blob: ae5840251425827b27b00cada52c971b83f0d197 [file] [log] [blame]
// Copyright 2016 Joe Wilm, The Alacritty Project Contributors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! State management for a selection in the grid
//!
//! A selection should start when the mouse is clicked, and it should be
//! finalized when the button is released. The selection should be cleared
//! when text is added/removed/scrolled on the screen. The selection should
//! also be cleared if the user clicks off of the selection.
use std::cmp::{min, max};
use index::{Point, Column, RangeInclusive, Side, Linear, Line};
use grid::ToRange;
/// Describes a region of a 2-dimensional area
///
/// Used to track a text selection. There are three supported modes, each with its own constructor:
/// [`simple`], [`semantic`], and [`lines`]. The [`simple`] mode precisely tracks which cells are
/// selected without any expansion. [`semantic`] mode expands the initial selection to the nearest
/// semantic escape char in either direction. [`lines`] will always select entire lines.
///
/// Calls to [`update`] operate different based on the selection kind. The [`simple`] mode does
/// nothing special, simply tracks points and sides. [`semantic`] will continue to expand out to
/// semantic boundaries as the selection point changes. Similarly, [`lines`] will always expand the
/// new point to encompass entire lines.
///
/// [`simple`]: enum.Selection.html#method.simple
/// [`semantic`]: enum.Selection.html#method.semantic
/// [`lines`]: enum.Selection.html#method.lines
pub enum Selection {
Simple {
/// The region representing start and end of cursor movement
region: Region<Anchor>,
},
Semantic {
/// The region representing start and end of cursor movement
region: Region<Point>,
/// When beginning a semantic selection, the grid is searched around the
/// initial point to find semantic escapes, and this initial expansion
/// marks those points.
initial_expansion: Region<Point>
},
Lines {
/// The region representing start and end of cursor movement
region: Region<Point>,
/// The line under the initial point. This is always selected regardless
/// of which way the cursor is moved.
initial_line: Line
}
}
pub struct Region<T> {
start: T,
end: T
}
/// A Point and side within that point.
pub struct Anchor {
point: Point,
side: Side,
}
impl Anchor {
fn new(point: Point, side: Side) -> Anchor {
Anchor { point, side }
}
}
/// A type that can expand a given point to a region
///
/// Usually this is implemented for some 2-D array type since
/// points are two dimensional indices.
pub trait SemanticSearch {
/// Find the nearest semantic boundary _to the left_ of provided point.
fn semantic_search_left(&self, _: Point) -> Point;
/// Find the nearest semantic boundary _to the point_ of provided point.
fn semantic_search_right(&self, _: Point) -> Point;
}
/// A type that has 2-dimensional boundaries
pub trait Dimensions {
/// Get the size of the area
fn dimensions(&self) -> Point;
}
impl Selection {
pub fn simple(location: Point, side: Side) -> Selection {
Selection::Simple {
region: Region {
start: Anchor::new(location, side),
end: Anchor::new(location, side)
}
}
}
pub fn semantic<G: SemanticSearch>(point: Point, grid: &G) -> Selection {
let (start, end) = (grid.semantic_search_left(point), grid.semantic_search_right(point));
Selection::Semantic {
region: Region {
start: point,
end: point,
},
initial_expansion: Region {
start,
end,
}
}
}
pub fn lines(point: Point) -> Selection {
Selection::Lines {
region: Region {
start: point,
end: point
},
initial_line: point.line
}
}
pub fn update(&mut self, location: Point, side: Side) {
// Always update the `end`; can normalize later during span generation.
match *self {
Selection::Simple { ref mut region } => {
region.end = Anchor::new(location, side);
},
Selection::Semantic { ref mut region, .. } |
Selection::Lines { ref mut region, .. } =>
{
region.end = location;
},
}
}
pub fn to_span<G: SemanticSearch + Dimensions>(&self, grid: &G) -> Option<Span> {
match *self {
Selection::Simple { ref region } => {
Selection::span_simple(grid, region)
},
Selection::Semantic { ref region, ref initial_expansion } => {
Selection::span_semantic(grid, region, initial_expansion)
},
Selection::Lines { ref region, initial_line } => {
Selection::span_lines(grid, region, initial_line)
}
}
}
fn span_semantic<G>(
grid: &G,
region: &Region<Point>,
initial_expansion: &Region<Point>
) -> Option<Span>
where G: SemanticSearch + Dimensions
{
let mut start = initial_expansion.start;
let mut end = initial_expansion.end;
// Normalize ordering of selected cells
let (front, tail) = if region.start < region.end {
(region.start, region.end)
} else {
(region.end, region.start)
};
// Update start of selection *if* front has moved beyond initial start
if front < start {
start = grid.semantic_search_left(front);
}
// Update end of selection *if* tail has moved beyond initial end.
if tail > end {
end = grid.semantic_search_right(tail);
}
Some(Span {
cols: grid.dimensions().col,
front: start,
tail: end,
ty: SpanType::Inclusive,
})
}
fn span_lines<G>(grid: &G, region: &Region<Point>, initial_line: Line) -> Option<Span>
where G: Dimensions
{
// First, create start and end points based on initial line and the grid
// dimensions.
let mut start = Point {
col: Column(0),
line: initial_line
};
let mut end = Point {
col: grid.dimensions().col - 1,
line: initial_line
};
// Now, expand lines based on where cursor started and ended.
if region.start.line < region.end.line {
// Start is above end
start.line = min(start.line, region.start.line);
end.line = max(end.line, region.end.line);
} else {
// Start is below end
start.line = min(start.line, region.end.line);
end.line = max(end.line, region.start.line);
}
Some(Span {
cols: grid.dimensions().col,
front: start,
tail: end,
ty: SpanType::Inclusive
})
}
fn span_simple<G: Dimensions>(grid: &G, region: &Region<Anchor>) -> Option<Span> {
let start = region.start.point;
let start_side = region.start.side;
let end = region.end.point;
let end_side = region.end.side;
let cols = grid.dimensions().col;
let (front, tail, front_side, tail_side) = if start > end {
// Selected upward; start/end are swapped
(end, start, end_side, start_side)
} else {
// Selected downward; no swapping
(start, end, start_side, end_side)
};
debug_assert!(!(tail < front));
// Single-cell selections are a special case
if start == end {
if start_side == end_side {
return None;
} else {
return Some(Span {
cols,
ty: SpanType::Inclusive,
front,
tail,
});
}
}
// The other special case is two adjacent cells with no
// selection: [ B][E ] or [ E][B ]
let adjacent = tail.line == front.line && tail.col - front.col == Column(1);
if adjacent && front_side == Side::Right && tail_side == Side::Left {
return None;
}
Some(match (front_side, tail_side) {
// [FX][XX][XT]
(Side::Left, Side::Right) => Span {
cols,
front,
tail,
ty: SpanType::Inclusive
},
// [ F][XX][T ]
(Side::Right, Side::Left) => Span {
cols,
front,
tail,
ty: SpanType::Exclusive
},
// [FX][XX][T ]
(Side::Left, Side::Left) => Span {
cols,
front,
tail,
ty: SpanType::ExcludeTail
},
// [ F][XX][XT]
(Side::Right, Side::Right) => Span {
cols,
front,
tail,
ty: SpanType::ExcludeFront
},
})
}
}
/// How to interpret the locations of a Span.
#[derive(Debug, Eq, PartialEq)]
pub enum SpanType {
/// Includes the beginning and end locations
Inclusive,
/// Exclude both beginning and end
Exclusive,
/// Excludes last cell of selection
ExcludeTail,
/// Excludes first cell of selection
ExcludeFront,
}
/// Represents a span of selected cells
#[derive(Debug, Eq, PartialEq)]
pub struct Span {
front: Point,
tail: Point,
cols: Column,
/// The type says whether ends are included or not.
ty: SpanType,
}
impl Span {
pub fn to_locations(&self) -> (Point, Point) {
match self.ty {
SpanType::Inclusive => (self.front, self.tail),
SpanType::Exclusive => {
(Span::wrap_start(self.front, self.cols), Span::wrap_end(self.tail, self.cols))
},
SpanType::ExcludeFront => (Span::wrap_start(self.front, self.cols), self.tail),
SpanType::ExcludeTail => (self.front, Span::wrap_end(self.tail, self.cols))
}
}
fn wrap_start(mut start: Point, cols: Column) -> Point {
if start.col == cols - 1 {
Point {
line: start.line + 1,
col: Column(0),
}
} else {
start.col += 1;
start
}
}
fn wrap_end(end: Point, cols: Column) -> Point {
if end.col == Column(0) && end.line != Line(0) {
Point {
line: end.line - 1,
col: cols
}
} else {
Point {
line: end.line,
col: end.col - 1
}
}
}
#[inline]
fn exclude_start(start: Linear) -> Linear {
start + 1
}
#[inline]
fn exclude_end(end: Linear) -> Linear {
if end > Linear(0) {
end - 1
} else {
end
}
}
}
impl ToRange for Span {
fn to_range(&self) -> RangeInclusive<Linear> {
let cols = self.cols;
let start = Linear(self.front.line.0 * cols.0 + self.front.col.0);
let end = Linear(self.tail.line.0 * cols.0 + self.tail.col.0);
let (start, end) = match self.ty {
SpanType::Inclusive => (start, end),
SpanType::Exclusive => (Span::exclude_start(start), Span::exclude_end(end)),
SpanType::ExcludeFront => (Span::exclude_start(start), end),
SpanType::ExcludeTail => (start, Span::exclude_end(end))
};
RangeInclusive::new(start, end)
}
}
/// Tests for selection
///
/// There are comments on all of the tests describing the selection. Pictograms
/// are used to avoid ambiguity. Grid cells are represented by a [ ]. Only
/// cells that are completely covered are counted in a selection. Ends are
/// represented by `B` and `E` for begin and end, respectively. A selected cell
/// looks like [XX], [BX] (at the start), [XB] (at the end), [XE] (at the end),
/// and [EX] (at the start), or [BE] for a single cell. Partially selected cells
/// look like [ B] and [E ].
#[cfg(test)]
mod test {
use index::{Line, Column, Side, Point};
use super::{Selection, Span, SpanType};
struct Dimensions(Point);
impl super::Dimensions for Dimensions {
fn dimensions(&self) -> Point {
self.0
}
}
impl Dimensions {
pub fn new(line: usize, col: usize) -> Self {
Dimensions(Point {
line: Line(line),
col: Column(col)
})
}
}
impl super::SemanticSearch for Dimensions {
fn semantic_search_left(&self, _: Point) -> Point { unimplemented!(); }
fn semantic_search_right(&self, _: Point) -> Point { unimplemented!(); }
}
/// Test case of single cell selection
///
/// 1. [ ]
/// 2. [B ]
/// 3. [BE]
#[test]
fn single_cell_left_to_right() {
let location = Point { line: Line(0), col: Column(0) };
let mut selection = Selection::simple(location, Side::Left);
selection.update(location, Side::Right);
assert_eq!(selection.to_span(&Dimensions::new(1, 1)).unwrap(), Span {
cols: Column(1),
ty: SpanType::Inclusive,
front: location,
tail: location
});
}
/// Test case of single cell selection
///
/// 1. [ ]
/// 2. [ B]
/// 3. [EB]
#[test]
fn single_cell_right_to_left() {
let location = Point { line: Line(0), col: Column(0) };
let mut selection = Selection::simple(location, Side::Right);
selection.update(location, Side::Left);
assert_eq!(selection.to_span(&Dimensions::new(1, 1)).unwrap(), Span {
cols: Column(1),
ty: SpanType::Inclusive,
front: location,
tail: location
});
}
/// Test adjacent cell selection from left to right
///
/// 1. [ ][ ]
/// 2. [ B][ ]
/// 3. [ B][E ]
#[test]
fn between_adjacent_cells_left_to_right() {
let mut selection = Selection::simple(Point::new(Line(0), Column(0)), Side::Right);
selection.update(Point::new(Line(0), Column(1)), Side::Left);
assert_eq!(selection.to_span(&Dimensions::new(1, 2)), None);
}
/// Test adjacent cell selection from right to left
///
/// 1. [ ][ ]
/// 2. [ ][B ]
/// 3. [ E][B ]
#[test]
fn between_adjacent_cells_right_to_left() {
let mut selection = Selection::simple(Point::new(Line(0), Column(1)), Side::Left);
selection.update(Point::new(Line(0), Column(0)), Side::Right);
assert_eq!(selection.to_span(&Dimensions::new(1, 2)), None);
}
/// Test selection across adjacent lines
///
///
/// 1. [ ][ ][ ][ ][ ]
/// [ ][ ][ ][ ][ ]
/// 2. [ ][ ][ ][ ][ ]
/// [ ][ B][ ][ ][ ]
/// 3. [ ][ E][XX][XX][XX]
/// [XX][XB][ ][ ][ ]
#[test]
fn across_adjacent_lines_upward_final_cell_exclusive() {
let mut selection = Selection::simple(Point::new(Line(1), Column(1)), Side::Right);
selection.update(Point::new(Line(0), Column(1)), Side::Right);
assert_eq!(selection.to_span(&Dimensions::new(2, 5)).unwrap(), Span {
cols: Column(5),
front: Point::new(Line(0), Column(1)),
tail: Point::new(Line(1), Column(1)),
ty: SpanType::ExcludeFront
});
}
/// Test selection across adjacent lines
///
///
/// 1. [ ][ ][ ][ ][ ]
/// [ ][ ][ ][ ][ ]
/// 2. [ ][ B][ ][ ][ ]
/// [ ][ ][ ][ ][ ]
/// 3. [ ][ B][XX][XX][XX]
/// [XX][XE][ ][ ][ ]
/// 4. [ ][ B][XX][XX][XX]
/// [XE][ ][ ][ ][ ]
#[test]
fn selection_bigger_then_smaller() {
let mut selection = Selection::simple(Point::new(Line(0), Column(1)), Side::Right);
selection.update(Point::new(Line(1), Column(1)), Side::Right);
selection.update(Point::new(Line(1), Column(0)), Side::Right);
assert_eq!(selection.to_span(&Dimensions::new(2, 5)).unwrap(), Span {
cols: Column(5),
front: Point::new(Line(0), Column(1)),
tail: Point::new(Line(1), Column(0)),
ty: SpanType::ExcludeFront
});
}
}