazard.hazard) {
skip |= LogError(image, string_SyncHazardVUID(hazard.hazard),
"vkCmdClearDepthStencilImage: Hazard %s for %s, range index %" PRIu32 ". Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(image).c_str(), index,
cb_access_context->FormatUsage(hazard).c_str());
}
}
}
return skip;
}
void SyncValidator::PreCallRecordCmdClearDepthStencilImage(VkCommandBuffer commandBuffer, VkImage image, VkImageLayout imageLayout,
const VkClearDepthStencilValue *pDepthStencil, uint32_t rangeCount,
const VkImageSubresourceRange *pRanges) {
StateTracker::PreCallRecordCmdClearDepthStencilImage(commandBuffer, image, imageLayout, pDepthStencil, rangeCount, pRanges);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_CLEARDEPTHSTENCILIMAGE);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
const auto *image_state = Get<IMAGE_STATE>(image);
for (uint32_t index = 0; index < rangeCount; index++) {
const auto &range = pRanges[index];
if (image_state) {
context->UpdateAccessState(*image_state, SYNC_TRANSFER_TRANSFER_WRITE, SyncOrdering::kNonAttachment, range, {0, 0, 0},
image_state->createInfo.extent, tag);
}
}
}
bool SyncValidator::PreCallValidateCmdCopyQueryPoolResults(VkCommandBuffer commandBuffer, VkQueryPool queryPool,
uint32_t firstQuery, uint32_t queryCount, VkBuffer dstBuffer,
VkDeviceSize dstOffset, VkDeviceSize stride,
VkQueryResultFlags flags) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
const auto *dst_buffer = Get<BUFFER_STATE>(dstBuffer);
if (dst_buffer) {
const ResourceAccessRange range = MakeRange(dstOffset, stride * queryCount);
auto hazard = context->DetectHazard(*dst_buffer, SYNC_TRANSFER_TRANSFER_WRITE, range);
if (hazard.hazard) {
skip |=
LogError(dstBuffer, string_SyncHazardVUID(hazard.hazard),
"vkCmdCopyQueryPoolResults: Hazard %s for dstBuffer %s. Access info %s.", string_SyncHazard(hazard.hazard),
report_data->FormatHandle(dstBuffer).c_str(), cb_access_context->FormatUsage(hazard).c_str());
}
}
// TODO:Track VkQueryPool
return skip;
}
void SyncValidator::PreCallRecordCmdCopyQueryPoolResults(VkCommandBuffer commandBuffer, VkQueryPool queryPool, uint32_t firstQuery,
uint32_t queryCount, VkBuffer dstBuffer, VkDeviceSize dstOffset,
VkDeviceSize stride, VkQueryResultFlags flags) {
StateTracker::PreCallRecordCmdCopyQueryPoolResults(commandBuffer, queryPool, firstQuery, queryCount, dstBuffer, dstOffset,
stride, flags);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_COPYQUERYPOOLRESULTS);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
const auto *dst_buffer = Get<BUFFER_STATE>(dstBuffer);
if (dst_buffer) {
const ResourceAccessRange range = MakeRange(dstOffset, stride * queryCount);
context->UpdateAccessState(*dst_buffer, SYNC_TRANSFER_TRANSFER_WRITE, SyncOrdering::kNonAttachment, range, tag);
}
// TODO:Track VkQueryPool
}
bool SyncValidator::PreCallValidateCmdFillBuffer(VkCommandBuffer commandBuffer, VkBuffer dstBuffer, VkDeviceSize dstOffset,
VkDeviceSize size, uint32_t data) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
const auto *dst_buffer = Get<BUFFER_STATE>(dstBuffer);
if (dst_buffer) {
const ResourceAccessRange range = MakeRange(*dst_buffer, dstOffset, size);
auto hazard = context->DetectHazard(*dst_buffer, SYNC_TRANSFER_TRANSFER_WRITE, range);
if (hazard.hazard) {
skip |= LogError(dstBuffer, string_SyncHazardVUID(hazard.hazard),
"vkCmdFillBuffer: Hazard %s for dstBuffer %s. Access info %s.", string_SyncHazard(hazard.hazard),
report_data->FormatHandle(dstBuffer).c_str(), cb_access_context->FormatUsage(hazard).c_str());
}
}
return skip;
}
void SyncValidator::PreCallRecordCmdFillBuffer(VkCommandBuffer commandBuffer, VkBuffer dstBuffer, VkDeviceSize dstOffset,
VkDeviceSize size, uint32_t data) {
StateTracker::PreCallRecordCmdFillBuffer(commandBuffer, dstBuffer, dstOffset, size, data);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_FILLBUFFER);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
const auto *dst_buffer = Get<BUFFER_STATE>(dstBuffer);
if (dst_buffer) {
const ResourceAccessRange range = MakeRange(*dst_buffer, dstOffset, size);
context->UpdateAccessState(*dst_buffer, SYNC_TRANSFER_TRANSFER_WRITE, SyncOrdering::kNonAttachment, range, tag);
}
}
bool SyncValidator::PreCallValidateCmdResolveImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount,
const VkImageResolve *pRegions) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
const auto *src_image = Get<IMAGE_STATE>(srcImage);
const auto *dst_image = Get<IMAGE_STATE>(dstImage);
for (uint32_t region = 0; region < regionCount; region++) {
const auto &resolve_region = pRegions[region];
if (src_image) {
auto hazard = context->DetectHazard(*src_image, SYNC_TRANSFER_TRANSFER_READ, resolve_region.srcSubresource,
resolve_region.srcOffset, resolve_region.extent);
if (hazard.hazard) {
skip |= LogError(srcImage, string_SyncHazardVUID(hazard.hazard),
"vkCmdResolveImage: Hazard %s for srcImage %s, region %" PRIu32 ". Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(srcImage).c_str(), region,
cb_access_context->FormatUsage(hazard).c_str());
}
}
if (dst_image) {
auto hazard = context->DetectHazard(*dst_image, SYNC_TRANSFER_TRANSFER_WRITE, resolve_region.dstSubresource,
resolve_region.dstOffset, resolve_region.extent);
if (hazard.hazard) {
skip |= LogError(dstImage, string_SyncHazardVUID(hazard.hazard),
"vkCmdResolveImage: Hazard %s for dstImage %s, region %" PRIu32 ". Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(dstImage).c_str(), region,
cb_access_context->FormatUsage(hazard).c_str());
}
if (skip) break;
}
}
return skip;
}
void SyncValidator::PreCallRecordCmdResolveImage(VkCommandBuffer commandBuffer, VkImage srcImage, VkImageLayout srcImageLayout,
VkImage dstImage, VkImageLayout dstImageLayout, uint32_t regionCount,
const VkImageResolve *pRegions) {
StateTracker::PreCallRecordCmdResolveImage(commandBuffer, srcImage, srcImageLayout, dstImage, dstImageLayout, regionCount,
pRegions);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_RESOLVEIMAGE);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto *src_image = Get<IMAGE_STATE>(srcImage);
auto *dst_image = Get<IMAGE_STATE>(dstImage);
for (uint32_t region = 0; region < regionCount; region++) {
const auto &resolve_region = pRegions[region];
if (src_image) {
context->UpdateAccessState(*src_image, SYNC_TRANSFER_TRANSFER_READ, SyncOrdering::kNonAttachment,
resolve_region.srcSubresource, resolve_region.srcOffset, resolve_region.extent, tag);
}
if (dst_image) {
context->UpdateAccessState(*dst_image, SYNC_TRANSFER_TRANSFER_WRITE, SyncOrdering::kNonAttachment,
resolve_region.dstSubresource, resolve_region.dstOffset, resolve_region.extent, tag);
}
}
}
bool SyncValidator::PreCallValidateCmdResolveImage2KHR(VkCommandBuffer commandBuffer,
const VkResolveImageInfo2KHR *pResolveImageInfo) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
const auto *src_image = Get<IMAGE_STATE>(pResolveImageInfo->srcImage);
const auto *dst_image = Get<IMAGE_STATE>(pResolveImageInfo->dstImage);
for (uint32_t region = 0; region < pResolveImageInfo->regionCount; region++) {
const auto &resolve_region = pResolveImageInfo->pRegions[region];
if (src_image) {
auto hazard = context->DetectHazard(*src_image, SYNC_TRANSFER_TRANSFER_READ, resolve_region.srcSubresource,
resolve_region.srcOffset, resolve_region.extent);
if (hazard.hazard) {
skip |= LogError(pResolveImageInfo->srcImage, string_SyncHazardVUID(hazard.hazard),
"vkCmdResolveImage2KHR: Hazard %s for srcImage %s, region %" PRIu32 ". Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(pResolveImageInfo->srcImage).c_str(),
region, cb_access_context->FormatUsage(hazard).c_str());
}
}
if (dst_image) {
auto hazard = context->DetectHazard(*dst_image, SYNC_TRANSFER_TRANSFER_WRITE, resolve_region.dstSubresource,
resolve_region.dstOffset, resolve_region.extent);
if (hazard.hazard) {
skip |= LogError(pResolveImageInfo->dstImage, string_SyncHazardVUID(hazard.hazard),
"vkCmdResolveImage2KHR: Hazard %s for dstImage %s, region %" PRIu32 ". Access info %s.",
string_SyncHazard(hazard.hazard), report_data->FormatHandle(pResolveImageInfo->dstImage).c_str(),
region, cb_access_context->FormatUsage(hazard).c_str());
}
if (skip) break;
}
}
return skip;
}
void SyncValidator::PreCallRecordCmdResolveImage2KHR(VkCommandBuffer commandBuffer,
const VkResolveImageInfo2KHR *pResolveImageInfo) {
StateTracker::PreCallRecordCmdResolveImage2KHR(commandBuffer, pResolveImageInfo);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_RESOLVEIMAGE2KHR);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
auto *src_image = Get<IMAGE_STATE>(pResolveImageInfo->srcImage);
auto *dst_image = Get<IMAGE_STATE>(pResolveImageInfo->dstImage);
for (uint32_t region = 0; region < pResolveImageInfo->regionCount; region++) {
const auto &resolve_region = pResolveImageInfo->pRegions[region];
if (src_image) {
context->UpdateAccessState(*src_image, SYNC_TRANSFER_TRANSFER_READ, SyncOrdering::kNonAttachment,
resolve_region.srcSubresource, resolve_region.srcOffset, resolve_region.extent, tag);
}
if (dst_image) {
context->UpdateAccessState(*dst_image, SYNC_TRANSFER_TRANSFER_WRITE, SyncOrdering::kNonAttachment,
resolve_region.dstSubresource, resolve_region.dstOffset, resolve_region.extent, tag);
}
}
}
bool SyncValidator::PreCallValidateCmdUpdateBuffer(VkCommandBuffer commandBuffer, VkBuffer dstBuffer, VkDeviceSize dstOffset,
VkDeviceSize dataSize, const void *pData) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
const auto *dst_buffer = Get<BUFFER_STATE>(dstBuffer);
if (dst_buffer) {
// VK_WHOLE_SIZE not allowed
const ResourceAccessRange range = MakeRange(dstOffset, dataSize);
auto hazard = context->DetectHazard(*dst_buffer, SYNC_TRANSFER_TRANSFER_WRITE, range);
if (hazard.hazard) {
skip |= LogError(dstBuffer, string_SyncHazardVUID(hazard.hazard),
"vkCmdUpdateBuffer: Hazard %s for dstBuffer %s. Access info %s.", string_SyncHazard(hazard.hazard),
report_data->FormatHandle(dstBuffer).c_str(), cb_access_context->FormatUsage(hazard).c_str());
}
}
return skip;
}
void SyncValidator::PreCallRecordCmdUpdateBuffer(VkCommandBuffer commandBuffer, VkBuffer dstBuffer, VkDeviceSize dstOffset,
VkDeviceSize dataSize, const void *pData) {
StateTracker::PreCallRecordCmdUpdateBuffer(commandBuffer, dstBuffer, dstOffset, dataSize, pData);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_UPDATEBUFFER);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
const auto *dst_buffer = Get<BUFFER_STATE>(dstBuffer);
if (dst_buffer) {
// VK_WHOLE_SIZE not allowed
const ResourceAccessRange range = MakeRange(dstOffset, dataSize);
context->UpdateAccessState(*dst_buffer, SYNC_TRANSFER_TRANSFER_WRITE, SyncOrdering::kNonAttachment, range, tag);
}
}
bool SyncValidator::PreCallValidateCmdWriteBufferMarkerAMD(VkCommandBuffer commandBuffer, VkPipelineStageFlagBits pipelineStage,
VkBuffer dstBuffer, VkDeviceSize dstOffset, uint32_t marker) const {
bool skip = false;
const auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
if (!cb_access_context) return skip;
const auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
if (!context) return skip;
const auto *dst_buffer = Get<BUFFER_STATE>(dstBuffer);
if (dst_buffer) {
const ResourceAccessRange range = MakeRange(dstOffset, 4);
auto hazard = context->DetectHazard(*dst_buffer, SYNC_TRANSFER_TRANSFER_WRITE, range);
if (hazard.hazard) {
skip |=
LogError(dstBuffer, string_SyncHazardVUID(hazard.hazard),
"vkCmdWriteBufferMarkerAMD: Hazard %s for dstBuffer %s. Access info %s.", string_SyncHazard(hazard.hazard),
report_data->FormatHandle(dstBuffer).c_str(), cb_access_context->FormatUsage(hazard).c_str());
}
}
return skip;
}
void SyncValidator::PreCallRecordCmdWriteBufferMarkerAMD(VkCommandBuffer commandBuffer, VkPipelineStageFlagBits pipelineStage,
VkBuffer dstBuffer, VkDeviceSize dstOffset, uint32_t marker) {
StateTracker::PreCallRecordCmdWriteBufferMarkerAMD(commandBuffer, pipelineStage, dstBuffer, dstOffset, marker);
auto *cb_access_context = GetAccessContext(commandBuffer);
assert(cb_access_context);
const auto tag = cb_access_context->NextCommandTag(CMD_WRITEBUFFERMARKERAMD);
auto *context = cb_access_context->GetCurrentAccessContext();
assert(context);
const auto *dst_buffer = Get<BUFFER_STATE>(dstBuffer);
if (dst_buffer) {
const ResourceAccessRange range = MakeRange(dstOffset, 4);
context->UpdateAccessState(*dst_buffer, SYNC_TRANSFER_TRANSFER_WRITE, SyncOrdering::kNonAttachment, range, tag);
}
}
bool SyncValidator::PreCallValidateCmdSetEvent(VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags stageMask) const {
bool skip = false;
const auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context) return skip;
return cb_context->ValidateSetEvent(commandBuffer, event, stageMask);
}
void SyncValidator::PostCallRecordCmdSetEvent(VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags stageMask) {
StateTracker::PostCallRecordCmdSetEvent(commandBuffer, event, stageMask);
auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context) return;
const auto tag = cb_context->NextCommandTag(CMD_SETEVENT);
cb_context->RecordSetEvent(commandBuffer, event, stageMask, tag);
}
bool SyncValidator::PreCallValidateCmdResetEvent(VkCommandBuffer commandBuffer, VkEvent event,
VkPipelineStageFlags stageMask) const {
bool skip = false;
const auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context) return skip;
return cb_context->ValidateResetEvent(commandBuffer, event, stageMask);
}
void SyncValidator::PostCallRecordCmdResetEvent(VkCommandBuffer commandBuffer, VkEvent event, VkPipelineStageFlags stageMask) {
StateTracker::PostCallRecordCmdResetEvent(commandBuffer, event, stageMask);
auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context) return;
cb_context->RecordResetEvent(commandBuffer, event, stageMask);
}
bool SyncValidator::PreCallValidateCmdWaitEvents(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents,
VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask,
uint32_t memoryBarrierCount, const VkMemoryBarrier *pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers) const {
bool skip = false;
const auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context) return skip;
SyncOpWaitEvents wait_events_op(*this, cb_context->GetQueueFlags(), eventCount, pEvents, srcStageMask, dstStageMask,
memoryBarrierCount, pMemoryBarriers, bufferMemoryBarrierCount, pBufferMemoryBarriers,
imageMemoryBarrierCount, pImageMemoryBarriers);
return wait_events_op.Validate(*cb_context);
}
void SyncValidator::PostCallRecordCmdWaitEvents(VkCommandBuffer commandBuffer, uint32_t eventCount, const VkEvent *pEvents,
VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask,
uint32_t memoryBarrierCount, const VkMemoryBarrier *pMemoryBarriers,
uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers) {
StateTracker::PostCallRecordCmdWaitEvents(commandBuffer, eventCount, pEvents, srcStageMask, dstStageMask, memoryBarrierCount,
pMemoryBarriers, bufferMemoryBarrierCount, pBufferMemoryBarriers,
imageMemoryBarrierCount, pImageMemoryBarriers);
auto *cb_context = GetAccessContext(commandBuffer);
assert(cb_context);
if (!cb_context) return;
const auto tag = cb_context->NextCommandTag(CMD_WAITEVENTS);
SyncOpWaitEvents wait_events_op(*this, cb_context->GetQueueFlags(), eventCount, pEvents, srcStageMask, dstStageMask,
memoryBarrierCount, pMemoryBarriers, bufferMemoryBarrierCount, pBufferMemoryBarriers,
imageMemoryBarrierCount, pImageMemoryBarriers);
return wait_events_op.Record(cb_context, tag);
}
void SyncEventState::ResetFirstScope() {
for (const auto address_type : kAddressTypes) {
first_scope[static_cast<size_t>(address_type)].clear();
}
scope = SyncExecScope();
}
// Keep the "ignore this event" logic in same place for ValidateWait and RecordWait to use
SyncEventState::IgnoreReason SyncEventState::IsIgnoredByWait(VkPipelineStageFlags srcStageMask) const {
IgnoreReason reason = NotIgnored;
if (last_command == CMD_RESETEVENT && !HasBarrier(0U, 0U)) {
reason = ResetWaitRace;
} else if (unsynchronized_set) {
reason = SetRace;
} else {
const VkPipelineStageFlags missing_bits = scope.mask_param & ~srcStageMask;
if (missing_bits) reason = MissingStageBits;
}
return reason;
}
bool SyncEventState::HasBarrier(VkPipelineStageFlags stageMask, VkPipelineStageFlags exec_scope_arg) const {
bool has_barrier = (last_command == CMD_NONE) || (stageMask & VK_PIPELINE_STAGE_ALL_COMMANDS_BIT) ||
(barriers & exec_scope_arg) || (barriers & VK_PIPELINE_STAGE_ALL_COMMANDS_BIT);
return has_barrier;
}
SyncOpBarriers::SyncOpBarriers(const SyncValidator &sync_state, VkQueueFlags queue_flags, VkPipelineStageFlags srcStageMask,
VkPipelineStageFlags dstStageMask, VkDependencyFlags dependencyFlags, uint32_t memoryBarrierCount,
const VkMemoryBarrier *pMemoryBarriers, uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers)
: dependency_flags_(dependencyFlags),
src_exec_scope_(SyncExecScope::MakeSrc(queue_flags, srcStageMask)),
dst_exec_scope_(SyncExecScope::MakeDst(queue_flags, dstStageMask)) {
// Translate the API parameters into structures SyncVal understands directly, and dehandle for safer/faster replay.
MakeMemoryBarriers(src_exec_scope_, dst_exec_scope_, dependencyFlags, memoryBarrierCount, pMemoryBarriers);
MakeBufferMemoryBarriers(sync_state, src_exec_scope_, dst_exec_scope_, dependencyFlags, bufferMemoryBarrierCount,
pBufferMemoryBarriers);
MakeImageMemoryBarriers(sync_state, src_exec_scope_, dst_exec_scope_, dependencyFlags, imageMemoryBarrierCount,
pImageMemoryBarriers);
}
SyncOpPipelineBarrier::SyncOpPipelineBarrier(const SyncValidator &sync_state, VkQueueFlags queue_flags,
VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask,
VkDependencyFlags dependencyFlags, uint32_t memoryBarrierCount,
const VkMemoryBarrier *pMemoryBarriers, uint32_t bufferMemoryBarrierCount,
const VkBufferMemoryBarrier *pBufferMemoryBarriers, uint32_t imageMemoryBarrierCount,
const VkImageMemoryBarrier *pImageMemoryBarriers)
: SyncOpBarriers(sync_state, queue_flags, srcStageMask, dstStageMask, dependencyFlags, memoryBarrierCount, pMemoryBarriers,
bufferMemoryBarrierCount, pBufferMemoryBarriers, imageMemoryBarrierCount, pImageMemoryBarriers) {}
bool SyncOpPipelineBarrier::Validate(const CommandBufferAccessContext &cb_context) const {
bool skip = false;
const auto *context = cb_context.GetCurrentAccessContext();
assert(context);
if (!context) return skip;
// Validate Image Layout transitions
for (const auto &image_barrier : image_memory_barriers_) {
if (image_barrier.new_layout == image_barrier.old_layout) continue; // Only interested in layout transitions at this point.
const auto *image_state = image_barrier.image.get();
if (!image_state) continue;
const auto hazard = context->DetectImageBarrierHazard(image_barrier);
if (hazard.hazard) {
// PHASE1 TODO -- add tag information to log msg when useful.
const auto &sync_state = cb_context.GetSyncState();
const auto image_handle = image_state->image;
skip |= sync_state.LogError(image_handle, string_SyncHazardVUID(hazard.hazard),
"vkCmdPipelineBarrier: Hazard %s for image barrier %" PRIu32 " %s. Access info %s.",
string_SyncHazard(hazard.hazard), image_barrier.index,
sync_state.report_data->FormatHandle(image_handle).c_str(),
cb_context.FormatUsage(hazard).c_str());
}
}
return skip;
}
struct SyncOpPipelineBarrierFunctorFactory {
using BarrierOpFunctor = PipelineBarrierOp;
using ApplyFunctor = ApplyBarrierFunctor<BarrierOpFunctor>;
using GlobalBarrierOpFunctor = PipelineBarrierOp;
using GlobalApplyFunctor = ApplyBarrierOpsFunctor<GlobalBarrierOpFunctor>;
using BufferRange = ResourceAccessRange;
using ImageRange = subresource_adapter::ImageRangeGenerator;
using GlobalRange = ResourceAccessRange;
ApplyFunctor MakeApplyFunctor(const SyncBarrier &barrier, bool layout_transition) const {
return ApplyFunctor(BarrierOpFunctor(barrier, layout_transition));
}
GlobalApplyFunctor MakeGlobalApplyFunctor(size_t size_hint, const ResourceUsageTag &tag) const {
return GlobalApplyFunctor(true /* resolve */, size_hint, tag);
}
GlobalBarrierOpFunctor MakeGlobalBarrierOpFunctor(const SyncBarrier &barrier) const {
return GlobalBarrierOpFunctor(barrier, false);
}
BufferRange MakeRangeGen(const BUFFER_STATE &buffer, const ResourceAccessRange &range) const {
if (!SimpleBinding(buffer)) return ResourceAccessRange();
const auto base_address = ResourceBaseAddress(buffer);
return (range + base_address);
}
ImageRange MakeRangeGen(const IMAGE_STATE &image, const SyncImageMemoryBarrier::SubImageRange &range) const {
if (!SimpleBinding(image)) return subresource_adapter::ImageRangeGenerator();
const auto base_address = ResourceBaseAddress(image);
subresource_adapter::ImageRangeGenerator range_gen(*image.fragment_encoder.get(), range.subresource_range, range.offset,
range.extent, base_address);
return range_gen;
}
GlobalRange MakeGlobalRangeGen(AccessAddressType) const { return kFullRange; }
};
template <typename Barriers, typename FunctorFactory>
void SyncOpBarriers::ApplyBarriers(const Barriers &barriers, const FunctorFactory &factory, const ResourceUsageTag &tag,
AccessContext *context) {
for (const auto &barrier : barriers) {
const auto *state = barrier.GetState();
if (state) {
auto *const accesses = &context->GetAccessStateMap(GetAccessAddressType(*state));
auto update_action = factory.MakeApplyFunctor(barrier.barrier, barrier.IsLayoutTransition());
auto range_gen = factory.MakeRangeGen(*state, barrier.Range());
UpdateMemoryAccessState(accesses, update_action, &range_gen);
}
}
}
template <typename Barriers, typename FunctorFactory>
void SyncOpBarriers::ApplyGlobalBarriers(const Barriers &barriers, const FunctorFactory &factory, const ResourceUsageTag &tag,
AccessContext *access_context) {
auto barriers_functor = factory.MakeGlobalApplyFunctor(barriers.size(), tag);
for (const auto &barrier : barriers) {
barriers_functor.EmplaceBack(factory.MakeGlobalBarrierOpFunctor(barrier));
}
for (const auto address_type : kAddressTypes) {
auto range_gen = factory.MakeGlobalRangeGen(address_type);
UpdateMemoryAccessState(&(access_context->GetAccessStateMap(address_type)), barriers_functor, &range_gen);
}
}
void SyncOpPipelineBarrier::Record(CommandBufferAccessContext *cb_context, const ResourceUsageTag &tag) const {
SyncOpPipelineBarrierFunctorFactory factory;
auto *access_context = cb_context->GetCurrentAccessContext();
ApplyBarriers(buffer_memory_barriers_, factory, tag, access_context);
ApplyBarriers(image_memory_barriers_, factory, tag, access_context);
ApplyGlobalBarriers(memory_barriers_, factory, tag, access_context);
cb_context->ApplyGlobalBarriersToEvents(src_exec_scope_, dst_exec_scope_);
}
void SyncOpBarriers::MakeMemoryBarriers(const SyncExecScope &src, const SyncExecScope &dst, VkDependencyFlags dependency_flags,
uint32_t memory_barrier_count, const VkMemoryBarrier *memory_barriers) {
memory_barriers_.reserve(std::min<uint32_t>(1, memory_barrier_count));
for (uint32_t barrier_index = 0; barrier_index < memory_barrier_count; barrier_index++) {
const auto &barrier = memory_barriers[barrier_index];
SyncBarrier sync_barrier(barrier, src, dst);
memory_barriers_.emplace_back(sync_barrier);
}
if (0 == memory_barrier_count) {
// If there are no global memory barriers, force an exec barrier
memory_barriers_.emplace_back(SyncBarrier(src, dst));
}
}
void SyncOpBarriers::MakeBufferMemoryBarriers(const SyncValidator &sync_state, const SyncExecScope &src, const SyncExecScope &dst,
VkDependencyFlags dependencyFlags, uint32_t barrier_count,
const VkBufferMemoryBarrier *barriers) {
buffer_memory_barriers_.reserve(barrier_count);
for (uint32_t index = 0; index < barrier_count; index++) {
const auto &barrier = barriers[index];
auto buffer = sync_state.GetShared<BUFFER_STATE>(barrier.buffer);
if (buffer) {
const auto barrier_size = GetBufferWholeSize(*buffer, barrier.offset, barrier.size);
const auto range = MakeRange(barrier.offset, barrier_size);
const SyncBarrier sync_barrier(barrier, src, dst);
buffer_memory_barriers_.emplace_back(buffer, sync_barrier, range);
} else {
buffer_memory_barriers_.emplace_back();
}
}
}
void SyncOpBarriers::MakeImageMemoryBarriers(const SyncValidator &sync_state, const SyncExecScope &src, const SyncExecScope &dst,
VkDependencyFlags dependencyFlags, uint32_t barrier_count,
const VkImageMemoryBarrier *barriers) {
image_memory_barriers_.reserve(barrier_count);
for (uint32_t index = 0; index < barrier_count; index++) {
const auto &barrier = barriers[index];
const auto image = sync_state.GetShared<IMAGE_STATE>(barrier.image);
if (image) {
auto subresource_range = NormalizeSubresourceRange(image->createInfo, barrier.subresourceRange);
const SyncBarrier sync_barrier(barrier, src, dst);
image_memory_barriers_.emplace_back(image, index, sync_barrier, barrier.oldLayout, barrier.newLayout,
subresource_range);
} else {
image_memory_barriers_.emplace_back();
image_memory_barriers_.back().index = index; // Just in case we're interested in the ones we skipped.
}
}
}
SyncOpWaitEvents::SyncOpWaitEvents(const SyncValidator &sync_state, VkQueueFlags queue_flags, uint32_t eventCount,
const VkEvent *pEvents, VkPipelineStageFlags srcStageMask, VkPipelineStageFlags dstStageMask,
uint32_t memoryBarrierCount, const VkMemoryBarrier *pMemoryBarriers,
uint32_t bufferMemoryBarrierCount, const VkBufferMemoryBarrier *pBufferMemoryBarriers,
uint32_t imageMemoryBarrierCount, const VkImageMemoryBarrier *pImageMemoryBarriers)
: SyncOpBarriers(sync_state, queue_flags, srcStageMask, dstStageMask, VkDependencyFlags(0U), memoryBarrierCount,
pMemoryBarriers, bufferMemoryBarrierCount, pBufferMemoryBarriers, imageMemoryBarrierCount,
pImageMemoryBarriers) {
MakeEventsList(sync_state, eventCount, pEvents);
}
bool SyncOpWaitEvents::Validate(const CommandBufferAccessContext &cb_context) const {
const auto cmd = CMD_WAITEVENTS;
const char *const ignored = "Wait operation is ignored for this event.";
bool skip = false;
const auto &sync_state = cb_context.GetSyncState();
const auto command_buffer_handle = cb_context.GetCBState().commandBuffer;
if (src_exec_scope_.mask_param & VK_PIPELINE_STAGE_HOST_BIT) {
const char *const cmd_name = CommandTypeString(cmd);
const char *const vuid = "SYNC-vkCmdWaitEvents-hostevent-unsupported";
skip = sync_state.LogInfo(command_buffer_handle, vuid,
"%s, srcStageMask includes %s, unsupported by synchronization validaton.", cmd_name,
string_VkPipelineStageFlagBits(VK_PIPELINE_STAGE_HOST_BIT), ignored);
}
VkPipelineStageFlags event_stage_masks = 0U;
bool events_not_found = false;
const auto *events_context = cb_context.GetCurrentEventsContext();
assert(events_context);
for (const auto &sync_event_pair : *events_context) {
const auto *sync_event = sync_event_pair.second.get();
if (!sync_event) {
// NOTE PHASE2: This is where we'll need queue submit time validation to come back and check the srcStageMask bits
// or solve this with replay creating the SyncEventState in the queue context... also this will be a
// new validation error... wait without previously submitted set event...
events_not_found = true; // Demote "extra_stage_bits" error to warning, to avoid false positives at *record time*
continue; // Core, Lifetimes, or Param check needs to catch invalid events.
}
const auto event = sync_event->event->event;
// TODO add "destroyed" checks
event_stage_masks |= sync_event->scope.mask_param;
const auto ignore_reason = sync_event->IsIgnoredByWait(src_exec_scope_.mask_param);
if (ignore_reason) {
switch (ignore_reason) {
case SyncEventState::ResetWaitRace: {
const char *const cmd_name = CommandTypeString(cmd);
const char *const vuid = "SYNC-vkCmdWaitEvents-missingbarrier-reset";
const char *const message =
"%s: %s %s operation following %s without intervening execution barrier, may cause race condition. %s";
skip |= sync_state.LogError(event, vuid, message, cmd_name, sync_state.report_data->FormatHandle(event).c_str(),
cmd_name, CommandTypeString(sync_event->last_command), ignored);
break;
}
case SyncEventState::SetRace: {
// Issue error message that Wait is waiting on an signal subject to race condition, and is thus ignored for this
// event
const char *const cmd_name = CommandTypeString(cmd);
const char *const vuid = "SYNC-vkCmdWaitEvents-unsynchronized-setops";
const char *const message =
"%s: %s Unsychronized %s calls result in race conditions w.r.t. event signalling, %s %s";
const char *const reason = "First synchronization scope is undefined.";
skip |= sync_state.LogError(event, vuid, message, cmd_name, sync_state.report_data->FormatHandle(event).c_str(),
CommandTypeString(sync_event->last_command), reason, ignored);
break;
}
case SyncEventState::MissingStageBits: {
const VkPipelineStageFlags missing_bits = sync_event->scope.mask_param & ~src_exec_scope_.mask_param;
// Issue error message that event waited for is not in wait events scope
const char *const cmd_name = CommandTypeString(cmd);
const char *const vuid = "VUID-vkCmdWaitEvents-srcStageMask-01158";
const char *const message =
"%s: %s stageMask 0x%" PRIx32 " includes bits not present in srcStageMask 0x%" PRIx32
". Bits missing from srcStageMask %s. %s";
skip |= sync_state.LogError(event, vuid, message, cmd_name, sync_state.report_data->FormatHandle(event).c_str(),
sync_event->scope.mask_param, src_exec_scope_.mask_param,
string_VkPipelineStageFlags(missing_bits).c_str(), ignored);
break;
}
default:
assert(ignore_reason == SyncEventState::NotIgnored);
}
} else if (image_memory_barriers_.size()) {
const auto *context = cb_context.GetCurrentAccessContext();
assert(context);
for (const auto &image_memory_barrier : image_memory_barriers_) {
if (image_memory_barrier.old_layout == image_memory_barrier.new_layout) continue;
const auto *image_state = image_memory_barrier.image.get();
if (!image_state) continue;
const auto &subresource_range = image_memory_barrier.range.subresource_range;
const auto &src_access_scope = image_memory_barrier.barrier.src_access_scope;
const auto hazard =
context->DetectImageBarrierHazard(*image_state, sync_event->scope.exec_scope, src_access_scope,
subresource_range, *sync_event, AccessContext::DetectOptions::kDetectAll);
if (hazard.hazard) {
const char *const cmd_name = CommandTypeString(cmd);
skip |= sync_state.LogError(image_state->image, string_SyncHazardVUID(hazard.hazard),
"%s: Hazard %s for image barrier %" PRIu32 " %s. Access info %s.", cmd_name,
string_SyncHazard(hazard.hazard), image_memory_barrier.index,
sync_state.report_data->FormatHandle(image_state->image).c_str(),
cb_context.FormatUsage(hazard).c_str());
break;
}
}
}
}
// Note that we can't check for HOST in pEvents as we don't track that set event type
const auto extra_stage_bits = (src_exec_scope_.mask_param & ~VK_PIPELINE_STAGE_HOST_BIT) & ~event_stage_masks;
if (extra_stage_bits) {
// Issue error message that event waited for is not in wait events scope
const char *const cmd_name = CommandTypeString(cmd);
const char *const vuid = "VUID-vkCmdWaitEvents-srcStageMask-01158";
const char *const message =
"%s: srcStageMask 0x%" PRIx32 " contains stages not present in pEvents stageMask. Extra stages are %s.%s";
if (events_not_found) {
skip |= sync_state.LogInfo(command_buffer_handle, vuid, message, cmd_name, src_exec_scope_.mask_param,
string_VkPipelineStageFlags(extra_stage_bits).c_str(),
" vkCmdSetEvent may be in previously submitted command buffer.");
} else {
skip |= sync_state.LogError(command_buffer_handle, vuid, message, cmd_name, src_exec_scope_.mask_param,
string_VkPipelineStageFlags(extra_stage_bits).c_str(), "");
}
}
return skip;
}
struct SyncOpWaitEventsFunctorFactory {
using BarrierOpFunctor = WaitEventBarrierOp;
using ApplyFunctor = ApplyBarrierFunctor<BarrierOpFunctor>;
using GlobalBarrierOpFunctor = WaitEventBarrierOp;
using GlobalApplyFunctor = ApplyBarrierOpsFunctor<GlobalBarrierOpFunctor>;
using BufferRange = EventSimpleRangeGenerator;
using ImageRange = EventImageRangeGenerator;
using GlobalRange = EventSimpleRangeGenerator;
// Need to restrict to only valid exec and access scope for this event
// Pass by value is intentional to get a copy we can change without modifying the passed barrier
SyncBarrier RestrictToEvent(SyncBarrier barrier) const {
barrier.src_exec_scope = sync_event->scope.exec_scope & barrier.src_exec_scope;
barrier.src_access_scope = sync_event->scope.valid_accesses & barrier.src_access_scope;
return barrier;
}
ApplyFunctor MakeApplyFunctor(const SyncBarrier &barrier_arg, bool layout_transition) const {
auto barrier = RestrictToEvent(barrier_arg);
return ApplyFunctor(BarrierOpFunctor(sync_event->first_scope_tag, barrier, layout_transition));
}
GlobalApplyFunctor MakeGlobalApplyFunctor(size_t size_hint, const ResourceUsageTag &tag) const {
return GlobalApplyFunctor(false /* don't resolve */, size_hint, tag);
}
GlobalBarrierOpFunctor MakeGlobalBarrierOpFunctor(const SyncBarrier &barrier_arg) const {
auto barrier = RestrictToEvent(barrier_arg);
return GlobalBarrierOpFunctor(sync_event->first_scope_tag, barrier, false);
}
BufferRange MakeRangeGen(const BUFFER_STATE &buffer, const ResourceAccessRange &range_arg) const {
const AccessAddressType address_type = GetAccessAddressType(buffer);
const auto base_address = ResourceBaseAddress(buffer);
ResourceAccessRange range = SimpleBinding(buffer) ? (range_arg + base_address) : ResourceAccessRange();
EventSimpleRangeGenerator filtered_range_gen(sync_event->FirstScope(address_type), range);
return filtered_range_gen;
}
ImageRange MakeRangeGen(const IMAGE_STATE &image, const SyncImageMemoryBarrier::SubImageRange &range) const {
if (!SimpleBinding(image)) return ImageRange();
const auto address_type = GetAccessAddressType(image);
const auto base_address = ResourceBaseAddress(image);
subresource_adapter::ImageRangeGenerator image_range_gen(*image.fragment_encoder.get(), range.subresource_range,
range.offset, range.extent, base_address);
EventImageRangeGenerator filtered_range_gen(sync_event->FirstScope(address_type), image_range_gen);
return filtered_range_gen;
}
GlobalRange MakeGlobalRangeGen(AccessAddressType address_type) const {
return EventSimpleRangeGenerator(sync_event->FirstScope(address_type), kFullRange);
}
SyncOpWaitEventsFunctorFactory(SyncEventState *sync_event_) : sync_event(sync_event_) { assert(sync_event); }
SyncEventState *sync_event;
};
void SyncOpWaitEvents::Record(CommandBufferAccessContext *cb_context, const ResourceUsageTag &tag) const {
auto *access_context = cb_context->GetCurrentAccessContext();
assert(access_context);
if (!access_context) return;
auto *events_context = cb_context->GetCurrentEventsContext();
assert(events_context);
if (!events_context) return;
// Unlike PipelineBarrier, WaitEvent is *not* limited to accesses within the current subpass (if any) and thus needs to import
// all accesses. Can instead import for all first_scopes, or a union of them, if this becomes a performance/memory issue,
// but with no idea of the performance of the union, nor of whether it even matters... take the simplest approach here,
access_context->ResolvePreviousAccesses();
const auto &dst = dst_exec_scope_;
// TODO... this needs change the SyncEventContext it's using depending on whether this is replay... the recorded
// sync_event will be in the recorded context, but we need to update the sync_events in the current context....
for (auto &event_shared : events_) {
if (!event_shared.get()) continue;
auto *sync_event = events_context->GetFromShared(event_shared);
sync_event->last_command = CMD_WAITEVENTS;
if (!sync_event->IsIgnoredByWait(src_exec_scope_.mask_param)) {
// These apply barriers one at a time as the are restricted to the resource ranges specified per each barrier,
// but do not update the dependency chain information (but set the "pending" state) // s.t. the order independence
// of the barriers is maintained.
SyncOpWaitEventsFunctorFactory factory(sync_event);
ApplyBarriers(buffer_memory_barriers_, factory, tag, access_context);
ApplyBarriers(image_memory_barriers_, factory, tag, access_context);
ApplyGlobalBarriers(memory_barriers_, factory, tag, access_context);
// Apply the global barrier to the event itself (for race condition tracking)
// Events don't happen at a stage, so we need to store the unexpanded ALL_COMMANDS if set for inter-event-calls
sync_event->barriers = dst.mask_param & VK_PIPELINE_STAGE_ALL_COMMANDS_BIT;
sync_event->barriers |= dst.exec_scope;
} else {
// We ignored this wait, so we don't have any effective synchronization barriers for it.
sync_event->barriers = 0U;
}
}
// Apply the pending barriers
ResolvePendingBarrierFunctor apply_pending_action(tag);
access_context->ApplyToContext(apply_pending_action);
}
void SyncOpWaitEvents::MakeEventsList(const SyncValidator &sync_state, uint32_t event_count, const VkEvent *events) {
events_.reserve(event_count);
for (uint32_t event_index = 0; event_index < event_count; event_index++) {
events_.emplace_back(sync_state.GetShared<EVENT_STATE>(events[event_index]));
}
}