blob: d6ebe7f87a8b2176cfafacd5ec06bdd27598b322 [file] [log] [blame]
/*
* Copyright (c) 2022 The Khronos Group Inc.
* Copyright (c) 2022 Valve Corporation
* Copyright (c) 2022 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Jon Ashburn <jon@lunarg.com>
* Author: Courtney Goeltzenleuchter <courtney@LunarG.com>
* Author: Mark Young <marky@lunarg.com>
* Author: Lenny Komow <lenny@lunarg.com>
* Author: Charles Giessen <charles@lunarg.com>
*/
#include "unknown_function_handling.h"
#include "allocation.h"
#include "log.h"
// Forward declarations
void *loader_get_dev_ext_trampoline(uint32_t index);
void *loader_get_phys_dev_ext_tramp(uint32_t index);
void *loader_get_phys_dev_ext_termin(uint32_t index);
// Device function handling
// Initialize device_ext dispatch table entry as follows:
// If dev == NULL find all logical devices created within this instance and
// init the entry (given by idx) in the ext dispatch table.
// If dev != NULL only initialize the entry in the given dev's dispatch table.
// The initialization value is gotten by calling down the device chain with
// GDPA.
// If GDPA returns NULL then don't initialize the dispatch table entry.
void loader_init_dispatch_dev_ext_entry(struct loader_instance *inst, struct loader_device *dev, uint32_t idx, const char *funcName)
{
void *gdpa_value;
if (dev != NULL) {
gdpa_value = dev->loader_dispatch.core_dispatch.GetDeviceProcAddr(dev->chain_device, funcName);
if (gdpa_value != NULL) dev->loader_dispatch.ext_dispatch[idx] = (PFN_vkDevExt)gdpa_value;
} else {
for (struct loader_icd_term *icd_term = inst->icd_terms; icd_term != NULL; icd_term = icd_term->next) {
struct loader_device *ldev = icd_term->logical_device_list;
while (ldev) {
gdpa_value = ldev->loader_dispatch.core_dispatch.GetDeviceProcAddr(ldev->chain_device, funcName);
if (gdpa_value != NULL) ldev->loader_dispatch.ext_dispatch[idx] = (PFN_vkDevExt)gdpa_value;
ldev = ldev->next;
}
}
}
}
// Find all dev extension in the function names array and initialize the dispatch table
// for dev for each of those extension entrypoints found in function names array.
void loader_init_dispatch_dev_ext(struct loader_instance *inst, struct loader_device *dev) {
for (uint32_t i = 0; i < MAX_NUM_UNKNOWN_EXTS; i++) {
if (inst->dev_ext_disp_functions[i] != NULL)
loader_init_dispatch_dev_ext_entry(inst, dev, i, inst->dev_ext_disp_functions[i]);
}
}
bool loader_check_icds_for_dev_ext_address(struct loader_instance *inst, const char *funcName) {
struct loader_icd_term *icd_term;
icd_term = inst->icd_terms;
while (NULL != icd_term) {
if (icd_term->scanned_icd->GetInstanceProcAddr(icd_term->instance, funcName))
// this icd supports funcName
return true;
icd_term = icd_term->next;
}
return false;
}
// Look in the layers list of device extensions, which contain names of entry points. If funcName is present, return true
// If not, call down the first layer's vkGetInstanceProcAddr to determine if any layers support the function
bool loader_check_layer_list_for_dev_ext_address(struct loader_instance *inst, const char *funcName) {
// Iterate over the layers.
for (uint32_t layer = 0; layer < inst->expanded_activated_layer_list.count; ++layer) {
// Iterate over the extensions.
const struct loader_device_extension_list *const extensions =
&(inst->expanded_activated_layer_list.list[layer]->device_extension_list);
for (uint32_t extension = 0; extension < extensions->count; ++extension) {
// Iterate over the entry points.
const struct loader_dev_ext_props *const property = &(extensions->list[extension]);
for (uint32_t entry = 0; entry < property->entrypoints.count; ++entry) {
if (strcmp(property->entrypoints.list[entry], funcName) == 0) {
return true;
}
}
}
}
// If the function pointer doesn't appear in the layer manifest for intercepted device functions, look down the
// vkGetInstanceProcAddr chain
if (inst->expanded_activated_layer_list.count > 0) {
const struct loader_layer_functions *const functions = &(inst->expanded_activated_layer_list.list[0]->functions);
if (NULL != functions->get_instance_proc_addr) {
return NULL != functions->get_instance_proc_addr((VkInstance)inst->instance, funcName);
}
}
return false;
}
void loader_free_dev_ext_table(struct loader_instance *inst) {
for (uint32_t i = 0; i < inst->dev_ext_disp_function_count; i++) {
loader_instance_heap_free(inst, inst->dev_ext_disp_functions[i]);
}
memset(inst->dev_ext_disp_functions, 0, sizeof(inst->dev_ext_disp_functions));
}
/*
* This function returns generic trampoline code address for unknown entry points.
* Presumably, these unknown entry points (as given by funcName) are device extension
* entrypoints.
* A function name array is used to keep a list of unknown entry points and their
* mapping to the device extension dispatch table.
* \returns
* For a given entry point string (funcName), if an existing mapping is found the
* trampoline address for that mapping is returned.
* Otherwise, this unknown entry point has not been seen yet.
* Next check if an ICD supports it, and if is_tramp is true, check if any layer
* supports it by calling down the chain.
* If so then a new entry in the function name array is added and that trampoline
* address for the new entry is returned.
* NULL is returned if the function name array is full or if no discovered layer or
* ICD returns a non-NULL GetProcAddr for it.
*/
void *loader_dev_ext_gpa_impl(struct loader_instance *inst, const char *funcName, bool is_tramp) {
// Linearly look through already added functions to make sure we haven't seen it before
// if we have, return the function at the index found
for (uint32_t i = 0; i < inst->dev_ext_disp_function_count; i++) {
if (inst->dev_ext_disp_functions[i] && !strcmp(inst->dev_ext_disp_functions[i], funcName))
return loader_get_dev_ext_trampoline(i);
}
// Check if funcName is supported in either ICDs or a layer library
if (!loader_check_icds_for_dev_ext_address(inst, funcName)) {
if (!is_tramp || !loader_check_layer_list_for_dev_ext_address(inst, funcName)) {
// if support found in layers continue on
return NULL;
}
}
if (inst->dev_ext_disp_function_count >= MAX_NUM_UNKNOWN_EXTS) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0, "loader_dev_ext_gpa: Exhausted the unknown device function array!");
return NULL;
}
// add found function to dev_ext_disp_functions;
size_t funcName_len = strlen(funcName) + 1;
inst->dev_ext_disp_functions[inst->dev_ext_disp_function_count] =
(char *)loader_instance_heap_alloc(inst, funcName_len, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == inst->dev_ext_disp_functions[inst->dev_ext_disp_function_count]) {
// failed to allocate memory, return NULL
return NULL;
}
loader_strncpy(inst->dev_ext_disp_functions[inst->dev_ext_disp_function_count], funcName_len, funcName, funcName_len);
// init any dev dispatch table entries as needed
loader_init_dispatch_dev_ext_entry(inst, NULL, inst->dev_ext_disp_function_count, funcName);
void *out_function = loader_get_dev_ext_trampoline(inst->dev_ext_disp_function_count);
inst->dev_ext_disp_function_count++;
return out_function;
}
void *loader_dev_ext_gpa_tramp(struct loader_instance *inst, const char *funcName) {
return loader_dev_ext_gpa_impl(inst, funcName, true);
}
void *loader_dev_ext_gpa_term(struct loader_instance *inst, const char *funcName) {
return loader_dev_ext_gpa_impl(inst, funcName, false);
}
// Physical Device function handling
bool loader_check_icds_for_phys_dev_ext_address(struct loader_instance *inst, const char *funcName) {
struct loader_icd_term *icd_term;
icd_term = inst->icd_terms;
while (NULL != icd_term) {
if (icd_term->scanned_icd->interface_version >= MIN_PHYS_DEV_EXTENSION_ICD_INTERFACE_VERSION &&
icd_term->scanned_icd->GetPhysicalDeviceProcAddr &&
icd_term->scanned_icd->GetPhysicalDeviceProcAddr(icd_term->instance, funcName))
// this icd supports funcName
return true;
icd_term = icd_term->next;
}
return false;
}
bool loader_check_layer_list_for_phys_dev_ext_address(struct loader_instance *inst, const char *funcName) {
for (uint32_t layer = 0; layer < inst->expanded_activated_layer_list.count; layer++) {
struct loader_layer_properties *layer_prop_list = inst->expanded_activated_layer_list.list[layer];
// Find the first layer in the call chain which supports vk_layerGetPhysicalDeviceProcAddr
// and call that, returning whether it found a valid pointer for this function name.
// We return if the topmost layer supports GPDPA since the layer should call down the chain for us.
if (layer_prop_list->interface_version > 1) {
const struct loader_layer_functions *const functions = &(layer_prop_list->functions);
if (NULL != functions->get_physical_device_proc_addr) {
return NULL != functions->get_physical_device_proc_addr((VkInstance)inst->instance, funcName);
}
}
}
return false;
}
void loader_free_phys_dev_ext_table(struct loader_instance *inst) {
for (uint32_t i = 0; i < MAX_NUM_UNKNOWN_EXTS; i++) {
loader_instance_heap_free(inst, inst->phys_dev_ext_disp_functions[i]);
}
memset(inst->phys_dev_ext_disp_functions, 0, sizeof(inst->phys_dev_ext_disp_functions));
}
// This function returns a generic trampoline or terminator function
// address for any unknown physical device extension commands. An array
// is used to keep a list of unknown entry points and their
// mapping to the physical device extension dispatch table (struct
// loader_phys_dev_ext_dispatch_table).
// For a given entry point string (funcName), if an existing mapping is
// found, then the address for that mapping is returned. The is_tramp
// parameter is used to decide whether to return a trampoline or terminator
// If it has not been seen before check if a layer or and ICD supports it.
// If so then a new entry in the function name array is added.
// Null is returned if discovered layer or ICD returns a non-NULL GetProcAddr for it
// or if the function name table is full.
void *loader_phys_dev_ext_gpa_impl(struct loader_instance *inst, const char *funcName, bool is_tramp) {
assert(NULL != inst);
// We should always check to see if any ICD supports it.
if (!loader_check_icds_for_phys_dev_ext_address(inst, funcName)) {
// If we're not checking layers, or we are and it's not in a layer, just
// return
if (!is_tramp || !loader_check_layer_list_for_phys_dev_ext_address(inst, funcName)) {
return NULL;
}
}
bool has_found = false;
uint32_t new_function_index = 0;
// Linearly look through already added functions to make sure we haven't seen it before
// if we have, return the function at the index found
for (uint32_t i = 0; i < inst->phys_dev_ext_disp_function_count; i++) {
if (inst->phys_dev_ext_disp_functions[i] && !strcmp(inst->phys_dev_ext_disp_functions[i], funcName)) {
has_found = true;
new_function_index = i;
break;
}
}
// A never before seen function name, store it in the array
if (!has_found) {
if (inst->phys_dev_ext_disp_function_count >= MAX_NUM_UNKNOWN_EXTS) {
loader_log(inst, VULKAN_LOADER_ERROR_BIT, 0,
"loader_dev_ext_gpa: Exhausted the unknown physical device function array!");
return NULL;
}
loader_log(inst, VULKAN_LOADER_DEBUG_BIT, 0,
"loader_phys_dev_ext_gpa: Adding unknown physical function %s to internal store at index %u", funcName,
inst->phys_dev_ext_disp_function_count);
// add found function to phys_dev_ext_disp_functions;
size_t funcName_len = strlen(funcName) + 1;
inst->phys_dev_ext_disp_functions[inst->phys_dev_ext_disp_function_count] =
(char *)loader_instance_heap_alloc(inst, funcName_len, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (NULL == inst->phys_dev_ext_disp_functions[inst->phys_dev_ext_disp_function_count]) {
// failed to allocate memory, return NULL
return NULL;
}
loader_strncpy(inst->phys_dev_ext_disp_functions[inst->phys_dev_ext_disp_function_count], funcName_len, funcName,
funcName_len);
new_function_index = inst->phys_dev_ext_disp_function_count;
// increment the count so that the subsequent logic includes the newly added entry point when searching for functions
inst->phys_dev_ext_disp_function_count++;
}
// Setup the ICD function pointers
struct loader_icd_term *icd_term = inst->icd_terms;
while (NULL != icd_term) {
if (MIN_PHYS_DEV_EXTENSION_ICD_INTERFACE_VERSION <= icd_term->scanned_icd->interface_version &&
NULL != icd_term->scanned_icd->GetPhysicalDeviceProcAddr) {
icd_term->phys_dev_ext[new_function_index] =
(PFN_PhysDevExt)icd_term->scanned_icd->GetPhysicalDeviceProcAddr(icd_term->instance, funcName);
if (NULL != icd_term->phys_dev_ext[new_function_index]) {
// Make sure we set the instance dispatch to point to the loader's terminator now since we can at least handle
// it in one ICD.
inst->disp->phys_dev_ext[new_function_index] = loader_get_phys_dev_ext_termin(new_function_index);
loader_log(inst, VULKAN_LOADER_DEBUG_BIT, 0, "loader_phys_dev_ext_gpa: Driver %s returned ptr %p for %s",
icd_term->scanned_icd->lib_name, inst->disp->phys_dev_ext[new_function_index], funcName);
}
} else {
icd_term->phys_dev_ext[new_function_index] = NULL;
}
icd_term = icd_term->next;
}
// Now if this is being run in the trampoline, search for the first layer attached and query using it to get the first entry
// point. Only set the instance dispatch table to it if it isn't NULL.
if (is_tramp) {
for (uint32_t i = 0; i < inst->expanded_activated_layer_list.count; i++) {
struct loader_layer_properties *layer_prop = inst->expanded_activated_layer_list.list[i];
if (layer_prop->interface_version > 1 && NULL != layer_prop->functions.get_physical_device_proc_addr) {
void *layer_ret_function =
(PFN_PhysDevExt)layer_prop->functions.get_physical_device_proc_addr(inst->instance, funcName);
if (NULL != layer_ret_function) {
inst->disp->phys_dev_ext[new_function_index] = layer_ret_function;
loader_log(inst, VULKAN_LOADER_DEBUG_BIT, 0, "loader_phys_dev_ext_gpa: Layer %s returned ptr %p for %s",
layer_prop->info.layerName, inst->disp->phys_dev_ext[new_function_index], funcName);
break;
}
}
}
}
if (is_tramp) {
return loader_get_phys_dev_ext_tramp(new_function_index);
} else {
return loader_get_phys_dev_ext_termin(new_function_index);
}
}
// Main interface functions, makes it clear whether it is getting a terminator or trampoline
void *loader_phys_dev_ext_gpa_tramp(struct loader_instance *inst, const char *funcName) {
return loader_phys_dev_ext_gpa_impl(inst, funcName, true);
}
void *loader_phys_dev_ext_gpa_term(struct loader_instance *inst, const char *funcName) {
return loader_phys_dev_ext_gpa_impl(inst, funcName, false);
}