blob: 2f9fd5b19be66fbf5bab45119c333ea8d5e418e3 [file] [log] [blame]
// Copyright 2005, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// XGL tests
//
// Copyright (C) 2014 LunarG, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
// Basic rendering tests
#include <stdlib.h>
#include <stdio.h>
#include <stdbool.h>
#include <string.h>
#include <iostream>
#include <fstream>
using namespace std;
#include <xgl.h>
#ifdef PRINT_OBJECTS
#include "../layers/object_track.h"
#endif
#ifdef DEBUG_CALLBACK
#include <xglDbg.h>
#endif
#include "gtest-1.7.0/include/gtest/gtest.h"
#include "xgldevice.h"
#include "xglimage.h"
#include "icd-bil.h"
#define GLM_FORCE_RADIANS
#include "glm/glm.hpp"
#include <glm/gtc/matrix_transform.hpp>
#include "xglrenderframework.h"
#ifdef DEBUG_CALLBACK
XGL_VOID XGLAPI myDbgFunc(
XGL_DBG_MSG_TYPE msgType,
XGL_VALIDATION_LEVEL validationLevel,
XGL_BASE_OBJECT srcObject,
XGL_SIZE location,
XGL_INT msgCode,
const XGL_CHAR* pMsg,
XGL_VOID* pUserData)
{
switch (msgType)
{
case XGL_DBG_MSG_WARNING:
printf("CALLBACK WARNING : %s\n", pMsg);
break;
case XGL_DBG_MSG_ERROR:
printf("CALLBACK ERROR : %s\n", pMsg);
break;
default:
printf("EATING Msg of type %u\n", msgType);
break;
}
}
#endif
//--------------------------------------------------------------------------------------
// Mesh and VertexFormat Data
//--------------------------------------------------------------------------------------
struct Vertex
{
XGL_FLOAT posX, posY, posZ, posW; // Position data
XGL_FLOAT r, g, b, a; // Color
};
#define XYZ1(_x_, _y_, _z_) (_x_), (_y_), (_z_), 1.f
static const Vertex g_vbData[] =
{
{ XYZ1( -1, -1, -1 ), XYZ1( 0.f, 0.f, 0.f ) },
{ XYZ1( 1, -1, -1 ), XYZ1( 1.f, 0.f, 0.f ) },
{ XYZ1( -1, 1, -1 ), XYZ1( 0.f, 1.f, 0.f ) },
{ XYZ1( -1, 1, -1 ), XYZ1( 0.f, 1.f, 0.f ) },
{ XYZ1( 1, -1, -1 ), XYZ1( 1.f, 0.f, 0.f ) },
{ XYZ1( 1, 1, -1 ), XYZ1( 1.f, 1.f, 0.f ) },
{ XYZ1( -1, -1, 1 ), XYZ1( 0.f, 0.f, 1.f ) },
{ XYZ1( -1, 1, 1 ), XYZ1( 0.f, 1.f, 1.f ) },
{ XYZ1( 1, -1, 1 ), XYZ1( 1.f, 0.f, 1.f ) },
{ XYZ1( 1, -1, 1 ), XYZ1( 1.f, 0.f, 1.f ) },
{ XYZ1( -1, 1, 1 ), XYZ1( 0.f, 1.f, 1.f ) },
{ XYZ1( 1, 1, 1 ), XYZ1( 1.f, 1.f, 1.f ) },
{ XYZ1( 1, 1, 1 ), XYZ1( 1.f, 1.f, 1.f ) },
{ XYZ1( 1, 1, -1 ), XYZ1( 1.f, 1.f, 0.f ) },
{ XYZ1( 1, -1, 1 ), XYZ1( 1.f, 0.f, 1.f ) },
{ XYZ1( 1, -1, 1 ), XYZ1( 1.f, 0.f, 1.f ) },
{ XYZ1( 1, 1, -1 ), XYZ1( 1.f, 1.f, 0.f ) },
{ XYZ1( 1, -1, -1 ), XYZ1( 1.f, 0.f, 0.f ) },
{ XYZ1( -1, 1, 1 ), XYZ1( 0.f, 1.f, 1.f ) },
{ XYZ1( -1, -1, 1 ), XYZ1( 0.f, 0.f, 1.f ) },
{ XYZ1( -1, 1, -1 ), XYZ1( 0.f, 1.f, 0.f ) },
{ XYZ1( -1, 1, -1 ), XYZ1( 0.f, 1.f, 0.f ) },
{ XYZ1( -1, -1, 1 ), XYZ1( 0.f, 0.f, 1.f ) },
{ XYZ1( -1, -1, -1 ), XYZ1( 0.f, 0.f, 0.f ) },
{ XYZ1( 1, 1, 1 ), XYZ1( 1.f, 1.f, 1.f ) },
{ XYZ1( -1, 1, 1 ), XYZ1( 0.f, 1.f, 1.f ) },
{ XYZ1( 1, 1, -1 ), XYZ1( 1.f, 1.f, 0.f ) },
{ XYZ1( 1, 1, -1 ), XYZ1( 1.f, 1.f, 0.f ) },
{ XYZ1( -1, 1, 1 ), XYZ1( 0.f, 1.f, 1.f ) },
{ XYZ1( -1, 1, -1 ), XYZ1( 0.f, 1.f, 0.f ) },
{ XYZ1( 1, -1, 1 ), XYZ1( 1.f, 0.f, 1.f ) },
{ XYZ1( 1, -1, -1 ), XYZ1( 1.f, 0.f, 0.f ) },
{ XYZ1( -1, -1, 1 ), XYZ1( 0.f, 0.f, 1.f ) },
{ XYZ1( -1, -1, 1 ), XYZ1( 0.f, 0.f, 1.f ) },
{ XYZ1( 1, -1, -1 ), XYZ1( 1.f, 0.f, 0.f ) },
{ XYZ1( -1, -1, -1 ), XYZ1( 0.f, 0.f, 0.f ) },
};
static const Vertex g_vb_solid_face_colors_Data[] =
{
{ XYZ1( -1, -1, -1 ), XYZ1( 1.f, 0.f, 0.f ) },
{ XYZ1( 1, -1, -1 ), XYZ1( 1.f, 0.f, 0.f ) },
{ XYZ1( -1, 1, -1 ), XYZ1( 1.f, 0.f, 0.f ) },
{ XYZ1( -1, 1, -1 ), XYZ1( 1.f, 0.f, 0.f ) },
{ XYZ1( 1, -1, -1 ), XYZ1( 1.f, 0.f, 0.f ) },
{ XYZ1( 1, 1, -1 ), XYZ1( 1.f, 0.f, 0.f ) },
{ XYZ1( -1, -1, 1 ), XYZ1( 0.f, 1.f, 0.f ) },
{ XYZ1( -1, 1, 1 ), XYZ1( 0.f, 1.f, 0.f ) },
{ XYZ1( 1, -1, 1 ), XYZ1( 0.f, 1.f, 0.f ) },
{ XYZ1( 1, -1, 1 ), XYZ1( 0.f, 1.f, 0.f ) },
{ XYZ1( -1, 1, 1 ), XYZ1( 0.f, 1.f, 0.f ) },
{ XYZ1( 1, 1, 1 ), XYZ1( 0.f, 1.f, 0.f ) },
{ XYZ1( 1, 1, 1 ), XYZ1( 0.f, 0.f, 1.f ) },
{ XYZ1( 1, 1, -1 ), XYZ1( 0.f, 0.f, 1.f ) },
{ XYZ1( 1, -1, 1 ), XYZ1( 0.f, 0.f, 1.f ) },
{ XYZ1( 1, -1, 1 ), XYZ1( 0.f, 0.f, 1.f ) },
{ XYZ1( 1, 1, -1 ), XYZ1( 0.f, 0.f, 1.f ) },
{ XYZ1( 1, -1, -1 ), XYZ1( 0.f, 0.f, 1.f ) },
{ XYZ1( -1, 1, 1 ), XYZ1( 1.f, 1.f, 0.f ) },
{ XYZ1( -1, -1, 1 ), XYZ1( 1.f, 1.f, 0.f ) },
{ XYZ1( -1, 1, -1 ), XYZ1( 1.f, 1.f, 0.f ) },
{ XYZ1( -1, 1, -1 ), XYZ1( 1.f, 1.f, 0.f ) },
{ XYZ1( -1, -1, 1 ), XYZ1( 1.f, 1.f, 0.f ) },
{ XYZ1( -1, -1, -1 ), XYZ1( 1.f, 1.f, 0.f ) },
{ XYZ1( 1, 1, 1 ), XYZ1( 1.f, 0.f, 1.f ) },
{ XYZ1( -1, 1, 1 ), XYZ1( 1.f, 0.f, 1.f ) },
{ XYZ1( 1, 1, -1 ), XYZ1( 1.f, 0.f, 1.f ) },
{ XYZ1( 1, 1, -1 ), XYZ1( 1.f, 0.f, 1.f ) },
{ XYZ1( -1, 1, 1 ), XYZ1( 1.f, 0.f, 1.f ) },
{ XYZ1( -1, 1, -1 ), XYZ1( 1.f, 0.f, 1.f ) },
{ XYZ1( 1, -1, 1 ), XYZ1( 0.f, 1.f, 1.f ) },
{ XYZ1( 1, -1, -1 ), XYZ1( 0.f, 1.f, 1.f ) },
{ XYZ1( -1, -1, 1 ), XYZ1( 0.f, 1.f, 1.f ) },
{ XYZ1( -1, -1, 1 ), XYZ1( 0.f, 1.f, 1.f ) },
{ XYZ1( 1, -1, -1 ), XYZ1( 0.f, 1.f, 1.f ) },
{ XYZ1( -1, -1, -1 ), XYZ1( 0.f, 1.f, 1.f ) },
};
class XglRenderTest : public XglRenderFramework
{
public:
void InitMesh( XGL_UINT32 numVertices, XGL_GPU_SIZE vbStride, const void* vertices );
void UploadMesh( XGL_UINT32 numVertices, XGL_GPU_SIZE vbStride, const void* vertices );
void InitTexture();
void InitSampler();
void DrawTriangleTest(const char *vertShaderText, const char *fragShaderText);
void DrawTriangleTwoUniformsFS(const char *vertShaderText, const char *fragShaderText);
void DrawTriangleWithVertexFetch(const char *vertShaderText, const char *fragShaderText);
void RotateTriangleVSUniform(glm::mat4 Projection, glm::mat4 View, glm::mat4 Model);
void DrawTriangleVSUniform(const char *vertShaderText, const char *fragShaderText, int numTris);
void DrawTriangleWithVertexFetchAndMVP(const char *vertShaderText, const char *fragShaderText);
void CreatePipelineWithVertexFetch(XGL_PIPELINE* pipeline, XGL_SHADER vs, XGL_SHADER ps);
void CreatePipelineWithVertexFetchAndMVP(XGL_PIPELINE* pipeline, XGL_SHADER vs, XGL_SHADER ps);
void CreatePipelineVSUniform(XGL_PIPELINE* pipeline, XGL_SHADER vs, XGL_SHADER ps);
void ClearDepthStencil(XGL_FLOAT value);
void ClearRenderBuffer(XGL_UINT32 clear_color);
void InitDepthStencil();
void DrawRotatedTriangleTest();
void GenerateClearAndPrepareBufferCmds();
void XGLTriangleTest(const char *vertShaderText, const char *fragShaderText);
protected:
XGL_IMAGE m_texture;
XGL_IMAGE_VIEW m_textureView;
XGL_IMAGE_VIEW_ATTACH_INFO m_textureViewInfo;
XGL_GPU_MEMORY m_textureMem;
XGL_SAMPLER m_sampler;
XGL_FORMAT m_depth_stencil_fmt;
XGL_IMAGE m_depthStencilImage;
XGL_GPU_MEMORY m_depthStencilMem;
XGL_DEPTH_STENCIL_VIEW m_depthStencilView;
// XGL_APPLICATION_INFO app_info;
// XGL_PHYSICAL_GPU objs[MAX_GPUS];
// XGL_UINT gpu_count;
// XGL_GPU_MEMORY m_descriptor_set_mem;
// XGL_GPU_MEMORY m_pipe_mem;
// XglDevice *m_device;
// XGL_CMD_BUFFER m_cmdBuffer;
// XGL_UINT32 m_numVertices;
// XGL_MEMORY_VIEW_ATTACH_INFO m_vtxBufferView;
// XGL_MEMORY_VIEW_ATTACH_INFO m_constantBufferView;
// XGL_GPU_MEMORY m_vtxBufferMem;
// XGL_GPU_MEMORY m_constantBufferMem;
// XGL_UINT32 m_numMemRefs;
// XGL_MEMORY_REF m_memRefs[5];
// XGL_RASTER_STATE_OBJECT m_stateRaster;
// XGL_COLOR_BLEND_STATE_OBJECT m_colorBlend;
// XGL_VIEWPORT_STATE_OBJECT m_stateViewport;
// XGL_DEPTH_STENCIL_STATE_OBJECT m_stateDepthStencil;
// XGL_MSAA_STATE_OBJECT m_stateMsaa;
// XGL_DESCRIPTOR_SET m_rsrcDescSet;
virtual void SetUp() {
this->app_info.sType = XGL_STRUCTURE_TYPE_APPLICATION_INFO;
this->app_info.pNext = NULL;
this->app_info.pAppName = (const XGL_CHAR *) "render_tests";
this->app_info.appVersion = 1;
this->app_info.pEngineName = (const XGL_CHAR *) "unittest";
this->app_info.engineVersion = 1;
this->app_info.apiVersion = XGL_MAKE_VERSION(0, 22, 0);
memset(&m_textureViewInfo, 0, sizeof(m_textureViewInfo));
m_textureViewInfo.sType = XGL_STRUCTURE_TYPE_IMAGE_VIEW_ATTACH_INFO;
InitFramework();
}
virtual void TearDown() {
// Clean up resources before we reset
ShutdownFramework();
}
};
// this function will create the vertex buffer and fill it with the mesh data
void XglRenderTest::InitMesh( XGL_UINT32 numVertices, XGL_GPU_SIZE vbStride,
const void* vertices )
{
XGL_RESULT err = XGL_SUCCESS;
assert( numVertices * vbStride > 0 );
m_numVertices = numVertices;
XGL_MEMORY_ALLOC_INFO alloc_info = {};
XGL_UINT8 *pData;
alloc_info.sType = XGL_STRUCTURE_TYPE_MEMORY_ALLOC_INFO;
alloc_info.allocationSize = numVertices * vbStride;
alloc_info.alignment = 0;
alloc_info.heapCount = 1;
alloc_info.heaps[0] = 0; // TODO: Use known existing heap
alloc_info.flags = XGL_MEMORY_HEAP_CPU_VISIBLE_BIT;
alloc_info.memPriority = XGL_MEMORY_PRIORITY_NORMAL;
err = xglAllocMemory(device(), &alloc_info, &m_vtxBufferMem);
ASSERT_XGL_SUCCESS(err);
err = xglMapMemory(m_vtxBufferMem, 0, (XGL_VOID **) &pData);
ASSERT_XGL_SUCCESS(err);
memcpy(pData, vertices, alloc_info.allocationSize);
err = xglUnmapMemory(m_vtxBufferMem);
ASSERT_XGL_SUCCESS(err);
// set up the memory view for the vertex buffer
this->m_vtxBufferView.stride = vbStride;
this->m_vtxBufferView.range = numVertices * vbStride;
this->m_vtxBufferView.offset = 0;
this->m_vtxBufferView.mem = m_vtxBufferMem;
this->m_vtxBufferView.format.channelFormat = XGL_CH_FMT_UNDEFINED;
this->m_vtxBufferView.format.numericFormat = XGL_NUM_FMT_UNDEFINED;
}
// this function will create the vertex buffer and fill it with the mesh data
void XglRenderTest::UploadMesh( XGL_UINT32 numVertices, XGL_GPU_SIZE vbStride,
const void* vertices )
{
XGL_UINT8 *pData;
XGL_RESULT err = XGL_SUCCESS;
assert( numVertices * vbStride > 0 );
m_numVertices = numVertices;
err = xglMapMemory(m_vtxBufferMem, 0, (XGL_VOID **) &pData);
ASSERT_XGL_SUCCESS(err);
memcpy(pData, vertices, numVertices * vbStride);
err = xglUnmapMemory(m_vtxBufferMem);
ASSERT_XGL_SUCCESS(err);
}
void XglRenderTest::InitTexture()
{
#define DEMO_TEXTURE_COUNT 1
const XGL_FORMAT tex_format = { XGL_CH_FMT_B8G8R8A8, XGL_NUM_FMT_UNORM };
const XGL_INT tex_width = 16;
const XGL_INT tex_height = 16;
const uint32_t tex_colors[DEMO_TEXTURE_COUNT][2] = {
{ 0xffff0000, 0xff00ff00 },
};
XGL_RESULT err;
XGL_UINT i;
for (i = 0; i < DEMO_TEXTURE_COUNT; i++) {
const XGL_SAMPLER_CREATE_INFO sampler = {
.sType = XGL_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
.pNext = NULL,
.magFilter = XGL_TEX_FILTER_NEAREST,
.minFilter = XGL_TEX_FILTER_NEAREST,
.mipMode = XGL_TEX_MIPMAP_BASE,
.addressU = XGL_TEX_ADDRESS_WRAP,
.addressV = XGL_TEX_ADDRESS_WRAP,
.addressW = XGL_TEX_ADDRESS_WRAP,
.mipLodBias = 0.0f,
.maxAnisotropy = 0,
.compareFunc = XGL_COMPARE_NEVER,
.minLod = 0.0f,
.maxLod = 0.0f,
.borderColorType = XGL_BORDER_COLOR_OPAQUE_WHITE,
};
const XGL_IMAGE_CREATE_INFO image = {
.sType = XGL_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.pNext = NULL,
.imageType = XGL_IMAGE_2D,
.format = tex_format,
.extent = { tex_width, tex_height, 1 },
.mipLevels = 1,
.arraySize = 1,
.samples = 1,
.tiling = XGL_LINEAR_TILING,
.usage = XGL_IMAGE_USAGE_SHADER_ACCESS_READ_BIT,
.flags = 0,
};
XGL_MEMORY_ALLOC_INFO mem_alloc;
mem_alloc.sType = XGL_STRUCTURE_TYPE_MEMORY_ALLOC_INFO;
mem_alloc.pNext = NULL;
mem_alloc.allocationSize = 0;
mem_alloc.alignment = 0;
mem_alloc.flags = 0;
mem_alloc.heapCount = 0;
mem_alloc.memPriority = XGL_MEMORY_PRIORITY_NORMAL;
XGL_IMAGE_VIEW_CREATE_INFO view;
view.sType = XGL_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
view.pNext = NULL;
view.image = XGL_NULL_HANDLE;
view.viewType = XGL_IMAGE_VIEW_2D;
view.format = image.format;
view.channels.r = XGL_CHANNEL_SWIZZLE_R;
view.channels.g = XGL_CHANNEL_SWIZZLE_G;
view.channels.b = XGL_CHANNEL_SWIZZLE_B;
view.channels.a = XGL_CHANNEL_SWIZZLE_A;
view.subresourceRange.aspect = XGL_IMAGE_ASPECT_COLOR;
view.subresourceRange.baseMipLevel = 0;
view.subresourceRange.mipLevels = 1;
view.subresourceRange.baseArraySlice = 0;
view.subresourceRange.arraySize = 1;
view.minLod = 0.0f;
XGL_MEMORY_REQUIREMENTS mem_reqs;
XGL_SIZE mem_reqs_size=sizeof(XGL_MEMORY_REQUIREMENTS);
/* create sampler */
err = xglCreateSampler(device(), &sampler, &m_sampler);
assert(!err);
/* create image */
err = xglCreateImage(device(), &image, &m_texture);
assert(!err);
err = xglGetObjectInfo(m_texture,
XGL_INFO_TYPE_MEMORY_REQUIREMENTS,
&mem_reqs_size, &mem_reqs);
assert(!err && mem_reqs_size == sizeof(mem_reqs));
mem_alloc.allocationSize = mem_reqs.size;
mem_alloc.alignment = mem_reqs.alignment;
mem_alloc.heapCount = mem_reqs.heapCount;
memcpy(mem_alloc.heaps, mem_reqs.heaps,
sizeof(mem_reqs.heaps[0]) * mem_reqs.heapCount);
/* allocate memory */
err = xglAllocMemory(device(), &mem_alloc, &m_textureMem);
assert(!err);
/* bind memory */
err = xglBindObjectMemory(m_texture, m_textureMem, 0);
assert(!err);
/* create image view */
view.image = m_texture;
err = xglCreateImageView(device(), &view, &m_textureView);
assert(!err);
}
for (i = 0; i < DEMO_TEXTURE_COUNT; i++) {
const XGL_IMAGE_SUBRESOURCE subres = {
.aspect = XGL_IMAGE_ASPECT_COLOR,
.mipLevel = 0,
.arraySlice = 0,
};
XGL_SUBRESOURCE_LAYOUT layout;
XGL_SIZE layout_size;
XGL_VOID *data;
XGL_INT x, y;
err = xglGetImageSubresourceInfo(m_texture, &subres,
XGL_INFO_TYPE_SUBRESOURCE_LAYOUT, &layout_size, &layout);
assert(!err && layout_size == sizeof(layout));
err = xglMapMemory(m_textureMem, 0, &data);
assert(!err);
for (y = 0; y < tex_height; y++) {
uint32_t *row = (uint32_t *) ((char *) data + layout.rowPitch * y);
for (x = 0; x < tex_width; x++)
row[x] = tex_colors[i][(x & 1) ^ (y & 1)];
}
err = xglUnmapMemory(m_textureMem);
assert(!err);
}
m_textureViewInfo.view = m_textureView;
}
void XglRenderTest::InitSampler()
{
XGL_RESULT err;
XGL_SAMPLER_CREATE_INFO samplerCreateInfo = {};
samplerCreateInfo.sType = XGL_STRUCTURE_TYPE_SAMPLER_CREATE_INFO;
samplerCreateInfo.magFilter = XGL_TEX_FILTER_NEAREST;
samplerCreateInfo.minFilter = XGL_TEX_FILTER_NEAREST;
samplerCreateInfo.mipMode = XGL_TEX_MIPMAP_BASE;
samplerCreateInfo.addressU = XGL_TEX_ADDRESS_WRAP;
samplerCreateInfo.addressV = XGL_TEX_ADDRESS_WRAP;
samplerCreateInfo.addressW = XGL_TEX_ADDRESS_WRAP;
samplerCreateInfo.mipLodBias = 0.0;
samplerCreateInfo.maxAnisotropy = 0.0;
samplerCreateInfo.compareFunc = XGL_COMPARE_NEVER;
samplerCreateInfo.minLod = 0.0;
samplerCreateInfo.maxLod = 0.0;
samplerCreateInfo.borderColorType = XGL_BORDER_COLOR_OPAQUE_WHITE;
err = xglCreateSampler(device(),&samplerCreateInfo, &m_sampler);
ASSERT_XGL_SUCCESS(err);
}
void XglRenderTest::DrawTriangleTest(const char *vertShaderText, const char *fragShaderText)
{
XGL_PIPELINE pipeline;
XGL_SHADER vs, ps;
XGL_RESULT err;
ASSERT_NO_FATAL_FAILURE(InitState());
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(CreateShader(XGL_SHADER_STAGE_VERTEX,
vertShaderText, &vs));
ASSERT_NO_FATAL_FAILURE(CreateShader(XGL_SHADER_STAGE_FRAGMENT,
fragShaderText, &ps));
ASSERT_NO_FATAL_FAILURE(CreateDefaultPipeline(&pipeline, vs, ps));
/*
* Shaders are now part of the pipeline, don't need these anymore
*/
ASSERT_XGL_SUCCESS(xglDestroyObject(ps));
ASSERT_XGL_SUCCESS(xglDestroyObject(vs));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
const int constantCount = 4;
const float constants[constantCount] = { 0.5, 0.5, 0.5, 1.0 };
InitConstantBuffer(constantCount, sizeof(constants[0]), (const void*) constants);
// Create descriptor set for a uniform resource
XGL_DESCRIPTOR_SET_CREATE_INFO descriptorInfo = {};
descriptorInfo.sType = XGL_STRUCTURE_TYPE_DESCRIPTOR_SET_CREATE_INFO;
descriptorInfo.slots = 1;
// create a descriptor set with a single slot
err = xglCreateDescriptorSet( device(), &descriptorInfo, &m_rsrcDescSet );
ASSERT_XGL_SUCCESS(err) << "xglCreateDescriptorSet failed";
// bind memory to the descriptor set
err = m_device->AllocAndBindGpuMemory(m_rsrcDescSet, "DescriptorSet", &m_descriptor_set_mem);
// write the constant buffer view to the descriptor set
xglBeginDescriptorSetUpdate( m_rsrcDescSet );
xglAttachMemoryViewDescriptors( m_rsrcDescSet, 0, 1, &m_constantBufferView );
xglEndDescriptorSetUpdate( m_rsrcDescSet );
// Build command buffer
err = xglBeginCommandBuffer(m_cmdBuffer, 0);
ASSERT_XGL_SUCCESS(err);
GenerateClearAndPrepareBufferCmds();
GenerateBindRenderTargetCmd();
GenerateBindStateAndPipelineCmds(&pipeline);
// xglCmdBindDescriptorSet(m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, 0, m_rsrcDescSet, 0 );
// xglCmdBindDynamicMemoryView( m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, &m_constantBufferView );
// render the cube
xglCmdDraw( m_cmdBuffer, 0, 3, 0, 1 );
// prepare the back buffer for present
// XGL_IMAGE_STATE_TRANSITION transitionToPresent = {};
// transitionToPresent.image = m_image;
// transitionToPresent.oldState = m_image_state;
// transitionToPresent.newState = m_display.fullscreen ? XGL_WSI_WIN_PRESENT_SOURCE_FLIP : XGL_WSI_WIN_PRESENT_SOURCE_BLT;
// transitionToPresent.subresourceRange = srRange;
// xglCmdPrepareImages( m_cmdBuffer, 1, &transitionToPresent );
// m_image_state = ( XGL_IMAGE_STATE ) transitionToPresent.newState;
// finalize recording of the command buffer
err = xglEndCommandBuffer( m_cmdBuffer );
ASSERT_XGL_SUCCESS( err );
// this command buffer only uses the vertex buffer memory
m_numMemRefs = 1;
m_memRefs[0].flags = 0;
m_memRefs[0].mem = m_renderTarget->memory();
// m_memRefs[0].flags = 0;
// m_memRefs[0].mem = m_vtxBufferMemory;
// submit the command buffer to the universal queue
err = xglQueueSubmit( m_device->m_queue, 1, &m_cmdBuffer, m_numMemRefs, m_memRefs, NULL );
ASSERT_XGL_SUCCESS( err );
err = xglQueueWaitIdle( m_device->m_queue );
ASSERT_XGL_SUCCESS( err );
// Wait for work to finish before cleaning up.
xglDeviceWaitIdle(m_device->device());
RecordImage(m_renderTarget);
}
void XglRenderTest::DrawTriangleTwoUniformsFS(const char *vertShaderText, const char *fragShaderText)
{
XGL_PIPELINE pipeline;
XGL_SHADER vs, ps;
XGL_RESULT err;
ASSERT_NO_FATAL_FAILURE(InitState());
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(CreateShader(XGL_SHADER_STAGE_VERTEX,
vertShaderText, &vs));
ASSERT_NO_FATAL_FAILURE(CreateShader(XGL_SHADER_STAGE_FRAGMENT,
fragShaderText, &ps));
ASSERT_NO_FATAL_FAILURE(CreateDefaultPipeline(&pipeline, vs, ps));
/*
* Shaders are now part of the pipeline, don't need these anymore
*/
ASSERT_XGL_SUCCESS(xglDestroyObject(ps));
ASSERT_XGL_SUCCESS(xglDestroyObject(vs));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
const int constantCount = 8;
const float constants[constantCount] = { 1.0, 0.0, 0.0, 1.0,
0.0, 0.0, 1.0, 1.0 };
InitConstantBuffer(constantCount, sizeof(constants[0]), (const void*) constants);
// Create descriptor set for a uniform resource
const int slotCount = 1;
XGL_DESCRIPTOR_SET_CREATE_INFO descriptorInfo = {};
descriptorInfo.sType = XGL_STRUCTURE_TYPE_DESCRIPTOR_SET_CREATE_INFO;
descriptorInfo.slots = slotCount;
// create a descriptor set with a single slot
err = xglCreateDescriptorSet( device(), &descriptorInfo, &m_rsrcDescSet );
ASSERT_XGL_SUCCESS(err) << "xglCreateDescriptorSet failed";
// bind memory to the descriptor set
err = m_device->AllocAndBindGpuMemory(m_rsrcDescSet, "DescriptorSet", &m_descriptor_set_mem);
// write the constant buffer view to the descriptor set
xglBeginDescriptorSetUpdate( m_rsrcDescSet );
xglAttachMemoryViewDescriptors( m_rsrcDescSet, 0, 1, &m_constantBufferView );
xglEndDescriptorSetUpdate( m_rsrcDescSet );
// Build command buffer
err = xglBeginCommandBuffer(m_cmdBuffer, 0);
ASSERT_XGL_SUCCESS(err);
GenerateClearAndPrepareBufferCmds();
GenerateBindRenderTargetCmd();
GenerateBindStateAndPipelineCmds(&pipeline);
// xglCmdBindDescriptorSet(m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, 0, m_rsrcDescSet, 0 );
// xglCmdBindDynamicMemoryView( m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, &m_constantBufferView );
// render the cube
xglCmdDraw( m_cmdBuffer, 0, 3, 0, 1 );
// prepare the back buffer for present
// XGL_IMAGE_STATE_TRANSITION transitionToPresent = {};
// transitionToPresent.image = m_image;
// transitionToPresent.oldState = m_image_state;
// transitionToPresent.newState = m_display.fullscreen ? XGL_WSI_WIN_PRESENT_SOURCE_FLIP : XGL_WSI_WIN_PRESENT_SOURCE_BLT;
// transitionToPresent.subresourceRange = srRange;
// xglCmdPrepareImages( m_cmdBuffer, 1, &transitionToPresent );
// m_image_state = ( XGL_IMAGE_STATE ) transitionToPresent.newState;
// finalize recording of the command buffer
err = xglEndCommandBuffer( m_cmdBuffer );
ASSERT_XGL_SUCCESS( err );
// this command buffer only uses the vertex buffer memory
m_numMemRefs = 0;
// m_memRefs[0].flags = 0;
// m_memRefs[0].mem = m_vtxBufferMemory;
// submit the command buffer to the universal queue
err = xglQueueSubmit( m_device->m_queue, 1, &m_cmdBuffer, m_numMemRefs, m_memRefs, NULL );
ASSERT_XGL_SUCCESS( err );
err = xglQueueWaitIdle( m_device->m_queue );
ASSERT_XGL_SUCCESS( err );
// Wait for work to finish before cleaning up.
xglDeviceWaitIdle(m_device->device());
RecordImage(m_renderTarget);
}
void XglRenderTest::DrawTriangleVSUniform(const char *vertShaderText, const char *fragShaderText, int numTris)
{
XGL_PIPELINE pipeline;
XGL_SHADER vs, ps;
XGL_RESULT err;
ASSERT_NO_FATAL_FAILURE(InitState());
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(CreateShader(XGL_SHADER_STAGE_VERTEX,
vertShaderText, &vs));
ASSERT_NO_FATAL_FAILURE(CreateShader(XGL_SHADER_STAGE_FRAGMENT,
fragShaderText, &ps));
ASSERT_NO_FATAL_FAILURE(CreatePipelineVSUniform(&pipeline, vs, ps));
/*
* Shaders are now part of the pipeline, don't need these anymore
*/
ASSERT_XGL_SUCCESS(xglDestroyObject(ps));
ASSERT_XGL_SUCCESS(xglDestroyObject(vs));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
// Create descriptor set for a uniform resource
const int slotCount = 1;
XGL_DESCRIPTOR_SET_CREATE_INFO descriptorInfo = {};
descriptorInfo.sType = XGL_STRUCTURE_TYPE_DESCRIPTOR_SET_CREATE_INFO;
descriptorInfo.slots = slotCount;
// create a descriptor set with a single slot
err = xglCreateDescriptorSet( device(), &descriptorInfo, &m_rsrcDescSet );
ASSERT_XGL_SUCCESS(err) << "xglCreateDescriptorSet failed";
// bind memory to the descriptor set
err = m_device->AllocAndBindGpuMemory(m_rsrcDescSet, "DescriptorSet", &m_descriptor_set_mem);
// write the constant buffer view to the descriptor set
xglBeginDescriptorSetUpdate( m_rsrcDescSet );
xglAttachMemoryViewDescriptors( m_rsrcDescSet, 0, 1, &m_constantBufferView );
xglEndDescriptorSetUpdate( m_rsrcDescSet );
// Build command buffer
err = xglBeginCommandBuffer(m_cmdBuffer, 0);
ASSERT_XGL_SUCCESS(err);
GenerateClearAndPrepareBufferCmds();
GenerateBindRenderTargetCmd();
GenerateBindStateAndPipelineCmds(&pipeline);
// xglCmdBindDescriptorSet(m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, 0, m_rsrcDescSet, 0 );
// xglCmdBindDynamicMemoryView( m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, &m_constantBufferView );
// render the cube
xglCmdDraw( m_cmdBuffer, 0, numTris*3, 0, 1 );
// prepare the back buffer for present
// XGL_IMAGE_STATE_TRANSITION transitionToPresent = {};
// transitionToPresent.image = m_image;
// transitionToPresent.oldState = m_image_state;
// transitionToPresent.newState = m_display.fullscreen ? XGL_WSI_WIN_PRESENT_SOURCE_FLIP : XGL_WSI_WIN_PRESENT_SOURCE_BLT;
// transitionToPresent.subresourceRange = srRange;
// xglCmdPrepareImages( m_cmdBuffer, 1, &transitionToPresent );
// m_image_state = ( XGL_IMAGE_STATE ) transitionToPresent.newState;
// finalize recording of the command buffer
err = xglEndCommandBuffer( m_cmdBuffer );
ASSERT_XGL_SUCCESS( err );
// this command buffer only uses a data buffer for the MVP
m_numMemRefs = 1;
m_memRefs[0].flags = 0;
m_memRefs[0].mem = m_constantBufferMem;
// submit the command buffer to the universal queue
err = xglQueueSubmit( m_device->m_queue, 1, &m_cmdBuffer, m_numMemRefs, m_memRefs, NULL );
ASSERT_XGL_SUCCESS( err );
err = xglQueueWaitIdle( m_device->m_queue );
ASSERT_XGL_SUCCESS( err );
// Wait for work to finish before cleaning up.
xglDeviceWaitIdle(m_device->device());
RecordImage(m_renderTarget);
}
void XglRenderTest::RotateTriangleVSUniform(glm::mat4 Projection, glm::mat4 View, glm::mat4 Model)
{
int i;
glm::mat4 MVP;
int matrixSize = sizeof(MVP);
XGL_RESULT err;
for (i = 0; i < 8; i++) {
XGL_UINT8 *pData;
err = xglMapMemory(m_constantBufferMem, 0, (XGL_VOID **) &pData);
ASSERT_XGL_SUCCESS(err);
Model = glm::rotate(Model, glm::radians(22.5f), glm::vec3(0.0f, 1.0f, 0.0f));
MVP = Projection * View * Model;
memcpy(pData, (const void*) &MVP[0][0], matrixSize);
err = xglUnmapMemory(m_constantBufferMem);
ASSERT_XGL_SUCCESS(err);
// submit the command buffer to the universal queue
err = xglQueueSubmit( m_device->m_queue, 1, &m_cmdBuffer, m_numMemRefs, m_memRefs, NULL );
ASSERT_XGL_SUCCESS( err );
err = xglQueueWaitIdle( m_device->m_queue );
ASSERT_XGL_SUCCESS( err );
// Wait for work to finish before cleaning up.
xglDeviceWaitIdle(m_device->device());
RecordImage(m_renderTarget);
}
}
void dumpMatrix(const char *note, glm::mat4 MVP)
{
int i,j;
printf("%s: \n", note);
for (i=0; i<4; i++) {
printf("%f, %f, %f, %f\n", MVP[i][0], MVP[i][1], MVP[i][2], MVP[i][3]);
}
printf("\n");
fflush(stdout);
}
void dumpVec4(const char *note, glm::vec4 vector)
{
printf("%s: \n", note);
printf("%f, %f, %f, %f\n", vector[0], vector[1], vector[2], vector[3]);
printf("\n");
fflush(stdout);
}
void XglRenderTest::GenerateClearAndPrepareBufferCmds()
{
XglRenderFramework::GenerateClearAndPrepareBufferCmds();
if (0) {
// if (m_depthStencilImage) {
XGL_IMAGE_SUBRESOURCE_RANGE dsRange = {};
dsRange.aspect = XGL_IMAGE_ASPECT_DEPTH;
dsRange.baseMipLevel = 0;
dsRange.mipLevels = XGL_LAST_MIP_OR_SLICE;
dsRange.baseArraySlice = 0;
dsRange.arraySize = XGL_LAST_MIP_OR_SLICE;
// prepare the depth buffer for clear
XGL_IMAGE_STATE_TRANSITION transitionToClear = {};
transitionToClear.image = m_depthStencilImage;
transitionToClear.oldState = m_depthStencilBinding.depthState;
transitionToClear.newState = XGL_IMAGE_STATE_CLEAR;
transitionToClear.subresourceRange = dsRange;
xglCmdPrepareImages( m_cmdBuffer, 1, &transitionToClear );
m_renderTarget->state(( XGL_IMAGE_STATE ) transitionToClear.newState);
xglCmdClearDepthStencil(m_cmdBuffer, m_depthStencilImage, 1.0f, 0, 1, &dsRange);
// prepare depth buffer for rendering
XGL_IMAGE_STATE_TRANSITION transitionToRender = {};
transitionToRender.image = m_renderTarget->image();
transitionToRender.oldState = XGL_IMAGE_STATE_CLEAR;
transitionToRender.newState = m_depthStencilBinding.depthState;
transitionToRender.subresourceRange = dsRange;
xglCmdPrepareImages( m_cmdBuffer, 1, &transitionToRender );
m_renderTarget->state(( XGL_IMAGE_STATE ) transitionToClear.newState);
}
}
void XglRenderTest::DrawTriangleWithVertexFetchAndMVP(const char *vertShaderText, const char *fragShaderText)
{
XGL_PIPELINE pipeline;
XGL_SHADER vs, ps;
XGL_RESULT err;
int i, loop;
// Projection matrix : 45° Field of View, 1:1 ratio, display range : 0.1 unit <-> 100 units
glm::mat4 Projection = glm::perspective(glm::radians(45.0f), 1.0f, 0.1f, 100.0f);
// dumpMatrix("Projection", Projection);
// Camera matrix
glm::mat4 View = glm::lookAt(
glm::vec3(0,3,10), // Camera is at (0,3,10), in World Space
glm::vec3(0,0,0), // and looks at the origin
glm::vec3(0,1,0) // Head is up (set to 0,-1,0 to look upside-down)
);
// dumpMatrix("View", View);
// Model matrix : an identity matrix (model will be at the origin)
glm::mat4 Model = glm::mat4(1.0f);
// dumpMatrix("Model", Model);
// Our ModelViewProjection : multiplication of our 3 matrices
// Model = glm::translate(Model, glm::vec3(0.0f, 0.0f, 4.0f));
// Model = glm::rotate(Model, glm::radians(22.5f), glm::vec3(0.0f, 1.0f, 0.0f));
glm::mat4 MVP = Projection * View * Model;
ASSERT_NO_FATAL_FAILURE(InitState());
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(InitDepthStencil());
ASSERT_NO_FATAL_FAILURE(InitMesh(sizeof(g_vb_solid_face_colors_Data)/sizeof(g_vb_solid_face_colors_Data[0]),
sizeof(g_vb_solid_face_colors_Data[0]), g_vb_solid_face_colors_Data));
const int buf_size = sizeof(MVP) / sizeof(XGL_FLOAT);
InitConstantBuffer(buf_size, sizeof(MVP[0][0]), (const void*) &MVP[0][0]);
ASSERT_NO_FATAL_FAILURE(CreateShader(XGL_SHADER_STAGE_VERTEX,
vertShaderText, &vs));
ASSERT_NO_FATAL_FAILURE(CreateShader(XGL_SHADER_STAGE_FRAGMENT,
fragShaderText, &ps));
ASSERT_NO_FATAL_FAILURE(CreatePipelineWithVertexFetchAndMVP(&pipeline, vs, ps));
/*
* Shaders are now part of the pipeline, don't need these anymore
*/
ASSERT_XGL_SUCCESS(xglDestroyObject(ps));
ASSERT_XGL_SUCCESS(xglDestroyObject(vs));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
// Build command buffer
err = xglBeginCommandBuffer(m_cmdBuffer, 0);
ASSERT_XGL_SUCCESS(err);
GenerateClearAndPrepareBufferCmds();
ClearDepthStencil(1.0f); // HACK for now
GenerateBindRenderTargetCmd();
GenerateBindStateAndPipelineCmds(&pipeline);
// render the cube
xglCmdDraw( m_cmdBuffer, 0, 12*3, 0, 1 );
// prepare the back buffer for present
// XGL_IMAGE_STATE_TRANSITION transitionToPresent = {};
// transitionToPresent.image = m_image;
// transitionToPresent.oldState = m_image_state;
// transitionToPresent.newState = m_display.fullscreen ? XGL_WSI_WIN_PRESENT_SOURCE_FLIP : XGL_WSI_WIN_PRESENT_SOURCE_BLT;
// transitionToPresent.subresourceRange = srRange;
// xglCmdPrepareImages( m_cmdBuffer, 1, &transitionToPresent );
// m_image_state = ( XGL_IMAGE_STATE ) transitionToPresent.newState;
// finalize recording of the command buffer
err = xglEndCommandBuffer( m_cmdBuffer );
ASSERT_XGL_SUCCESS( err );
// this command buffer uses the vertex buffer memory and a data buffer (for MVP)
m_numMemRefs = 2;
m_memRefs[0].flags = 0;
m_memRefs[0].mem = m_vtxBufferMem;
m_memRefs[1].flags = 0;
m_memRefs[1].mem = m_constantBufferMem;
// submit the command buffer to the universal queue
err = xglQueueSubmit( m_device->m_queue, 1, &m_cmdBuffer, m_numMemRefs, m_memRefs, NULL );
ASSERT_XGL_SUCCESS( err );
err = xglQueueWaitIdle( m_device->m_queue );
ASSERT_XGL_SUCCESS( err );
// Wait for work to finish before cleaning up.
xglDeviceWaitIdle(m_device->device());
RecordImage(m_renderTarget);
for (loop = 0; loop < 16; loop++) {
// ClearRenderBuffer(0x80); // HACK
ClearDepthStencil(1.0f); // HACK for now
// TODO: Do we need to transition the constant buffer?
XGL_UINT8 *pData;
err = xglMapMemory(m_constantBufferMem, 0, (XGL_VOID **) &pData);
ASSERT_XGL_SUCCESS(err);
Model = glm::rotate(Model, glm::radians(22.5f), glm::vec3(0.0f, 1.0f, 0.0f));
// dumpMatrix("Model", Model);
glm::mat4 MVP = Projection * View * Model;
// dumpMatrix("MVP", MVP);
memcpy(pData, (const void*) &MVP[0][0], buf_size * sizeof(XGL_FLOAT));
err = xglUnmapMemory(m_constantBufferMem);
ASSERT_XGL_SUCCESS(err);
// submit the command buffer to the universal queue
err = xglQueueSubmit( m_device->m_queue, 1, &m_cmdBuffer, m_numMemRefs, m_memRefs, NULL );
ASSERT_XGL_SUCCESS( err );
err = xglQueueWaitIdle( m_device->m_queue );
ASSERT_XGL_SUCCESS( err );
// Wait for work to finish before cleaning up.
xglDeviceWaitIdle(m_device->device());
RecordImage(m_renderTarget);
}
}
void XglRenderTest::CreatePipelineWithVertexFetch(XGL_PIPELINE* pipeline, XGL_SHADER vs, XGL_SHADER ps)
{
XGL_RESULT err;
XGL_GRAPHICS_PIPELINE_CREATE_INFO info = {};
XGL_PIPELINE_SHADER_STAGE_CREATE_INFO vs_stage;
XGL_PIPELINE_SHADER_STAGE_CREATE_INFO ps_stage;
// Create descriptor set for our one resource
XGL_DESCRIPTOR_SET_CREATE_INFO descriptorInfo = {};
descriptorInfo.sType = XGL_STRUCTURE_TYPE_DESCRIPTOR_SET_CREATE_INFO;
descriptorInfo.slots = 1; // Vertex buffer only
// create a descriptor set with a single slot
err = xglCreateDescriptorSet( device(), &descriptorInfo, &m_rsrcDescSet );
ASSERT_XGL_SUCCESS(err) << "xglCreateDescriptorSet failed";
// bind memory to the descriptor set
err = m_device->AllocAndBindGpuMemory(m_rsrcDescSet, "DescriptorSet", &m_descriptor_set_mem);
memset(&vs_stage, 0, sizeof(vs_stage));
vs_stage.sType = XGL_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
vs_stage.pNext = XGL_NULL_HANDLE;
vs_stage.shader.stage = XGL_SHADER_STAGE_VERTEX;
vs_stage.shader.shader = vs;
vs_stage.shader.descriptorSetMapping[0].descriptorCount = 0;
vs_stage.shader.linkConstBufferCount = 0;
vs_stage.shader.pLinkConstBufferInfo = XGL_NULL_HANDLE;
vs_stage.shader.dynamicMemoryViewMapping.slotObjectType = XGL_SLOT_UNUSED;
vs_stage.shader.dynamicMemoryViewMapping.shaderEntityIndex = 0;
memset(&ps_stage, 0, sizeof(ps_stage));
ps_stage.sType = XGL_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
ps_stage.pNext = &vs_stage;
ps_stage.shader.stage = XGL_SHADER_STAGE_FRAGMENT;
ps_stage.shader.shader = ps;
ps_stage.shader.descriptorSetMapping[0].descriptorCount = 0;
ps_stage.shader.linkConstBufferCount = 0;
ps_stage.shader.pLinkConstBufferInfo = XGL_NULL_HANDLE;
ps_stage.shader.dynamicMemoryViewMapping.slotObjectType = XGL_SLOT_UNUSED;
ps_stage.shader.dynamicMemoryViewMapping.shaderEntityIndex = 0;
XGL_VERTEX_INPUT_BINDING_DESCRIPTION vi_binding = {
sizeof(g_vbData[0]), // strideInBytes; Distance between vertices in bytes (0 = no advancement)
XGL_VERTEX_INPUT_STEP_RATE_VERTEX // stepRate; // Rate at which binding is incremented
};
// this is the current description of g_vbData
XGL_VERTEX_INPUT_ATTRIBUTE_DESCRIPTION vi_attribs[2];
vi_attribs[0].binding = 0; // index into vertexBindingDescriptions
vi_attribs[0].format.channelFormat = XGL_CH_FMT_R32G32B32A32; // format of source data
vi_attribs[0].format.numericFormat = XGL_NUM_FMT_FLOAT;
vi_attribs[0].offsetInBytes = 0; // Offset of first element in bytes from base of vertex
vi_attribs[1].binding = 0; // index into vertexBindingDescriptions
vi_attribs[1].format.channelFormat = XGL_CH_FMT_R32G32B32A32; // format of source data
vi_attribs[1].format.numericFormat = XGL_NUM_FMT_FLOAT;
vi_attribs[1].offsetInBytes = 16; // Offset of first element in bytes from base of vertex
XGL_PIPELINE_VERTEX_INPUT_CREATE_INFO vi_state = {
XGL_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_CREATE_INFO, // sType;
&ps_stage, // pNext;
1, // bindingCount
&vi_binding, // pVertexBindingDescriptions;
2, // attributeCount; // number of attributes
vi_attribs // pVertexAttributeDescriptions;
};
XGL_PIPELINE_IA_STATE_CREATE_INFO ia_state = {
XGL_STRUCTURE_TYPE_PIPELINE_IA_STATE_CREATE_INFO, // sType
&vi_state, // pNext
XGL_TOPOLOGY_TRIANGLE_LIST, // XGL_PRIMITIVE_TOPOLOGY
XGL_FALSE, // disableVertexReuse
XGL_PROVOKING_VERTEX_LAST, // XGL_PROVOKING_VERTEX_CONVENTION
XGL_FALSE, // primitiveRestartEnable
0 // primitiveRestartIndex
};
XGL_PIPELINE_RS_STATE_CREATE_INFO rs_state = {
XGL_STRUCTURE_TYPE_PIPELINE_RS_STATE_CREATE_INFO,
&ia_state,
XGL_FALSE, // depthClipEnable
XGL_FALSE, // rasterizerDiscardEnable
1.0 // pointSize
};
XGL_PIPELINE_CB_STATE cb_state = {
XGL_STRUCTURE_TYPE_PIPELINE_CB_STATE_CREATE_INFO,
&rs_state,
XGL_FALSE, // alphaToCoverageEnable
XGL_FALSE, // dualSourceBlendEnable
XGL_LOGIC_OP_COPY, // XGL_LOGIC_OP
{ // XGL_PIPELINE_CB_ATTACHMENT_STATE
{
XGL_FALSE, // blendEnable
m_render_target_fmt, // XGL_FORMAT
0xF // channelWriteMask
}
}
};
// TODO: Should take depth buffer format from queried formats
XGL_PIPELINE_DB_STATE_CREATE_INFO db_state = {
XGL_STRUCTURE_TYPE_PIPELINE_DB_STATE_CREATE_INFO,
&cb_state,
{XGL_CH_FMT_R32, XGL_NUM_FMT_DS} // XGL_FORMAT
};
info.sType = XGL_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
info.pNext = &db_state;
info.flags = 0;
err = xglCreateGraphicsPipeline(device(), &info, pipeline);
ASSERT_XGL_SUCCESS(err);
err = m_device->AllocAndBindGpuMemory(*pipeline, "Pipeline", &m_pipe_mem);
ASSERT_XGL_SUCCESS(err);
}
/*
* Based on CreatePipelineWithVertexFetch and CreatePipelineVSUniform
*/
void XglRenderTest::CreatePipelineWithVertexFetchAndMVP(XGL_PIPELINE* pipeline, XGL_SHADER vs, XGL_SHADER ps)
{
XGL_RESULT err;
XGL_GRAPHICS_PIPELINE_CREATE_INFO info = {};
XGL_PIPELINE_SHADER_STAGE_CREATE_INFO vs_stage;
XGL_PIPELINE_SHADER_STAGE_CREATE_INFO ps_stage;
// Create descriptor set for our two resources
XGL_DESCRIPTOR_SET_CREATE_INFO descriptorInfo = {};
descriptorInfo.sType = XGL_STRUCTURE_TYPE_DESCRIPTOR_SET_CREATE_INFO;
descriptorInfo.slots = 2; // Vertex buffer and Model View Matrix
// create a descriptor set with a single slot
err = xglCreateDescriptorSet( device(), &descriptorInfo, &m_rsrcDescSet );
ASSERT_XGL_SUCCESS(err) << "xglCreateDescriptorSet failed";
// bind memory to the descriptor set
err = m_device->AllocAndBindGpuMemory(m_rsrcDescSet, "DescriptorSet", &m_descriptor_set_mem);
// write the vertex buffer view to the descriptor set
xglBeginDescriptorSetUpdate( m_rsrcDescSet );
xglAttachMemoryViewDescriptors( m_rsrcDescSet, 0, 1, &m_constantBufferView );
xglEndDescriptorSetUpdate( m_rsrcDescSet );
const int slots = 1;
XGL_DESCRIPTOR_SLOT_INFO *slotInfo = (XGL_DESCRIPTOR_SLOT_INFO*) malloc( slots * sizeof(XGL_DESCRIPTOR_SLOT_INFO) );
slotInfo[0].shaderEntityIndex = 0;
slotInfo[0].slotObjectType = XGL_SLOT_SHADER_RESOURCE;
memset(&vs_stage, 0, sizeof(vs_stage));
vs_stage.sType = XGL_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
vs_stage.pNext = XGL_NULL_HANDLE;
vs_stage.shader.stage = XGL_SHADER_STAGE_VERTEX;
vs_stage.shader.shader = vs;
vs_stage.shader.descriptorSetMapping[0].pDescriptorInfo = (const XGL_DESCRIPTOR_SLOT_INFO*) slotInfo;
vs_stage.shader.descriptorSetMapping[0].descriptorCount = slots;
vs_stage.shader.linkConstBufferCount = 0;
vs_stage.shader.pLinkConstBufferInfo = XGL_NULL_HANDLE;
vs_stage.shader.dynamicMemoryViewMapping.slotObjectType = XGL_SLOT_UNUSED;
vs_stage.shader.dynamicMemoryViewMapping.shaderEntityIndex = 0;
memset(&ps_stage, 0, sizeof(ps_stage));
ps_stage.sType = XGL_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
ps_stage.pNext = &vs_stage;
ps_stage.shader.stage = XGL_SHADER_STAGE_FRAGMENT;
ps_stage.shader.shader = ps;
ps_stage.shader.descriptorSetMapping[0].descriptorCount = 0;
ps_stage.shader.linkConstBufferCount = 0;
ps_stage.shader.pLinkConstBufferInfo = XGL_NULL_HANDLE;
ps_stage.shader.dynamicMemoryViewMapping.slotObjectType = XGL_SLOT_UNUSED;
ps_stage.shader.dynamicMemoryViewMapping.shaderEntityIndex = 0;
XGL_VERTEX_INPUT_BINDING_DESCRIPTION vi_binding = {
sizeof(g_vbData[0]), // strideInBytes; Distance between vertices in bytes (0 = no advancement)
XGL_VERTEX_INPUT_STEP_RATE_VERTEX // stepRate; // Rate at which binding is incremented
};
// this is the current description of g_vbData
XGL_VERTEX_INPUT_ATTRIBUTE_DESCRIPTION vi_attribs[2];
vi_attribs[0].binding = 0; // index into vertexBindingDescriptions
vi_attribs[0].format.channelFormat = XGL_CH_FMT_R32G32B32A32; // format of source data
vi_attribs[0].format.numericFormat = XGL_NUM_FMT_FLOAT;
vi_attribs[0].offsetInBytes = 0; // Offset of first element in bytes from base of vertex
vi_attribs[1].binding = 0; // index into vertexBindingDescriptions
vi_attribs[1].format.channelFormat = XGL_CH_FMT_R32G32B32A32; // format of source data
vi_attribs[1].format.numericFormat = XGL_NUM_FMT_FLOAT;
vi_attribs[1].offsetInBytes = 16; // Offset of first element in bytes from base of vertex
XGL_PIPELINE_VERTEX_INPUT_CREATE_INFO vi_state = {
XGL_STRUCTURE_TYPE_PIPELINE_VERTEX_INPUT_CREATE_INFO, // sType;
&ps_stage, // pNext;
1, // bindingCount
&vi_binding, // pVertexBindingDescriptions;
2, // attributeCount; // number of attributes
vi_attribs // pVertexAttributeDescriptions;
};
XGL_PIPELINE_IA_STATE_CREATE_INFO ia_state = {
XGL_STRUCTURE_TYPE_PIPELINE_IA_STATE_CREATE_INFO, // sType
&vi_state, // pNext
XGL_TOPOLOGY_TRIANGLE_LIST, // XGL_PRIMITIVE_TOPOLOGY
XGL_FALSE, // disableVertexReuse
XGL_PROVOKING_VERTEX_LAST, // XGL_PROVOKING_VERTEX_CONVENTION
XGL_FALSE, // primitiveRestartEnable
0 // primitiveRestartIndex
};
XGL_PIPELINE_RS_STATE_CREATE_INFO rs_state = {
XGL_STRUCTURE_TYPE_PIPELINE_RS_STATE_CREATE_INFO,
&ia_state,
XGL_FALSE, // depthClipEnable
XGL_FALSE, // rasterizerDiscardEnable
1.0 // pointSize
};
XGL_PIPELINE_CB_STATE cb_state = {
XGL_STRUCTURE_TYPE_PIPELINE_CB_STATE_CREATE_INFO,
&rs_state,
XGL_FALSE, // alphaToCoverageEnable
XGL_FALSE, // dualSourceBlendEnable
XGL_LOGIC_OP_COPY, // XGL_LOGIC_OP
{ // XGL_PIPELINE_CB_ATTACHMENT_STATE
{
XGL_FALSE, // blendEnable
m_render_target_fmt, // XGL_FORMAT
0xF // channelWriteMask
}
}
};
// TODO: Should take depth buffer format from queried formats
XGL_PIPELINE_DB_STATE_CREATE_INFO db_state = {
XGL_STRUCTURE_TYPE_PIPELINE_DB_STATE_CREATE_INFO,
&cb_state,
m_depth_stencil_fmt // XGL_FORMAT
};
info.sType = XGL_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
info.pNext = &db_state;
info.flags = 0;
err = xglCreateGraphicsPipeline(device(), &info, pipeline);
ASSERT_XGL_SUCCESS(err);
err = m_device->AllocAndBindGpuMemory(*pipeline, "Pipeline", &m_pipe_mem);
ASSERT_XGL_SUCCESS(err);
}
void XglRenderTest::CreatePipelineVSUniform(XGL_PIPELINE* pipeline, XGL_SHADER vs, XGL_SHADER ps)
{
XGL_RESULT err;
XGL_GRAPHICS_PIPELINE_CREATE_INFO info = {};
XGL_PIPELINE_SHADER_STAGE_CREATE_INFO vs_stage;
XGL_PIPELINE_SHADER_STAGE_CREATE_INFO ps_stage;
const int vsSlots = 1; // Uniform buffer only
// Create descriptor set for our one resource
XGL_DESCRIPTOR_SET_CREATE_INFO descriptorInfo = {};
descriptorInfo.sType = XGL_STRUCTURE_TYPE_DESCRIPTOR_SET_CREATE_INFO;
descriptorInfo.slots = vsSlots;
// create a descriptor set with a single slot
err = xglCreateDescriptorSet( device(), &descriptorInfo, &m_rsrcDescSet );
ASSERT_XGL_SUCCESS(err) << "xglCreateDescriptorSet failed";
// bind memory to the descriptor set
err = m_device->AllocAndBindGpuMemory(m_rsrcDescSet, "DescriptorSet", &m_descriptor_set_mem);
XGL_DESCRIPTOR_SLOT_INFO *slotInfo = (XGL_DESCRIPTOR_SLOT_INFO*) malloc( vsSlots * sizeof(XGL_DESCRIPTOR_SLOT_INFO) );
slotInfo[0].shaderEntityIndex = 0;
slotInfo[0].slotObjectType = XGL_SLOT_SHADER_RESOURCE;
memset(&vs_stage, 0, sizeof(vs_stage));
vs_stage.sType = XGL_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
vs_stage.pNext = XGL_NULL_HANDLE;
vs_stage.shader.stage = XGL_SHADER_STAGE_VERTEX;
vs_stage.shader.shader = vs;
vs_stage.shader.descriptorSetMapping[0].pDescriptorInfo = (const XGL_DESCRIPTOR_SLOT_INFO*) slotInfo;
vs_stage.shader.descriptorSetMapping[0].descriptorCount = vsSlots;
vs_stage.shader.linkConstBufferCount = 0;
vs_stage.shader.pLinkConstBufferInfo = XGL_NULL_HANDLE;
vs_stage.shader.dynamicMemoryViewMapping.slotObjectType = XGL_SLOT_UNUSED;
vs_stage.shader.dynamicMemoryViewMapping.shaderEntityIndex = 0;
memset(&ps_stage, 0, sizeof(ps_stage));
ps_stage.sType = XGL_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
ps_stage.pNext = &vs_stage;
ps_stage.shader.stage = XGL_SHADER_STAGE_FRAGMENT;
ps_stage.shader.shader = ps;
ps_stage.shader.descriptorSetMapping[0].descriptorCount = 0;
ps_stage.shader.linkConstBufferCount = 0;
ps_stage.shader.pLinkConstBufferInfo = XGL_NULL_HANDLE;
ps_stage.shader.dynamicMemoryViewMapping.slotObjectType = XGL_SLOT_UNUSED;
ps_stage.shader.dynamicMemoryViewMapping.shaderEntityIndex = 0;
XGL_PIPELINE_IA_STATE_CREATE_INFO ia_state = {
XGL_STRUCTURE_TYPE_PIPELINE_IA_STATE_CREATE_INFO, // sType
&ps_stage, // pNext
XGL_TOPOLOGY_TRIANGLE_LIST, // XGL_PRIMITIVE_TOPOLOGY
XGL_FALSE, // disableVertexReuse
XGL_PROVOKING_VERTEX_LAST, // XGL_PROVOKING_VERTEX_CONVENTION
XGL_FALSE, // primitiveRestartEnable
0 // primitiveRestartIndex
};
XGL_PIPELINE_RS_STATE_CREATE_INFO rs_state = {
XGL_STRUCTURE_TYPE_PIPELINE_RS_STATE_CREATE_INFO,
&ia_state,
XGL_FALSE, // depthClipEnable
XGL_FALSE, // rasterizerDiscardEnable
1.0 // pointSize
};
XGL_PIPELINE_CB_STATE cb_state = {
XGL_STRUCTURE_TYPE_PIPELINE_CB_STATE_CREATE_INFO,
&rs_state,
XGL_FALSE, // alphaToCoverageEnable
XGL_FALSE, // dualSourceBlendEnable
XGL_LOGIC_OP_COPY, // XGL_LOGIC_OP
{ // XGL_PIPELINE_CB_ATTACHMENT_STATE
{
XGL_FALSE, // blendEnable
m_render_target_fmt, // XGL_FORMAT
0xF // channelWriteMask
}
}
};
// TODO: Should take depth buffer format from queried formats
XGL_PIPELINE_DB_STATE_CREATE_INFO db_state = {
XGL_STRUCTURE_TYPE_PIPELINE_DB_STATE_CREATE_INFO,
&cb_state,
{XGL_CH_FMT_R32, XGL_NUM_FMT_DS} // XGL_FORMAT
};
info.sType = XGL_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
info.pNext = &db_state;
info.flags = 0;
err = xglCreateGraphicsPipeline(device(), &info, pipeline);
ASSERT_XGL_SUCCESS(err);
err = m_device->AllocAndBindGpuMemory(*pipeline, "Pipeline", &m_pipe_mem);
ASSERT_XGL_SUCCESS(err);
}
void XglRenderTest::ClearDepthStencil(XGL_FLOAT value)
/* clear the buffer */
{
XGL_RESULT err;
const uint16_t depth_value = (uint16_t) (value * 65535);
const XGL_INT tw = 128 / sizeof(uint16_t);
const XGL_INT th = 32;
XGL_INT i, j, w, h;
XGL_VOID *data;
w = (m_width + tw - 1) / tw;
h = (m_height + th - 1) / th;
err = xglMapMemory(m_depthStencilMem, 0, &data);
ASSERT_XGL_SUCCESS(err);
for (i = 0; i < w * h; i++) {
uint16_t *tile = (uint16_t *) ((char *) data + 4096 * i);
for (j = 0; j < 2048; j++)
tile[j] = depth_value;
}
err = xglUnmapMemory(m_depthStencilMem);
ASSERT_XGL_SUCCESS(err);
}
void XglRenderTest::ClearRenderBuffer(XGL_UINT32 clear_color)
/* clear the buffer */
{
XGL_RESULT err;
const XGL_IMAGE_SUBRESOURCE sr = {
XGL_IMAGE_ASPECT_COLOR, 0, 0
};
XGL_SUBRESOURCE_LAYOUT sr_layout;
XGL_UINT data_size = sizeof(sr_layout);
XGL_VOID *ptr;
err = xglGetImageSubresourceInfo( m_renderTarget->image(),
&sr, XGL_INFO_TYPE_SUBRESOURCE_LAYOUT,
&data_size, &sr_layout);
ASSERT_XGL_SUCCESS( err );
ASSERT_EQ(data_size, sizeof(sr_layout));
err = m_renderTarget->MapMemory( &ptr );
ASSERT_XGL_SUCCESS( err );
ptr = (void *) ((char *) ptr + sr_layout.offset);
memset(ptr, clear_color, m_width * m_height *sizeof(XGL_UINT32));
err = m_renderTarget->UnmapMemory();
ASSERT_XGL_SUCCESS(err);
}
void XglRenderTest::InitDepthStencil()
{
XGL_RESULT err;
XGL_IMAGE_CREATE_INFO image;
XGL_MEMORY_ALLOC_INFO mem_alloc;
XGL_DEPTH_STENCIL_VIEW_CREATE_INFO view;
XGL_MEMORY_REQUIREMENTS mem_reqs;
XGL_SIZE mem_reqs_size=sizeof(XGL_MEMORY_REQUIREMENTS);
// Clean up default state created by framework
if (m_stateDepthStencil) xglDestroyObject(m_stateDepthStencil);
m_depth_stencil_fmt.channelFormat = XGL_CH_FMT_R16;
m_depth_stencil_fmt.numericFormat = XGL_NUM_FMT_DS;
image.sType = XGL_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
image.pNext = NULL;
image.imageType = XGL_IMAGE_2D;
image.format = m_depth_stencil_fmt;
image.extent.width = m_width;
image.extent.height = m_height;
image.extent.depth = 1;
image.mipLevels = 1;
image.arraySize = 1;
image.samples = 1;
image.tiling = XGL_OPTIMAL_TILING;
image.usage = XGL_IMAGE_USAGE_DEPTH_STENCIL_BIT;
image.flags = 0;
mem_alloc.sType = XGL_STRUCTURE_TYPE_MEMORY_ALLOC_INFO;
mem_alloc.pNext = NULL;
mem_alloc.allocationSize = 0;
mem_alloc.alignment = 0;
mem_alloc.flags = 0;
mem_alloc.heapCount = 0;
mem_alloc.memPriority = XGL_MEMORY_PRIORITY_NORMAL;
/* create image */
err = xglCreateImage(device(), &image,
&m_depthStencilImage);
ASSERT_XGL_SUCCESS(err);
err = xglGetObjectInfo(m_depthStencilImage,
XGL_INFO_TYPE_MEMORY_REQUIREMENTS,
&mem_reqs_size, &mem_reqs);
ASSERT_XGL_SUCCESS(err);
ASSERT_EQ(mem_reqs_size, sizeof(mem_reqs));
mem_alloc.allocationSize = mem_reqs.size;
mem_alloc.alignment = mem_reqs.alignment;
mem_alloc.heapCount = mem_reqs.heapCount;
memcpy(mem_alloc.heaps, mem_reqs.heaps,
sizeof(mem_reqs.heaps[0]) * mem_reqs.heapCount);
/* allocate memory */
err = xglAllocMemory(device(), &mem_alloc, &m_depthStencilMem);
ASSERT_XGL_SUCCESS(err);
/* bind memory */
err = xglBindObjectMemory(m_depthStencilImage, m_depthStencilMem, 0);
ASSERT_XGL_SUCCESS(err);
XGL_DEPTH_STENCIL_STATE_CREATE_INFO depthStencil = {};
depthStencil.sType = XGL_STRUCTURE_TYPE_DEPTH_STENCIL_STATE_CREATE_INFO;
depthStencil.depthTestEnable = XGL_TRUE;
depthStencil.depthWriteEnable = XGL_TRUE;
depthStencil.depthFunc = XGL_COMPARE_LESS_EQUAL;
depthStencil.depthBoundsEnable = XGL_FALSE;
depthStencil.minDepth = 0.f;
depthStencil.maxDepth = 1.f;
depthStencil.back.stencilDepthFailOp = XGL_STENCIL_OP_KEEP;
depthStencil.back.stencilFailOp = XGL_STENCIL_OP_KEEP;
depthStencil.back.stencilPassOp = XGL_STENCIL_OP_KEEP;
depthStencil.back.stencilRef = 0x00;
depthStencil.back.stencilFunc = XGL_COMPARE_ALWAYS;
depthStencil.front = depthStencil.back;
err = xglCreateDepthStencilState( device(), &depthStencil, &m_stateDepthStencil );
ASSERT_XGL_SUCCESS( err );
/* create image view */
view.sType = XGL_STRUCTURE_TYPE_DEPTH_STENCIL_VIEW_CREATE_INFO;
view.pNext = NULL;
view.image = XGL_NULL_HANDLE;
view.mipLevel = 0;
view.baseArraySlice = 0;
view.arraySize = 1;
view.flags = 0;
view.image = m_depthStencilImage;
err = xglCreateDepthStencilView(device(), &view, &m_depthStencilView);
ASSERT_XGL_SUCCESS(err);
m_depthStencilBinding.view = m_depthStencilView;
m_depthStencilBinding.depthState = XGL_IMAGE_STATE_TARGET_RENDER_ACCESS_OPTIMAL;
m_depthStencilBinding.stencilState = XGL_IMAGE_STATE_TARGET_RENDER_ACCESS_OPTIMAL;
}
void XglRenderTest::DrawTriangleWithVertexFetch(const char *vertShaderText, const char *fragShaderText)
{
XGL_PIPELINE pipeline;
XGL_SHADER vs, ps;
XGL_RESULT err;
ASSERT_NO_FATAL_FAILURE(InitState());
ASSERT_NO_FATAL_FAILURE(InitViewport());
ASSERT_NO_FATAL_FAILURE(InitMesh(sizeof(g_vbData)/sizeof(g_vbData[0]), sizeof(g_vbData[0]), g_vbData));
ASSERT_NO_FATAL_FAILURE(CreateShader(XGL_SHADER_STAGE_VERTEX,
vertShaderText, &vs));
ASSERT_NO_FATAL_FAILURE(CreateShader(XGL_SHADER_STAGE_FRAGMENT,
fragShaderText, &ps));
ASSERT_NO_FATAL_FAILURE(CreatePipelineWithVertexFetch(&pipeline, vs, ps));
/*
* Shaders are now part of the pipeline, don't need these anymore
*/
ASSERT_XGL_SUCCESS(xglDestroyObject(ps));
ASSERT_XGL_SUCCESS(xglDestroyObject(vs));
ASSERT_NO_FATAL_FAILURE(InitRenderTarget());
// Build command buffer
err = xglBeginCommandBuffer(m_cmdBuffer, 0);
ASSERT_XGL_SUCCESS(err);
GenerateClearAndPrepareBufferCmds();
GenerateBindRenderTargetCmd();
GenerateBindStateAndPipelineCmds(&pipeline);
// xglCmdBindDescriptorSet(m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, 0, m_rsrcDescSet, 0 );
// xglCmdBindDynamicMemoryView( m_cmdBuffer, XGL_PIPELINE_BIND_POINT_GRAPHICS, &m_constantBufferView );
// render the cube
xglCmdDraw( m_cmdBuffer, 0, 12*3, 0, 1 );
// prepare the back buffer for present
// XGL_IMAGE_STATE_TRANSITION transitionToPresent = {};
// transitionToPresent.image = m_image;
// transitionToPresent.oldState = m_image_state;
// transitionToPresent.newState = m_display.fullscreen ? XGL_WSI_WIN_PRESENT_SOURCE_FLIP : XGL_WSI_WIN_PRESENT_SOURCE_BLT;
// transitionToPresent.subresourceRange = srRange;
// xglCmdPrepareImages( m_cmdBuffer, 1, &transitionToPresent );
// m_image_state = ( XGL_IMAGE_STATE ) transitionToPresent.newState;
// finalize recording of the command buffer
err = xglEndCommandBuffer( m_cmdBuffer );
ASSERT_XGL_SUCCESS( err );
// this command buffer only uses the vertex buffer memory
m_numMemRefs = 0;
// m_memRefs[0].flags = 0;
// m_memRefs[0].mem = m_vtxBufferMemory;
// submit the command buffer to the universal queue
err = xglQueueSubmit( m_device->m_queue, 1, &m_cmdBuffer, m_numMemRefs, m_memRefs, NULL );
ASSERT_XGL_SUCCESS( err );
err = xglQueueWaitIdle( m_device->m_queue );
ASSERT_XGL_SUCCESS( err );
// Wait for work to finish before cleaning up.
xglDeviceWaitIdle(m_device->device());
RecordImage(m_renderTarget);
}
struct xgltriangle_vs_uniform {
// Must start with MVP
XGL_FLOAT mvp[4][4];
XGL_FLOAT position[3][4];
XGL_FLOAT color[3][4];
};
void XglRenderTest::XGLTriangleTest(const char *vertShaderText, const char *fragShaderText)
{
#ifdef DEBUG_CALLBACK
xglDbgRegisterMsgCallback(myDbgFunc, NULL);
#endif
// Create identity matrix
int i;
struct xgltriangle_vs_uniform data;
glm::mat4 Projection = glm::mat4(1.0f);
glm::mat4 View = glm::mat4(1.0f);
glm::mat4 Model = glm::mat4(1.0f);
glm::mat4 MVP = Projection * View * Model;
const int matrixSize = sizeof(MVP);
const int bufSize = sizeof(xgltriangle_vs_uniform) / sizeof(XGL_FLOAT);
memcpy(&data.mvp, &MVP[0][0], matrixSize);
static const Vertex tri_data[] =
{
{ XYZ1( -1, -1, 0 ), XYZ1( 1.f, 0.f, 0.f ) },
{ XYZ1( 1, -1, 0 ), XYZ1( 0.f, 1.f, 0.f ) },
{ XYZ1( 0, 1, 0 ), XYZ1( 0.f, 0.f, 1.f ) },
};
for (i=0; i<3; i++) {
data.position[i][0] = tri_data[i].posX;
data.position[i][1] = tri_data[i].posY;
data.position[i][2] = tri_data[i].posZ;
data.position[i][3] = tri_data[i].posW;
data.color[i][0] = tri_data[i].r;
data.color[i][1] = tri_data[i].g;
data.color[i][2] = tri_data[i].b;
data.color[i][3] = tri_data[i].a;
}
InitConstantBuffer(bufSize, sizeof(XGL_FLOAT), (const void*) &data);
DrawTriangleVSUniform(vertShaderText, fragShaderText, 1);
RotateTriangleVSUniform(Projection, View, Model);
#ifdef PRINT_OBJECTS
//XGL_UINT64 objTrackGetObjectCount(XGL_OBJECT_TYPE type)
OBJ_TRACK_GET_OBJECT_COUNT pObjTrackGetObjectCount = (OBJ_TRACK_GET_OBJECT_COUNT)xglGetProcAddr(gpu(), (XGL_CHAR*)"objTrackGetObjectCount");
XGL_UINT64 numObjects = pObjTrackGetObjectCount(XGL_OBJECT_TYPE_ANY);
//OBJ_TRACK_GET_OBJECTS pGetObjsFunc = xglGetProcAddr(gpu(), (XGL_CHAR*)"objTrackGetObjects");
printf("DEBUG : Number of Objects : %lu\n", numObjects);
OBJ_TRACK_GET_OBJECTS pObjTrackGetObjs = (OBJ_TRACK_GET_OBJECTS)xglGetProcAddr(gpu(), (XGL_CHAR*)"objTrackGetObjects");
OBJTRACK_NODE* pObjNodeArray = (OBJTRACK_NODE*)malloc(sizeof(OBJTRACK_NODE)*numObjects);
pObjTrackGetObjs(XGL_OBJECT_TYPE_ANY, numObjects, pObjNodeArray);
for (i=0; i < numObjects; i++) {
printf("Object %i of type %s has objID (%p) and %lu uses\n", i, string_XGL_OBJECT_TYPE(pObjNodeArray[i].objType), pObjNodeArray[i].pObj, pObjNodeArray[i].numUses);
}
free(pObjNodeArray);
#endif
}
TEST_F(XglRenderTest, XGLTriangle_FragColor)
{
static const char *vertShaderText =
"#version 140\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
"\n"
"layout(binding = 0) uniform buf {\n"
" mat4 MVP;\n"
" vec4 position[3];\n"
" vec4 color[3];\n"
"} ubuf;\n"
"\n"
"layout (location = 0) out vec4 outColor;\n"
"\n"
"void main() \n"
"{\n"
" outColor = ubuf.color[gl_VertexID];\n"
" gl_Position = ubuf.MVP * ubuf.position[gl_VertexID];\n"
"}\n";
static const char *fragShaderText =
"#version 140\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
"\n"
"layout (location = 0) in vec4 inColor;\n"
"\n"
"void main()\n"
"{\n"
" gl_FragColor = inColor;\n"
"}\n";
TEST_DESCRIPTION("XGL-style shaders where fragment shader outputs to GLSL built-in gl_FragColor");
XGLTriangleTest(vertShaderText, fragShaderText);
}
TEST_F(XglRenderTest, XGLTriangle_OutputLocation)
{
static const char *vertShaderText =
"#version 140\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
"\n"
"layout(binding = 0) uniform buf {\n"
" mat4 MVP;\n"
" vec4 position[3];\n"
" vec4 color[3];\n"
"} ubuf;\n"
"\n"
"layout (location = 0) out vec4 outColor;\n"
"\n"
"void main() \n"
"{\n"
" outColor = ubuf.color[gl_VertexID];\n"
" gl_Position = ubuf.MVP * ubuf.position[gl_VertexID];\n"
"}\n";
static const char *fragShaderText =
"#version 140\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
"\n"
"layout (location = 0) in vec4 inColor;\n"
"layout (location = 0) out vec4 outColor;\n"
"\n"
"void main()\n"
"{\n"
" outColor = inColor;\n"
"}\n";
TEST_DESCRIPTION("XGL-style shaders where fragment shader outputs to output location 0, which should be the same as gl_FragColor");
XGLTriangleTest(vertShaderText, fragShaderText);
}
TEST_F(XglRenderTest, GreenTriangle)
{
static const char *vertShaderText =
"#version 130\n"
"vec2 vertices[3];\n"
"void main() {\n"
" vertices[0] = vec2(-1.0, -1.0);\n"
" vertices[1] = vec2( 1.0, -1.0);\n"
" vertices[2] = vec2( 0.0, 1.0);\n"
" gl_Position = vec4(vertices[gl_VertexID % 3], 0.0, 1.0);\n"
"}\n";
static const char *fragShaderText =
"#version 130\n"
"void main() {\n"
" gl_FragColor = vec4(0,1,0,1);\n"
"}\n";
TEST_DESCRIPTION("Basic shader that renders a fixed Green triangle coded as part of the vertex shader.");
DrawTriangleTest(vertShaderText, fragShaderText);
}
TEST_F(XglRenderTest, TriangleWithVertexFetch)
{
static const char *vertShaderText =
"#version 140\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
"layout(location = 0) in vec4 pos;\n"
"layout(location = 1) in vec4 inColor;\n"
"layout(location = 0) out vec4 outColor;\n"
"void main() {\n"
" outColor = inColor;\n"
" gl_Position = pos;\n"
"}\n";
static const char *fragShaderText =
"#version 140\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
"layout(location = 0) in vec4 color;\n"
"void main() {\n"
" gl_FragColor = color;\n"
"}\n";
DrawTriangleWithVertexFetch(vertShaderText, fragShaderText);
}
TEST_F(XglRenderTest, TriangleVSUniform)
{
static const char *vertShaderText =
"#version 140\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
"\n"
"layout(binding = 0) uniform buf {\n"
" mat4 MVP;\n"
"} ubuf;\n"
"void main() {\n"
" vec2 vertices[3];"
" vertices[0] = vec2(-0.5, -0.5);\n"
" vertices[1] = vec2( 0.5, -0.5);\n"
" vertices[2] = vec2( 0.5, 0.5);\n"
" gl_Position = ubuf.MVP * vec4(vertices[gl_VertexID % 3], 0.0, 1.0);\n"
"}\n";
static const char *fragShaderText =
"#version 130\n"
"void main() {\n"
" gl_FragColor = vec4(1.0, 0.0, 0.0, 1.0);\n"
"}\n";
// Create identity matrix
glm::mat4 Projection = glm::mat4(1.0f);
glm::mat4 View = glm::mat4(1.0f);
glm::mat4 Model = glm::mat4(1.0f);
glm::mat4 MVP = Projection * View * Model;
const int matrixSize = sizeof(MVP) / sizeof(MVP[0]);
InitConstantBuffer(matrixSize, sizeof(MVP[0]), (const void*) &MVP[0][0]);
DrawTriangleVSUniform(vertShaderText, fragShaderText, 1);
RotateTriangleVSUniform(Projection, View, Model);
}
TEST_F(XglRenderTest, TriangleWithVertexFetchAndMVP)
{
static const char *vertShaderText =
"#version 140\n"
"layout (std140) uniform bufferVals {\n"
" mat4 mvp;\n"
"} myBufferVals;\n"
"in vec4 pos;\n"
"in vec4 inColor;\n"
"out vec4 outColor;\n"
"void main() {\n"
" outColor = inColor;\n"
" gl_Position = myBufferVals.mvp * pos;\n"
"}\n";
static const char *fragShaderText =
"#version 130\n"
"in vec4 color;\n"
"void main() {\n"
" gl_FragColor = color;\n"
"}\n";
DrawTriangleWithVertexFetchAndMVP(vertShaderText, fragShaderText);
}
int main(int argc, char **argv) {
int result;
::testing::InitGoogleTest(&argc, argv);
XglTestFramework::InitArgs(&argc, argv);
::testing::Environment* const xgl_test_env = ::testing::AddGlobalTestEnvironment(new TestEnvironment);
result = RUN_ALL_TESTS();
XglTestFramework::Finish();
return result;
}