blob: 78aaedef93af2752b5a81d31418254e4d52cd8e4 [file] [log] [blame] [view]
# Ryū
[![Build Status](https://api.travis-ci.org/dtolnay/ryu.svg?branch=master)](https://travis-ci.org/dtolnay/ryu)
[![Latest Version](https://img.shields.io/crates/v/ryu.svg)](https://crates.io/crates/ryu)
[![Rust Documentation](https://img.shields.io/badge/api-rustdoc-blue.svg)](https://docs.rs/ryu)
[![Rustc Version 1.15+](https://img.shields.io/badge/rustc-1.15+-lightgray.svg)](https://blog.rust-lang.org/2017/02/02/Rust-1.15.html)
Pure Rust implementation of Ryū, an algorithm to quickly convert floating point
numbers to decimal strings.
The PLDI'18 paper [*Ryū: fast float-to-string conversion*][paper] by Ulf Adams
includes a complete correctness proof of the algorithm. The paper is available
under the creative commons CC-BY-SA license.
This Rust implementation is a line-by-line port of Ulf Adams' implementation in
C, [https://github.com/ulfjack/ryu][upstream]. The `ryu::raw` module exposes
exactly the API and formatting of the C implementation as unsafe pure Rust
functions. There is additionally a safe API as demonstrated in the example code
below. The safe API uses the same underlying Ryū algorithm but diverges from the
formatting of the C implementation to produce more human-readable output, for
example `0.3` rather than `3E-1`.
*Requirements: this crate supports any compiler version back to rustc 1.15; it
uses nothing from the Rust standard library so is usable from no_std crates.*
[paper]: https://dl.acm.org/citation.cfm?id=3192369
[upstream]: https://github.com/ulfjack/ryu/tree/66ba13274ca0247ad46fd4fe8a2f6d36f5d39b01
```toml
[dependencies]
ryu = "0.2"
```
## Examples
```rust
extern crate ryu;
fn main() {
let mut buffer = ryu::Buffer::new();
let printed = buffer.format(1.234);
assert_eq!(printed, "1.234");
}
```
## Performance
You can run upstream's benchmarks with:
```console
$ git clone https://github.com/ulfjack/ryu c-ryu
$ cd c-ryu
$ bazel run -c opt //ryu/benchmark
```
And our benchmarks with:
```console
$ git clone https://github.com/ulfjack/ryu rust-ryu
$ cd rust-ryu
$ cargo run --example benchmark --release
```
These benchmarks measure the average time to print a 32-bit float and average
time to print a 64-bit float, where the inputs are distributed as uniform random
bit patterns 32 and 64 bits wide.
The upstream C code, the unsafe direct Rust port, and the safe pretty Rust API
all perform the same, taking around 21 nanoseconds to format a 32-bit float and
31 nanoseconds to format a 64-bit float.
## License
Licensed under either of the following at your option.
- Apache License, Version 2.0 ([LICENSE-APACHE](LICENSE-APACHE) or http://www.apache.org/licenses/LICENSE-2.0)
- Boost Software License 1.0 ([LICENSE-BOOST](LICENSE-BOOST) or https://www.boost.org/LICENSE_1_0.txt)