blob: ba3cf6e25be201909b6a78fa07c2c0c335013d54 [file] [log] [blame]
/******************************************************************************
*
* Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
* Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
* Copyright(c) 2015 - 2017 Intel Deutschland GmbH
* Copyright(c) 2018 Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*****************************************************************************/
#include <zircon/syscalls.h>
#include <zircon/time.h>
#include "third_party/iwlwifi/iwl-trans.h"
#include "third_party/iwlwifi/mvm/fw-api.h"
#include "third_party/iwlwifi/mvm/mvm.h"
#include "third_party/iwlwifi/platform/ieee80211.h"
#include "third_party/iwlwifi/platform/irq.h"
#include "third_party/iwlwifi/platform/rcu.h"
#include "third_party/iwlwifi/platform/stats.h"
static bool is_multicast_ether_addr(uint8_t addr[6])
{
return (addr[0] & 0x1) != 0;
}
static inline zx_status_t iwl_mvm_check_pn(struct iwl_mvm *mvm,
struct ieee80211_frame_header *hdr,
struct ieee80211_rx_status *stats,
int queue,
struct iwl_mvm_sta *mvmsta)
{
struct iwl_mvm_key_pn *ptk_pn;
int res;
uint8_t tid, keyidx;
uint8_t pn[fuchsia_wlan_ieee80211_CCMP_PN_LEN];
/* do PN checking */
/* multicast and non-data only arrives on default queue */
if (!ieee80211_is_data(hdr) || is_multicast_ether_addr(hdr->addr1)) {
return ZX_OK;
}
/* do not check PN for open AP */
if (!(stats->flag & RX_FLAG_DECRYPTED)) {
return ZX_OK;
}
/*
* avoid checking for default queue - we don't want to replicate
* all the logic that's necessary for checking the PN on fragmented
* frames, leave that to mac80211
*/
if (queue == 0) {
return ZX_OK;
}
/* if we are here - this for sure is either CCMP or GCMP */
if (mvmsta == NULL) {
IWL_ERR(mvm,
"expected hw-decrypted unicast frame for station\n");
return ZX_ERR_BAD_STATE;
}
keyidx = stats->extiv[3] >> 6;
ptk_pn = iwl_rcu_load(mvmsta->ptk_pn[keyidx]);
if (!ptk_pn) {
return ZX_ERR_BAD_STATE;
}
if (ieee80211_is_data_qos(hdr)) {
tid = ieee80211_get_tid(hdr);
} else {
tid = 0;
}
/* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
if (tid >= IWL_MAX_TID_COUNT) {
return ZX_ERR_NOT_SUPPORTED;
}
/* load pn */
pn[0] = stats->extiv[0];
pn[1] = stats->extiv[1];
pn[2] = stats->extiv[4];
pn[3] = stats->extiv[5];
pn[4] = stats->extiv[6];
pn[5] = stats->extiv[7];
res = memcmp(pn, ptk_pn->q[queue].pn[tid],
fuchsia_wlan_ieee80211_CCMP_PN_LEN);
if (res < 0) {
return ZX_ERR_INVALID_ARGS;
}
if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) {
return ZX_ERR_INVALID_ARGS;
}
memcpy(ptk_pn->q[queue].pn[tid], pn,
fuchsia_wlan_ieee80211_CCMP_PN_LEN);
stats->flag |= RX_FLAG_PN_VALIDATED;
return ZX_OK;
}
// iwl_mvm_create_packet formats the packets for passing to mac80211.
// Note: this is derived from iwl_mvm_create_skb(), but the Fuchsia version formats the packet
// in-place.
size_t iwl_mvm_create_packet(struct ieee80211_frame_header *hdr, size_t len,
size_t crypt_len, struct wlan_rx_info *rx_info,
struct iwl_rx_cmd_buffer *rxb)
{
ZX_ASSERT(rx_info);
struct iwl_rx_packet *pkt = rxb_addr(rxb);
ZX_ASSERT(pkt);
struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
ZX_ASSERT(desc);
size_t hdrlen = ieee80211_get_header_len(hdr);
size_t datalen = len - hdrlen;
size_t padlen = 0;
/* The firmware may align the packet to DWORD.
* The padding is inserted after the IV.
* After copying the header + IV skip the padding if
* present before copying packet data.
*/
if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
padlen += 2;
}
// Fuchsia requires that the crypto header is stripped out.
padlen += crypt_len;
#if 0 // NEEDS_PORTING
/* If frame is small enough to fit in skb->head, pull it completely.
* If not, only pull ieee80211_hdr (including crypto if present, and
* an additional 8 bytes for SNAP/ethertype, see below) so that
* splice() or TCP coalesce are more efficient.
*
* Since, in addition, ieee80211_data_to_8023() always pull in at
* least 8 bytes (possibly more for mesh) we can do the same here
* to save the cost of doing it later. That still doesn't pull in
* the actual IP header since the typical case has a SNAP header.
* If the latter changes (there are efforts in the standards group
* to do so) we should revisit this and ieee80211_data_to_8023().
*/
headlen = (len <= skb_tailroom(skb)) ? len : hdrlen + crypt_len + 8;
/* The firmware may align the packet to DWORD.
* The padding is inserted after the IV.
* After copying the header + IV skip the padding if
* present before copying packet data.
*/
hdrlen += crypt_len;
if (unlikely(headlen < hdrlen))
return -EINVAL;
skb_put_data(skb, hdr, hdrlen);
skb_put_data(skb, (uint8_t*)hdr + hdrlen + padlen, headlen - hdrlen);
#endif // NEEDS_PORTING
// For Fuchsia, we take out padlen, which includes any crypt header if present.
if (padlen > 0) {
if (padlen < 4 && ((hdrlen + padlen) % 4) == 0) {
// There is padding equivalent to padding for 4-byte alignment, so we we indicate this to SME
// using a flag instead of manually copying the packet contents.
rx_info->rx_flags |=
WLAN_RX_INFO_FLAGS_FRAME_BODY_PADDING_4;
} else {
datalen -= padlen;
memmove((char *)hdr + hdrlen,
(char *)hdr + hdrlen + padlen, datalen);
}
}
#if 0 // NEEDS_PORTING
fraglen = len - headlen;
if (fraglen) {
int offset = (void*)hdr + headlen + padlen - rxb_addr(rxb) + rxb_offset(rxb);
skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, fraglen, rxb->truesize);
}
#endif // NEEDS_PORTING
return hdrlen + datalen;
}
/* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
static void
iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
wlan_rx_packet_t *rx_packet,
struct ieee80211_rx_status *rx_status,
int queue, struct iwl_mvm_sta *sta)
{
struct ieee80211_frame_header *header =
(struct ieee80211_frame_header *)rx_packet->mac_frame_buffer;
if (iwl_mvm_check_pn(mvm, header, rx_status, queue, sta) != ZX_OK) {
return;
}
// Send to MLME
// TODO(fxbug.dev/43218) Need to revisit to handle multiple IFs
iwl_stats_analyze_rx(rx_packet);
// This function may be running concurrently while the device is being created or destroyed.
// We need to synchronize with the creation/deletion thread and validate that mvmvif is in
// a valid state before we try to use it.
iwl_rcu_read_lock(mvm->dev);
softmac_ifc_recv(mvm->mvmvif[0], rx_packet);
iwl_rcu_read_unlock(mvm->dev);
}
static int iwl_mvm_get_signal_strength(struct iwl_mvm *mvm, int energy_a,
int energy_b)
{
int max_energy;
energy_a = energy_a ? -energy_a : S8_MIN;
energy_b = energy_b ? -energy_b : S8_MIN;
max_energy = MAX(energy_a, energy_b);
IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n", energy_a,
energy_b, max_energy);
return max_energy;
}
static zx_status_t iwl_mvm_rx_crypto(struct iwl_mvm *mvm,
struct ieee80211_frame_header *hdr,
struct ieee80211_rx_status *stats,
uint16_t phy_info,
struct iwl_rx_mpdu_desc *desc,
uint32_t pkt_flags, size_t *crypt_len)
{
uint16_t status = le16_to_cpu(desc->status);
/*
* Drop UNKNOWN frames in aggregation, unless in monitor mode
* (where we don't have the keys).
* We limit this to aggregation because in TKIP this is a valid
* scenario, since we may not have the (correct) TTAK (phase 1
* key) in the firmware.
*/
if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
(status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
IWL_RX_MPDU_STATUS_SEC_UNKNOWN &&
!mvm->monitor_on) {
return ZX_ERR_BAD_STATE;
}
if (!ieee80211_has_protected(hdr) ||
(status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
IWL_RX_MPDU_STATUS_SEC_NONE) {
return ZX_OK;
}
/* TODO: handle packets encrypted with unknown alg */
switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
case IWL_RX_MPDU_STATUS_SEC_CCM:
case IWL_RX_MPDU_STATUS_SEC_GCM:
#if 0 // NEEDS_PORTING
BUILD_BUG_ON(fuchsia_wlan_ieee80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
#endif // NEEDS_PORTING
/* alg is CCM: check MIC only */
if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) {
return ZX_ERR_BAD_STATE;
}
stats->flag |= RX_FLAG_DECRYPTED;
#if 0 // NEEDS_PORTING
if (pkt_flags & FH_RSCSR_RADA_EN) { stats->flag |= RX_FLAG_MIC_STRIPPED; }
#endif // NEEDS_PORTING
// Fuchsia needs the extiv copied, since it will remove the crypt header from the packet.
memcpy(stats->extiv,
(char *)hdr + ieee80211_get_header_len(hdr), 8);
*crypt_len = fuchsia_wlan_ieee80211_CCMP_HDR_LEN;
return ZX_OK;
case IWL_RX_MPDU_STATUS_SEC_TKIP:
/* Don't drop the frame and decrypt it in SW */
if (!fw_has_api(&mvm->fw->ucode_capa,
IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
!(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK)) {
return ZX_OK;
}
#if 0 // NEEDS_PORTING
if (mvm->trans->cfg->gen2 && !(status & RX_MPDU_RES_STATUS_MIC_OK)) {
stats->flag |= RX_FLAG_MMIC_ERROR;
}
#endif // NEEDS_PORTING
*crypt_len = 8; // IEEE80211_TKIP_IV_LEN;
/* fall through if TTAK OK */
__attribute__((fallthrough));
case IWL_RX_MPDU_STATUS_SEC_WEP:
if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) {
return ZX_ERR_IO_DATA_INTEGRITY;
}
stats->flag |= RX_FLAG_DECRYPTED;
if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
IWL_RX_MPDU_STATUS_SEC_WEP) {
*crypt_len = 4; // IEEE80211_WEP_IV_LEN;
}
#if 0 // NEEDS_PORTING
if (pkt_flags & FH_RSCSR_RADA_EN) {
stats->flag |= RX_FLAG_ICV_STRIPPED;
if (mvm->trans->cfg->gen2) { stats->flag |= RX_FLAG_MMIC_STRIPPED; }
}
#endif // NEEDS_PORTING
return ZX_OK;
#if 0 // NEEDS_PORTING
case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) { return -1; }
stats->flag |= RX_FLAG_DECRYPTED;
return 0;
#endif // NEEDS_PORTING
default:
/* Expected in monitor (not having the keys) */
if (!mvm->monitor_on) {
IWL_DEBUG_RX(mvm, "Unhandled alg: 0x%x\n", status);
}
}
return ZX_OK;
}
#if 0 // NEEDS_PORTING
static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
struct ieee80211_sta *sta,
struct sk_buff *skb,
struct iwl_rx_packet *pkt)
{
struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
skb->ip_summed = CHECKSUM_COMPLETE;
skb->csum = csum_unfold(~(__force __sum16)hwsum);
}
} else {
struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
struct iwl_mvm_vif *mvmvif;
u16 flags = le16_to_cpu(desc->l3l4_flags);
u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
IWL_RX_L3_PROTO_POS);
mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
if (mvmvif->features & NETIF_F_RXCSUM &&
flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
(flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
l3_prot == IWL_RX_L3_TYPE_IPV6 ||
l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
}
/*
* returns true if a packet is a duplicate and should be dropped.
* Updates AMSDU PN tracking info
*/
static bool iwl_mvm_is_dup(struct ieee80211_sta* sta, int queue,
struct ieee80211_rx_status* rx_status, struct ieee80211_hdr* hdr,
struct iwl_rx_mpdu_desc* desc) {
struct iwl_mvm_sta* mvm_sta;
struct iwl_mvm_rxq_dup_data* dup_data;
uint8_t tid, sub_frame_idx;
if (WARN_ON(IS_ERR_OR_NULL(sta))) { return false; }
mvm_sta = iwl_mvm_sta_from_mac80211(sta);
dup_data = &mvm_sta->dup_data[queue];
/*
* Drop duplicate 802.11 retransmissions
* (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
*/
if (ieee80211_is_ctl(hdr->frame_control) || ieee80211_is_qos_nullfunc(hdr->frame_control) ||
is_multicast_ether_addr(hdr->addr1)) {
rx_status->flag |= RX_FLAG_DUP_VALIDATED;
return false;
}
if (ieee80211_is_data_qos(hdr->frame_control)) { /* frame has qos control */
tid = ieee80211_get_tid(hdr);
} else {
tid = IWL_MAX_TID_COUNT;
}
/* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
sub_frame_idx = desc->amsdu_info & IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
dup_data->last_seq[tid] == hdr->seq_ctrl &&
dup_data->last_sub_frame[tid] >= sub_frame_idx)) {
return true;
}
/* Allow same PN as the first subframe for following sub frames */
if (dup_data->last_seq[tid] == hdr->seq_ctrl && sub_frame_idx > dup_data->last_sub_frame[tid] &&
desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) {
rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
}
dup_data->last_seq[tid] = hdr->seq_ctrl;
dup_data->last_sub_frame[tid] = sub_frame_idx;
rx_status->flag |= RX_FLAG_DUP_VALIDATED;
return false;
}
#endif // NEEDS_PORTING
/*
* Returns true if sn2 - buffer_size < sn1 < sn2.
* To be used only in order to compare reorder buffer head with NSSN.
* We fully trust NSSN unless it is behind us due to reorder timeout.
* Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
*/
static bool iwl_mvm_is_sn_less(uint16_t sn1, uint16_t sn2, uint16_t buffer_size)
{
return ieee80211_sn_less(sn1, sn2) &&
!ieee80211_sn_less(sn1, sn2 - buffer_size);
}
static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn)
{
#if 0 // NEEDS_PORTING
if (IWL_MVM_USE_NSSN_SYNC) {
struct iwl_mvm_nssn_sync_data notif = {
.baid = baid,
.nssn = nssn,
};
iwl_mvm_sync_rx_queues_internal(mvm, IWL_MVM_RXQ_NSSN_SYNC, false,
&notif, sizeof(notif));
}
#endif // NEEDS_PORTING
}
#define RX_REORDER_BUF_TIMEOUT_MQ (ZX_MSEC(100))
enum iwl_mvm_release_flags {
IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0),
IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1),
};
// Forwards packets from the reorder buffer to MLME.
static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
struct ieee80211_sta *sta,
struct iwl_mvm_baid_data *baid_data,
struct iwl_mvm_reorder_buffer *reorder_buf,
u16 nssn, u32 flags)
{
struct iwl_mvm_reorder_buf_entry *entries =
&baid_data->entries[reorder_buf->queue *
baid_data->entries_per_queue];
u16 ssn = reorder_buf->head_sn;
iwl_assert_lock_held(&reorder_buf->lock);
struct iwl_mvm_sta *mvm_sta = iwl_mvm_sta_from_mac80211(sta);
if (!mvm_sta) {
IWL_ERR(mvm,
"iwl_mvm_release_frames called with invalid mvm_sta");
return;
}
/*
* We keep the NSSN not too far behind, if we are sync'ing it and it
* is more than 2048 ahead of us, it must be behind us. Discard it.
* This can happen if the queue that hit the 0 / 2048 seqno was lagging
* behind and this queue already processed packets. The next if
* would have caught cases where this queue would have processed less
* than 64 packets, but it may have processed more than 64 packets.
*/
if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) &&
ieee80211_sn_less(nssn, ssn))
goto set_timer;
/* ignore nssn smaller than head sn - this can happen due to timeout */
if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
goto set_timer;
// Note that this will only release frames if (nssn - buf_size) < ssn < nssn
while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
int index = ssn % reorder_buf->buf_size;
ssn = ieee80211_sn_inc(ssn);
if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) &&
(ssn == 2048 || ssn == 0))
iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn);
/*
* Empty the list. Will have more than one frame for A-MSDU.
* Empty list is valid as well since nssn indicates frames were
* received.
*
* TODO(fxbug.dev/110394) add back AMSDU support.
* For now, this is just a single frame.
*/
if (entries[index].e.has_packet) {
ZX_ASSERT(reorder_buf->num_stored > 0);
wlan_rx_packet_t *packet = &entries[index].e.rx_packet;
struct ieee80211_rx_status *status =
&entries[index].e.rx_status;
iwl_mvm_pass_packet_to_mac80211(mvm, packet, status,
reorder_buf->queue,
mvm_sta);
reorder_buf->num_stored--;
entries[index].e.has_packet = false;
free((void *)entries[index]
.e.rx_packet.mac_frame_buffer);
entries[index].e.rx_packet.mac_frame_buffer = NULL;
iwl_stats_inc(IWL_STATS_CNT_FRAMES_BUFFERED);
}
}
reorder_buf->head_sn = nssn;
set_timer:
if (reorder_buf->num_stored && !reorder_buf->removed) {
u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
while (!entries[index].e.has_packet)
index = (index + 1) % reorder_buf->buf_size;
zx_time_t next_timeout =
zx_time_add_duration(entries[index].e.reorder_time,
RX_REORDER_BUF_TIMEOUT_MQ);
/* modify timer to match next frame's expiration time */
if (iwl_irq_timer_start_at_time(reorder_buf->reorder_timer,
next_timeout) != ZX_OK) {
// If starting the timer fails because next_timeout
// is invalid (e.g. in the past), just start the
// callback immediately.
iwl_irq_timer_start(reorder_buf->reorder_timer, 0);
}
} else {
iwl_irq_timer_stop(reorder_buf->reorder_timer);
}
return;
}
void iwl_mvm_reorder_timer_expired(void *data)
{
struct iwl_mvm_reorder_buffer *buf =
(struct iwl_mvm_reorder_buffer *)data;
struct iwl_mvm_baid_data *baid_data =
iwl_mvm_baid_data_from_reorder_buf(buf);
struct iwl_mvm_reorder_buf_entry *entries =
&baid_data->entries[buf->queue * baid_data->entries_per_queue];
int i;
u16 sn = 0, index = 0;
bool expired = false;
bool cont = false;
zx_time_t timeout;
mtx_lock(&buf->lock);
if (!buf->num_stored || buf->removed) {
mtx_unlock(&buf->lock);
return;
}
zx_time_t current_time = zx_clock_get_monotonic();
for (i = 0; i < buf->buf_size; i++) {
index = (buf->head_sn + i) % buf->buf_size;
if (!entries[index].e.has_packet) {
/*
* If there is a hole and the next frame didn't expire
* we want to break and not advance SN
*/
cont = false;
continue;
}
timeout = zx_time_add_duration(entries[index].e.reorder_time,
RX_REORDER_BUF_TIMEOUT_MQ);
// Break on first frame that hasn't expired
if (!cont && current_time <= timeout)
break;
expired = true;
/* continue until next hole after this expired frames */
cont = true;
sn = ieee80211_sn_add(buf->head_sn, i + 1);
}
if (expired) {
struct ieee80211_sta dummy;
struct iwl_mvm_sta *mvmsta;
u8 sta_id = baid_data->sta_id;
iwl_rcu_read_lock(buf->mvm->dev);
mvmsta = iwl_rcu_load(buf->mvm->fw_id_to_mac_id[sta_id]);
dummy.drv_priv = mvmsta;
iwl_stats_inc(IWL_STATS_CNT_REORDER_TIMEOUT);
/* SN is set to the last expired frame + 1 */
IWL_DEBUG_HT(buf->mvm,
"Releasing expired frames for sta %u, sn %d\n",
sta_id, sn);
#if 0 // NEEDS_PORTING
iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
sta, baid_data->tid);
#endif // NEEDS_PORTING
iwl_mvm_release_frames(buf->mvm, &dummy, baid_data, buf, sn,
IWL_MVM_RELEASE_SEND_RSS_SYNC);
iwl_rcu_read_unlock(buf->mvm->dev);
} else {
/*
* If no frame expired and there are stored frames, index is now
* pointing to the first unexpired frame - modify timer
* accordingly to this frame.
*/
timeout = zx_time_add_duration(entries[index].e.reorder_time,
RX_REORDER_BUF_TIMEOUT_MQ);
if (iwl_irq_timer_start_at_time(buf->reorder_timer, timeout) !=
ZX_OK) {
iwl_irq_timer_start(buf->reorder_timer, 0);
}
}
mtx_unlock(&buf->lock);
}
#if 0 // NEEDS_PORTING
static void iwl_mvm_del_ba(struct iwl_mvm* mvm, int queue, struct iwl_mvm_delba_data* data) {
struct iwl_mvm_baid_data* ba_data;
struct ieee80211_sta* sta;
struct iwl_mvm_reorder_buffer* reorder_buf;
uint8_t baid = data->baid;
if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid)) { return; }
rcu_read_lock();
ba_data = rcu_dereference(mvm->baid_map[baid]);
if (WARN_ON_ONCE(!ba_data)) { goto out; }
sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) { goto out; }
reorder_buf = &ba_data->reorder_buf[queue];
/* release all frames that are in the reorder buffer to the stack */
spin_lock_bh(&reorder_buf->lock);
iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
ieee80211_sn_add(reorder_buf->head_sn, reorder_buf->buf_size));
spin_unlock_bh(&reorder_buf->lock);
del_timer_sync(&reorder_buf->reorder_timer);
out:
rcu_read_unlock();
}
#endif // NEEDS_PORTING
void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct iwl_rx_cmd_buffer *rxb,
int queue)
{
#if 0 // NEEDS_PORTING
struct iwl_rx_packet *pkt = rxb_addr(rxb);
struct iwl_rxq_sync_notification *notif;
struct iwl_mvm_internal_rxq_notif *internal_notif;
u32 len = iwl_rx_packet_payload_len(pkt);
notif = (void *)pkt->data;
internal_notif = (void *)notif->payload;
if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif),
"invalid notification size %d (%d)",
len, (int)(sizeof(*notif) + sizeof(*internal_notif))))
return;
len -= sizeof(*notif) + sizeof(*internal_notif);
if (internal_notif->sync &&
mvm->queue_sync_cookie != internal_notif->cookie) {
WARN_ONCE(1, "Received expired RX queue sync message\n");
return;
}
switch (internal_notif->type) {
case IWL_MVM_RXQ_EMPTY:
WARN_ONCE(len, "invalid empty notification size %d", len);
break;
case IWL_MVM_RXQ_NOTIF_DEL_BA:
if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data),
"invalid delba notification size %d (%d)",
len, (int)sizeof(struct iwl_mvm_delba_data)))
break;
iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
break;
case IWL_MVM_RXQ_NSSN_SYNC:
if (WARN_ONCE(len != sizeof(struct iwl_mvm_nssn_sync_data),
"invalid nssn sync notification size %d (%d)",
len, (int)sizeof(struct iwl_mvm_nssn_sync_data)))
break;
iwl_mvm_nssn_sync(mvm, napi, queue,
(void *)internal_notif->data);
break;
default:
WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
}
if (internal_notif->sync) {
WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state),
"queue sync: queue %d responded a second time!\n",
queue);
if (READ_ONCE(mvm->queue_sync_state) == 0)
wake_up(&mvm->rx_sync_waitq);
}
#endif // NEEDS_PORTING
}
// Handles the reordering/buffering logic. Depending on the state of the reorder
// buffer and the sequence number in the given rx_packet, this function may
// buffer the packet, drop the packet, or release frames from the reorder buffer
// to MLME.
// Returns true if the rx_packet was buffered or dropped.
// Returns false if the caller should pass rx_packet to MLME immediately.
bool iwl_mvm_reorder(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
const wlan_rx_packet_t *rx_packet,
struct ieee80211_rx_status *rx_status, int queue,
struct iwl_rx_mpdu_desc *desc)
{
// TODO(fxbug.dev/79993) (fxbug.dev/51295)
struct ieee80211_frame_header *hdr =
(struct ieee80211_frame_header *)(rx_packet->mac_frame_buffer);
struct iwl_mvm_sta *mvm_sta;
struct iwl_mvm_baid_data *baid_data;
struct iwl_mvm_reorder_buffer *buffer;
u32 reorder = le32_to_cpu(desc->reorder_data);
bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
bool last_subframe = desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
u8 tid = ieee80211_get_tid(hdr);
#if 0 // NEEDS_PORTING
u8 sub_frame_idx = desc->amsdu_info &
IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
#endif // NEEDS_PORTING
struct iwl_mvm_reorder_buf_entry *entries;
int index;
u16 nssn, sn;
u8 baid;
baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
IWL_RX_MPDU_REORDER_BAID_SHIFT;
/*
* This also covers the case of receiving a Block Ack Request
* outside a BA session; we'll pass it to mac80211 and that
* then sends a delBA action frame.
* This also covers pure monitor mode, in which case we won't
* have any BA sessions.
*/
if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
return false;
/* no sta yet */
if (IS_ERR_OR_NULL(sta)) {
IWL_WARN(mvm,
"Got valid BAID without a valid station assigned\n");
return false;
}
mvm_sta = iwl_mvm_sta_from_mac80211(sta);
/* not a data packet or a bar */
if (!ieee80211_is_back_req(hdr) &&
(!ieee80211_is_data_qos(hdr) ||
is_multicast_ether_addr(hdr->addr1)))
return false;
#if 0 // NEEDS_PORTING \
// Doesn't this check reject all Block Ack requests? \
// If it does, why is there more Block Ack request code below?
if (unlikely(!ieee80211_is_data_present(hdr)))
return false;
#endif // NEEDS_PORTING
baid_data = iwl_rcu_load(mvm->baid_map[baid]);
if (!baid_data) {
IWL_DEBUG_RX(
mvm,
"Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
baid, reorder);
return false;
}
if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id,
"baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n",
baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id, tid))
return false;
nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
IWL_RX_MPDU_REORDER_SN_SHIFT;
buffer = &baid_data->reorder_buf[queue];
entries = &baid_data->entries[queue * baid_data->entries_per_queue];
mtx_lock(&buffer->lock);
if (!buffer->valid) {
if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
mtx_unlock(&buffer->lock);
return false;
}
buffer->valid = true;
}
if (ieee80211_is_back_req(hdr)) {
iwl_mvm_release_frames(mvm, sta, baid_data, buffer, nssn, 0);
goto drop;
}
/*
* If there was a significant jump in the nssn - adjust.
* If the SN is smaller than the NSSN it might need to first go into
* the reorder buffer, in which case we just release up to it and the
* rest of the function will take care of storing it and releasing up to
* the nssn.
* This should not happen. This queue has been lagging and it should
* have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice
* and update the other queues.
*/
if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
buffer->buf_size) ||
!ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
iwl_mvm_release_frames(mvm, sta, baid_data, buffer, min_sn,
IWL_MVM_RELEASE_SEND_RSS_SYNC);
}
#if 0 // NEEDS_PORTING
iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder,
rx_status->device_timestamp, queue);
#endif // NEEDS_PORTING
/* drop any oudated packets */
if (ieee80211_sn_less(sn, buffer->head_sn))
goto drop;
/* release immediately if allowed by nssn and no stored frames */
if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
buffer->buf_size) &&
(!amsdu || last_subframe)) {
/*
* If we crossed the 2048 or 0 SN, notify all the
* queues. This is done in order to avoid having a
* head_sn that lags behind for too long. When that
* happens, we can get to a situation where the head_sn
* is within the interval [nssn - buf_size : nssn]
* which will make us think that the nssn is a packet
* that we already freed because of the reordering
* buffer and we will ignore it. So maintain the
* head_sn somewhat updated across all the queues:
* when it crosses 0 and 2048.
*/
if (sn == 2048 || sn == 0)
iwl_mvm_sync_nssn(mvm, baid, sn);
buffer->head_sn = nssn;
}
/* No need to update AMSDU last SN - we are moving the head */
mtx_unlock(&buffer->lock);
return false;
}
/*
* release immediately if there are no stored frames, and the sn is
* equal to the head.
* This can happen due to reorder timer, where NSSN is behind head_sn.
* When we released everything, and we got the next frame in the
* sequence, according to the NSSN we can't release immediately,
* while technically there is no hole and we can move forward.
*/
if (!buffer->num_stored && sn == buffer->head_sn) {
if (!amsdu || last_subframe) {
if (sn == 2048 || sn == 0)
iwl_mvm_sync_nssn(mvm, baid, sn);
buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
}
/* No need to update AMSDU last SN - we are moving the head */
mtx_unlock(&buffer->lock);
return false;
}
index = sn % buffer->buf_size;
/*
* Check if we already stored this frame
* As AMSDU is either received or not as whole, logic is simple:
* If we have frames in that position in the buffer and the last frame
* originated from AMSDU had a different SN then it is a retransmission.
* If it is the same SN then if the subframe index is incrementing it
* is the same AMSDU - otherwise it is a retransmission.
*
* TODO(fxbug.dev/110394) add logic for amsdu which could have same SN
*/
#if 0 // NEEDS_PORTING
tail = skb_peek_tail(&entries[index].e.frames);
if (tail && !amsdu)
goto drop;
else if (tail && (sn != buffer->last_amsdu ||
buffer->last_sub_index >= sub_frame_idx))
goto drop;
#endif // NEEDS_PORTING
if (entries[index].e.has_packet)
goto drop;
/* put in reorder buffer */
wlan_rx_packet_t *buffer_packet = &entries[index].e.rx_packet;
ZX_ASSERT(buffer_packet->mac_frame_buffer == NULL);
uint8_t *payload = malloc(rx_packet->mac_frame_size);
if (!payload)
goto drop;
memcpy(payload, rx_packet->mac_frame_buffer, rx_packet->mac_frame_size);
buffer_packet->mac_frame_buffer = payload;
buffer_packet->mac_frame_size = rx_packet->mac_frame_size;
buffer_packet->info = rx_packet->info;
entries[index].e.rx_status = *rx_status;
entries[index].e.reorder_time = zx_clock_get_monotonic();
entries[index].e.has_packet = true;
buffer->num_stored++;
#if 0 // NEEDS_PORTING
if (amsdu) {
buffer->last_amsdu = sn;
buffer->last_sub_index = sub_frame_idx;
}
#endif // NEEDS_PORTING
/*
* We cannot trust NSSN for AMSDU sub-frames that are not the last.
* The reason is that NSSN advances on the first sub-frame, and may
* cause the reorder buffer to advance before all the sub-frames arrive.
* Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
* SN 1. NSSN for first sub frame will be 3 with the result of driver
* releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
* already ahead and it will be dropped.
* If the last sub-frame is not on this queue - we will get frame
* release notification with up to date NSSN.
*/
if (!amsdu || last_subframe)
iwl_mvm_release_frames(mvm, sta, baid_data, buffer, nssn,
IWL_MVM_RELEASE_SEND_RSS_SYNC);
mtx_unlock(&buffer->lock);
return true;
drop:
iwl_stats_inc(IWL_STATS_CNT_REORDER_DROP);
mtx_unlock(&buffer->lock);
return true;
}
#if 0 // NEEDS_PORTING
static void iwl_mvm_agg_rx_received(struct iwl_mvm* mvm, uint32_t reorder_data, uint8_t baid) {
unsigned long now = jiffies;
unsigned long timeout;
struct iwl_mvm_baid_data* data;
rcu_read_lock();
data = rcu_dereference(mvm->baid_map[baid]);
if (!data) {
IWL_DEBUG_RX(mvm,
"Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d "
"reorder 0x%x\n",
baid, reorder_data);
goto out;
}
if (!data->timeout) { goto out; }
timeout = data->timeout;
/*
* Do not update last rx all the time to avoid cache bouncing
* between the rx queues.
* Update it every timeout. Worst case is the session will
* expire after ~ 2 * timeout, which doesn't matter that much.
*/
if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now)) { /* Update is atomic */
data->last_rx = now;
}
out:
rcu_read_unlock();
}
static void iwl_mvm_flip_address(uint8_t* addr) {
int i;
uint8_t mac_addr[ETH_ALEN];
for (i = 0; i < ETH_ALEN; i++) {
mac_addr[i] = addr[ETH_ALEN - i - 1];
}
ether_addr_copy(addr, mac_addr);
}
struct iwl_mvm_rx_phy_data {
enum iwl_rx_phy_info_type info_type;
__le32 d0, d1, d2, d3;
__le16 d4;
};
static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm* mvm, struct iwl_mvm_rx_phy_data* phy_data,
uint32_t rate_n_flags,
struct ieee80211_radiotap_he_mu* he_mu) {
uint32_t phy_data2 = le32_to_cpu(phy_data->d2);
uint32_t phy_data3 = le32_to_cpu(phy_data->d3);
uint16_t phy_data4 = le16_to_cpu(phy_data->d4);
if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
he_mu->flags1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
he_mu->flags1 |=
le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU, phy_data4),
IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0, phy_data2);
he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1, phy_data3);
he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2, phy_data2);
he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3, phy_data3);
}
if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
(rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) {
he_mu->flags1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
he_mu->flags2 |=
le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU, phy_data4),
IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0, phy_data2);
he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1, phy_data3);
he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2, phy_data2);
he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3, phy_data3);
}
}
static void iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data* phy_data,
uint32_t rate_n_flags, struct ieee80211_radiotap_he* he,
struct ieee80211_radiotap_he_mu* he_mu,
struct ieee80211_rx_status* rx_status) {
/*
* Unfortunately, we have to leave the mac80211 data
* incorrect for the case that we receive an HE-MU
* transmission and *don't* have the HE phy data (due
* to the bits being used for TSF). This shouldn't
* happen though as management frames where we need
* the TSF/timers are not be transmitted in HE-MU.
*/
uint8_t ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
uint8_t offs = 0;
rx_status->bw = RATE_INFO_BW_HE_RU;
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
switch (ru) {
case 0 ... 36:
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
offs = ru;
break;
case 37 ... 52:
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
offs = ru - 37;
break;
case 53 ... 60:
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
offs = ru - 53;
break;
case 61 ... 64:
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
offs = ru - 61;
break;
case 65 ... 66:
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
offs = ru - 65;
break;
case 67:
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
break;
case 68:
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
break;
}
he->data2 |= le16_encode_bits(offs, IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) {
he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
}
#define CHECK_BW(bw) \
BUILD_BUG_ON( \
IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_##bw##MHZ != \
RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_##bw##MHZ != \
RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
CHECK_BW(20);
CHECK_BW(40);
CHECK_BW(80);
CHECK_BW(160);
if (he_mu)
he_mu->flags2 |=
le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
rate_n_flags),
IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1)
he->data6 |=
cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
rate_n_flags),
IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
}
static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
struct iwl_mvm_rx_phy_data *phy_data,
struct ieee80211_radiotap_he *he,
struct ieee80211_radiotap_he_mu *he_mu,
struct ieee80211_rx_status *rx_status,
u32 rate_n_flags, int queue)
{
switch (phy_data->info_type) {
case IWL_RX_PHY_INFO_TYPE_NONE:
case IWL_RX_PHY_INFO_TYPE_CCK:
case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
case IWL_RX_PHY_INFO_TYPE_HT:
case IWL_RX_PHY_INFO_TYPE_VHT_SU:
case IWL_RX_PHY_INFO_TYPE_VHT_MU:
return;
case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
fallthrough;
case IWL_RX_PHY_INFO_TYPE_HE_SU:
case IWL_RX_PHY_INFO_TYPE_HE_MU:
case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
case IWL_RX_PHY_INFO_TYPE_HE_TB:
/* HE common */
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
IWL_RX_PHY_DATA0_HE_UPLINK),
IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
}
he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
IEEE80211_RADIOTAP_HE_DATA6_TXOP);
he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
IWL_RX_PHY_DATA0_HE_DOPPLER),
IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
break;
}
switch (phy_data->info_type) {
case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
case IWL_RX_PHY_INFO_TYPE_HE_MU:
case IWL_RX_PHY_INFO_TYPE_HE_SU:
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
break;
default:
/* nothing here */
break;
}
switch (phy_data->info_type) {
case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
he_mu->flags1 |=
le16_encode_bits(le16_get_bits(phy_data->d4,
IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
he_mu->flags1 |=
le16_encode_bits(le16_get_bits(phy_data->d4,
IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
he_mu->flags2 |=
le16_encode_bits(le16_get_bits(phy_data->d4,
IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu);
fallthrough;
case IWL_RX_PHY_INFO_TYPE_HE_MU:
he_mu->flags2 |=
le16_encode_bits(le32_get_bits(phy_data->d1,
IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
he_mu->flags2 |=
le16_encode_bits(le32_get_bits(phy_data->d1,
IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
fallthrough;
case IWL_RX_PHY_INFO_TYPE_HE_TB:
case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags,
he, he_mu, rx_status);
break;
case IWL_RX_PHY_INFO_TYPE_HE_SU:
he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
break;
default:
/* nothing */
break;
}
}
static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
struct iwl_mvm_rx_phy_data *phy_data,
u32 rate_n_flags, u16 phy_info, int queue)
{
struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_radiotap_he *he = NULL;
struct ieee80211_radiotap_he_mu *he_mu = NULL;
u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
u8 stbc, ltf;
static const struct ieee80211_radiotap_he known = {
.data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
.data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
};
static const struct ieee80211_radiotap_he_mu mu_known = {
.flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
.flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
};
he = skb_put_data(skb, &known, sizeof(known));
rx_status->flag |= RX_FLAG_RADIOTAP_HE;
if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
}
/* report the AMPDU-EOF bit on single frames */
if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
}
if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
rate_n_flags, queue);
/* update aggregation data for monitor sake on default queue */
if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
/* toggle is switched whenever new aggregation starts */
if (toggle_bit != mvm->ampdu_toggle) {
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
}
}
if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
rate_n_flags & RATE_MCS_HE_106T_MSK) {
rx_status->bw = RATE_INFO_BW_HE_RU;
rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
}
/* actually data is filled in mac80211 */
if (he_type == RATE_MCS_HE_TYPE_SU ||
he_type == RATE_MCS_HE_TYPE_EXT_SU)
he->data1 |=
cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS;
rx_status->nss =
((rate_n_flags & RATE_MCS_NSS_MSK) >>
RATE_MCS_NSS_POS) + 1;
rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK;
rx_status->encoding = RX_ENC_HE;
rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
if (rate_n_flags & RATE_MCS_BF_MSK)
rx_status->enc_flags |= RX_ENC_FLAG_BF;
rx_status->he_dcm =
!!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
#define CHECK_TYPE(F) \
BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_##F != \
(RATE_MCS_HE_TYPE_##F >> RATE_MCS_HE_TYPE_POS))
CHECK_TYPE(SU);
CHECK_TYPE(EXT_SU);
CHECK_TYPE(MU);
CHECK_TYPE(TRIG);
he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
if (rate_n_flags & RATE_MCS_BF_MSK)
he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
RATE_MCS_HE_GI_LTF_POS) {
case 0:
if (he_type == RATE_MCS_HE_TYPE_TRIG)
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
else
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
if (he_type == RATE_MCS_HE_TYPE_MU)
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
else
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
break;
case 1:
if (he_type == RATE_MCS_HE_TYPE_TRIG)
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
else
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
break;
case 2:
if (he_type == RATE_MCS_HE_TYPE_TRIG) {
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
} else {
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
}
break;
case 3:
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
break;
case 4:
rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
break;
default:
ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
}
he->data5 |= le16_encode_bits(ltf,
IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
}
static void iwl_mvm_decode_lsig(struct sk_buff *skb,
struct iwl_mvm_rx_phy_data *phy_data)
{
struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
struct ieee80211_radiotap_lsig *lsig;
switch (phy_data->info_type) {
case IWL_RX_PHY_INFO_TYPE_HT:
case IWL_RX_PHY_INFO_TYPE_VHT_SU:
case IWL_RX_PHY_INFO_TYPE_VHT_MU:
case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
case IWL_RX_PHY_INFO_TYPE_HE_SU:
case IWL_RX_PHY_INFO_TYPE_HE_MU:
case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
case IWL_RX_PHY_INFO_TYPE_HE_TB:
lsig = skb_put(skb, sizeof(*lsig));
lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
break;
default:
break;
}
}
#endif // NEEDS_PORTING
// TODO(b/302802232): Error converting rate to mac80211 idx
void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
struct iwl_rx_cmd_buffer *rxb, int queue)
{
struct iwl_rx_packet *pkt = rxb_addr(rxb);
struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
struct ieee80211_frame_header *hdr;
uint32_t len = le16_to_cpu(desc->mpdu_len);
uint32_t rate_n_flags;
uint16_t phy_info = le16_to_cpu(desc->phy_info);
struct iwl_mvm_sta *sta = NULL;
uint8_t channel, energy_a, energy_b;
size_t crypt_len = 0, desc_size;
struct ieee80211_rx_status rx_status = {};
uint16_t sts_phy_info = le16_to_cpu(desc->phy_info);
uint8_t band;
zx_status_t ret;
iwl_stats_inc(IWL_STATS_CNT_CMD_FROM_FW);
#if 0 // NEEDS_PORTING
// TODO(fxbug.dev/84773)
struct iwl_mvm_rx_phy_data phy_data = {
.info_type = IWL_RX_PHY_INFO_TYPE_NONE,
};
#endif // NEEDS_PORTING
if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) {
return;
}
if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
channel = desc->v3.channel;
// gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
energy_a = desc->v3.energy_a;
energy_b = desc->v3.energy_b;
desc_size = sizeof(*desc);
#if 0 // NEEDS_PORTING
phy_data.d0 = desc->v3.phy_data0;
phy_data.d1 = desc->v3.phy_data1;
phy_data.d2 = desc->v3.phy_data2;
phy_data.d3 = desc->v3.phy_data3;
#endif // NEEDS_PORTING
} else {
rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
channel = desc->v1.channel;
// gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
energy_a = desc->v1.energy_a;
energy_b = desc->v1.energy_b;
desc_size = IWL_RX_DESC_SIZE_V1;
#if 0 // NEEDS_PORTING
phy_data.d0 = desc->v1.phy_data0;
phy_data.d1 = desc->v1.phy_data1;
phy_data.d2 = desc->v1.phy_data2;
phy_data.d3 = desc->v1.phy_data3;
#endif // NEEDS_PORTING
}
#if 0 // NEEDS_PORTING
if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP,
REPLY_RX_MPDU_CMD, 0) < 4) {
rate_n_flags = iwl_new_rate_from_v1(rate_n_flags);
IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n",
rate_n_flags);
}
format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
len = le16_to_cpu(desc->mpdu_len);
if (unlikely(len + desc_size > pkt_len)) {
IWL_DEBUG_DROP(mvm, "FW lied about packet len\n");
return;
}
if (sts_phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) {
phy_data.info_type = le32_get_bits(phy_data.d1, IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
}
#endif // NEEDS_PORTING
hdr = (void *)(pkt->data + desc_size);
#if 0 // NEEDS_PORTING
/* Dont use dev_alloc_skb(), we'll have enough headroom once
* ieee80211_hdr pulled.
*/
skb = alloc_skb(128, GFP_ATOMIC);
if (!skb) {
IWL_ERR(mvm, "alloc_skb failed\n");
return;
}
if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
/*
* If the device inserted padding it means that (it thought)
* the 802.11 header wasn't a multiple of 4 bytes long. In
* this case, reserve two bytes at the start of the SKB to
* align the payload properly in case we end up copying it.
*/
skb_reserve(skb, 2);
}
#endif // NEEDS_PORTING
/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
case RATE_MCS_CHAN_WIDTH_20:
rx_status.rx_info.channel.cbw = CHANNEL_BANDWIDTH_CBW20;
break;
case RATE_MCS_CHAN_WIDTH_40:
rx_status.rx_info.channel.cbw = CHANNEL_BANDWIDTH_CBW40;
break;
case RATE_MCS_CHAN_WIDTH_80:
rx_status.rx_info.channel.cbw = CHANNEL_BANDWIDTH_CBW80;
break;
case RATE_MCS_CHAN_WIDTH_160:
rx_status.rx_info.channel.cbw = CHANNEL_BANDWIDTH_CBW160;
break;
}
#if 0 // NEEDS_PORTING
if (rate_n_flags & RATE_MCS_HE_MSK) {
iwl_mvm_rx_he(mvm, rx_status, &phy_data, rate_n_flags, phy_info, queue);
}
iwl_mvm_decode_lsig(skb, &phy_data);
#endif // NEEDS_PORTING
if (iwl_mvm_rx_crypto(mvm, hdr, &rx_status, phy_info, desc,
le32_to_cpu(pkt->len_n_flags),
&crypt_len) != ZX_OK) {
return;
}
/*
* Keep packets with CRC errors (and with overrun) for monitor mode
* (otherwise the firmware discards them) but mark them as bad.
*/
if (!(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_CRC_OK)) ||
!(desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
le16_to_cpu(desc->status));
// rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
rx_status.rx_info.rx_flags |= WLAN_RX_INFO_FLAGS_FCS_INVALID;
}
#if 0 // NEEDS_PORTING
/* set the preamble flag if appropriate */
if (rate_n_flags & RATE_MCS_CCK_MSK && sts_phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) {
rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
}
if (likely(!(sts_phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
uint64_t tsf_on_air_rise;
if (mvm->trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) {
tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
} else {
tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
}
rx_status->mactime = tsf_on_air_rise;
/* TSF as indicated by the firmware is at INA time */
rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
}
rx_status->device_timestamp = gp2_on_air_rise;
rx_status->freq = ieee80211_channel_to_frequency(channel, band);
#endif // NEEDS_PORTING
rx_status.rx_info.rssi_dbm =
iwl_mvm_get_signal_strength(mvm, energy_a, energy_b);
iwl_stats_update_last_rssi(rx_status.rx_info.rssi_dbm);
rx_status.rx_info.valid_fields |= WLAN_RX_INFO_VALID_RSSI;
band = iwl_mvm_get_channel_band(channel);
rx_status.rx_info.channel.primary = channel;
/* update aggregation data for monitor sake on default queue */
if (!queue && (sts_phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
bool toggle_bit = sts_phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
#if 0 // NEEDS_PORTING
rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
rx_status->ampdu_reference = mvm->ampdu_ref;
#endif // NEEDS_PORTING
/*
* Toggle is switched whenever new aggregation starts. Make
* sure ampdu_reference is never 0 so we can later use it to
* see if the frame was really part of an A-MPDU or not.
*/
if (toggle_bit != mvm->ampdu_toggle) {
mvm->ampdu_ref++;
mvm->ampdu_toggle = toggle_bit;
}
}
iwl_rcu_read_lock(mvm->dev);
if (desc->status & cpu_to_le16(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
uint8_t id = desc->sta_id_flags & IWL_RX_MPDU_SIF_STA_ID_MASK;
if (!WARN_ON_ONCE(id >= ARRAY_SIZE(mvm->fw_id_to_mac_id))) {
sta = iwl_rcu_load(mvm->fw_id_to_mac_id[id]);
}
} else if (!is_multicast_ether_addr(hdr->addr2)) {
/*
* This is fine since we prevent two stations with the same
* address from being added.
*/
sta = iwl_mvm_find_sta_by_addr(mvm, hdr->addr2);
}
#if 0 // NEEDS_PORTING
if (sta) {
struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
struct ieee80211_vif *tx_blocked_vif =
rcu_dereference(mvm->csa_tx_blocked_vif);
u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
IWL_RX_MPDU_REORDER_BAID_MASK) >>
IWL_RX_MPDU_REORDER_BAID_SHIFT);
struct iwl_fw_dbg_trigger_tlv *trig;
struct ieee80211_vif *vif = mvmsta->vif;
if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
!is_multicast_ether_addr(hdr->addr1) &&
ieee80211_is_data(hdr->frame_control) &&
time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
schedule_delayed_work(&mvm->tcm.work, 0);
/*
* We have tx blocked stations (with CS bit). If we heard
* frames from a blocked station on a new channel we can
* TX to it again.
*/
if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
struct iwl_mvm_vif *mvmvif =
iwl_mvm_vif_from_mac80211(tx_blocked_vif);
struct iwl_rx_sta_csa rx_sta_csa = {
.all_sta_unblocked = true,
.vif = tx_blocked_vif,
};
if (mvmvif->csa_target_freq == rx_status->freq)
iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
false);
ieee80211_iterate_stations_atomic(mvm->hw,
iwl_mvm_rx_get_sta_block_tx,
&rx_sta_csa);
if (rx_sta_csa.all_sta_unblocked) {
RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL);
/* Unblock BCAST / MCAST station */
iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false);
cancel_delayed_work_sync(&mvm->cs_tx_unblock_dwork);
}
}
rs_update_last_rssi(mvm, mvmsta, rx_status);
trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
ieee80211_vif_to_wdev(vif),
FW_DBG_TRIGGER_RSSI);
if (trig && ieee80211_is_beacon(hdr->frame_control)) {
struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
s32 rssi;
rssi_trig = (void *)trig->data;
rssi = le32_to_cpu(rssi_trig->rssi);
if (rx_status->signal < rssi)
iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
NULL);
}
if (ieee80211_is_data(hdr->frame_control))
iwl_mvm_rx_csum(mvm, sta, skb, pkt);
if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
kfree_skb(skb);
goto out;
}
/*
* Our hardware de-aggregates AMSDUs but copies the mac header
* as it to the de-aggregated MPDUs. We need to turn off the
* AMSDU bit in the QoS control ourselves.
* In addition, HW reverses addr3 and addr4 - reverse it back.
*/
if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
!WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
u8 *qc = ieee80211_get_qos_ctl(hdr);
*qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
if (mvm->trans->trans_cfg->device_family ==
IWL_DEVICE_FAMILY_9000) {
iwl_mvm_flip_address(hdr->addr3);
if (ieee80211_has_a4(hdr->frame_control))
iwl_mvm_flip_address(hdr->addr4);
}
}
if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
u32 reorder_data = le32_to_cpu(desc->reorder_data);
iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
}
}
is_sgi = format == RATE_MCS_HE_MSK ?
iwl_he_is_sgi(rate_n_flags) :
rate_n_flags & RATE_MCS_SGI_MSK;
if (!(format == RATE_MCS_CCK_MSK) && is_sgi)
rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
if (rate_n_flags & RATE_MCS_LDPC_MSK)
rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
#endif // NEEDS_PORTING
if (rate_n_flags & RATE_MCS_HT_MSK) {
#if 0 // NEEDS_PORTING
// TODO(fxbug.dev/36683)
uint8_t stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS;
rx_status->encoding = RX_ENC_HT;
rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags);
rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
#endif // NEEDS_PORTING
rx_status.rx_info.phy = WLAN_PHY_TYPE_HT;
} else if (rate_n_flags & RATE_MCS_VHT_MSK) {
#if 0 // NEEDS_PORTING
// TODO(fxbug.dev/36684)
u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
RATE_MCS_STBC_POS;
rx_status->nss = ((rate_n_flags & RATE_MCS_NSS_MSK) >>
RATE_MCS_NSS_POS) + 1;
rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK;
rx_status->encoding = RX_ENC_VHT;
rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
if (rate_n_flags & RATE_MCS_BF_MSK)
rx_status->enc_flags |= RX_ENC_FLAG_BF;
#endif // NEEDS_PORTING
rx_status.rx_info.phy = WLAN_PHY_TYPE_VHT;
} else if (!(rate_n_flags & RATE_MCS_HE_MSK)) {
int rate = 0;
// FIXME: workaround "Error converting rate to mac80211 idx"
if ((rate_n_flags & RATE_LEGACY_RATE_MSK) != 0 &&
ZX_OK != (ret = iwl_mvm_legacy_rate_to_mac80211_idx(
rate_n_flags, band, &rate))) {
IWL_WARN(mvm,
"Error converting rate to mac80211 idx: %s",
zx_status_get_string(ret));
goto out;
}
if (ZX_OK !=
(ret = mac80211_idx_to_data_rate(
band, rate, &rx_status.rx_info.data_rate))) {
IWL_ERR(mvm,
"Cannot convert mac80211 index (%d) to data rate for MLME (band=%d): %s",
rate, band, zx_status_get_string(ret));
goto out;
}
if (rate < 0 || rate > 0xFF) {
IWL_WARN(mvm, "Invalid rate flags 0x%x, band %d",
rate_n_flags, band);
goto out;
}
// rx_status->rate_idx = rate;
rx_status.rx_info.phy = phy_info & RX_RES_PHY_FLAGS_MOD_CCK ?
WLAN_PHY_TYPE_HR :
WLAN_PHY_TYPE_OFDM;
}
rx_status.rx_info.valid_fields |= WLAN_RX_INFO_VALID_DATA_RATE;
iwl_stats_update_date_rate(rx_status.rx_info.data_rate);
#if 0 // NEEDS_PORTING
/* management stuff on default queue */
if (!queue) {
if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
ieee80211_is_probe_resp(hdr->frame_control)) &&
mvm->sched_scan_pass_all == SCHED_SCAN_PASS_ALL_ENABLED)) {
mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
}
if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
ieee80211_is_probe_resp(hdr->frame_control))) {
rx_status->boottime_ns = ktime_get_boot_ns();
}
}
#endif // NEEDS_PORTING
len = iwl_mvm_create_packet(hdr, len, crypt_len, &rx_status.rx_info,
rxb);
wlan_rx_packet_t rx_packet = {
.mac_frame_buffer = (uint8_t *)hdr,
.mac_frame_size = len,
.info = rx_status.rx_info,
};
// TODO(fxbug.dev/86851)
// Reordering is disabled until the full feature is tested/merged
// if (!iwl_mvm_reorder(mvm, sta, &rx_packet, &rx_status, queue, desc)) {
iwl_mvm_pass_packet_to_mac80211(mvm, &rx_packet, &rx_status, queue,
sta);
// }
out:
iwl_rcu_read_unlock(mvm->dev);
}
void iwl_mvm_rx_monitor_ndp(struct iwl_mvm *mvm, struct napi_struct *napi,
struct iwl_rx_cmd_buffer *rxb, int queue)
{
#if 0 // NEEDS_PORTING
struct ieee80211_rx_status *rx_status;
struct iwl_rx_packet *pkt = rxb_addr(rxb);
struct iwl_rx_no_data *desc = (void *)pkt->data;
u32 rate_n_flags = le32_to_cpu(desc->rate);
u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
u32 rssi = le32_to_cpu(desc->rssi);
u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
struct ieee80211_sta *sta = NULL;
struct sk_buff *skb;
u8 channel, energy_a, energy_b;
u32 format;
struct iwl_mvm_rx_phy_data phy_data = {
.info_type = le32_get_bits(desc->phy_info[1],
IWL_RX_PHY_DATA1_INFO_TYPE_MASK),
.d0 = desc->phy_info[0],
.d1 = desc->phy_info[1],
};
bool is_sgi;
if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
RX_NO_DATA_NOTIF, 0) < 2) {
IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n",
rate_n_flags);
rate_n_flags = iwl_new_rate_from_v1(rate_n_flags);
IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n",
rate_n_flags);
}
format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*desc)))
return;
if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
return;
energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS;
energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS;
channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS;
/* Dont use dev_alloc_skb(), we'll have enough headroom once
* ieee80211_hdr pulled.
*/
skb = alloc_skb(128, GFP_ATOMIC);
if (!skb) {
IWL_ERR(mvm, "alloc_skb failed\n");
return;
}
rx_status = IEEE80211_SKB_RXCB(skb);
/* 0-length PSDU */
rx_status->flag |= RX_FLAG_NO_PSDU;
switch (info_type) {
case RX_NO_DATA_INFO_TYPE_NDP:
rx_status->zero_length_psdu_type =
IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
break;
case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED:
rx_status->zero_length_psdu_type =
IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
break;
default:
rx_status->zero_length_psdu_type =
IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
break;
}
/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
case RATE_MCS_CHAN_WIDTH_20:
break;
case RATE_MCS_CHAN_WIDTH_40:
rx_status->bw = RATE_INFO_BW_40;
break;
case RATE_MCS_CHAN_WIDTH_80:
rx_status->bw = RATE_INFO_BW_80;
break;
case RATE_MCS_CHAN_WIDTH_160:
rx_status->bw = RATE_INFO_BW_160;
break;
}
if (format == RATE_MCS_HE_MSK)
iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
phy_info, queue);
iwl_mvm_decode_lsig(skb, &phy_data);
rx_status->device_timestamp = gp2_on_air_rise;
rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
NL80211_BAND_2GHZ;
rx_status->freq = ieee80211_channel_to_frequency(channel,
rx_status->band);
iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
energy_b);
rcu_read_lock();
is_sgi = format == RATE_MCS_HE_MSK ?
iwl_he_is_sgi(rate_n_flags) :
rate_n_flags & RATE_MCS_SGI_MSK;
if (!(format == RATE_MCS_CCK_MSK) && is_sgi)
rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
if (rate_n_flags & RATE_MCS_LDPC_MSK)
rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
if (format == RATE_MCS_HT_MSK) {
u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
RATE_MCS_STBC_POS;
rx_status->encoding = RX_ENC_HT;
rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags);
rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
} else if (format == RATE_MCS_VHT_MSK) {
u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
RATE_MCS_STBC_POS;
rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK;
rx_status->encoding = RX_ENC_VHT;
rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
if (rate_n_flags & RATE_MCS_BF_MSK)
rx_status->enc_flags |= RX_ENC_FLAG_BF;
/*
* take the nss from the rx_vec since the rate_n_flags has
* only 2 bits for the nss which gives a max of 4 ss but
* there may be up to 8 spatial streams
*/
rx_status->nss =
le32_get_bits(desc->rx_vec[0],
RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
} else if (format == RATE_MCS_HE_MSK) {
rx_status->nss =
le32_get_bits(desc->rx_vec[0],
RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
} else {
int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags,
rx_status->band);
if (WARN(rate < 0 || rate > 0xFF,
"Invalid rate flags 0x%x, band %d,\n",
rate_n_flags, rx_status->band)) {
kfree_skb(skb);
goto out;
}
rx_status->rate_idx = rate;
}
ieee80211_rx_napi(mvm->hw, sta, skb, napi);
out:
rcu_read_unlock();
#endif // NEEDS_PORTING
}
void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
struct iwl_rx_cmd_buffer *rxb, int queue)
{
#if 0 // NEEDS_PORTING
struct iwl_rx_packet *pkt = rxb_addr(rxb);
struct iwl_frame_release *release = (void *)pkt->data;
if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
return;
iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
le16_to_cpu(release->nssn),
queue, 0);
#endif // NEEDS_PORTING
}