blob: 22a37c8a82deed183e9e10c2b90bd785b6b75a47 [file] [log] [blame]
// Copyright 2017 The Bazel Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package starlark provides a Starlark interpreter.
//
// Starlark values are represented by the Value interface.
// The following built-in Value types are known to the evaluator:
//
// NoneType -- NoneType
// Bool -- bool
// Bytes -- bytes
// Int -- int
// Float -- float
// String -- string
// *List -- list
// Tuple -- tuple
// *Dict -- dict
// *Set -- set
// *Function -- function (implemented in Starlark)
// *Builtin -- builtin_function_or_method (function or method implemented in Go)
//
// Client applications may define new data types that satisfy at least
// the Value interface. Such types may provide additional operations by
// implementing any of these optional interfaces:
//
// Callable -- value is callable like a function
// Comparable -- value defines its own comparison operations
// Iterable -- value is iterable using 'for' loops
// Sequence -- value is iterable sequence of known length
// Indexable -- value is sequence with efficient random access
// Mapping -- value maps from keys to values, like a dictionary
// HasBinary -- value defines binary operations such as * and +
// HasAttrs -- value has readable fields or methods x.f
// HasSetField -- value has settable fields x.f
// HasSetIndex -- value supports element update using x[i]=y
// HasSetKey -- value supports map update using x[k]=v
// HasUnary -- value defines unary operations such as + and -
//
// Client applications may also define domain-specific functions in Go
// and make them available to Starlark programs. Use NewBuiltin to
// construct a built-in value that wraps a Go function. The
// implementation of the Go function may use UnpackArgs to make sense of
// the positional and keyword arguments provided by the caller.
//
// Starlark's None value is not equal to Go's nil. Go's nil is not a legal
// Starlark value, but the compiler will not stop you from converting nil
// to Value. Be careful to avoid allowing Go nil values to leak into
// Starlark data structures.
//
// The Compare operation requires two arguments of the same
// type, but this constraint cannot be expressed in Go's type system.
// (This is the classic "binary method problem".)
// So, each Value type's CompareSameType method is a partial function
// that compares a value only against others of the same type.
// Use the package's standalone Compare (or Equal) function to compare
// an arbitrary pair of values.
//
// To parse and evaluate a Starlark source file, use ExecFile. The Eval
// function evaluates a single expression. All evaluator functions
// require a Thread parameter which defines the "thread-local storage"
// of a Starlark thread and may be used to plumb application state
// through Starlark code and into callbacks. When evaluation fails it
// returns an EvalError from which the application may obtain a
// backtrace of active Starlark calls.
package starlark // import "go.starlark.net/starlark"
// This file defines the data types of Starlark and their basic operations.
import (
"fmt"
"math"
"math/big"
"reflect"
"strconv"
"strings"
"unicode/utf8"
"go.starlark.net/internal/compile"
"go.starlark.net/syntax"
)
// Value is a value in the Starlark interpreter.
type Value interface {
// String returns the string representation of the value.
// Starlark string values are quoted as if by Python's repr.
String() string
// Type returns a short string describing the value's type.
Type() string
// Freeze causes the value, and all values transitively
// reachable from it through collections and closures, to be
// marked as frozen. All subsequent mutations to the data
// structure through this API will fail dynamically, making the
// data structure immutable and safe for publishing to other
// Starlark interpreters running concurrently.
Freeze()
// Truth returns the truth value of an object.
Truth() Bool
// Hash returns a function of x such that Equals(x, y) => Hash(x) == Hash(y).
// Hash may fail if the value's type is not hashable, or if the value
// contains a non-hashable value. The hash is used only by dictionaries and
// is not exposed to the Starlark program.
Hash() (uint32, error)
}
// A Comparable is a value that defines its own equivalence relation and
// perhaps ordered comparisons.
type Comparable interface {
Value
// CompareSameType compares one value to another of the same Type().
// The comparison operation must be one of EQL, NEQ, LT, LE, GT, or GE.
// CompareSameType returns an error if an ordered comparison was
// requested for a type that does not support it.
//
// Implementations that recursively compare subcomponents of
// the value should use the CompareDepth function, not Compare, to
// avoid infinite recursion on cyclic structures.
//
// The depth parameter is used to bound comparisons of cyclic
// data structures. Implementations should decrement depth
// before calling CompareDepth and should return an error if depth
// < 1.
//
// Client code should not call this method. Instead, use the
// standalone Compare or Equals functions, which are defined for
// all pairs of operands.
CompareSameType(op syntax.Token, y Value, depth int) (bool, error)
}
// A TotallyOrdered is a type whose values form a total order:
// if x and y are of the same TotallyOrdered type, then x must be less than y,
// greater than y, or equal to y.
//
// It is simpler than Comparable and should be preferred in new code,
// but if a type implements both interfaces, Comparable takes precedence.
type TotallyOrdered interface {
Value
// Cmp compares two values x and y of the same totally ordered type.
// It returns negative if x < y, positive if x > y, and zero if the values are equal.
//
// Implementations that recursively compare subcomponents of
// the value should use the CompareDepth function, not Cmp, to
// avoid infinite recursion on cyclic structures.
//
// The depth parameter is used to bound comparisons of cyclic
// data structures. Implementations should decrement depth
// before calling CompareDepth and should return an error if depth
// < 1.
//
// Client code should not call this method. Instead, use the
// standalone Compare or Equals functions, which are defined for
// all pairs of operands.
Cmp(y Value, depth int) (int, error)
}
var (
_ TotallyOrdered = Int{}
_ TotallyOrdered = Float(0)
_ Comparable = False
_ Comparable = String("")
_ Comparable = (*Dict)(nil)
_ Comparable = (*List)(nil)
_ Comparable = Tuple(nil)
_ Comparable = (*Set)(nil)
)
// A Callable value f may be the operand of a function call, f(x).
//
// Clients should use the Call function, never the CallInternal method.
type Callable interface {
Value
Name() string
CallInternal(thread *Thread, args Tuple, kwargs []Tuple) (Value, error)
}
type callableWithPosition interface {
Callable
Position() syntax.Position
}
var (
_ Callable = (*Builtin)(nil)
_ Callable = (*Function)(nil)
_ callableWithPosition = (*Function)(nil)
)
// An Iterable abstracts a sequence of values.
// An iterable value may be iterated over by a 'for' loop or used where
// any other Starlark iterable is allowed. Unlike a Sequence, the length
// of an Iterable is not necessarily known in advance of iteration.
type Iterable interface {
Value
Iterate() Iterator // must be followed by call to Iterator.Done
}
// A Sequence is a sequence of values of known length.
type Sequence interface {
Iterable
Len() int
}
var (
_ Sequence = (*Dict)(nil)
_ Sequence = (*Set)(nil)
)
// An Indexable is a sequence of known length that supports efficient random access.
// It is not necessarily iterable.
type Indexable interface {
Value
Index(i int) Value // requires 0 <= i < Len()
Len() int
}
// A Sliceable is a sequence that can be cut into pieces with the slice operator (x[i:j:step]).
//
// All native indexable objects are sliceable.
// This is a separate interface for backwards-compatibility.
type Sliceable interface {
Indexable
// For positive strides (step > 0), 0 <= start <= end <= n.
// For negative strides (step < 0), -1 <= end <= start < n.
// The caller must ensure that the start and end indices are valid
// and that step is non-zero.
Slice(start, end, step int) Value
}
// A HasSetIndex is an Indexable value whose elements may be assigned (x[i] = y).
//
// The implementation should not add Len to a negative index as the
// evaluator does this before the call.
type HasSetIndex interface {
Indexable
SetIndex(index int, v Value) error
}
var (
_ HasSetIndex = (*List)(nil)
_ Indexable = Tuple(nil)
_ Indexable = String("")
_ Sliceable = Tuple(nil)
_ Sliceable = String("")
_ Sliceable = (*List)(nil)
)
// An Iterator provides a sequence of values to the caller.
//
// The caller must call Done when the iterator is no longer needed.
// Operations that modify a sequence will fail if it has active iterators.
//
// Example usage:
//
// iter := iterable.Iterator()
// defer iter.Done()
// var x Value
// for iter.Next(&x) {
// ...
// }
type Iterator interface {
// If the iterator is exhausted, Next returns false.
// Otherwise it sets *p to the current element of the sequence,
// advances the iterator, and returns true.
Next(p *Value) bool
Done()
}
// A Mapping is a mapping from keys to values, such as a dictionary.
//
// If a type satisfies both Mapping and Iterable, the iterator yields
// the keys of the mapping.
type Mapping interface {
Value
// Get returns the value corresponding to the specified key,
// or !found if the mapping does not contain the key.
//
// Get also defines the behavior of "v in mapping".
// The 'in' operator reports the 'found' component, ignoring errors.
Get(Value) (v Value, found bool, err error)
}
// An IterableMapping is a mapping that supports key enumeration.
type IterableMapping interface {
Mapping
Iterate() Iterator // see Iterable interface
Items() []Tuple // a new slice containing all key/value pairs
}
var _ IterableMapping = (*Dict)(nil)
// A HasSetKey supports map update using x[k]=v syntax, like a dictionary.
type HasSetKey interface {
Mapping
SetKey(k, v Value) error
}
var _ HasSetKey = (*Dict)(nil)
// A HasBinary value may be used as either operand of these binary operators:
// + - * / // % in not in | & ^ << >>
//
// The Side argument indicates whether the receiver is the left or right operand.
//
// An implementation may decline to handle an operation by returning (nil, nil).
// For this reason, clients should always call the standalone Binary(op, x, y)
// function rather than calling the method directly.
type HasBinary interface {
Value
Binary(op syntax.Token, y Value, side Side) (Value, error)
}
type Side bool
const (
Left Side = false
Right Side = true
)
// A HasUnary value may be used as the operand of these unary operators:
// + - ~
//
// An implementation may decline to handle an operation by returning (nil, nil).
// For this reason, clients should always call the standalone Unary(op, x)
// function rather than calling the method directly.
type HasUnary interface {
Value
Unary(op syntax.Token) (Value, error)
}
// A HasAttrs value has fields or methods that may be read by a dot expression (y = x.f).
// Attribute names may be listed using the built-in 'dir' function.
//
// For implementation convenience, a result of (nil, nil) from Attr is
// interpreted as a "no such field or method" error. Implementations are
// free to return a more precise error.
type HasAttrs interface {
Value
Attr(name string) (Value, error) // returns (nil, nil) if attribute not present
AttrNames() []string // callers must not modify the result.
}
var (
_ HasAttrs = String("")
_ HasAttrs = new(List)
_ HasAttrs = new(Dict)
_ HasAttrs = new(Set)
)
// A HasSetField value has fields that may be written by a dot expression (x.f = y).
//
// An implementation of SetField may return a NoSuchAttrError,
// in which case the runtime may augment the error message to
// warn of possible misspelling.
type HasSetField interface {
HasAttrs
SetField(name string, val Value) error
}
// A NoSuchAttrError may be returned by an implementation of
// HasAttrs.Attr or HasSetField.SetField to indicate that no such field
// exists. In that case the runtime may augment the error message to
// warn of possible misspelling.
type NoSuchAttrError string
func (e NoSuchAttrError) Error() string { return string(e) }
// NoneType is the type of None. Its only legal value is None.
// (We represent it as a number, not struct{}, so that None may be constant.)
type NoneType byte
const None = NoneType(0)
func (NoneType) String() string { return "None" }
func (NoneType) Type() string { return "NoneType" }
func (NoneType) Freeze() {} // immutable
func (NoneType) Truth() Bool { return False }
func (NoneType) Hash() (uint32, error) { return 0, nil }
// Bool is the type of a Starlark bool.
type Bool bool
const (
False Bool = false
True Bool = true
)
func (b Bool) String() string {
if b {
return "True"
} else {
return "False"
}
}
func (b Bool) Type() string { return "bool" }
func (b Bool) Freeze() {} // immutable
func (b Bool) Truth() Bool { return b }
func (b Bool) Hash() (uint32, error) { return uint32(b2i(bool(b))), nil }
func (x Bool) CompareSameType(op syntax.Token, y_ Value, depth int) (bool, error) {
y := y_.(Bool)
return threeway(op, b2i(bool(x))-b2i(bool(y))), nil
}
// Float is the type of a Starlark float.
type Float float64
func (f Float) String() string {
var buf strings.Builder
f.format(&buf, 'g')
return buf.String()
}
func (f Float) format(buf *strings.Builder, conv byte) {
ff := float64(f)
if !isFinite(ff) {
if math.IsInf(ff, +1) {
buf.WriteString("+inf")
} else if math.IsInf(ff, -1) {
buf.WriteString("-inf")
} else {
buf.WriteString("nan")
}
return
}
// %g is the default format used by str.
// It uses the minimum precision to avoid ambiguity,
// and always includes a '.' or an 'e' so that the value
// is self-evidently a float, not an int.
if conv == 'g' || conv == 'G' {
s := strconv.FormatFloat(ff, conv, -1, 64)
buf.WriteString(s)
// Ensure result always has a decimal point if no exponent.
// "123" -> "123.0"
if strings.IndexByte(s, conv-'g'+'e') < 0 && strings.IndexByte(s, '.') < 0 {
buf.WriteString(".0")
}
return
}
// %[eEfF] use 6-digit precision
buf.WriteString(strconv.FormatFloat(ff, conv, 6, 64))
}
func (f Float) Type() string { return "float" }
func (f Float) Freeze() {} // immutable
func (f Float) Truth() Bool { return f != 0.0 }
func (f Float) Hash() (uint32, error) {
// Equal float and int values must yield the same hash.
// TODO(adonovan): opt: if f is non-integral, and thus not equal
// to any Int, we can avoid the Int conversion and use a cheaper hash.
if isFinite(float64(f)) {
return finiteFloatToInt(f).Hash()
}
return 1618033, nil // NaN, +/-Inf
}
func floor(f Float) Float { return Float(math.Floor(float64(f))) }
// isFinite reports whether f represents a finite rational value.
// It is equivalent to !math.IsNan(f) && !math.IsInf(f, 0).
func isFinite(f float64) bool {
return math.Abs(f) <= math.MaxFloat64
}
// Cmp implements comparison of two Float values.
// Required by the TotallyOrdered interface.
func (f Float) Cmp(v Value, depth int) (int, error) {
g := v.(Float)
return floatCmp(f, g), nil
}
// floatCmp performs a three-valued comparison on floats,
// which are totally ordered with NaN > +Inf.
func floatCmp(x, y Float) int {
if x > y {
return +1
} else if x < y {
return -1
} else if x == y {
return 0
}
// At least one operand is NaN.
if x == x {
return -1 // y is NaN
} else if y == y {
return +1 // x is NaN
}
return 0 // both NaN
}
func (f Float) rational() *big.Rat { return new(big.Rat).SetFloat64(float64(f)) }
// AsFloat returns the float64 value closest to x.
// The f result is undefined if x is not a float or Int.
// The result may be infinite if x is a very large Int.
func AsFloat(x Value) (f float64, ok bool) {
switch x := x.(type) {
case Float:
return float64(x), true
case Int:
return float64(x.Float()), true
}
return 0, false
}
func (x Float) Mod(y Float) Float {
z := Float(math.Mod(float64(x), float64(y)))
if (x < 0) != (y < 0) && z != 0 {
z += y
}
return z
}
// Unary implements the operations +float and -float.
func (f Float) Unary(op syntax.Token) (Value, error) {
switch op {
case syntax.MINUS:
return -f, nil
case syntax.PLUS:
return +f, nil
}
return nil, nil
}
// String is the type of a Starlark text string.
//
// A String encapsulates an an immutable sequence of bytes,
// but strings are not directly iterable. Instead, iterate
// over the result of calling one of these four methods:
// codepoints, codepoint_ords, elems, elem_ords.
//
// Strings typically contain text; use Bytes for binary strings.
// The Starlark spec defines text strings as sequences of UTF-k
// codes that encode Unicode code points. In this Go implementation,
// k=8, whereas in a Java implementation, k=16. For portability,
// operations on strings should aim to avoid assumptions about
// the value of k.
//
// Warning: the contract of the Value interface's String method is that
// it returns the value printed in Starlark notation,
// so s.String() or fmt.Sprintf("%s", s) returns a quoted string.
// Use string(s) or s.GoString() or fmt.Sprintf("%#v", s) to obtain the raw contents
// of a Starlark string as a Go string.
type String string
func (s String) String() string { return syntax.Quote(string(s), false) }
func (s String) GoString() string { return string(s) }
func (s String) Type() string { return "string" }
func (s String) Freeze() {} // immutable
func (s String) Truth() Bool { return len(s) > 0 }
func (s String) Hash() (uint32, error) { return hashString(string(s)), nil }
func (s String) Len() int { return len(s) } // bytes
func (s String) Index(i int) Value { return s[i : i+1] }
func (s String) Slice(start, end, step int) Value {
if step == 1 {
return s[start:end]
}
sign := signum(step)
var str []byte
for i := start; signum(end-i) == sign; i += step {
str = append(str, s[i])
}
return String(str)
}
func (s String) Attr(name string) (Value, error) { return builtinAttr(s, name, stringMethods) }
func (s String) AttrNames() []string { return builtinAttrNames(stringMethods) }
func (x String) CompareSameType(op syntax.Token, y_ Value, depth int) (bool, error) {
y := y_.(String)
return threeway(op, strings.Compare(string(x), string(y))), nil
}
func AsString(x Value) (string, bool) { v, ok := x.(String); return string(v), ok }
// A stringElems is an iterable whose iterator yields a sequence of
// elements (bytes), either numerically or as successive substrings.
// It is an indexable sequence.
type stringElems struct {
s String
ords bool
}
var (
_ Iterable = (*stringElems)(nil)
_ Indexable = (*stringElems)(nil)
)
func (si stringElems) String() string {
if si.ords {
return si.s.String() + ".elem_ords()"
} else {
return si.s.String() + ".elems()"
}
}
func (si stringElems) Type() string { return "string.elems" }
func (si stringElems) Freeze() {} // immutable
func (si stringElems) Truth() Bool { return True }
func (si stringElems) Hash() (uint32, error) { return 0, fmt.Errorf("unhashable: %s", si.Type()) }
func (si stringElems) Iterate() Iterator { return &stringElemsIterator{si, 0} }
func (si stringElems) Len() int { return len(si.s) }
func (si stringElems) Index(i int) Value {
if si.ords {
return MakeInt(int(si.s[i]))
} else {
// TODO(adonovan): opt: preallocate canonical 1-byte strings
// to avoid interface allocation.
return si.s[i : i+1]
}
}
type stringElemsIterator struct {
si stringElems
i int
}
func (it *stringElemsIterator) Next(p *Value) bool {
if it.i == len(it.si.s) {
return false
}
*p = it.si.Index(it.i)
it.i++
return true
}
func (*stringElemsIterator) Done() {}
// A stringCodepoints is an iterable whose iterator yields a sequence of
// Unicode code points, either numerically or as successive substrings.
// It is not indexable.
type stringCodepoints struct {
s String
ords bool
}
var _ Iterable = (*stringCodepoints)(nil)
func (si stringCodepoints) String() string {
if si.ords {
return si.s.String() + ".codepoint_ords()"
} else {
return si.s.String() + ".codepoints()"
}
}
func (si stringCodepoints) Type() string { return "string.codepoints" }
func (si stringCodepoints) Freeze() {} // immutable
func (si stringCodepoints) Truth() Bool { return True }
func (si stringCodepoints) Hash() (uint32, error) { return 0, fmt.Errorf("unhashable: %s", si.Type()) }
func (si stringCodepoints) Iterate() Iterator { return &stringCodepointsIterator{si, 0} }
type stringCodepointsIterator struct {
si stringCodepoints
i int
}
func (it *stringCodepointsIterator) Next(p *Value) bool {
s := it.si.s[it.i:]
if s == "" {
return false
}
r, sz := utf8.DecodeRuneInString(string(s))
if !it.si.ords {
if r == utf8.RuneError {
*p = String(r)
} else {
*p = s[:sz]
}
} else {
*p = MakeInt(int(r))
}
it.i += sz
return true
}
func (*stringCodepointsIterator) Done() {}
// A Function is a function defined by a Starlark def statement or lambda expression.
// The initialization behavior of a Starlark module is also represented by a Function.
type Function struct {
funcode *compile.Funcode
module *module
defaults Tuple
freevars Tuple
}
// A module is the dynamic counterpart to a Program.
// All functions in the same program share a module.
type module struct {
program *compile.Program
predeclared StringDict
globals []Value
constants []Value
}
// makeGlobalDict returns a new, unfrozen StringDict containing all global
// variables so far defined in the module.
func (m *module) makeGlobalDict() StringDict {
r := make(StringDict, len(m.program.Globals))
for i, id := range m.program.Globals {
if v := m.globals[i]; v != nil {
r[id.Name] = v
}
}
return r
}
func (fn *Function) Name() string { return fn.funcode.Name } // "lambda" for anonymous functions
func (fn *Function) Doc() string { return fn.funcode.Doc }
func (fn *Function) Hash() (uint32, error) { return hashString(fn.funcode.Name), nil }
func (fn *Function) Freeze() { fn.defaults.Freeze(); fn.freevars.Freeze() }
func (fn *Function) String() string { return toString(fn) }
func (fn *Function) Type() string { return "function" }
func (fn *Function) Truth() Bool { return true }
// Globals returns a new, unfrozen StringDict containing all global
// variables so far defined in the function's module.
func (fn *Function) Globals() StringDict { return fn.module.makeGlobalDict() }
func (fn *Function) Position() syntax.Position { return fn.funcode.Pos }
func (fn *Function) NumParams() int { return fn.funcode.NumParams }
func (fn *Function) NumKwonlyParams() int { return fn.funcode.NumKwonlyParams }
// Param returns the name and position of the ith parameter,
// where 0 <= i < NumParams().
// The *args and **kwargs parameters are at the end
// even if there were optional parameters after *args.
func (fn *Function) Param(i int) (string, syntax.Position) {
if i >= fn.NumParams() {
panic(i)
}
id := fn.funcode.Locals[i]
return id.Name, id.Pos
}
// ParamDefault returns the default value of the specified parameter
// (0 <= i < NumParams()), or nil if the parameter is not optional.
func (fn *Function) ParamDefault(i int) Value {
if i < 0 || i >= fn.NumParams() {
panic(i)
}
// fn.defaults omits all required params up to the first optional param. It
// also does not include *args or **kwargs at the end.
firstOptIdx := fn.NumParams() - len(fn.defaults)
if fn.HasVarargs() {
firstOptIdx--
}
if fn.HasKwargs() {
firstOptIdx--
}
if i < firstOptIdx || i >= firstOptIdx+len(fn.defaults) {
return nil
}
dflt := fn.defaults[i-firstOptIdx]
if _, ok := dflt.(mandatory); ok {
return nil
}
return dflt
}
func (fn *Function) HasVarargs() bool { return fn.funcode.HasVarargs }
func (fn *Function) HasKwargs() bool { return fn.funcode.HasKwargs }
// A Builtin is a function implemented in Go.
type Builtin struct {
name string
fn func(thread *Thread, fn *Builtin, args Tuple, kwargs []Tuple) (Value, error)
recv Value // for bound methods (e.g. "".startswith)
}
func (b *Builtin) Name() string { return b.name }
func (b *Builtin) Freeze() {
if b.recv != nil {
b.recv.Freeze()
}
}
func (b *Builtin) Hash() (uint32, error) {
h := hashString(b.name)
if b.recv != nil {
h ^= 5521
}
return h, nil
}
func (b *Builtin) Receiver() Value { return b.recv }
func (b *Builtin) String() string { return toString(b) }
func (b *Builtin) Type() string { return "builtin_function_or_method" }
func (b *Builtin) CallInternal(thread *Thread, args Tuple, kwargs []Tuple) (Value, error) {
return b.fn(thread, b, args, kwargs)
}
func (b *Builtin) Truth() Bool { return true }
// NewBuiltin returns a new 'builtin_function_or_method' value with the specified name
// and implementation. It compares unequal with all other values.
func NewBuiltin(name string, fn func(thread *Thread, fn *Builtin, args Tuple, kwargs []Tuple) (Value, error)) *Builtin {
return &Builtin{name: name, fn: fn}
}
// BindReceiver returns a new Builtin value representing a method
// closure, that is, a built-in function bound to a receiver value.
//
// In the example below, the value of f is the string.index
// built-in method bound to the receiver value "abc":
//
// f = "abc".index; f("a"); f("b")
//
// In the common case, the receiver is bound only during the call,
// but this still results in the creation of a temporary method closure:
//
// "abc".index("a")
func (b *Builtin) BindReceiver(recv Value) *Builtin {
return &Builtin{name: b.name, fn: b.fn, recv: recv}
}
// A *Dict represents a Starlark dictionary.
// The zero value of Dict is a valid empty dictionary.
// If you know the exact final number of entries,
// it is more efficient to call NewDict.
type Dict struct {
ht hashtable
}
// NewDict returns a set with initial space for
// at least size insertions before rehashing.
func NewDict(size int) *Dict {
dict := new(Dict)
dict.ht.init(size)
return dict
}
func (d *Dict) Clear() error { return d.ht.clear() }
func (d *Dict) Delete(k Value) (v Value, found bool, err error) { return d.ht.delete(k) }
func (d *Dict) Get(k Value) (v Value, found bool, err error) { return d.ht.lookup(k) }
func (d *Dict) Items() []Tuple { return d.ht.items() }
func (d *Dict) Keys() []Value { return d.ht.keys() }
func (d *Dict) Len() int { return int(d.ht.len) }
func (d *Dict) Iterate() Iterator { return d.ht.iterate() }
func (d *Dict) SetKey(k, v Value) error { return d.ht.insert(k, v) }
func (d *Dict) String() string { return toString(d) }
func (d *Dict) Type() string { return "dict" }
func (d *Dict) Freeze() { d.ht.freeze() }
func (d *Dict) Truth() Bool { return d.Len() > 0 }
func (d *Dict) Hash() (uint32, error) { return 0, fmt.Errorf("unhashable type: dict") }
func (x *Dict) Union(y *Dict) *Dict {
z := new(Dict)
z.ht.init(x.Len()) // a lower bound
z.ht.addAll(&x.ht) // can't fail
z.ht.addAll(&y.ht) // can't fail
return z
}
func (d *Dict) Attr(name string) (Value, error) { return builtinAttr(d, name, dictMethods) }
func (d *Dict) AttrNames() []string { return builtinAttrNames(dictMethods) }
func (x *Dict) CompareSameType(op syntax.Token, y_ Value, depth int) (bool, error) {
y := y_.(*Dict)
switch op {
case syntax.EQL:
ok, err := dictsEqual(x, y, depth)
return ok, err
case syntax.NEQ:
ok, err := dictsEqual(x, y, depth)
return !ok, err
default:
return false, fmt.Errorf("%s %s %s not implemented", x.Type(), op, y.Type())
}
}
func dictsEqual(x, y *Dict, depth int) (bool, error) {
if x.Len() != y.Len() {
return false, nil
}
for e := x.ht.head; e != nil; e = e.next {
key, xval := e.key, e.value
if yval, found, _ := y.Get(key); !found {
return false, nil
} else if eq, err := EqualDepth(xval, yval, depth-1); err != nil {
return false, err
} else if !eq {
return false, nil
}
}
return true, nil
}
// A *List represents a Starlark list value.
type List struct {
elems []Value
frozen bool
itercount uint32 // number of active iterators (ignored if frozen)
}
// NewList returns a list containing the specified elements.
// Callers should not subsequently modify elems.
func NewList(elems []Value) *List { return &List{elems: elems} }
func (l *List) Freeze() {
if !l.frozen {
l.frozen = true
for _, elem := range l.elems {
elem.Freeze()
}
}
}
// checkMutable reports an error if the list should not be mutated.
// verb+" list" should describe the operation.
func (l *List) checkMutable(verb string) error {
if l.frozen {
return fmt.Errorf("cannot %s frozen list", verb)
}
if l.itercount > 0 {
return fmt.Errorf("cannot %s list during iteration", verb)
}
return nil
}
func (l *List) String() string { return toString(l) }
func (l *List) Type() string { return "list" }
func (l *List) Hash() (uint32, error) { return 0, fmt.Errorf("unhashable type: list") }
func (l *List) Truth() Bool { return l.Len() > 0 }
func (l *List) Len() int { return len(l.elems) }
func (l *List) Index(i int) Value { return l.elems[i] }
func (l *List) Slice(start, end, step int) Value {
if step == 1 {
elems := append([]Value{}, l.elems[start:end]...)
return NewList(elems)
}
sign := signum(step)
var list []Value
for i := start; signum(end-i) == sign; i += step {
list = append(list, l.elems[i])
}
return NewList(list)
}
func (l *List) Attr(name string) (Value, error) { return builtinAttr(l, name, listMethods) }
func (l *List) AttrNames() []string { return builtinAttrNames(listMethods) }
func (l *List) Iterate() Iterator {
if !l.frozen {
l.itercount++
}
return &listIterator{l: l}
}
func (x *List) CompareSameType(op syntax.Token, y_ Value, depth int) (bool, error) {
y := y_.(*List)
// It's tempting to check x == y as an optimization here,
// but wrong because a list containing NaN is not equal to itself.
return sliceCompare(op, x.elems, y.elems, depth)
}
func sliceCompare(op syntax.Token, x, y []Value, depth int) (bool, error) {
// Fast path: check length.
if len(x) != len(y) && (op == syntax.EQL || op == syntax.NEQ) {
return op == syntax.NEQ, nil
}
// Find first element that is not equal in both lists.
for i := 0; i < len(x) && i < len(y); i++ {
if eq, err := EqualDepth(x[i], y[i], depth-1); err != nil {
return false, err
} else if !eq {
switch op {
case syntax.EQL:
return false, nil
case syntax.NEQ:
return true, nil
default:
return CompareDepth(op, x[i], y[i], depth-1)
}
}
}
return threeway(op, len(x)-len(y)), nil
}
type listIterator struct {
l *List
i int
}
func (it *listIterator) Next(p *Value) bool {
if it.i < it.l.Len() {
*p = it.l.elems[it.i]
it.i++
return true
}
return false
}
func (it *listIterator) Done() {
if !it.l.frozen {
it.l.itercount--
}
}
func (l *List) SetIndex(i int, v Value) error {
if err := l.checkMutable("assign to element of"); err != nil {
return err
}
l.elems[i] = v
return nil
}
func (l *List) Append(v Value) error {
if err := l.checkMutable("append to"); err != nil {
return err
}
l.elems = append(l.elems, v)
return nil
}
func (l *List) Clear() error {
if err := l.checkMutable("clear"); err != nil {
return err
}
for i := range l.elems {
l.elems[i] = nil // aid GC
}
l.elems = l.elems[:0]
return nil
}
// A Tuple represents a Starlark tuple value.
type Tuple []Value
func (t Tuple) Len() int { return len(t) }
func (t Tuple) Index(i int) Value { return t[i] }
func (t Tuple) Slice(start, end, step int) Value {
if step == 1 {
return t[start:end]
}
sign := signum(step)
var tuple Tuple
for i := start; signum(end-i) == sign; i += step {
tuple = append(tuple, t[i])
}
return tuple
}
func (t Tuple) Iterate() Iterator { return &tupleIterator{elems: t} }
func (t Tuple) Freeze() {
for _, elem := range t {
elem.Freeze()
}
}
func (t Tuple) String() string { return toString(t) }
func (t Tuple) Type() string { return "tuple" }
func (t Tuple) Truth() Bool { return len(t) > 0 }
func (x Tuple) CompareSameType(op syntax.Token, y_ Value, depth int) (bool, error) {
y := y_.(Tuple)
return sliceCompare(op, x, y, depth)
}
func (t Tuple) Hash() (uint32, error) {
// Use same algorithm as Python.
var x, mult uint32 = 0x345678, 1000003
for _, elem := range t {
y, err := elem.Hash()
if err != nil {
return 0, err
}
x = x ^ y*mult
mult += 82520 + uint32(len(t)+len(t))
}
return x, nil
}
type tupleIterator struct{ elems Tuple }
func (it *tupleIterator) Next(p *Value) bool {
if len(it.elems) > 0 {
*p = it.elems[0]
it.elems = it.elems[1:]
return true
}
return false
}
func (it *tupleIterator) Done() {}
// A Set represents a Starlark set value.
// The zero value of Set is a valid empty set.
// If you know the exact final number of elements,
// it is more efficient to call NewSet.
type Set struct {
ht hashtable // values are all None
}
// NewSet returns a dictionary with initial space for
// at least size insertions before rehashing.
func NewSet(size int) *Set {
set := new(Set)
set.ht.init(size)
return set
}
func (s *Set) Delete(k Value) (found bool, err error) { _, found, err = s.ht.delete(k); return }
func (s *Set) Clear() error { return s.ht.clear() }
func (s *Set) Has(k Value) (found bool, err error) { _, found, err = s.ht.lookup(k); return }
func (s *Set) Insert(k Value) error { return s.ht.insert(k, None) }
func (s *Set) Len() int { return int(s.ht.len) }
func (s *Set) Iterate() Iterator { return s.ht.iterate() }
func (s *Set) String() string { return toString(s) }
func (s *Set) Type() string { return "set" }
func (s *Set) Freeze() { s.ht.freeze() }
func (s *Set) Hash() (uint32, error) { return 0, fmt.Errorf("unhashable type: set") }
func (s *Set) Truth() Bool { return s.Len() > 0 }
func (s *Set) Attr(name string) (Value, error) { return builtinAttr(s, name, setMethods) }
func (s *Set) AttrNames() []string { return builtinAttrNames(setMethods) }
func (x *Set) CompareSameType(op syntax.Token, y_ Value, depth int) (bool, error) {
y := y_.(*Set)
switch op {
case syntax.EQL:
ok, err := setsEqual(x, y, depth)
return ok, err
case syntax.NEQ:
ok, err := setsEqual(x, y, depth)
return !ok, err
case syntax.GE: // superset
if x.Len() < y.Len() {
return false, nil
}
iter := y.Iterate()
defer iter.Done()
return x.IsSuperset(iter)
case syntax.LE: // subset
if x.Len() > y.Len() {
return false, nil
}
iter := y.Iterate()
defer iter.Done()
return x.IsSubset(iter)
case syntax.GT: // proper superset
if x.Len() <= y.Len() {
return false, nil
}
iter := y.Iterate()
defer iter.Done()
return x.IsSuperset(iter)
case syntax.LT: // proper subset
if x.Len() >= y.Len() {
return false, nil
}
iter := y.Iterate()
defer iter.Done()
return x.IsSubset(iter)
default:
return false, fmt.Errorf("%s %s %s not implemented", x.Type(), op, y.Type())
}
}
func setsEqual(x, y *Set, depth int) (bool, error) {
if x.Len() != y.Len() {
return false, nil
}
for e := x.ht.head; e != nil; e = e.next {
if found, _ := y.Has(e.key); !found {
return false, nil
}
}
return true, nil
}
func setFromIterator(iter Iterator) (*Set, error) {
var x Value
set := new(Set)
for iter.Next(&x) {
err := set.Insert(x)
if err != nil {
return set, err
}
}
return set, nil
}
func (s *Set) clone() *Set {
set := new(Set)
for e := s.ht.head; e != nil; e = e.next {
set.Insert(e.key) // can't fail
}
return set
}
func (s *Set) Union(iter Iterator) (Value, error) {
set := s.clone()
var x Value
for iter.Next(&x) {
if err := set.Insert(x); err != nil {
return nil, err
}
}
return set, nil
}
func (s *Set) Difference(other Iterator) (Value, error) {
diff := s.clone()
var x Value
for other.Next(&x) {
if _, err := diff.Delete(x); err != nil {
return nil, err
}
}
return diff, nil
}
func (s *Set) IsSuperset(other Iterator) (bool, error) {
var x Value
for other.Next(&x) {
found, err := s.Has(x)
if err != nil {
return false, err
}
if !found {
return false, nil
}
}
return true, nil
}
func (s *Set) IsSubset(other Iterator) (bool, error) {
if count, err := s.ht.count(other); err != nil {
return false, err
} else {
return count == s.Len(), nil
}
}
func (s *Set) Intersection(other Iterator) (Value, error) {
intersect := new(Set)
var x Value
for other.Next(&x) {
found, err := s.Has(x)
if err != nil {
return nil, err
}
if found {
err = intersect.Insert(x)
if err != nil {
return nil, err
}
}
}
return intersect, nil
}
func (s *Set) SymmetricDifference(other Iterator) (Value, error) {
diff := s.clone()
var x Value
for other.Next(&x) {
found, err := diff.Delete(x)
if err != nil {
return nil, err
}
if !found {
diff.Insert(x)
}
}
return diff, nil
}
// toString returns the string form of value v.
// It may be more efficient than v.String() for larger values.
func toString(v Value) string {
buf := new(strings.Builder)
writeValue(buf, v, nil)
return buf.String()
}
// writeValue writes x to out.
//
// path is used to detect cycles.
// It contains the list of *List and *Dict values we're currently printing.
// (These are the only potentially cyclic structures.)
// Callers should generally pass nil for path.
// It is safe to re-use the same path slice for multiple calls.
func writeValue(out *strings.Builder, x Value, path []Value) {
switch x := x.(type) {
case nil:
out.WriteString("<nil>") // indicates a bug
// These four cases are duplicates of T.String(), for efficiency.
case NoneType:
out.WriteString("None")
case Int:
out.WriteString(x.String())
case Bool:
if x {
out.WriteString("True")
} else {
out.WriteString("False")
}
case String:
out.WriteString(syntax.Quote(string(x), false))
case *List:
out.WriteByte('[')
if pathContains(path, x) {
out.WriteString("...") // list contains itself
} else {
for i, elem := range x.elems {
if i > 0 {
out.WriteString(", ")
}
writeValue(out, elem, append(path, x))
}
}
out.WriteByte(']')
case Tuple:
out.WriteByte('(')
for i, elem := range x {
if i > 0 {
out.WriteString(", ")
}
writeValue(out, elem, path)
}
if len(x) == 1 {
out.WriteByte(',')
}
out.WriteByte(')')
case *Function:
fmt.Fprintf(out, "<function %s>", x.Name())
case *Builtin:
if x.recv != nil {
fmt.Fprintf(out, "<built-in method %s of %s value>", x.Name(), x.recv.Type())
} else {
fmt.Fprintf(out, "<built-in function %s>", x.Name())
}
case *Dict:
out.WriteByte('{')
if pathContains(path, x) {
out.WriteString("...") // dict contains itself
} else {
sep := ""
for e := x.ht.head; e != nil; e = e.next {
k, v := e.key, e.value
out.WriteString(sep)
writeValue(out, k, path)
out.WriteString(": ")
writeValue(out, v, append(path, x)) // cycle check
sep = ", "
}
}
out.WriteByte('}')
case *Set:
out.WriteString("set([")
for e := x.ht.head; e != nil; e = e.next {
if e != x.ht.head {
out.WriteString(", ")
}
writeValue(out, e.key, path)
}
out.WriteString("])")
default:
out.WriteString(x.String())
}
}
func pathContains(path []Value, x Value) bool {
for _, y := range path {
if x == y {
return true
}
}
return false
}
// CompareLimit is the depth limit on recursive comparison operations such as == and <.
// Comparison of data structures deeper than this limit may fail.
var CompareLimit = 10
// Equal reports whether two Starlark values are equal.
func Equal(x, y Value) (bool, error) {
if x, ok := x.(String); ok {
return x == y, nil // fast path for an important special case
}
return EqualDepth(x, y, CompareLimit)
}
// EqualDepth reports whether two Starlark values are equal.
//
// Recursive comparisons by implementations of Value.CompareSameType
// should use EqualDepth to prevent infinite recursion.
func EqualDepth(x, y Value, depth int) (bool, error) {
return CompareDepth(syntax.EQL, x, y, depth)
}
// Compare compares two Starlark values.
// The comparison operation must be one of EQL, NEQ, LT, LE, GT, or GE.
// Compare returns an error if an ordered comparison was
// requested for a type that does not support it.
//
// Recursive comparisons by implementations of Value.CompareSameType
// should use CompareDepth to prevent infinite recursion.
func Compare(op syntax.Token, x, y Value) (bool, error) {
return CompareDepth(op, x, y, CompareLimit)
}
// CompareDepth compares two Starlark values.
// The comparison operation must be one of EQL, NEQ, LT, LE, GT, or GE.
// CompareDepth returns an error if an ordered comparison was
// requested for a pair of values that do not support it.
//
// The depth parameter limits the maximum depth of recursion
// in cyclic data structures.
func CompareDepth(op syntax.Token, x, y Value, depth int) (bool, error) {
if depth < 1 {
return false, fmt.Errorf("comparison exceeded maximum recursion depth")
}
if sameType(x, y) {
if xcomp, ok := x.(Comparable); ok {
return xcomp.CompareSameType(op, y, depth)
}
if xcomp, ok := x.(TotallyOrdered); ok {
t, err := xcomp.Cmp(y, depth)
if err != nil {
return false, err
}
return threeway(op, t), nil
}
// use identity comparison
switch op {
case syntax.EQL:
return x == y, nil
case syntax.NEQ:
return x != y, nil
}
return false, fmt.Errorf("%s %s %s not implemented", x.Type(), op, y.Type())
}
// different types
// int/float ordered comparisons
switch x := x.(type) {
case Int:
if y, ok := y.(Float); ok {
var cmp int
if y != y {
cmp = -1 // y is NaN
} else if !math.IsInf(float64(y), 0) {
cmp = x.rational().Cmp(y.rational()) // y is finite
} else if y > 0 {
cmp = -1 // y is +Inf
} else {
cmp = +1 // y is -Inf
}
return threeway(op, cmp), nil
}
case Float:
if y, ok := y.(Int); ok {
var cmp int
if x != x {
cmp = +1 // x is NaN
} else if !math.IsInf(float64(x), 0) {
cmp = x.rational().Cmp(y.rational()) // x is finite
} else if x > 0 {
cmp = +1 // x is +Inf
} else {
cmp = -1 // x is -Inf
}
return threeway(op, cmp), nil
}
}
// All other values of different types compare unequal.
switch op {
case syntax.EQL:
return false, nil
case syntax.NEQ:
return true, nil
}
return false, fmt.Errorf("%s %s %s not implemented", x.Type(), op, y.Type())
}
func sameType(x, y Value) bool {
return reflect.TypeOf(x) == reflect.TypeOf(y) || x.Type() == y.Type()
}
// threeway interprets a three-way comparison value cmp (-1, 0, +1)
// as a boolean comparison (e.g. x < y).
func threeway(op syntax.Token, cmp int) bool {
switch op {
case syntax.EQL:
return cmp == 0
case syntax.NEQ:
return cmp != 0
case syntax.LE:
return cmp <= 0
case syntax.LT:
return cmp < 0
case syntax.GE:
return cmp >= 0
case syntax.GT:
return cmp > 0
}
panic(op)
}
func b2i(b bool) int {
if b {
return 1
} else {
return 0
}
}
// Len returns the length of a string or sequence value,
// and -1 for all others.
//
// Warning: Len(x) >= 0 does not imply Iterate(x) != nil.
// A string has a known length but is not directly iterable.
func Len(x Value) int {
switch x := x.(type) {
case String:
return x.Len()
case Indexable:
return x.Len()
case Sequence:
return x.Len()
}
return -1
}
// Iterate return a new iterator for the value if iterable, nil otherwise.
// If the result is non-nil, the caller must call Done when finished with it.
//
// Warning: Iterate(x) != nil does not imply Len(x) >= 0.
// Some iterables may have unknown length.
func Iterate(x Value) Iterator {
if x, ok := x.(Iterable); ok {
return x.Iterate()
}
return nil
}
// Bytes is the type of a Starlark binary string.
//
// A Bytes encapsulates an immutable sequence of bytes.
// It is comparable, indexable, and sliceable, but not directly iterable;
// use bytes.elems() for an iterable view.
//
// In this Go implementation, the elements of 'string' and 'bytes' are
// both bytes, but in other implementations, notably Java, the elements
// of a 'string' are UTF-16 codes (Java chars). The spec abstracts text
// strings as sequences of UTF-k codes that encode Unicode code points,
// and operations that convert from text to binary incur UTF-k-to-UTF-8
// transcoding; conversely, conversion from binary to text incurs
// UTF-8-to-UTF-k transcoding. Because k=8 for Go, these operations
// are the identity function, at least for valid encodings of text.
type Bytes string
var (
_ Comparable = Bytes("")
_ Sliceable = Bytes("")
_ Indexable = Bytes("")
)
func (b Bytes) String() string { return syntax.Quote(string(b), true) }
func (b Bytes) Type() string { return "bytes" }
func (b Bytes) Freeze() {} // immutable
func (b Bytes) Truth() Bool { return len(b) > 0 }
func (b Bytes) Hash() (uint32, error) { return String(b).Hash() }
func (b Bytes) Len() int { return len(b) }
func (b Bytes) Index(i int) Value { return b[i : i+1] }
func (b Bytes) Attr(name string) (Value, error) { return builtinAttr(b, name, bytesMethods) }
func (b Bytes) AttrNames() []string { return builtinAttrNames(bytesMethods) }
func (b Bytes) Slice(start, end, step int) Value {
if step == 1 {
return b[start:end]
}
sign := signum(step)
var str []byte
for i := start; signum(end-i) == sign; i += step {
str = append(str, b[i])
}
return Bytes(str)
}
func (x Bytes) CompareSameType(op syntax.Token, y_ Value, depth int) (bool, error) {
y := y_.(Bytes)
return threeway(op, strings.Compare(string(x), string(y))), nil
}