blob: 4dd99417c760295e0e8eb3d8737c6504e6141f27 [file] [log] [blame]
// Copyright 2017 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//! Type-safe bindings for Zircon channel objects.
use crate::{AsHandleRef, HandleBased, Handle, HandleRef, Peered, Status, Time, usize_into_u32, size_to_u32_sat};
use crate::ok;
use fuchsia_zircon_sys as sys;
use std::mem;
/// An object representing a Zircon
/// [channel](https://fuchsia.googlesource.com/zircon/+/master/docs/objects/channel.md).
///
/// As essentially a subtype of `Handle`, it can be freely interconverted.
#[derive(Debug, Eq, PartialEq, Hash)]
#[repr(transparent)]
pub struct Channel(Handle);
impl_handle_based!(Channel);
impl Peered for Channel {}
impl Channel {
/// Create a channel, resulting an a pair of `Channel` objects representing both
/// sides of the channel. Messages written into one maybe read from the opposite.
///
/// Wraps the
/// [zx_channel_create](https://fuchsia.googlesource.com/zircon/+/master/docs/syscalls/channel_create.md)
/// syscall.
pub fn create() -> Result<(Channel, Channel), Status> {
unsafe {
let mut handle0 = 0;
let mut handle1 = 0;
let opts = 0;
ok(sys::zx_channel_create(opts, &mut handle0, &mut handle1))?;
Ok((
Self::from(Handle::from_raw(handle0)),
Self::from(Handle::from_raw(handle1))
))
}
}
/// Read a message from a channel. Wraps the
/// [zx_channel_read](https://fuchsia.googlesource.com/zircon/+/master/docs/syscalls/channel_read.md)
/// syscall.
///
/// If the `MessageBuf` lacks the capacity to hold the pending message,
/// returns an `Err` with the number of bytes and number of handles needed.
/// Otherwise returns an `Ok` with the result as usual.
pub fn read_raw(&self, buf: &mut MessageBuf)
-> Result<Result<(), Status>, (usize, usize)>
{
let opts = 0;
unsafe {
buf.clear();
let raw_handle = self.raw_handle();
let mut num_bytes: u32 = size_to_u32_sat(buf.bytes.capacity());
let mut num_handles: u32 = size_to_u32_sat(buf.handles.capacity());
let status = ok(sys::zx_channel_read(raw_handle, opts,
buf.bytes.as_mut_ptr(), buf.handles.as_mut_ptr() as *mut _,
num_bytes, num_handles, &mut num_bytes, &mut num_handles));
if status == Err(Status::BUFFER_TOO_SMALL) {
Err((num_bytes as usize, num_handles as usize))
} else {
Ok(status.map(|()| {
buf.bytes.set_len(num_bytes as usize);
buf.handles.set_len(num_handles as usize);
}))
}
}
}
/// Read a message from a channel.
///
/// Note that this method can cause internal reallocations in the `MessageBuf`
/// if it is lacks capacity to hold the full message. If such reallocations
/// are not desirable, use `read_raw` instead.
pub fn read(&self, buf: &mut MessageBuf) -> Result<(), Status> {
loop {
match self.read_raw(buf) {
Ok(result) => return result,
Err((num_bytes, num_handles)) => {
buf.ensure_capacity_bytes(num_bytes);
buf.ensure_capacity_handles(num_handles);
}
}
}
}
/// Write a message to a channel. Wraps the
/// [zx_channel_write](https://fuchsia.googlesource.com/zircon/+/master/docs/syscalls/channel_write.md)
/// syscall.
pub fn write(&self, bytes: &[u8], handles: &mut Vec<Handle>)
-> Result<(), Status>
{
let opts = 0;
let n_bytes = usize_into_u32(bytes.len()).map_err(|_| Status::OUT_OF_RANGE)?;
let n_handles = usize_into_u32(handles.len()).map_err(|_| Status::OUT_OF_RANGE)?;
unsafe {
let status = sys::zx_channel_write(self.raw_handle(), opts, bytes.as_ptr(), n_bytes,
handles.as_ptr() as *const sys::zx_handle_t, n_handles);
// Handles are always consumed, forget them on sender side
handles.set_len(0);
ok(status)?;
Ok(())
}
}
/// Send a message consisting of the given bytes and handles to a channel and await a reply.
///
/// The first four bytes of the written and read back messages are treated as a transaction ID
/// of type `zx_txid_t`. The kernel generates a txid for the written message, replacing that
/// part of the message as read from userspace. In other words, the first four bytes of
/// `bytes` will be ignored, and the first four bytes of the response will contain a
/// kernel-generated txid.
///
/// Wraps the
/// [zx_channel_call](https://fuchsia.googlesource.com/zircon/+/master/docs/syscalls/channel_call.md)
/// syscall.
///
/// Note that unlike [`read`][read], the caller must ensure that the MessageBuf has enough
/// capacity for the bytes and handles which will be received, as replies which are too large
/// are discarded.
///
/// On failure returns the both the main and read status.
///
/// [read]: struct.Channel.html#method.read
pub fn call(&self, timeout: Time, bytes: &[u8], handles: &mut Vec<Handle>,
buf: &mut MessageBuf) -> Result<(), Status>
{
let write_num_bytes = usize_into_u32(bytes.len()).map_err(
|_| Status::OUT_OF_RANGE)?;
let write_num_handles = usize_into_u32(handles.len()).map_err(
|_| Status::OUT_OF_RANGE)?;
buf.clear();
let read_num_bytes: u32 = size_to_u32_sat(buf.bytes.capacity());
let read_num_handles: u32 = size_to_u32_sat(buf.handles.capacity());
let args = sys::zx_channel_call_args_t {
wr_bytes: bytes.as_ptr(),
wr_handles: handles.as_ptr() as *const sys::zx_handle_t,
rd_bytes: buf.bytes.as_mut_ptr(),
rd_handles: buf.handles.as_mut_ptr() as *mut _,
wr_num_bytes: write_num_bytes,
wr_num_handles: write_num_handles,
rd_num_bytes: read_num_bytes,
rd_num_handles: read_num_handles,
};
let mut actual_read_bytes: u32 = 0;
let mut actual_read_handles: u32 = 0;
let options = 0;
let status = unsafe {
Status::from_raw(
sys::zx_channel_call(
self.raw_handle(), options, timeout.nanos(), &args, &mut actual_read_bytes,
&mut actual_read_handles))
};
unsafe {
// Handles are always consumed.
handles.set_len(0);
buf.bytes.set_len(actual_read_bytes as usize);
buf.handles.set_len(actual_read_handles as usize);
}
if Status::OK == status {
Ok(())
} else {
Err(status)
}
}
}
#[test]
pub fn test_handle_repr() {
assert_eq!(::std::mem::size_of::<sys::zx_handle_t>(), 4);
assert_eq!(::std::mem::size_of::<Handle>(), 4);
assert_eq!(::std::mem::align_of::<sys::zx_handle_t>(), ::std::mem::align_of::<Handle>());
// This test asserts that repr(transparent) still works for Handle -> zx_handle_t
let n: Vec<sys::zx_handle_t> = vec![0, 100, 2<<32-1];
let v: Vec<Handle> = n.iter().map(|h| unsafe { Handle::from_raw(*h) } ).collect();
for (handle, raw) in v.iter().zip(n.iter()) {
unsafe {
assert_eq!(*(handle as *const _ as *const [u8; 4]), *(raw as *const _ as *const [u8; 4]));
}
}
for h in v.into_iter() {
::std::mem::forget(h);
}
}
impl AsRef<Channel> for Channel {
fn as_ref(&self) -> &Self {
&self
}
}
/// A buffer for _receiving_ messages from a channel.
///
/// A `MessageBuf` is essentially a byte buffer and a vector of
/// handles, but move semantics for "taking" handles requires special handling.
///
/// Note that for sending messages to a channel, the caller manages the buffers,
/// using a plain byte slice and `Vec<Handle>`.
#[derive(Debug, Default)]
pub struct MessageBuf {
bytes: Vec<u8>,
handles: Vec<Handle>,
}
impl MessageBuf {
/// Create a new, empty, message buffer.
pub fn new() -> Self {
Default::default()
}
/// Create a new non-empty message buffer.
pub fn new_with(v: Vec<u8>, h: Vec<Handle>) -> Self {
Self{
bytes: v,
handles: h,
}
}
/// Splits apart the message buf into a vector of bytes and a vector of handles.
pub fn split_mut(&mut self) -> (&mut Vec<u8>, &mut Vec<Handle>) {
(&mut self.bytes, &mut self.handles)
}
/// Splits apart the message buf into a vector of bytes and a vector of handles.
pub fn split(self) -> (Vec<u8>, Vec<Handle>) {
(self.bytes, self.handles)
}
/// Ensure that the buffer has the capacity to hold at least `n_bytes` bytes.
pub fn ensure_capacity_bytes(&mut self, n_bytes: usize) {
ensure_capacity(&mut self.bytes, n_bytes);
}
/// Ensure that the buffer has the capacity to hold at least `n_handles` handles.
pub fn ensure_capacity_handles(&mut self, n_handles: usize) {
ensure_capacity(&mut self.handles, n_handles);
}
/// Ensure that at least n_bytes bytes are initialized (0 fill).
pub fn ensure_initialized_bytes(&mut self, n_bytes: usize) {
if n_bytes <= self.bytes.len() {
return;
}
self.bytes.resize(n_bytes, 0);
}
/// Get a reference to the bytes of the message buffer, as a `&[u8]` slice.
pub fn bytes(&self) -> &[u8] {
self.bytes.as_slice()
}
/// The number of handles in the message buffer. Note this counts the number
/// available when the message was received; `take_handle` does not affect
/// the count.
pub fn n_handles(&self) -> usize {
self.handles.len()
}
/// Take the handle at the specified index from the message buffer. If the
/// method is called again with the same index, it will return `None`, as
/// will happen if the index exceeds the number of handles available.
pub fn take_handle(&mut self, index: usize) -> Option<Handle> {
self.handles.get_mut(index).and_then(|handle|
if handle.is_invalid() {
None
} else {
Some(mem::replace(handle, Handle::invalid()))
}
)
}
/// Clear the bytes and handles contained in the buf. This will drop any
/// contained handles, resulting in their resources being freed.
pub fn clear(&mut self) {
self.bytes.clear();
self.handles.clear();
}
}
fn ensure_capacity<T>(vec: &mut Vec<T>, size: usize) {
let len = vec.len();
if size > len {
vec.reserve(size - len);
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{DurationNum, Rights, Signals, Vmo};
use std::thread;
#[test]
fn channel_basic() {
let (p1, p2) = Channel::create().unwrap();
let mut empty = vec![];
assert!(p1.write(b"hello", &mut empty).is_ok());
let mut buf = MessageBuf::new();
assert!(p2.read(&mut buf).is_ok());
assert_eq!(buf.bytes(), b"hello");
}
#[test]
fn channel_read_raw_too_small() {
let (p1, p2) = Channel::create().unwrap();
let mut empty = vec![];
assert!(p1.write(b"hello", &mut empty).is_ok());
let mut buf = MessageBuf::new();
let result = p2.read_raw(&mut buf);
assert_eq!(result, Err((5, 0)));
assert_eq!(buf.bytes(), b"");
}
#[test]
fn channel_send_handle() {
let hello_length: usize = 5;
// Create a pair of channels and a virtual memory object.
let (p1, p2) = Channel::create().unwrap();
let vmo = Vmo::create(hello_length as u64).unwrap();
// Duplicate VMO handle and send it down the channel.
let duplicate_vmo_handle = vmo.duplicate_handle(Rights::SAME_RIGHTS).unwrap().into();
let mut handles_to_send: Vec<Handle> = vec![duplicate_vmo_handle];
assert!(p1.write(b"", &mut handles_to_send).is_ok());
// Handle should be removed from vector.
assert!(handles_to_send.is_empty());
// Read the handle from the receiving channel.
let mut buf = MessageBuf::new();
assert!(p2.read(&mut buf).is_ok());
assert_eq!(buf.n_handles(), 1);
// Take the handle from the buffer.
let received_handle = buf.take_handle(0).unwrap();
// Should not affect number of handles.
assert_eq!(buf.n_handles(), 1);
// Trying to take it again should fail.
assert!(buf.take_handle(0).is_none());
// Now to test that we got the right handle, try writing something to it...
let received_vmo = Vmo::from(received_handle);
assert!(received_vmo.write(b"hello", 0).is_ok());
// ... and reading it back from the original VMO.
let mut read_vec = vec![0; hello_length];
assert!(vmo.read(&mut read_vec, 0).is_ok());
assert_eq!(read_vec, b"hello");
}
#[test]
fn channel_call_timeout() {
let ten_ms = 10.millis();
// Create a pair of channels and a virtual memory object.
let (p1, p2) = Channel::create().unwrap();
let vmo = Vmo::create(0 as u64).unwrap();
// Duplicate VMO handle and send it along with the call.
let duplicate_vmo_handle = vmo.duplicate_handle(Rights::SAME_RIGHTS).unwrap().into();
let mut handles_to_send: Vec<Handle> = vec![duplicate_vmo_handle];
let mut buf = MessageBuf::new();
assert_eq!(p1.call(ten_ms.after_now(), b"0000call", &mut handles_to_send, &mut buf),
Err(Status::TIMED_OUT));
// Handle should be removed from vector even though we didn't get a response, as it was
// still sent over the channel.
assert!(handles_to_send.is_empty());
// Should be able to read call even though it timed out waiting for a response.
let mut buf = MessageBuf::new();
assert!(p2.read(&mut buf).is_ok());
assert_eq!(&buf.bytes()[4..], b"call");
assert_eq!(buf.n_handles(), 1);
}
#[test]
fn channel_call() {
// Create a pair of channels
let (p1, p2) = Channel::create().unwrap();
// create an mpsc channel for communicating the call data for later assertion
let (tx, rx) = ::std::sync::mpsc::channel();
// Start a new thread to respond to the call.
thread::spawn(move || {
let mut buf = MessageBuf::new();
// if either the read or the write fail, this thread will panic,
// resulting in tx being dropped, which will be noticed by the rx.
p2.wait_handle(Signals::CHANNEL_READABLE, 1.seconds().after_now()).expect("callee wait error");
p2.read(&mut buf).expect("callee read error");
let (bytes, handles) = buf.split_mut();
tx.send(bytes.clone()).expect("callee mpsc send error");
assert_eq!(handles.len(), 0);
bytes.truncate(4); // Drop the received message, leaving only the txid
bytes.extend_from_slice(b"response");
p2.write(bytes, handles).expect("callee write error");
});
// Make the call.
let mut buf = MessageBuf::new();
buf.ensure_capacity_bytes(12);
// NOTE(raggi): CQ has been seeing some long stalls from channel call,
// and it's as yet unclear why. The timeout here has been made much
// larger in order to avoid that, as the issues are not issues with this
// crate's concerns. The timeout is here just to prevent the tests from
// stalling forever if a developer makes a mistake locally in this
// crate. Tests of Zircon behavior or virtualization behavior should be
// covered elsewhere. See ZX-1324.
p1.call(30.seconds().after_now(), b"txidcall", &mut vec![], &mut buf).expect("channel call error");
assert_eq!(&buf.bytes()[4..], b"response");
assert_eq!(buf.n_handles(), 0);
let sbuf = rx.recv().expect("mpsc channel recv error");
assert_eq!(&sbuf[4..], b"call");
}
}