blob: 189ddd37b773556b31a5cb2f828a57fe79c106a2 [file] [log] [blame]
/*
*
* Copyright (c) 2021-2022 The Khronos Group Inc.
* Copyright (c) 2021-2022 Valve Corporation
* Copyright (c) 2021-2022 LunarG, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Author: Mark Young <marky@lunarg.com>
*
*/
// Non-windows and non-apple only header file, guard it so that accidental
// inclusion doesn't cause unknown header include errors
#if defined(LOADER_ENABLE_LINUX_SORT)
#include <stdio.h>
#include <stdlib.h>
#include "loader_linux.h"
#include "allocation.h"
#include "loader_environment.h"
#include "loader.h"
#include "log.h"
// Determine a priority based on device type with the higher value being higher priority.
uint32_t determine_priority_type_value(VkPhysicalDeviceType type) {
switch (type) {
case VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU:
return 10;
case VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU:
return 5;
case VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU:
return 3;
case VK_PHYSICAL_DEVICE_TYPE_OTHER:
return 2;
case VK_PHYSICAL_DEVICE_TYPE_CPU:
return 1;
case VK_PHYSICAL_DEVICE_TYPE_MAX_ENUM: // Not really an enum, but throws warning if it's not here
break;
}
return 0;
}
// Compare the two device types.
// This behaves similar to a qsort compare.
int32_t device_type_compare(VkPhysicalDeviceType a, VkPhysicalDeviceType b) {
uint32_t a_value = determine_priority_type_value(a);
uint32_t b_value = determine_priority_type_value(b);
if (a_value > b_value) {
return -1;
} else if (b_value > a_value) {
return 1;
}
return 0;
}
// Used to compare two devices and determine which one should have priority. The criteria is
// simple:
// 1) Default device ALWAYS wins
// 2) Sort by type
// 3) Sort by PCI bus ID
// 4) Ties broken by device_ID XOR vendor_ID comparison
int32_t compare_devices(const void *a, const void *b) {
struct LinuxSortedDeviceInfo *left = (struct LinuxSortedDeviceInfo *)a;
struct LinuxSortedDeviceInfo *right = (struct LinuxSortedDeviceInfo *)b;
// Default device always gets priority
if (left->default_device) {
return -1;
} else if (right->default_device) {
return 1;
}
// Order by device type next
int32_t dev_type_comp = device_type_compare(left->device_type, right->device_type);
if (0 != dev_type_comp) {
return dev_type_comp;
}
// Sort by PCI info (prioritize devices that have info over those that don't)
if (left->has_pci_bus_info && !right->has_pci_bus_info) {
return -1;
} else if (!left->has_pci_bus_info && right->has_pci_bus_info) {
return 1;
} else if (left->has_pci_bus_info && right->has_pci_bus_info) {
// Sort low to high PCI domain
if (left->pci_domain < right->pci_domain) {
return -1;
} else if (left->pci_domain > right->pci_domain) {
return 1;
}
// Sort low to high PCI bus
if (left->pci_bus < right->pci_bus) {
return -1;
} else if (left->pci_bus > right->pci_bus) {
return 1;
}
// Sort low to high PCI device
if (left->pci_device < right->pci_device) {
return -1;
} else if (left->pci_device > right->pci_device) {
return 1;
}
// Sort low to high PCI function
if (left->pci_function < right->pci_function) {
return -1;
} else if (left->pci_function > right->pci_function) {
return 1;
}
}
// Somehow we have a tie above, so XOR vendorID and deviceID and compare
uint32_t left_xord_dev_vend = left->device_id ^ left->vendor_id;
uint32_t right_xord_dev_vend = right->device_id ^ right->vendor_id;
if (left_xord_dev_vend < right_xord_dev_vend) {
return -1;
} else if (right_xord_dev_vend < left_xord_dev_vend) {
return 1;
}
return 0;
}
// Used to compare two device groups and determine which one should have priority.
// NOTE: This assumes that devices in each group have already been sorted.
// The group sort criteria is simple:
// 1) Group with the default device ALWAYS wins
// 2) Group with the best device type for device 0 wins
// 3) Group with best PCI bus ID for device 0 wins
// 4) Ties broken by group device 0 device_ID XOR vendor_ID comparison
int32_t compare_device_groups(const void *a, const void *b) {
struct loader_physical_device_group_term *grp_a = (struct loader_physical_device_group_term *)a;
struct loader_physical_device_group_term *grp_b = (struct loader_physical_device_group_term *)b;
// Use the first GPU's info from each group to sort the groups by
struct LinuxSortedDeviceInfo *left = &grp_a->internal_device_info[0];
struct LinuxSortedDeviceInfo *right = &grp_b->internal_device_info[0];
// Default device always gets priority
if (left->default_device) {
return -1;
} else if (right->default_device) {
return 1;
}
// Order by device type next
int32_t dev_type_comp = device_type_compare(left->device_type, right->device_type);
if (0 != dev_type_comp) {
return dev_type_comp;
}
// Sort by PCI info (prioritize devices that have info over those that don't)
if (left->has_pci_bus_info && !right->has_pci_bus_info) {
return -1;
} else if (!left->has_pci_bus_info && right->has_pci_bus_info) {
return 1;
} else if (left->has_pci_bus_info && right->has_pci_bus_info) {
// Sort low to high PCI domain
if (left->pci_domain < right->pci_domain) {
return -1;
} else if (left->pci_domain > right->pci_domain) {
return 1;
}
// Sort low to high PCI bus
if (left->pci_bus < right->pci_bus) {
return -1;
} else if (left->pci_bus > right->pci_bus) {
return 1;
}
// Sort low to high PCI device
if (left->pci_device < right->pci_device) {
return -1;
} else if (left->pci_device > right->pci_device) {
return 1;
}
// Sort low to high PCI function
if (left->pci_function < right->pci_function) {
return -1;
} else if (left->pci_function > right->pci_function) {
return 1;
}
}
// Somehow we have a tie above, so XOR vendorID and deviceID and compare
uint32_t left_xord_dev_vend = left->device_id ^ left->vendor_id;
uint32_t right_xord_dev_vend = right->device_id ^ right->vendor_id;
if (left_xord_dev_vend < right_xord_dev_vend) {
return -1;
} else if (right_xord_dev_vend < left_xord_dev_vend) {
return 1;
}
return 0;
}
// Search for the default device using the loader environment variable.
void linux_env_var_default_device(struct loader_instance *inst, uint32_t device_count,
struct LinuxSortedDeviceInfo *sorted_device_info) {
char *selection = loader_getenv("VK_LOADER_DEVICE_SELECT", inst);
if (NULL != selection) {
loader_log(inst, VULKAN_LOADER_DEBUG_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"linux_env_var_default_device: Found \'VK_LOADER_DEVICE_SELECT\' set to %s", selection);
// The environment variable exists, so grab the vendor ID and device ID of the
// selected default device
unsigned vendor_id, device_id;
int32_t matched = sscanf(selection, "%x:%x", &vendor_id, &device_id);
if (matched == 2) {
for (int32_t i = 0; i < (int32_t)device_count; ++i) {
if (sorted_device_info[i].vendor_id == vendor_id && sorted_device_info[i].device_id == device_id) {
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0,
"linux_env_var_default_device: Found default at index %u \'%s\'", i,
sorted_device_info[i].device_name);
sorted_device_info[i].default_device = true;
break;
}
}
}
loader_free_getenv(selection, inst);
}
}
// This function allocates an array in sorted_devices which must be freed by the caller if not null
VkResult linux_read_sorted_physical_devices(struct loader_instance *inst, uint32_t icd_count,
struct loader_phys_dev_per_icd *icd_devices, uint32_t phys_dev_count,
struct loader_physical_device_term **sorted_device_term) {
VkResult res = VK_SUCCESS;
bool app_is_vulkan_1_1 = loader_check_version_meets_required(LOADER_VERSION_1_1_0, inst->app_api_version);
struct LinuxSortedDeviceInfo *sorted_device_info = loader_instance_heap_calloc(
inst, phys_dev_count * sizeof(struct LinuxSortedDeviceInfo), VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (NULL == sorted_device_info) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0, "linux_read_sorted_physical_devices:");
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0, " Original order:");
// Grab all the necessary info we can about each device
uint32_t index = 0;
for (uint32_t icd_idx = 0; icd_idx < icd_count; ++icd_idx) {
for (uint32_t phys_dev = 0; phys_dev < icd_devices[icd_idx].device_count; ++phys_dev) {
struct loader_icd_term *icd_term = icd_devices[icd_idx].icd_term;
VkPhysicalDeviceProperties dev_props = {};
sorted_device_info[index].physical_device = icd_devices[icd_idx].physical_devices[phys_dev];
sorted_device_info[index].icd_index = icd_idx;
sorted_device_info[index].icd_term = icd_term;
sorted_device_info[index].has_pci_bus_info = false;
icd_term->dispatch.GetPhysicalDeviceProperties(sorted_device_info[index].physical_device, &dev_props);
sorted_device_info[index].device_type = dev_props.deviceType;
strncpy(sorted_device_info[index].device_name, dev_props.deviceName, VK_MAX_PHYSICAL_DEVICE_NAME_SIZE);
sorted_device_info[index].vendor_id = dev_props.vendorID;
sorted_device_info[index].device_id = dev_props.deviceID;
bool device_is_1_1_capable =
loader_check_version_meets_required(LOADER_VERSION_1_1_0, loader_make_version(dev_props.apiVersion));
if (!sorted_device_info[index].has_pci_bus_info) {
uint32_t ext_count = 0;
icd_term->dispatch.EnumerateDeviceExtensionProperties(sorted_device_info[index].physical_device, NULL, &ext_count,
NULL);
if (ext_count > 0) {
VkExtensionProperties *ext_props =
(VkExtensionProperties *)loader_stack_alloc(sizeof(VkExtensionProperties) * ext_count);
if (NULL == ext_props) {
res = VK_ERROR_OUT_OF_HOST_MEMORY;
goto out;
}
icd_term->dispatch.EnumerateDeviceExtensionProperties(sorted_device_info[index].physical_device, NULL,
&ext_count, ext_props);
for (uint32_t ext = 0; ext < ext_count; ++ext) {
if (!strcmp(ext_props[ext].extensionName, VK_EXT_PCI_BUS_INFO_EXTENSION_NAME)) {
sorted_device_info[index].has_pci_bus_info = true;
break;
}
}
}
}
if (sorted_device_info[index].has_pci_bus_info) {
VkPhysicalDevicePCIBusInfoPropertiesEXT pci_props = (VkPhysicalDevicePCIBusInfoPropertiesEXT){
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT};
VkPhysicalDeviceProperties2 dev_props2 = (VkPhysicalDeviceProperties2){
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2, .pNext = (VkBaseInStructure *)&pci_props};
PFN_vkGetPhysicalDeviceProperties2 GetPhysDevProps2 = NULL;
if (app_is_vulkan_1_1 && device_is_1_1_capable) {
GetPhysDevProps2 = icd_term->dispatch.GetPhysicalDeviceProperties2;
} else {
GetPhysDevProps2 = (PFN_vkGetPhysicalDeviceProperties2)icd_term->dispatch.GetPhysicalDeviceProperties2KHR;
}
if (NULL != GetPhysDevProps2) {
GetPhysDevProps2(sorted_device_info[index].physical_device, &dev_props2);
sorted_device_info[index].pci_domain = pci_props.pciDomain;
sorted_device_info[index].pci_bus = pci_props.pciBus;
sorted_device_info[index].pci_device = pci_props.pciDevice;
sorted_device_info[index].pci_function = pci_props.pciFunction;
} else {
sorted_device_info[index].has_pci_bus_info = false;
}
}
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0, " [%u] %s", index,
sorted_device_info[index].device_name);
index++;
}
}
// Select default device if set in the environment variable
linux_env_var_default_device(inst, phys_dev_count, sorted_device_info);
// Sort devices by PCI info
qsort(sorted_device_info, phys_dev_count, sizeof(struct LinuxSortedDeviceInfo), compare_devices);
// If we have a selected index, add that first.
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0, " Sorted order:");
// Add all others after (they've already been sorted)
for (uint32_t dev = 0; dev < phys_dev_count; ++dev) {
sorted_device_term[dev]->this_icd_term = sorted_device_info[dev].icd_term;
sorted_device_term[dev]->icd_index = sorted_device_info[dev].icd_index;
sorted_device_term[dev]->phys_dev = sorted_device_info[dev].physical_device;
loader_set_dispatch((void *)sorted_device_term[dev], inst->disp);
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0, " [%u] %s %s", dev,
sorted_device_info[dev].device_name, (sorted_device_info[dev].default_device ? "[default]" : ""));
}
out:
loader_instance_heap_free(inst, sorted_device_info);
return res;
}
// This function sorts an array of physical device groups
VkResult linux_sort_physical_device_groups(struct loader_instance *inst, uint32_t group_count,
struct loader_physical_device_group_term *sorted_group_term) {
VkResult res = VK_SUCCESS;
bool app_is_vulkan_1_1 = loader_check_version_meets_required(LOADER_VERSION_1_1_0, inst->app_api_version);
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0, "linux_sort_physical_device_groups: Original order:");
for (uint32_t group = 0; group < group_count; ++group) {
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0, " Group %u", group);
struct loader_icd_term *icd_term = sorted_group_term[group].this_icd_term;
for (uint32_t gpu = 0; gpu < sorted_group_term[group].group_props.physicalDeviceCount; ++gpu) {
VkPhysicalDeviceProperties dev_props = {};
sorted_group_term[group].internal_device_info[gpu].physical_device =
sorted_group_term[group].group_props.physicalDevices[gpu];
sorted_group_term[group].internal_device_info[gpu].has_pci_bus_info = false;
icd_term->dispatch.GetPhysicalDeviceProperties(sorted_group_term[group].internal_device_info[gpu].physical_device,
&dev_props);
sorted_group_term[group].internal_device_info[gpu].device_type = dev_props.deviceType;
strncpy(sorted_group_term[group].internal_device_info[gpu].device_name, dev_props.deviceName,
VK_MAX_PHYSICAL_DEVICE_NAME_SIZE);
sorted_group_term[group].internal_device_info[gpu].vendor_id = dev_props.vendorID;
sorted_group_term[group].internal_device_info[gpu].device_id = dev_props.deviceID;
bool device_is_1_1_capable =
loader_check_version_meets_required(LOADER_VERSION_1_1_0, loader_make_version(dev_props.apiVersion));
if (!sorted_group_term[group].internal_device_info[gpu].has_pci_bus_info) {
uint32_t ext_count;
icd_term->dispatch.EnumerateDeviceExtensionProperties(
sorted_group_term[group].internal_device_info[gpu].physical_device, NULL, &ext_count, NULL);
if (ext_count > 0) {
VkExtensionProperties *ext_props =
(VkExtensionProperties *)loader_stack_alloc(sizeof(VkExtensionProperties) * ext_count);
if (NULL == ext_props) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
icd_term->dispatch.EnumerateDeviceExtensionProperties(
sorted_group_term[group].internal_device_info[gpu].physical_device, NULL, &ext_count, ext_props);
for (uint32_t ext = 0; ext < ext_count; ++ext) {
if (!strcmp(ext_props[ext].extensionName, VK_EXT_PCI_BUS_INFO_EXTENSION_NAME)) {
sorted_group_term[group].internal_device_info[gpu].has_pci_bus_info = true;
break;
}
}
}
}
if (sorted_group_term[group].internal_device_info[gpu].has_pci_bus_info) {
VkPhysicalDevicePCIBusInfoPropertiesEXT pci_props = (VkPhysicalDevicePCIBusInfoPropertiesEXT){
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PCI_BUS_INFO_PROPERTIES_EXT};
VkPhysicalDeviceProperties2 dev_props2 = (VkPhysicalDeviceProperties2){
.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2, .pNext = (VkBaseInStructure *)&pci_props};
PFN_vkGetPhysicalDeviceProperties2 GetPhysDevProps2 = NULL;
if (app_is_vulkan_1_1 && device_is_1_1_capable) {
GetPhysDevProps2 = icd_term->dispatch.GetPhysicalDeviceProperties2;
} else {
GetPhysDevProps2 = (PFN_vkGetPhysicalDeviceProperties2)icd_term->dispatch.GetPhysicalDeviceProperties2KHR;
}
if (NULL != GetPhysDevProps2) {
GetPhysDevProps2(sorted_group_term[group].internal_device_info[gpu].physical_device, &dev_props2);
sorted_group_term[group].internal_device_info[gpu].pci_domain = pci_props.pciDomain;
sorted_group_term[group].internal_device_info[gpu].pci_bus = pci_props.pciBus;
sorted_group_term[group].internal_device_info[gpu].pci_device = pci_props.pciDevice;
sorted_group_term[group].internal_device_info[gpu].pci_function = pci_props.pciFunction;
} else {
sorted_group_term[group].internal_device_info[gpu].has_pci_bus_info = false;
}
}
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0, " [%u] %s", gpu,
sorted_group_term[group].internal_device_info[gpu].device_name);
}
// Select default device if set in the environment variable
linux_env_var_default_device(inst, sorted_group_term[group].group_props.physicalDeviceCount,
sorted_group_term[group].internal_device_info);
// Sort GPUs in each group
qsort(sorted_group_term[group].internal_device_info, sorted_group_term[group].group_props.physicalDeviceCount,
sizeof(struct LinuxSortedDeviceInfo), compare_devices);
// Match the externally used physical device list with the sorted physical device list for this group.
for (uint32_t dev = 0; dev < sorted_group_term[group].group_props.physicalDeviceCount; ++dev) {
sorted_group_term[group].group_props.physicalDevices[dev] =
sorted_group_term[group].internal_device_info[dev].physical_device;
}
}
// Sort device groups by PCI info
qsort(sorted_group_term, group_count, sizeof(struct loader_physical_device_group_term), compare_device_groups);
if (loader_get_global_debug_level() & (VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT)) {
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0, "linux_sort_physical_device_groups: Sorted order:");
for (uint32_t group = 0; group < group_count; ++group) {
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0, " Group %u", group);
for (uint32_t gpu = 0; gpu < sorted_group_term[group].group_props.physicalDeviceCount; ++gpu) {
loader_log(inst, VULKAN_LOADER_INFO_BIT | VULKAN_LOADER_DRIVER_BIT, 0, " [%u] %s %p %s", gpu,
sorted_group_term[group].internal_device_info[gpu].device_name,
sorted_group_term[group].internal_device_info[gpu].physical_device,
(sorted_group_term[group].internal_device_info[gpu].default_device ? "[default]" : ""));
}
}
}
return res;
}
#endif // LOADER_ENABLE_LINUX_SORT