blob: 9e7071e792f0866d2ce518480fc1945095edc855 [file] [log] [blame]
/******************************************************************************
*
* Copyright(c) 2005 - 2015 Intel Corporation. All rights reserved.
* Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
* Copyright(c) 2016 - 2017 Intel Deutschland GmbH
* Copyright(c) 2018 Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*****************************************************************************/
#define _ALL_SOURCE // for threads.h
// TODO(rsakthi) - how to get this from bazel?
#define CPTCFG_IWLMVM 1
#include <lib/async/time.h>
//#include <lib/device-protocol/pci.h>
#include <stdint.h>
#include <stdio.h>
#include <threads.h>
#include <zircon/status.h>
#include <zircon/syscalls.h>
#include <zircon/time.h>
#include <zircon/types.h>
#include "src/iwlwifi/fw/dbg.h"
#include "src/iwlwifi/fw/error-dump.h"
#include "src/iwlwifi/iwl-agn-hw.h"
#include "src/iwlwifi/iwl-constants.h"
#include "src/iwlwifi/iwl-csr.h"
#include "src/iwlwifi/iwl-drv.h"
#include "src/iwlwifi/iwl-fh.h"
#include "src/iwlwifi/iwl-prph.h"
#include "src/iwlwifi/iwl-scd.h"
#include "src/iwlwifi/iwl-trans.h"
#include "src/iwlwifi/pcie/internal.h"
#include "src/iwlwifi/platform/time.h"
#ifdef CPTCFG_IWLWIFI_DEVICE_TESTMODE
#include "src/iwlwifi/iwl-dnt-cfg.h"
#endif
/* extended range in FW SRAM */
#define IWL_FW_MEM_EXTENDED_START 0x40000
#define IWL_FW_MEM_EXTENDED_END 0x57FFF
void iwl_trans_pcie_dump_regs(struct iwl_trans* trans) {
#if 0 // NEEDS_PORTING
#define PCI_DUMP_SIZE 64
#define PREFIX_LEN 32
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
struct pci_dev* pdev = trans_pcie->pci_dev;
uint32_t i, pos, alloc_size, *ptr, *buf;
char* prefix;
if (trans_pcie->pcie_dbg_dumped_once) { return; }
/* Should be a multiple of 4 */
BUILD_BUG_ON(PCI_DUMP_SIZE > 4096 || PCI_DUMP_SIZE & 0x3);
/* Alloc a max size buffer */
if (PCI_ERR_ROOT_ERR_SRC + 4 > PCI_DUMP_SIZE) {
alloc_size = PCI_ERR_ROOT_ERR_SRC + 4 + PREFIX_LEN;
} else {
alloc_size = PCI_DUMP_SIZE + PREFIX_LEN;
}
buf = kmalloc(alloc_size, GFP_ATOMIC);
if (!buf) { return; }
prefix = (char*)buf + alloc_size - PREFIX_LEN;
IWL_ERR(trans, "iwlwifi transaction failed, dumping registers\n");
/* Print wifi device registers */
sprintf(prefix, "iwlwifi %s: ", pci_name(pdev));
IWL_ERR(trans, "iwlwifi device config registers:\n");
for (i = 0, ptr = buf; i < PCI_DUMP_SIZE; i += 4, ptr++)
if (pci_read_config_dword(pdev, i, ptr)) { goto err_read; }
print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32, 4, buf, i, 0);
IWL_ERR(trans, "iwlwifi device memory mapped registers:\n");
for (i = 0, ptr = buf; i < PCI_DUMP_SIZE; i += 4, ptr++) {
*ptr = iwl_read32(trans, i);
}
print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32, 4, buf, i, 0);
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ERR);
if (pos) {
IWL_ERR(trans, "iwlwifi device AER capability structure:\n");
for (i = 0, ptr = buf; i < PCI_ERR_ROOT_COMMAND; i += 4, ptr++)
if (pci_read_config_dword(pdev, pos + i, ptr)) { goto err_read; }
print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32, 4, buf, i, 0);
}
/* Print parent device registers next */
if (!pdev->bus->self) { goto out; }
pdev = pdev->bus->self;
sprintf(prefix, "iwlwifi %s: ", pci_name(pdev));
IWL_ERR(trans, "iwlwifi parent port (%s) config registers:\n", pci_name(pdev));
for (i = 0, ptr = buf; i < PCI_DUMP_SIZE; i += 4, ptr++)
if (pci_read_config_dword(pdev, i, ptr)) { goto err_read; }
print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32, 4, buf, i, 0);
/* Print root port AER registers */
pos = 0;
pdev = pcie_find_root_port(pdev);
if (pdev) { pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ERR); }
if (pos) {
IWL_ERR(trans, "iwlwifi root port (%s) AER cap structure:\n", pci_name(pdev));
sprintf(prefix, "iwlwifi %s: ", pci_name(pdev));
for (i = 0, ptr = buf; i <= PCI_ERR_ROOT_ERR_SRC; i += 4, ptr++)
if (pci_read_config_dword(pdev, pos + i, ptr)) { goto err_read; }
print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32, 4, buf, i, 0);
}
goto out;
err_read:
print_hex_dump(KERN_ERR, prefix, DUMP_PREFIX_OFFSET, 32, 4, buf, i, 0);
IWL_ERR(trans, "Read failed at 0x%X\n", i);
out:
trans_pcie->pcie_dbg_dumped_once = 1;
kfree(buf);
#endif // NEEDS_PORTING
IWL_ERR(trans, "%s needs porting\n", __FUNCTION__);
}
static void iwl_trans_pcie_sw_reset(struct iwl_trans* trans) {
/* Reset entire device - do controller reset (results in SHRD_HW_RST) */
iwl_set_bit(trans, trans->cfg->csr->addr_sw_reset, BIT(trans->cfg->csr->flag_sw_reset));
zx_nanosleep(zx_deadline_after(ZX_MSEC(6)));
}
#if 0 // NEEDS_PORTING
static void iwl_pcie_free_fw_monitor(struct iwl_trans* trans) {
int i;
for (i = 0; i < trans->num_blocks; i++) {
dma_free_coherent(trans->dev, trans->fw_mon[i].size, trans->fw_mon[i].block,
trans->fw_mon[i].physical);
trans->fw_mon[i].block = NULL;
trans->fw_mon[i].physical = 0;
trans->fw_mon[i].size = 0;
trans->num_blocks--;
}
}
#endif // NEEDS_PORTING
static void iwl_pcie_alloc_fw_monitor_block(struct iwl_trans* trans, uint8_t max_power,
uint8_t min_power) {
#if 0 // NEEDS_PORTING
void* cpu_addr = NULL;
dma_addr_t phys = 0;
uint32_t size = 0;
uint8_t power;
for (power = max_power; power >= min_power; power--) {
size = BIT(power);
cpu_addr = dma_alloc_coherent(trans->dev, size, &phys,
GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO | __GFP_COMP);
if (!cpu_addr) { continue; }
IWL_INFO(trans, "Allocated 0x%08x bytes for firmware monitor.\n", size);
break;
}
if (WARN_ON_ONCE(!cpu_addr)) { return; }
if (power != max_power)
IWL_ERR(trans, "Sorry - debug buffer is only %luK while you requested %luK\n",
(unsigned long)BIT(power - 10), (unsigned long)BIT(max_power - 10));
trans->fw_mon[trans->num_blocks].block = cpu_addr;
trans->fw_mon[trans->num_blocks].physical = phys;
trans->fw_mon[trans->num_blocks].size = size;
trans->num_blocks++;
#endif // NEEDS_PORTING
IWL_ERR(trans, "%s needs porting\n", __FUNCTION__);
}
void iwl_pcie_alloc_fw_monitor(struct iwl_trans* trans, uint8_t max_power) {
if (!max_power) {
/* default max_power is maximum */
max_power = 26;
} else {
max_power += 11;
}
if (max_power > 26) {
IWL_WARN(iwl_trans, "External buffer size for monitor is too big %d, check the FW TLV\n",
max_power);
return;
}
/*
* This function allocats the default fw monitor.
* The optional additional ones will be allocated in runtime
*/
if (trans->num_blocks) {
return;
}
iwl_pcie_alloc_fw_monitor_block(trans, max_power, 11);
}
static uint32_t iwl_trans_pcie_read_shr(struct iwl_trans* trans, uint32_t reg) {
iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_CTRL_REG, ((reg & 0x0000ffff) | (2 << 28)));
return iwl_read32(trans, HEEP_CTRL_WRD_PCIEX_DATA_REG);
}
static void iwl_trans_pcie_write_shr(struct iwl_trans* trans, uint32_t reg, uint32_t val) {
iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_DATA_REG, val);
iwl_write32(trans, HEEP_CTRL_WRD_PCIEX_CTRL_REG, ((reg & 0x0000ffff) | (3 << 28)));
}
static void iwl_pcie_set_pwr(struct iwl_trans* trans, bool vaux) {
if (trans->cfg->apmg_not_supported) {
return;
}
#if 0 // NEEDS_PORTING
// We don't support D3 lower-power state yet.
if (vaux && pci_pme_capable(to_pci_dev(trans->dev), PCI_D3cold))
iwl_set_bits_mask_prph(trans, APMG_PS_CTRL_REG, APMG_PS_CTRL_VAL_PWR_SRC_VAUX,
~APMG_PS_CTRL_MSK_PWR_SRC);
else
#endif // NEEDS_PORTING
iwl_set_bits_mask_prph(trans, APMG_PS_CTRL_REG, APMG_PS_CTRL_VAL_PWR_SRC_VMAIN,
~APMG_PS_CTRL_MSK_PWR_SRC);
}
/* PCI registers */
#define PCI_CFG_RETRY_TIMEOUT 0x041
void iwl_pcie_apm_config(struct iwl_trans* trans) {
#if 1 // NEEDS_PORTING
// Always disable L0S since it is more stable although it costs more power.
// TODO(fxbug.dev/29742): save more power.
iwl_set_bit(trans, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED);
trans->pm_support = false;
trans->ltr_enabled = false;
#else
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
uint16_t lctl;
uint16_t cap;
/*
* HW bug W/A for instability in PCIe bus L0S->L1 transition.
* Check if BIOS (or OS) enabled L1-ASPM on this device.
* If so (likely), disable L0S, so device moves directly L0->L1;
* costs negligible amount of power savings.
* If not (unlikely), enable L0S, so there is at least some
* power savings, even without L1.
*/
pcie_capability_read_word(trans_pcie->pci_dev, PCI_EXP_LNKCTL, &lctl);
if (lctl & PCI_EXP_LNKCTL_ASPM_L1) {
iwl_set_bit(trans, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED);
} else {
iwl_clear_bit(trans, CSR_GIO_REG, CSR_GIO_REG_VAL_L0S_ENABLED);
}
trans->pm_support = !(lctl & PCI_EXP_LNKCTL_ASPM_L0S);
pcie_capability_read_word(trans_pcie->pci_dev, PCI_EXP_DEVCTL2, &cap);
trans->ltr_enabled = cap & PCI_EXP_DEVCTL2_LTR_EN;
IWL_DEBUG_POWER(trans, "L1 %sabled - LTR %sabled\n",
(lctl & PCI_EXP_LNKCTL_ASPM_L1) ? "En" : "Dis",
trans->ltr_enabled ? "En" : "Dis");
#endif // NEEDS_PORTING
}
/*
* Start up NIC's basic functionality after it has been reset
* (e.g. after platform boot, or shutdown via iwl_pcie_apm_stop())
* NOTE: This does not load uCode nor start the embedded processor
*/
static zx_status_t iwl_pcie_apm_init(struct iwl_trans* trans) {
zx_status_t ret;
IWL_DEBUG_INFO(trans, "Init card's basic functions\n");
/*
* Use "set_bit" below rather than "write", to preserve any hardware
* bits already set by default after reset.
*/
/* Disable L0S exit timer (platform NMI Work/Around) */
if (trans->cfg->device_family < IWL_DEVICE_FAMILY_8000) {
iwl_set_bit(trans, CSR_GIO_CHICKEN_BITS, CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER);
}
/*
* Disable L0s without affecting L1;
* don't wait for ICH L0s (ICH bug W/A)
*/
iwl_set_bit(trans, CSR_GIO_CHICKEN_BITS, CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX);
/* Set FH wait threshold to maximum (HW error during stress W/A) */
iwl_set_bit(trans, CSR_DBG_HPET_MEM_REG, CSR_DBG_HPET_MEM_REG_VAL);
/*
* Enable HAP INTA (interrupt from management bus) to
* wake device's PCI Express link L1a -> L0s
*/
iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A);
iwl_pcie_apm_config(trans);
/* Configure analog phase-lock-loop before activating to D0A */
if (trans->cfg->base_params->pll_cfg) {
iwl_set_bit(trans, CSR_ANA_PLL_CFG, CSR50_ANA_PLL_CFG_VAL);
}
/*
* Set "initialization complete" bit to move adapter from
* D0U* --> D0A* (powered-up active) state.
*/
iwl_set_bit(trans, CSR_GP_CNTRL, BIT(trans->cfg->csr->flag_init_done));
/*
* Wait for clock stabilization; once stabilized, access to
* device-internal resources is supported, e.g. iwl_write_prph()
* and accesses to uCode SRAM.
*/
ret = iwl_poll_bit(trans, CSR_GP_CNTRL, BIT(trans->cfg->csr->flag_mac_clock_ready),
BIT(trans->cfg->csr->flag_mac_clock_ready), ZX_MSEC(25), NULL);
if (ret != ZX_OK) {
IWL_ERR(trans, "Failed to init the card\n");
return ret;
}
if (trans->cfg->host_interrupt_operation_mode) {
/*
* This is a bit of an abuse - This is needed for 7260 / 3160
* only check host_interrupt_operation_mode even if this is
* not related to host_interrupt_operation_mode.
*
* Enable the oscillator to count wake up time for L1 exit. This
* consumes slightly more power (100uA) - but allows to be sure
* that we wake up from L1 on time.
*
* This looks weird: read twice the same register, discard the
* value, set a bit, and yet again, read that same register
* just to discard the value. But that's the way the hardware
* seems to like it.
*/
iwl_read_prph(trans, OSC_CLK);
iwl_read_prph(trans, OSC_CLK);
iwl_set_bits_prph(trans, OSC_CLK, OSC_CLK_FORCE_CONTROL);
iwl_read_prph(trans, OSC_CLK);
iwl_read_prph(trans, OSC_CLK);
}
/*
* Enable DMA clock and wait for it to stabilize.
*
* Write to "CLK_EN_REG"; "1" bits enable clocks, while "0"
* bits do not disable clocks. This preserves any hardware
* bits already set by default in "CLK_CTRL_REG" after reset.
*/
if (!trans->cfg->apmg_not_supported) {
iwl_write_prph(trans, APMG_CLK_EN_REG, APMG_CLK_VAL_DMA_CLK_RQT);
zx_nanosleep(zx_deadline_after(ZX_USEC(20)));
/* Disable L1-Active */
iwl_set_bits_prph(trans, APMG_PCIDEV_STT_REG, APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
/* Clear the interrupt in APMG if the NIC is in RFKILL */
iwl_write_prph(trans, APMG_RTC_INT_STT_REG, APMG_RTC_INT_STT_RFKILL);
}
set_bit(STATUS_DEVICE_ENABLED, &trans->status);
return ZX_OK;
}
/*
* Enable LP XTAL to avoid HW bug where device may consume much power if
* FW is not loaded after device reset. LP XTAL is disabled by default
* after device HW reset. Do it only if XTAL is fed by internal source.
* Configure device's "persistence" mode to avoid resetting XTAL again when
* SHRD_HW_RST occurs in S3.
*/
static void iwl_pcie_apm_lp_xtal_enable(struct iwl_trans* trans) {
zx_status_t ret;
uint32_t apmg_gp1_reg;
uint32_t apmg_xtal_cfg_reg;
uint32_t dl_cfg_reg;
/* Force XTAL ON */
__iwl_trans_pcie_set_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_XTAL_ON);
iwl_trans_pcie_sw_reset(trans);
/*
* Set "initialization complete" bit to move adapter from
* D0U* --> D0A* (powered-up active) state.
*/
iwl_set_bit(trans, CSR_GP_CNTRL, BIT(trans->cfg->csr->flag_init_done));
/*
* Wait for clock stabilization; once stabilized, access to
* device-internal resources is possible.
*/
ret = iwl_poll_bit(trans, CSR_GP_CNTRL, BIT(trans->cfg->csr->flag_mac_clock_ready),
BIT(trans->cfg->csr->flag_mac_clock_ready), ZX_MSEC(25), NULL);
if (WARN_ON(ret != ZX_OK)) {
IWL_ERR(trans, "Access time out - failed to enable LP XTAL\n");
/* Release XTAL ON request */
__iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_XTAL_ON);
return;
}
/*
* Clear "disable persistence" to avoid LP XTAL resetting when
* SHRD_HW_RST is applied in S3.
*/
iwl_clear_bits_prph(trans, APMG_PCIDEV_STT_REG, APMG_PCIDEV_STT_VAL_PERSIST_DIS);
/*
* Force APMG XTAL to be active to prevent its disabling by HW
* caused by APMG idle state.
*/
apmg_xtal_cfg_reg = iwl_trans_pcie_read_shr(trans, SHR_APMG_XTAL_CFG_REG);
iwl_trans_pcie_write_shr(trans, SHR_APMG_XTAL_CFG_REG,
apmg_xtal_cfg_reg | SHR_APMG_XTAL_CFG_XTAL_ON_REQ);
iwl_trans_pcie_sw_reset(trans);
/* Enable LP XTAL by indirect access through CSR */
apmg_gp1_reg = iwl_trans_pcie_read_shr(trans, SHR_APMG_GP1_REG);
iwl_trans_pcie_write_shr(
trans, SHR_APMG_GP1_REG,
apmg_gp1_reg | SHR_APMG_GP1_WF_XTAL_LP_EN | SHR_APMG_GP1_CHICKEN_BIT_SELECT);
/* Clear delay line clock power up */
dl_cfg_reg = iwl_trans_pcie_read_shr(trans, SHR_APMG_DL_CFG_REG);
iwl_trans_pcie_write_shr(trans, SHR_APMG_DL_CFG_REG,
dl_cfg_reg & ~SHR_APMG_DL_CFG_DL_CLOCK_POWER_UP);
/*
* Enable persistence mode to avoid LP XTAL resetting when
* SHRD_HW_RST is applied in S3.
*/
iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_PERSIST_MODE);
/*
* Clear "initialization complete" bit to move adapter from
* D0A* (powered-up Active) --> D0U* (Uninitialized) state.
*/
iwl_clear_bit(trans, CSR_GP_CNTRL, BIT(trans->cfg->csr->flag_init_done));
/* Activates XTAL resources monitor */
__iwl_trans_pcie_set_bit(trans, CSR_MONITOR_CFG_REG, CSR_MONITOR_XTAL_RESOURCES);
/* Release XTAL ON request */
__iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_XTAL_ON);
zx_nanosleep(zx_deadline_after(ZX_USEC(10)));
/* Release APMG XTAL */
iwl_trans_pcie_write_shr(trans, SHR_APMG_XTAL_CFG_REG,
apmg_xtal_cfg_reg & ~SHR_APMG_XTAL_CFG_XTAL_ON_REQ);
}
void iwl_pcie_apm_stop_master(struct iwl_trans* trans) {
zx_status_t ret;
/* stop device's busmaster DMA activity */
iwl_set_bit(trans, trans->cfg->csr->addr_sw_reset, BIT(trans->cfg->csr->flag_stop_master));
ret = iwl_poll_bit(trans, trans->cfg->csr->addr_sw_reset, BIT(trans->cfg->csr->flag_master_dis),
BIT(trans->cfg->csr->flag_master_dis), ZX_USEC(100), NULL);
if (ret != ZX_OK) {
IWL_WARN(trans, "Master Disable Timed Out, 100 usec\n");
}
IWL_DEBUG_INFO(trans, "stop master\n");
}
static void iwl_pcie_apm_stop(struct iwl_trans* trans, bool op_mode_leave) {
IWL_DEBUG_INFO(trans, "Stop card, put in low power state\n");
if (op_mode_leave) {
if (!test_bit(STATUS_DEVICE_ENABLED, &trans->status)) {
iwl_pcie_apm_init(trans);
}
/* inform ME that we are leaving */
if (trans->cfg->device_family == IWL_DEVICE_FAMILY_7000) {
iwl_set_bits_prph(trans, APMG_PCIDEV_STT_REG, APMG_PCIDEV_STT_VAL_WAKE_ME);
} else if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000) {
iwl_set_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG, CSR_RESET_LINK_PWR_MGMT_DISABLED);
iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG,
CSR_HW_IF_CONFIG_REG_PREPARE | CSR_HW_IF_CONFIG_REG_ENABLE_PME);
zx_nanosleep(zx_deadline_after(ZX_MSEC(1)));
iwl_clear_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG, CSR_RESET_LINK_PWR_MGMT_DISABLED);
}
zx_nanosleep(zx_deadline_after(ZX_MSEC(5)));
}
clear_bit(STATUS_DEVICE_ENABLED, &trans->status);
/* Stop device's DMA activity */
iwl_pcie_apm_stop_master(trans);
if (trans->cfg->lp_xtal_workaround) {
iwl_pcie_apm_lp_xtal_enable(trans);
return;
}
iwl_trans_pcie_sw_reset(trans);
/*
* Clear "initialization complete" bit to move adapter from
* D0A* (powered-up Active) --> D0U* (Uninitialized) state.
*/
iwl_clear_bit(trans, CSR_GP_CNTRL, BIT(trans->cfg->csr->flag_init_done));
}
static zx_status_t iwl_pcie_nic_init(struct iwl_trans* trans) {
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
/* nic_init */
mtx_lock(&trans_pcie->irq_lock);
zx_status_t status = iwl_pcie_apm_init(trans);
mtx_unlock(&trans_pcie->irq_lock);
if (status != ZX_OK) {
return status;
}
iwl_pcie_set_pwr(trans, false);
iwl_op_mode_nic_config(trans->op_mode);
// Allocate the RX queue, or reset if it is already allocated.
status = iwl_pcie_rx_init(trans);
if (status != ZX_OK) {
return status;
}
// Allocate or reset and init all Tx and Command queues.
status = iwl_pcie_tx_init(trans);
if (status != ZX_OK) {
return status;
}
if (trans->cfg->base_params->shadow_reg_enable) {
/* enable shadow regs in HW */
iwl_set_bit(trans, CSR_MAC_SHADOW_REG_CTRL, 0x800FFFFF);
IWL_DEBUG_INFO(trans, "Enabling shadow registers in device\n");
}
return ZX_OK;
}
#define HW_READY_TIMEOUT ZX_USEC(50)
static zx_status_t iwl_pcie_set_hw_ready(struct iwl_trans* trans) {
zx_status_t ret;
iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_NIC_READY);
/* See if we got it */
ret = iwl_poll_bit(trans, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_BIT_NIC_READY,
CSR_HW_IF_CONFIG_REG_BIT_NIC_READY, HW_READY_TIMEOUT, NULL);
if (ret == ZX_OK) {
iwl_set_bit(trans, CSR_MBOX_SET_REG, CSR_MBOX_SET_REG_OS_ALIVE);
}
IWL_DEBUG_INFO(trans, "hardware%s ready\n", ret != ZX_OK ? " not" : "");
return ret;
}
zx_status_t iwl_pcie_prepare_card_hw(struct iwl_trans* trans) {
int t = 0;
int iter;
IWL_DEBUG_INFO(trans, "iwl_trans_prepare_card_hw enter\n");
/* If the card is ready, exit 0 */
if (ZX_OK == iwl_pcie_set_hw_ready(trans)) {
return ZX_OK;
}
iwl_set_bit(trans, CSR_DBG_LINK_PWR_MGMT_REG, CSR_RESET_LINK_PWR_MGMT_DISABLED);
zx_nanosleep(zx_deadline_after(ZX_MSEC(2)));
zx_status_t ret;
for (iter = 0; iter < 10; iter++) {
/* If HW is not ready, prepare the conditions to check again */
iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_PREPARE);
do {
if (ZX_OK == (ret = iwl_pcie_set_hw_ready(trans))) {
return ZX_OK;
}
zx_nanosleep(zx_deadline_after(ZX_MSEC(1)));
t += 200;
} while (t < 150000);
zx_nanosleep(zx_deadline_after(ZX_MSEC(25)));
}
IWL_ERR(trans, "Couldn't prepare the card\n");
return ret;
}
/*
* ucode
*/
static void iwl_pcie_load_firmware_chunk_fh(struct iwl_trans* trans, uint32_t dst_addr,
zx_paddr_t phy_addr, uint32_t byte_cnt) {
iwl_write32(trans, FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL),
FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_PAUSE);
iwl_write32(trans, FH_SRVC_CHNL_SRAM_ADDR_REG(FH_SRVC_CHNL), dst_addr);
iwl_write32(trans, FH_TFDIB_CTRL0_REG(FH_SRVC_CHNL), phy_addr & FH_MEM_TFDIB_DRAM_ADDR_LSB_MSK);
iwl_write32(trans, FH_TFDIB_CTRL1_REG(FH_SRVC_CHNL),
(iwl_get_dma_hi_addr(phy_addr) << FH_MEM_TFDIB_REG1_ADDR_BITSHIFT) | byte_cnt);
iwl_write32(trans, FH_TCSR_CHNL_TX_BUF_STS_REG(FH_SRVC_CHNL),
BIT(FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_NUM) |
BIT(FH_TCSR_CHNL_TX_BUF_STS_REG_POS_TB_IDX) |
FH_TCSR_CHNL_TX_BUF_STS_REG_VAL_TFDB_VALID);
iwl_write32(trans, FH_TCSR_CHNL_TX_CONFIG_REG(FH_SRVC_CHNL),
FH_TCSR_TX_CONFIG_REG_VAL_DMA_CHNL_ENABLE |
FH_TCSR_TX_CONFIG_REG_VAL_DMA_CREDIT_DISABLE |
FH_TCSR_TX_CONFIG_REG_VAL_CIRQ_HOST_ENDTFD);
}
static zx_status_t iwl_pcie_load_firmware_chunk(struct iwl_trans* trans, uint32_t dst_addr,
zx_paddr_t phy_addr, uint32_t byte_cnt) {
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
unsigned long flags;
int ret;
trans_pcie->ucode_write_complete = false;
if (!iwl_trans_grab_nic_access(trans, &flags)) {
return ZX_ERR_IO;
}
iwl_pcie_load_firmware_chunk_fh(trans, dst_addr, phy_addr, byte_cnt);
iwl_trans_release_nic_access(trans, &flags);
ret = sync_completion_wait(&trans_pcie->ucode_write_waitq, ZX_SEC(5));
if (ret != ZX_OK) {
IWL_ERR(trans, "Failed to load firmware chunk!\n");
iwl_trans_pcie_dump_regs(trans);
return ZX_ERR_TIMED_OUT;
}
sync_completion_reset(&trans_pcie->ucode_write_waitq);
return ZX_OK;
}
static zx_status_t iwl_pcie_load_section(struct iwl_trans* trans, uint8_t section_num,
const struct fw_desc* section) {
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
zx_handle_t vmo;
uint32_t offset, chunk_sz = min_t(uint32_t, FH_MEM_TB_MAX_LENGTH, section->len);
zx_status_t ret = ZX_OK;
IWL_DEBUG_FW(trans, "[%d] uCode section being loaded...\n", section_num);
// The way the ucode download process works is that:
//
// 1. The driver copies the ucode to a uncached VMO space.
// 2. Tell the hardware DMA where to copy (from p_addr).
// 3. The hardware copies to its own internal memory.
// 4. Then hardware notifies the driver that the copy is done.
//
// Allocate a VMO space.
size_t vmo_size = ROUND_UP(chunk_sz, ZX_PAGE_SIZE);
ret =
zx_vmo_create_contiguous(trans_pcie->pci_dev->dev.bti, vmo_size, /*alignment_log2*/ 0, &vmo);
if (ret != ZX_OK) {
goto out;
}
// Map the virtual address to physical address.
zx_handle_t pmt; // Pinned Memory Token -- for unpin.
zx_paddr_t p_addr;
ret = zx_bti_pin(trans_pcie->pci_dev->dev.bti, ZX_BTI_PERM_READ | ZX_BTI_CONTIGUOUS, vmo,
/*offset*/ 0, vmo_size, &p_addr, /* addrs_count */ 1, &pmt);
if (ret != ZX_OK) {
goto out;
}
for (offset = 0; offset < section->len; offset += chunk_sz) {
uint32_t copy_size, dst_addr;
bool extended_addr = false;
copy_size = min_t(uint32_t, chunk_sz, section->len - offset);
dst_addr = section->offset + offset;
if (dst_addr >= IWL_FW_MEM_EXTENDED_START && dst_addr <= IWL_FW_MEM_EXTENDED_END) {
extended_addr = true;
}
if (extended_addr) {
iwl_set_bits_prph(trans, LMPM_CHICK, LMPM_CHICK_EXTENDED_ADDR_SPACE);
}
// Copy data to VMO for hardware to fetch.
ret = zx_vmo_write(vmo, section->data + offset, 0, copy_size);
if (ret != ZX_OK) {
goto ext_clear;
}
// Tell hardware to fetch.
ret = iwl_pcie_load_firmware_chunk(trans, dst_addr, p_addr, copy_size);
if (ret != ZX_OK) {
IWL_ERR(trans, "Could not load the [%d] uCode section\n", section_num);
goto ext_clear;
}
ext_clear:
if (extended_addr) {
iwl_clear_bits_prph(trans, LMPM_CHICK, LMPM_CHICK_EXTENDED_ADDR_SPACE);
}
// Break and return the real error.
if (ret != ZX_OK) {
break;
}
}
zx_status_t unpin_ret = zx_pmt_unpin(pmt);
if (unpin_ret != ZX_OK) {
IWL_ERR(trans, "Could not unpin PMT: %s\n", zx_status_get_string(unpin_ret));
}
out:
zx_handle_close(vmo);
return ret;
}
#if 0 // NEEDS_PORTING
#ifdef CPTCFG_IWLWIFI_SUPPORT_DEBUG_OVERRIDES
static void iwl_pcie_override_secure_boot_cfg(struct iwl_trans* trans) {
uint32_t val;
if (!trans->dbg_cfg.secure_boot_cfg) { return; }
/* Verify AUX address space is not locked */
val = iwl_read_prph(trans, PREG_AUX_BUS_WPROT_0);
if (val & BIT((SB_CFG_OVERRIDE_ADDR - SB_CFG_BASE_OVERRIDE) >> 10)) {
IWL_ERR(trans, "AUX address space is locked for override, (AUX val=0x%x)\n", val);
return;
}
/* Modify secure boot cfg flags */
iwl_write_prph(trans, SB_MODIFY_CFG_FLAG, trans->dbg_cfg.secure_boot_cfg);
/* take ownership on the AUX IF */
iwl_set_bits_prph(trans, WFPM_CTRL_REG, WFPM_AUX_CTL_AUX_IF_MAC_OWNER_MSK);
/* indicate secure boot cfg override */
iwl_set_bits_prph(trans, SB_CFG_OVERRIDE_ADDR, SB_CFG_OVERRIDE_ENABLE);
return;
}
#endif
#endif // NEEDS_PORTING
static zx_status_t iwl_pcie_load_cpu_sections_8000(struct iwl_trans* trans,
const struct fw_img* image, int cpu,
int* first_ucode_section) {
zx_status_t ret = ZX_OK;
int shift_param;
int i, sec_num = 0x1;
uint32_t val, last_read_idx = 0;
if (cpu == 1) {
shift_param = 0;
} else {
shift_param = 16;
}
for (i = *first_ucode_section; i < image->num_sec; i++) {
last_read_idx = i;
/*
* CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
* CPU1 to CPU2.
* PAGING_SEPARATOR_SECTION delimiter - separate between
* CPU2 non paged to CPU2 paging sec.
*/
if (!image->sec[i].data || image->sec[i].offset == CPU1_CPU2_SEPARATOR_SECTION ||
image->sec[i].offset == PAGING_SEPARATOR_SECTION) {
IWL_DEBUG_FW(trans, "Break since Data not valid or Empty section, sec = %d\n", i);
break;
}
ret = iwl_pcie_load_section(trans, i, &image->sec[i]);
if (ret != ZX_OK) {
return ret;
}
/* Notify ucode of loaded section number and status */
val = iwl_read_direct32(trans, FH_UCODE_LOAD_STATUS);
val = val | (sec_num << shift_param);
iwl_write_direct32(trans, FH_UCODE_LOAD_STATUS, val);
sec_num = (sec_num << 1) | 0x1;
}
*first_ucode_section = last_read_idx + 1;
iwl_enable_interrupts(trans);
if (trans->cfg->use_tfh) {
if (cpu == 1) {
iwl_write_prph(trans, UREG_UCODE_LOAD_STATUS, 0xFFFF);
} else {
iwl_write_prph(trans, UREG_UCODE_LOAD_STATUS, 0xFFFFFFFF);
}
} else {
if (cpu == 1) {
iwl_write_direct32(trans, FH_UCODE_LOAD_STATUS, 0xFFFF);
} else {
iwl_write_direct32(trans, FH_UCODE_LOAD_STATUS, 0xFFFFFFFF);
}
}
return ZX_OK;
}
static zx_status_t iwl_pcie_load_cpu_sections(struct iwl_trans* trans, const struct fw_img* image,
int cpu, int* first_ucode_section) {
int i, ret = ZX_OK;
uint32_t last_read_idx = 0;
for (i = *first_ucode_section; i < image->num_sec; i++) {
last_read_idx = i;
/*
* CPU1_CPU2_SEPARATOR_SECTION delimiter - separate between
* CPU1 to CPU2.
* PAGING_SEPARATOR_SECTION delimiter - separate between
* CPU2 non paged to CPU2 paging sec.
*/
if (!image->sec[i].data || image->sec[i].offset == CPU1_CPU2_SEPARATOR_SECTION ||
image->sec[i].offset == PAGING_SEPARATOR_SECTION) {
IWL_DEBUG_FW(trans, "Break since Data not valid or Empty section, sec = %d\n", i);
break;
}
ret = iwl_pcie_load_section(trans, i, &image->sec[i]);
if (ret) {
return ret;
}
}
*first_ucode_section = last_read_idx + 1;
return 0;
}
void iwl_pcie_apply_destination(struct iwl_trans* trans) {
const struct iwl_fw_dbg_dest_tlv_v1* dest = trans->dbg_dest_tlv;
int i;
if (trans->ini_valid) {
if (!trans->num_blocks) {
return;
}
iwl_write_prph(trans, MON_BUFF_BASE_ADDR_VER2,
trans->fw_mon[0].physical >> MON_BUFF_SHIFT_VER2);
iwl_write_prph(
trans, MON_BUFF_END_ADDR_VER2,
(trans->fw_mon[0].physical + trans->fw_mon[0].size - 256) >> MON_BUFF_SHIFT_VER2);
return;
}
IWL_INFO(trans, "Applying debug destination %s\n", get_fw_dbg_mode_string(dest->monitor_mode));
if (dest->monitor_mode == EXTERNAL_MODE) {
iwl_pcie_alloc_fw_monitor(trans, dest->size_power);
} else {
IWL_WARN(trans, "PCI should have external buffer debug\n");
}
for (i = 0; i < trans->dbg_n_dest_reg && dest; i++) {
uint32_t addr = le32_to_cpu(dest->reg_ops[i].addr);
uint32_t val = le32_to_cpu(dest->reg_ops[i].val);
switch (dest->reg_ops[i].op) {
case CSR_ASSIGN:
iwl_write32(trans, addr, val);
break;
case CSR_SETBIT:
iwl_set_bit(trans, addr, BIT(val));
break;
case CSR_CLEARBIT:
iwl_clear_bit(trans, addr, BIT(val));
break;
case PRPH_ASSIGN:
iwl_write_prph(trans, addr, val);
break;
case PRPH_SETBIT:
iwl_set_bits_prph(trans, addr, BIT(val));
break;
case PRPH_CLEARBIT:
iwl_clear_bits_prph(trans, addr, BIT(val));
break;
case PRPH_BLOCKBIT:
if (iwl_read_prph(trans, addr) & BIT(val)) {
IWL_ERR(trans, "BIT(%u) in address 0x%x is 1, stopping FW configuration\n", val, addr);
goto monitor;
}
break;
default:
IWL_ERR(trans, "FW debug - unknown OP %d\n", dest->reg_ops[i].op);
break;
}
}
monitor:
if (dest->monitor_mode == EXTERNAL_MODE && trans->fw_mon[0].size) {
iwl_write_prph(trans, le32_to_cpu(dest->base_reg),
trans->fw_mon[0].physical >> dest->base_shift);
if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000)
iwl_write_prph(trans, le32_to_cpu(dest->end_reg),
(trans->fw_mon[0].physical + trans->fw_mon[0].size - 256) >> dest->end_shift);
else
iwl_write_prph(trans, le32_to_cpu(dest->end_reg),
(trans->fw_mon[0].physical + trans->fw_mon[0].size) >> dest->end_shift);
}
}
static zx_status_t iwl_pcie_load_given_ucode(struct iwl_trans* trans, const struct fw_img* image) {
zx_status_t ret = 0;
int first_ucode_section = 0;
IWL_DEBUG_FW(trans, "working with %s CPU\n", image->is_dual_cpus ? "Dual" : "Single");
/* load to FW the binary non secured sections of CPU1 */
ret = iwl_pcie_load_cpu_sections(trans, image, 1, &first_ucode_section);
if (ret != ZX_OK) {
return ret;
}
if (image->is_dual_cpus) {
/* set CPU2 header address */
iwl_write_prph(trans, LMPM_SECURE_UCODE_LOAD_CPU2_HDR_ADDR, LMPM_SECURE_CPU2_HDR_MEM_SPACE);
/* load to FW the binary sections of CPU2 */
ret = iwl_pcie_load_cpu_sections(trans, image, 2, &first_ucode_section);
if (ret != ZX_OK) {
return ret;
}
}
/* supported for 7000 only for the moment */
if (iwlwifi_mod_params.fw_monitor && trans->cfg->device_family == IWL_DEVICE_FAMILY_7000) {
#if 0 // NEEDS_PORTING
iwl_pcie_alloc_fw_monitor(trans, 0);
if (trans->fw_mon[0].size) {
iwl_write_prph(trans, MON_BUFF_BASE_ADDR, trans->fw_mon[0].physical >> 4);
iwl_write_prph(trans, MON_BUFF_END_ADDR,
(trans->fw_mon[0].physical + trans->fw_mon[0].size) >> 4);
}
#endif // NEEDS_PORTING
} else if (iwl_pcie_dbg_on(trans)) {
iwl_pcie_apply_destination(trans);
}
#ifdef CPTCFG_IWLWIFI_DEVICE_TESTMODE
iwl_dnt_configure(trans, image);
#endif
iwl_enable_interrupts(trans);
/* release CPU reset */
iwl_write32(trans, CSR_RESET, 0);
return ZX_OK;
}
static zx_status_t iwl_pcie_load_given_ucode_8000(struct iwl_trans* trans,
const struct fw_img* image) {
zx_status_t ret = ZX_OK;
int first_ucode_section = 0;
IWL_DEBUG_FW(trans, "working with %s CPU\n", image->is_dual_cpus ? "Dual" : "Single");
if (iwl_pcie_dbg_on(trans)) {
iwl_pcie_apply_destination(trans);
}
#ifdef CPTCFG_IWLWIFI_DEVICE_TESTMODE
iwl_dnt_configure(trans, image);
#endif
#ifdef CPTCFG_IWLWIFI_SUPPORT_DEBUG_OVERRIDES
iwl_pcie_override_secure_boot_cfg(trans);
#endif
IWL_DEBUG_POWER(trans, "Original WFPM value = 0x%08X\n", iwl_read_prph(trans, WFPM_GP2));
/*
* Set default value. On resume reading the values that were
* zeored can provide debug data on the resume flow.
* This is for debugging only and has no functional impact.
*/
iwl_write_prph(trans, WFPM_GP2, 0x01010101);
/* configure the ucode to be ready to get the secured image */
/* release CPU reset */
iwl_write_prph(trans, RELEASE_CPU_RESET, RELEASE_CPU_RESET_BIT);
/* load to FW the binary Secured sections of CPU1 */
ret = iwl_pcie_load_cpu_sections_8000(trans, image, 1, &first_ucode_section);
if (ret != ZX_OK) {
return ret;
}
/* load to FW the binary sections of CPU2 */
return iwl_pcie_load_cpu_sections_8000(trans, image, 2, &first_ucode_section);
}
bool iwl_pcie_check_hw_rf_kill(struct iwl_trans* trans) {
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
bool hw_rfkill = iwl_is_rfkill_set(trans);
bool prev = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
bool report;
if (hw_rfkill) {
set_bit(STATUS_RFKILL_HW, &trans->status);
set_bit(STATUS_RFKILL_OPMODE, &trans->status);
} else {
clear_bit(STATUS_RFKILL_HW, &trans->status);
if (trans_pcie->opmode_down) {
clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
}
}
report = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
if (prev != report) {
iwl_trans_pcie_rf_kill(trans, report);
}
return hw_rfkill;
}
struct iwl_causes_list {
uint32_t cause_num;
uint32_t mask_reg;
uint8_t addr;
};
static struct iwl_causes_list causes_list[] = {
{MSIX_FH_INT_CAUSES_D2S_CH0_NUM, CSR_MSIX_FH_INT_MASK_AD, 0},
{MSIX_FH_INT_CAUSES_D2S_CH1_NUM, CSR_MSIX_FH_INT_MASK_AD, 0x1},
{MSIX_FH_INT_CAUSES_S2D, CSR_MSIX_FH_INT_MASK_AD, 0x3},
{MSIX_FH_INT_CAUSES_FH_ERR, CSR_MSIX_FH_INT_MASK_AD, 0x5},
{MSIX_HW_INT_CAUSES_REG_ALIVE, CSR_MSIX_HW_INT_MASK_AD, 0x10},
{MSIX_HW_INT_CAUSES_REG_WAKEUP, CSR_MSIX_HW_INT_MASK_AD, 0x11},
{MSIX_HW_INT_CAUSES_REG_CT_KILL, CSR_MSIX_HW_INT_MASK_AD, 0x16},
{MSIX_HW_INT_CAUSES_REG_RF_KILL, CSR_MSIX_HW_INT_MASK_AD, 0x17},
{MSIX_HW_INT_CAUSES_REG_PERIODIC, CSR_MSIX_HW_INT_MASK_AD, 0x18},
{MSIX_HW_INT_CAUSES_REG_SW_ERR, CSR_MSIX_HW_INT_MASK_AD, 0x29},
{MSIX_HW_INT_CAUSES_REG_SCD, CSR_MSIX_HW_INT_MASK_AD, 0x2A},
{MSIX_HW_INT_CAUSES_REG_FH_TX, CSR_MSIX_HW_INT_MASK_AD, 0x2B},
{MSIX_HW_INT_CAUSES_REG_HW_ERR, CSR_MSIX_HW_INT_MASK_AD, 0x2D},
{MSIX_HW_INT_CAUSES_REG_HAP, CSR_MSIX_HW_INT_MASK_AD, 0x2E},
};
static struct iwl_causes_list causes_list_v2[] = {
{MSIX_FH_INT_CAUSES_D2S_CH0_NUM, CSR_MSIX_FH_INT_MASK_AD, 0},
{MSIX_FH_INT_CAUSES_D2S_CH1_NUM, CSR_MSIX_FH_INT_MASK_AD, 0x1},
{MSIX_FH_INT_CAUSES_S2D, CSR_MSIX_FH_INT_MASK_AD, 0x3},
{MSIX_FH_INT_CAUSES_FH_ERR, CSR_MSIX_FH_INT_MASK_AD, 0x5},
{MSIX_HW_INT_CAUSES_REG_ALIVE, CSR_MSIX_HW_INT_MASK_AD, 0x10},
{MSIX_HW_INT_CAUSES_REG_IPC, CSR_MSIX_HW_INT_MASK_AD, 0x11},
{MSIX_HW_INT_CAUSES_REG_SW_ERR_V2, CSR_MSIX_HW_INT_MASK_AD, 0x15},
{MSIX_HW_INT_CAUSES_REG_CT_KILL, CSR_MSIX_HW_INT_MASK_AD, 0x16},
{MSIX_HW_INT_CAUSES_REG_RF_KILL, CSR_MSIX_HW_INT_MASK_AD, 0x17},
{MSIX_HW_INT_CAUSES_REG_PERIODIC, CSR_MSIX_HW_INT_MASK_AD, 0x18},
{MSIX_HW_INT_CAUSES_REG_SCD, CSR_MSIX_HW_INT_MASK_AD, 0x2A},
{MSIX_HW_INT_CAUSES_REG_FH_TX, CSR_MSIX_HW_INT_MASK_AD, 0x2B},
{MSIX_HW_INT_CAUSES_REG_HW_ERR, CSR_MSIX_HW_INT_MASK_AD, 0x2D},
{MSIX_HW_INT_CAUSES_REG_HAP, CSR_MSIX_HW_INT_MASK_AD, 0x2E},
};
static void iwl_pcie_map_non_rx_causes(struct iwl_trans* trans) {
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
int val = trans_pcie->def_irq | MSIX_NON_AUTO_CLEAR_CAUSE;
int i, arr_size = (trans->cfg->device_family < IWL_DEVICE_FAMILY_22560)
? ARRAY_SIZE(causes_list)
: ARRAY_SIZE(causes_list_v2);
/*
* Access all non RX causes and map them to the default irq.
* In case we are missing at least one interrupt vector,
* the first interrupt vector will serve non-RX and FBQ causes.
*/
for (i = 0; i < arr_size; i++) {
struct iwl_causes_list* causes =
(trans->cfg->device_family < IWL_DEVICE_FAMILY_22560) ? causes_list : causes_list_v2;
iwl_write8(trans, CSR_MSIX_IVAR(causes[i].addr), val);
iwl_clear_bit(trans, causes[i].mask_reg, causes[i].cause_num);
}
}
static void iwl_pcie_map_rx_causes(struct iwl_trans* trans) {
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
uint32_t offset = trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS ? 1 : 0;
uint32_t val, idx;
/*
* The first RX queue - fallback queue, which is designated for
* management frame, command responses etc, is always mapped to the
* first interrupt vector. The other RX queues are mapped to
* the other (N - 2) interrupt vectors.
*/
val = BIT(MSIX_FH_INT_CAUSES_Q(0));
for (idx = 1; idx < trans->num_rx_queues; idx++) {
iwl_write8(trans, CSR_MSIX_RX_IVAR(idx), MSIX_FH_INT_CAUSES_Q(idx - offset));
val |= BIT(MSIX_FH_INT_CAUSES_Q(idx));
}
iwl_write32(trans, CSR_MSIX_FH_INT_MASK_AD, ~val);
val = MSIX_FH_INT_CAUSES_Q(0);
if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_NON_RX) {
val |= MSIX_NON_AUTO_CLEAR_CAUSE;
}
iwl_write8(trans, CSR_MSIX_RX_IVAR(0), val);
if (trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS) {
iwl_write8(trans, CSR_MSIX_RX_IVAR(1), val);
}
}
void iwl_pcie_conf_msix_hw(struct iwl_trans_pcie* trans_pcie) {
struct iwl_trans* trans = trans_pcie->trans;
if (!trans_pcie->msix_enabled) {
if (trans->cfg->mq_rx_supported && test_bit(STATUS_DEVICE_ENABLED, &trans->status)) {
iwl_write_prph(trans, UREG_CHICK, UREG_CHICK_MSI_ENABLE);
}
return;
}
/*
* The IVAR table needs to be configured again after reset,
* but if the device is disabled, we can't write to
* prph.
*/
if (test_bit(STATUS_DEVICE_ENABLED, &trans->status)) {
iwl_write_prph(trans, UREG_CHICK, UREG_CHICK_MSIX_ENABLE);
}
/*
* Each cause from the causes list above and the RX causes is
* represented as a byte in the IVAR table. The first nibble
* represents the bound interrupt vector of the cause, the second
* represents no auto clear for this cause. This will be set if its
* interrupt vector is bound to serve other causes.
*/
iwl_pcie_map_rx_causes(trans);
iwl_pcie_map_non_rx_causes(trans);
}
static void iwl_pcie_init_msix(struct iwl_trans_pcie* trans_pcie) {
struct iwl_trans* trans = trans_pcie->trans;
iwl_pcie_conf_msix_hw(trans_pcie);
if (!trans_pcie->msix_enabled) {
return;
}
trans_pcie->fh_init_mask = ~iwl_read32(trans, CSR_MSIX_FH_INT_MASK_AD);
trans_pcie->fh_mask = trans_pcie->fh_init_mask;
trans_pcie->hw_init_mask = ~iwl_read32(trans, CSR_MSIX_HW_INT_MASK_AD);
trans_pcie->hw_mask = trans_pcie->hw_init_mask;
}
static void _iwl_trans_pcie_stop_device(struct iwl_trans* trans, bool low_power) {
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
iwl_assert_lock_held(&trans_pcie->mutex);
if (trans_pcie->is_down) {
return;
}
trans_pcie->is_down = true;
#if 0 // NEEDS_PORTING
/* Stop dbgc before stopping device */
_iwl_fw_dbg_stop_recording(trans, NULL);
#endif // NEEDS_PORTING
/* tell the device to stop sending interrupts */
iwl_disable_interrupts(trans);
/* device going down, Stop using ICT table */
iwl_pcie_disable_ict(trans);
/*
* If a HW restart happens during firmware loading,
* then the firmware loading might call this function
* and later it might be called again due to the
* restart. So don't process again if the device is
* already dead.
*/
if (test_and_clear_bit(STATUS_DEVICE_ENABLED, &trans->status)) {
IWL_DEBUG_INFO(trans, "DEVICE_ENABLED bit was set and is now cleared\n");
iwl_pcie_tx_stop(trans);
iwl_pcie_rx_stop(trans);
/* Power-down device's busmaster DMA clocks */
if (!trans->cfg->apmg_not_supported) {
iwl_write_prph(trans, APMG_CLK_DIS_REG, APMG_CLK_VAL_DMA_CLK_RQT);
zx_nanosleep(zx_deadline_after(ZX_USEC(5)));
}
}
/* Make sure (redundant) we've released our request to stay awake */
iwl_clear_bit(trans, CSR_GP_CNTRL, BIT(trans->cfg->csr->flag_mac_access_req));
/* Stop the device, and put it in low power state */
iwl_pcie_apm_stop(trans, false);
iwl_trans_pcie_sw_reset(trans);
/*
* Upon stop, the IVAR table gets erased, so msi-x won't
* work. This causes a bug in RF-KILL flows, since the interrupt
* that enables radio won't fire on the correct irq, and the
* driver won't be able to handle the interrupt.
* Configure the IVAR table again after reset.
*/
iwl_pcie_conf_msix_hw(trans_pcie);
/*
* Upon stop, the APM issues an interrupt if HW RF kill is set.
* This is a bug in certain verions of the hardware.
* Certain devices also keep sending HW RF kill interrupt all
* the time, unless the interrupt is ACKed even if the interrupt
* should be masked. Re-ACK all the interrupts here.
*/
iwl_disable_interrupts(trans);
/* clear all status bits */
clear_bit(STATUS_SYNC_HCMD_ACTIVE, &trans->status);
clear_bit(STATUS_INT_ENABLED, &trans->status);
clear_bit(STATUS_TPOWER_PMI, &trans->status);
/*
* Even if we stop the HW, we still want the RF kill
* interrupt
*/
iwl_enable_rfkill_int(trans);
/* re-take ownership to prevent other users from stealing the device */
iwl_pcie_prepare_card_hw(trans);
}
#if 0 // NEEDS_PORTING
// TODO(43123): implement this function
void iwl_pcie_synchronize_irqs(struct iwl_trans* trans) {
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
if (trans_pcie->msix_enabled) {
int i;
for (i = 0; i < trans_pcie->alloc_vecs; i++) {
synchronize_irq(trans_pcie->msix_entries[i].vector);
}
} else {
synchronize_irq(trans_pcie->pci_dev->irq);
}
}
#endif // NEEDS_PORTING
static zx_status_t iwl_trans_pcie_start_fw(struct iwl_trans* trans, const struct fw_img* fw,
bool run_in_rfkill) {
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
bool hw_rfkill;
zx_status_t ret;
/* This may fail if AMT took ownership of the device */
if (ZX_OK != iwl_pcie_prepare_card_hw(trans)) {
IWL_WARN(trans, "Exit HW not ready\n");
return ZX_ERR_UNAVAILABLE;
}
iwl_enable_rfkill_int(trans);
iwl_write32(trans, CSR_INT, 0xFFFFFFFF);
/*
* We enabled the RF-Kill interrupt and the handler may very
* well be running. Disable the interrupts to make sure no other
* interrupt can be fired.
*/
iwl_disable_interrupts(trans);
#if 0 // NEEDS_PORTING
/* Make sure it finished running */
iwl_pcie_synchronize_irqs(trans);
#endif // NEEDS_PORTING
mtx_lock(&trans_pcie->mutex);
/* If platform's RF_KILL switch is NOT set to KILL */
hw_rfkill = iwl_pcie_check_hw_rf_kill(trans);
if (hw_rfkill && !run_in_rfkill) {
ret = ZX_ERR_BAD_STATE;
goto out;
}
/* Someone called stop_device, don't try to start_fw */
if (trans_pcie->is_down) {
IWL_WARN(trans, "Can't start_fw since the HW hasn't been started\n");
ret = ZX_ERR_CANCELED;
goto out;
}
/* make sure rfkill handshake bits are cleared */
iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_DRV_GP1_BIT_CMD_BLOCKED);
/* clear (again), then enable host interrupts */
iwl_write32(trans, CSR_INT, 0xFFFFFFFF);
ret = iwl_pcie_nic_init(trans);
if (ret != ZX_OK) {
IWL_ERR(trans, "Unable to init nic: %s\n", zx_status_get_string(ret));
goto out;
}
/*
* Now, we load the firmware and don't want to be interrupted, even
* by the RF-Kill interrupt (hence mask all the interrupt besides the
* FH_TX interrupt which is needed to load the firmware). If the
* RF-Kill switch is toggled, we will find out after having loaded
* the firmware and return the proper value to the caller.
*/
iwl_enable_fw_load_int(trans);
/* really make sure rfkill handshake bits are cleared */
iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
iwl_write32(trans, CSR_UCODE_DRV_GP1_CLR, CSR_UCODE_SW_BIT_RFKILL);
/* Load the given image to the HW */
if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000) {
ret = iwl_pcie_load_given_ucode_8000(trans, fw);
} else {
ret = iwl_pcie_load_given_ucode(trans, fw);
}
/* re-check RF-Kill state since we may have missed the interrupt */
hw_rfkill = iwl_pcie_check_hw_rf_kill(trans);
if (hw_rfkill && !run_in_rfkill) {
ret = ZX_ERR_BAD_STATE;
}
out:
mtx_unlock(&trans_pcie->mutex);
return ret;
}
static void iwl_trans_pcie_fw_alive(struct iwl_trans* trans, uint32_t scd_addr) {
iwl_pcie_reset_ict(trans);
iwl_pcie_tx_start(trans, scd_addr);
}
void iwl_trans_pcie_handle_stop_rfkill(struct iwl_trans* trans, bool was_in_rfkill) {
bool hw_rfkill;
/*
* Check again since the RF kill state may have changed while
* all the interrupts were disabled, in this case we couldn't
* receive the RF kill interrupt and update the state in the
* op_mode.
* Don't call the op_mode if the rkfill state hasn't changed.
* This allows the op_mode to call stop_device from the rfkill
* notification without endless recursion. Under very rare
* circumstances, we might have a small recursion if the rfkill
* state changed exactly now while we were called from stop_device.
* This is very unlikely but can happen and is supported.
*/
hw_rfkill = iwl_is_rfkill_set(trans);
if (hw_rfkill) {
set_bit(STATUS_RFKILL_HW, &trans->status);
set_bit(STATUS_RFKILL_OPMODE, &trans->status);
} else {
clear_bit(STATUS_RFKILL_HW, &trans->status);
clear_bit(STATUS_RFKILL_OPMODE, &trans->status);
}
if (hw_rfkill != was_in_rfkill) {
iwl_trans_pcie_rf_kill(trans, hw_rfkill);
}
}
static void iwl_trans_pcie_stop_device(struct iwl_trans* trans, bool low_power) {
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
bool was_in_rfkill;
mtx_lock(&trans_pcie->mutex);
trans_pcie->opmode_down = true;
was_in_rfkill = test_bit(STATUS_RFKILL_OPMODE, &trans->status);
_iwl_trans_pcie_stop_device(trans, low_power);
iwl_trans_pcie_handle_stop_rfkill(trans, was_in_rfkill);
mtx_unlock(&trans_pcie->mutex);
}
void iwl_trans_pcie_rf_kill(struct iwl_trans* trans, bool state) {
__UNUSED struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
iwl_assert_lock_held(&trans_pcie->mutex);
IWL_WARN(trans, "reporting RF_KILL (radio %s)\n", state ? "disabled" : "enabled");
if (iwl_op_mode_hw_rf_kill(trans->op_mode, state)) {
#if 0 // NEEDS_PORTING
if (trans->cfg->gen2) {
_iwl_trans_pcie_gen2_stop_device(trans, true);
} else {
#endif // NEEDS_PORTING
_iwl_trans_pcie_stop_device(trans, true);
#if 0 // NEEDS_PORTING
}
#endif // NEEDS_PORTING
}
}
static void iwl_trans_pcie_d3_suspend(struct iwl_trans* trans, bool test, bool reset) {
#if 0 // NEEDS_PORTING
if (!reset) {
/* Enable persistence mode to avoid reset */
iwl_set_bit(trans, CSR_HW_IF_CONFIG_REG, CSR_HW_IF_CONFIG_REG_PERSIST_MODE);
}
iwl_disable_interrupts(trans);
/*
* in testing mode, the host stays awake and the
* hardware won't be reset (not even partially)
*/
if (test) { return; }
iwl_pcie_disable_ict(trans);
iwl_pcie_synchronize_irqs(trans);
iwl_clear_bit(trans, CSR_GP_CNTRL, BIT(trans->cfg->csr->flag_mac_access_req));
iwl_clear_bit(trans, CSR_GP_CNTRL, BIT(trans->cfg->csr->flag_init_done));
if (reset) {
/*
* reset TX queues -- some of their registers reset during S3
* so if we don't reset everything here the D3 image would try
* to execute some invalid memory upon resume
*/
iwl_trans_pcie_tx_reset(trans);
}
iwl_pcie_set_pwr(trans, true);
#endif // NEEDS_PORTING
IWL_ERR(trans, "%s needs porting\n", __FUNCTION__);
}
static int iwl_trans_pcie_d3_resume(struct iwl_trans* trans, enum iwl_d3_status* status, bool test,
bool reset) {
#if 0 // NEEDS_PORTING
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
uint32_t val;
int ret;
if (test) {
iwl_enable_interrupts(trans);
*status = IWL_D3_STATUS_ALIVE;
return 0;
}
iwl_set_bit(trans, CSR_GP_CNTRL, BIT(trans->cfg->csr->flag_mac_access_req));
iwl_set_bit(trans, CSR_GP_CNTRL, BIT(trans->cfg->csr->flag_init_done));
if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000) {
zx_nanosleep(zx_deadline_after(ZX_USEC(2)));
}
ret = iwl_poll_bit(trans, CSR_GP_CNTRL, BIT(trans->cfg->csr->flag_mac_clock_ready),
BIT(trans->cfg->csr->flag_mac_clock_ready), ZX_MSEC(25));
if (ret < 0) {
IWL_ERR(trans, "Failed to resume the device (mac ready)\n");
return ret;
}
/*
* Reconfigure IVAR table in case of MSIX or reset ict table in
* MSI mode since HW reset erased it.
* Also enables interrupts - none will happen as
* the device doesn't know we're waking it up, only when
* the opmode actually tells it after this call.
*/
iwl_pcie_conf_msix_hw(trans_pcie);
if (!trans_pcie->msix_enabled) { iwl_pcie_reset_ict(trans); }
iwl_enable_interrupts(trans);
iwl_pcie_set_pwr(trans, false);
if (!reset) {
iwl_clear_bit(trans, CSR_GP_CNTRL, BIT(trans->cfg->csr->flag_mac_access_req));
} else {
iwl_trans_pcie_tx_reset(trans);
ret = iwl_pcie_rx_init(trans);
if (ret) {
IWL_ERR(trans, "Failed to resume the device (RX reset)\n");
return ret;
}
}
IWL_DEBUG_POWER(trans, "WFPM value upon resume = 0x%08X\n", iwl_read_prph(trans, WFPM_GP2));
val = iwl_read32(trans, CSR_RESET);
if (val & CSR_RESET_REG_FLAG_NEVO_RESET) {
*status = IWL_D3_STATUS_RESET;
} else {
*status = IWL_D3_STATUS_ALIVE;
}
return 0;
#endif // NEEDS_PORTING
IWL_ERR(trans, "%s needs porting\n", __FUNCTION__);
return -1;
}
static zx_status_t iwl_pcie_set_interrupt_capa(struct iwl_trans* trans) {
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
// TODO(fxbug.dev/82778): support MSI-X.
#if 0 // NEEDS_PORTING
if (!trans->cfg->mq_rx_supported || iwlwifi_mod_params.disable_msix) { goto enable_msi; }
int max_irqs = min_t(uint32_t, num_online_cpus() + 2, IWL_MAX_RX_HW_QUEUES);
for (int i = 0; i < max_irqs; i++) {
trans_pcie->msix_entries[i].entry = i;
}
int num_irqs =
pci_enable_msix_range(pdev, trans_pcie->msix_entries, MSIX_MIN_INTERRUPT_VECTORS, max_irqs);
if (num_irqs < 0) {
IWL_DEBUG_INFO(trans, "Failed to enable msi-x mode (ret %d). Moving to msi mode.\n",
num_irqs);
goto enable_msi;
}
trans_pcie->def_irq = (num_irqs == max_irqs) ? num_irqs - 1 : 0;
IWL_DEBUG_INFO(trans, "MSI-X enabled. %d interrupt vectors were allocated\n", num_irqs);
/*
* In case the OS provides fewer interrupts than requested, different
* causes will share the same interrupt vector as follows:
* One interrupt less: non rx causes shared with FBQ.
* Two interrupts less: non rx causes shared with FBQ and RSS.
* More than two interrupts: we will use fewer RSS queues.
*/
if (num_irqs <= max_irqs - 2) {
trans_pcie->trans->num_rx_queues = num_irqs + 1;
trans_pcie->shared_vec_mask = IWL_SHARED_IRQ_NON_RX | IWL_SHARED_IRQ_FIRST_RSS;
} else if (num_irqs == max_irqs - 1) {
trans_pcie->trans->num_rx_queues = num_irqs;
trans_pcie->shared_vec_mask = IWL_SHARED_IRQ_NON_RX;
} else {
trans_pcie->trans->num_rx_queues = num_irqs - 1;
}
WARN_ON(trans_pcie->trans->num_rx_queues > IWL_MAX_RX_HW_QUEUES);
trans_pcie->alloc_vecs = num_irqs;
trans_pcie->msix_enabled = true;
return;
enable_msi:
#endif // NEEDS_PORTING
struct {
pci_irq_mode_t value;
const char* name;
} modes[] = {
{
PCI_IRQ_MODE_MSI,
"MSI",
},
{
PCI_IRQ_MODE_LEGACY,
"LEGACY",
},
};
const uint32_t request_irq_count = 1; // Currently we only request 1 interrupt.
zx_status_t status;
size_t i;
for (i = 0; i < ARRAY_SIZE(modes); i++) {
trans_pcie->irq_mode = modes[i].value;
uint32_t max_irqs;
if (ZX_OK == (status = pci_query_irq_mode(trans_pcie->pci, trans_pcie->irq_mode, &max_irqs))) {
IWL_INFO(trans, "We choose the IRQ mode: %s\n", modes[i].name);
ZX_DEBUG_ASSERT(max_irqs >= request_irq_count);
break;
}
}
if (i == ARRAY_SIZE(modes)) {
IWL_ERR(trans, "cannot find an IRQ mode to use: %s.\n", zx_status_get_string(status));
return status;
}
return pci_set_irq_mode(trans_pcie->pci, trans_pcie->irq_mode, request_irq_count);
}
#if 0 // NEEDS_PORTING
static void iwl_pcie_irq_set_affinity(struct iwl_trans* trans) {
int iter_rx_q, i, ret, cpu, offset;
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
i = trans_pcie->shared_vec_mask & IWL_SHARED_IRQ_FIRST_RSS ? 0 : 1;
iter_rx_q = trans_pcie->trans->num_rx_queues - 1 + i;
offset = 1 + i;
for (; i < iter_rx_q; i++) {
/*
* Get the cpu prior to the place to search
* (i.e. return will be > i - 1).
*/
cpu = cpumask_next(i - offset, cpu_online_mask);
cpumask_set_cpu(cpu, &trans_pcie->affinity_mask[i]);
ret = irq_set_affinity_hint(trans_pcie->msix_entries[i].vector,
&trans_pcie->affinity_mask[i]);
if (ret) { IWL_ERR(trans_pcie->trans, "Failed to set affinity mask for IRQ %d\n", i); }
}
}
static int iwl_pcie_init_msix_handler(struct pci_dev* pdev, struct iwl_trans_pcie* trans_pcie) {
int i;
for (i = 0; i < trans_pcie->alloc_vecs; i++) {
int ret;
struct msix_entry* msix_entry;
const char* qname = queue_name(&pdev->dev, trans_pcie, i);
if (!qname) { return -ENOMEM; }
msix_entry = &trans_pcie->msix_entries[i];
ret = devm_request_threaded_irq(
&pdev->dev, msix_entry->vector, iwl_pcie_msix_isr,
(i == trans_pcie->def_irq) ? iwl_pcie_irq_msix_handler : iwl_pcie_irq_rx_msix_handler,
IRQF_SHARED, qname, msix_entry);
if (ret) {
IWL_ERR(trans_pcie->trans, "Error allocating IRQ %d\n", i);
return ret;
}
}
iwl_pcie_irq_set_affinity(trans_pcie->trans);
return 0;
}
#endif // NEEDS_PORTING
static zx_status_t _iwl_trans_pcie_start_hw(struct iwl_trans* trans, bool low_power) {
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
uint32_t hpm;
zx_status_t err = iwl_pcie_prepare_card_hw(trans);
if (err != ZX_OK) {
IWL_ERR(trans, "Error while preparing HW: %d\n", err);
return err;
}
hpm = iwl_trans_read_prph(trans, HPM_DEBUG);
if (hpm != 0xa5a5a5a0 && (hpm & PERSISTENCE_BIT)) {
if (iwl_trans_read_prph(trans, PREG_PRPH_WPROT_0) & PREG_WFPM_ACCESS) {
IWL_ERR(trans, "Error, can not clear persistence bit\n");
return ZX_ERR_ACCESS_DENIED;
}
iwl_trans_write_prph(trans, HPM_DEBUG, hpm & ~PERSISTENCE_BIT);
}
iwl_trans_pcie_sw_reset(trans);
if (ZX_OK != (err = iwl_pcie_apm_init(trans))) {
return err;
}
iwl_pcie_init_msix(trans_pcie);
/* From now on, the op_mode will be kept updated about RF kill state */
iwl_enable_rfkill_int(trans);
trans_pcie->opmode_down = false;
/* Set is_down to false here so that...*/
trans_pcie->is_down = false;
/* ...rfkill can call stop_device and set it false if needed */
iwl_pcie_check_hw_rf_kill(trans);
#if 0 // NEEDS_PORTING
/* Make sure we sync here, because we'll need full access later */
if (low_power) { pm_runtime_resume(trans->dev); }
#endif // NEEDS_PORTING
return ZX_OK;
}
static zx_status_t iwl_trans_pcie_start_hw(struct iwl_trans* trans, bool low_power) {
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
zx_status_t ret;
mtx_lock(&trans_pcie->mutex);
ret = _iwl_trans_pcie_start_hw(trans, low_power);
mtx_unlock(&trans_pcie->mutex);
return ret;
}
static void iwl_trans_pcie_op_mode_leave(struct iwl_trans* trans) {
#if 0 // NEEDS_PORTING
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
mutex_lock(&trans_pcie->mutex);
/* disable interrupts - don't enable HW RF kill interrupt */
iwl_disable_interrupts(trans);
iwl_pcie_apm_stop(trans, true);
iwl_disable_interrupts(trans);
iwl_pcie_disable_ict(trans);
mutex_unlock(&trans_pcie->mutex);
iwl_pcie_synchronize_irqs(trans);
#endif // NEEDS_PORTING
IWL_ERR(trans, "%s needs porting\n", __FUNCTION__);
}
static void iwl_trans_pcie_write8(struct iwl_trans* trans, uint32_t ofs, uint8_t val) {
uintptr_t addr = (uintptr_t)(IWL_TRANS_GET_PCIE_TRANS(trans)->mmio.vaddr) + ofs;
*(volatile uint8_t*)addr = val;
}
static void iwl_trans_pcie_write32(struct iwl_trans* trans, uint32_t ofs, uint32_t val) {
uintptr_t addr = (uintptr_t)(IWL_TRANS_GET_PCIE_TRANS(trans)->mmio.vaddr) + ofs;
*(volatile uint32_t*)addr = val;
}
static uint32_t iwl_trans_pcie_read32(struct iwl_trans* trans, uint32_t ofs) {
uintptr_t addr = (uintptr_t)(IWL_TRANS_GET_PCIE_TRANS(trans)->mmio.vaddr) + ofs;
return *(volatile uint32_t*)addr;
}
static uint32_t iwl_trans_pcie_prph_msk(struct iwl_trans* trans) {
if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_22560) {
return 0x00FFFFFF;
} else {
return 0x000FFFFF;
}
}
static uint32_t iwl_trans_pcie_read_prph(struct iwl_trans* trans, uint32_t reg) {
uint32_t mask = iwl_trans_pcie_prph_msk(trans);
iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_RADDR, ((reg & mask) | (3 << 24)));
return iwl_trans_pcie_read32(trans, HBUS_TARG_PRPH_RDAT);
}
static void iwl_trans_pcie_write_prph(struct iwl_trans* trans, uint32_t addr, uint32_t val) {
uint32_t mask = iwl_trans_pcie_prph_msk(trans);
iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_WADDR, ((addr & mask) | (3 << 24)));
iwl_trans_pcie_write32(trans, HBUS_TARG_PRPH_WDAT, val);
}
static void iwl_trans_pcie_configure(struct iwl_trans* trans,
const struct iwl_trans_config* trans_cfg) {
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
trans_pcie->cmd_queue = trans_cfg->cmd_queue;
trans_pcie->cmd_fifo = trans_cfg->cmd_fifo;
trans_pcie->cmd_q_wdg_timeout = trans_cfg->cmd_q_wdg_timeout;
if (WARN_ON(trans_cfg->n_no_reclaim_cmds > MAX_NO_RECLAIM_CMDS)) {
trans_pcie->n_no_reclaim_cmds = 0;
} else {
trans_pcie->n_no_reclaim_cmds = trans_cfg->n_no_reclaim_cmds;
}
if (trans_pcie->n_no_reclaim_cmds)
memcpy(trans_pcie->no_reclaim_cmds, trans_cfg->no_reclaim_cmds,
trans_pcie->n_no_reclaim_cmds * sizeof(uint8_t));
trans_pcie->rx_buf_size = trans_cfg->rx_buf_size;
trans_pcie->rx_page_order = iwl_trans_get_rb_size_order(trans_pcie->rx_buf_size);
trans_pcie->bc_table_dword = trans_cfg->bc_table_dword;
trans_pcie->scd_set_active = trans_cfg->scd_set_active;
trans_pcie->sw_csum_tx = trans_cfg->sw_csum_tx;
trans_pcie->page_offs = trans_cfg->cb_data_offs;
trans_pcie->dev_cmd_offs = trans_cfg->cb_data_offs + sizeof(void*);
trans->command_groups = trans_cfg->command_groups;
trans->command_groups_size = trans_cfg->command_groups_size;
#if 0 // NEEDS_PORTING
/* Initialize NAPI here - it should be before registering to mac80211
* in the opmode but after the HW struct is allocated.
* As this function may be called again in some corner cases don't
* do anything if NAPI was already initialized.
*/
if (trans_pcie->napi_dev.reg_state != NETREG_DUMMY) {
init_dummy_netdev(&trans_pcie->napi_dev);
}
#endif // NEEDS_PORTING
}
void iwl_trans_pcie_free(struct iwl_trans* trans) {
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
zx_interrupt_destroy(trans_pcie->irq_handle);
thrd_join(trans_pcie->irq_thread, NULL);
#if 0 // NEEDS_PORTING
int i;
iwl_pcie_synchronize_irqs(trans);
if (trans->cfg->gen2) {
iwl_pcie_gen2_tx_free(trans);
} else {
iwl_pcie_tx_free(trans);
}
iwl_pcie_rx_free(trans);
if (trans_pcie->msix_enabled) {
for (i = 0; i < trans_pcie->alloc_vecs; i++) {
irq_set_affinity_hint(trans_pcie->msix_entries[i].vector, NULL);
}
trans_pcie->msix_enabled = false;
} else {
#endif // NEEDS_PORTING
iwl_pcie_free_ict(trans);
#if 0 // NEEDS_PORTING
}
iwl_pcie_free_fw_monitor(trans);
for_each_possible_cpu(i) {
struct iwl_tso_hdr_page* p = per_cpu_ptr(trans_pcie->tso_hdr_page, i);
if (p->page) { __free_page(p->page); }
}
free_percpu(trans_pcie->tso_hdr_page);
mutex_destroy(&trans_pcie->mutex);
#endif // NEEDS_PORTING
iwl_trans_free(trans);
}
static void iwl_trans_pcie_set_pmi(struct iwl_trans* trans, bool state) {
if (state) {
set_bit(STATUS_TPOWER_PMI, &trans->status);
} else {
clear_bit(STATUS_TPOWER_PMI, &trans->status);
}
}
struct iwl_trans_pcie_removal {
struct pci_dev* pdev;
struct work_struct work;
};
#if 0 // NEEDS_PORTING
static void iwl_trans_pcie_removal_wk(struct work_struct* wk) {
struct iwl_trans_pcie_removal* removal = container_of(wk, struct iwl_trans_pcie_removal, work);
struct pci_dev* pdev = removal->pdev;
#if LINUX_VERSION_IS_LESS(3, 14, 0)
dev_err(&pdev->dev, "Device gone - can't remove on old kernels.\n");
#else
static char* prop[] = {"EVENT=INACCESSIBLE", NULL};
dev_err(&pdev->dev, "Device gone - attempting removal\n");
kobject_uevent_env(&pdev->dev.kobj, KOBJ_CHANGE, prop);
pci_lock_rescan_remove();
pci_dev_put(pdev);
pci_stop_and_remove_bus_device(pdev);
pci_unlock_rescan_remove();
#endif /* LINUX_VERSION_IS_LESS(3,14,0) */
kfree(removal);
module_put(THIS_MODULE);
}
#endif // NEEDS_PORTING
static bool iwl_trans_pcie_grab_nic_access(struct iwl_trans* trans, unsigned long* flags) {
int ret;
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
mtx_lock(&trans_pcie->reg_lock);
if (trans_pcie->cmd_hold_nic_awake) {
goto out;
}
/* this bit wakes up the NIC */
__iwl_trans_pcie_set_bit(trans, CSR_GP_CNTRL, BIT(trans->cfg->csr->flag_mac_access_req));
if (trans->cfg->device_family >= IWL_DEVICE_FAMILY_8000) {
zx_nanosleep(zx_deadline_after(ZX_USEC(2)));
}
/*
* These bits say the device is running, and should keep running for
* at least a short while (at least as long as MAC_ACCESS_REQ stays 1),
* but they do not indicate that embedded SRAM is restored yet;
* HW with volatile SRAM must save/restore contents to/from
* host DRAM when sleeping/waking for power-saving.
* Each direction takes approximately 1/4 millisecond; with this
* overhead, it's a good idea to grab and hold MAC_ACCESS_REQUEST if a
* series of register accesses are expected (e.g. reading Event Log),
* to keep device from sleeping.
*
* CSR_UCODE_DRV_GP1 register bit MAC_SLEEP == 0 indicates that
* SRAM is okay/restored. We don't check that here because this call
* is just for hardware register access; but GP1 MAC_SLEEP
* check is a good idea before accessing the SRAM of HW with
* volatile SRAM (e.g. reading Event Log).
*
* 5000 series and later (including 1000 series) have non-volatile SRAM,
* and do not save/restore SRAM when power cycling.
*/
ret = iwl_poll_bit(
trans, CSR_GP_CNTRL, BIT(trans->cfg->csr->flag_val_mac_access_en),
(BIT(trans->cfg->csr->flag_mac_clock_ready) | CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP),
ZX_MSEC(15), NULL);
if (unlikely(ret != ZX_OK)) {
uint32_t cntrl = iwl_read32(trans, CSR_GP_CNTRL);
IWL_WARN(trans, "Timeout waiting for hardware access (CSR_GP_CNTRL 0x%08x)\n", cntrl);
iwl_trans_pcie_dump_regs(trans);
if (iwlwifi_mod_params.remove_when_gone && cntrl == ~0U) {
if (test_bit(STATUS_TRANS_DEAD, &trans->status)) {
goto err;
}
IWL_ERR(trans, "Device gone - exit!\n");
#if 0 // NEEDS_PORTING
struct iwl_trans_pcie_removal* removal;
IWL_ERR(trans, "Device gone - scheduling removal!\n");
/*
* get a module reference to avoid doing this
* while unloading anyway and to avoid
* scheduling a work with code that's being
* removed.
*/
if (!try_module_get(THIS_MODULE)) {
IWL_ERR(trans, "Module is being unloaded - abort\n");
goto err;
}
removal = kzalloc(sizeof(*removal), GFP_ATOMIC);
if (!removal) {
module_put(THIS_MODULE);
goto err;
}
/*
* we don't need to clear this flag, because
* the trans will be freed and reallocated.
*/
set_bit(STATUS_TRANS_DEAD, &trans->status);
removal->pdev = to_pci_dev(trans->dev);
INIT_WORK(&removal->work, iwl_trans_pcie_removal_wk);
pci_dev_get(removal->pdev);
schedule_work(&removal->work);
#endif // NEEDS_PORTING
} else {
iwl_write32(trans, CSR_RESET, CSR_RESET_REG_FLAG_FORCE_NMI);
}
err:
mtx_unlock(&trans_pcie->reg_lock);
return false;
}
out:
/*
* Fool sparse by faking we release the lock - sparse will
* track nic_access anyway.
*/
mtx_unlock(&trans_pcie->reg_lock);
return true;
}
static void iwl_trans_pcie_release_nic_access(struct iwl_trans* trans, unsigned long* flags) {
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
/*
* Fool sparse by faking we acquiring the lock - sparse will
* track nic_access anyway.
*/
mtx_lock(&trans_pcie->reg_lock);
if (trans_pcie->cmd_hold_nic_awake) {
goto out;
}
__iwl_trans_pcie_clear_bit(trans, CSR_GP_CNTRL, BIT(trans->cfg->csr->flag_mac_access_req));
#if 0 // NEEDS_PORTING
/*
* Above we read the CSR_GP_CNTRL register, which will flush
* any previous writes, but we need the write that clears the
* MAC_ACCESS_REQ bit to be performed before any other writes
* scheduled on different CPUs (after we drop reg_lock).
*/
mmiowb();
#endif // NEEDS_PORTING
out:
mtx_unlock(&trans_pcie->reg_lock);
}
static zx_status_t iwl_trans_pcie_read_mem(struct iwl_trans* trans, uint32_t addr, void* buf,
size_t dwords) {
unsigned long flags;
size_t offs;
zx_status_t ret = ZX_OK;
uint32_t* vals = buf;
if (iwl_trans_grab_nic_access(trans, &flags)) {
iwl_write32(trans, HBUS_TARG_MEM_RADDR, addr);
for (offs = 0; offs < dwords; offs++) {
vals[offs] = iwl_read32(trans, HBUS_TARG_MEM_RDAT);
}
iwl_trans_release_nic_access(trans, &flags);
} else {
ret = ZX_ERR_UNAVAILABLE;
}
return ret;
}
static zx_status_t iwl_trans_pcie_write_mem(struct iwl_trans* trans, uint32_t addr, const void* buf,
size_t dwords) {
unsigned long flags;
size_t offs;
zx_status_t ret = ZX_OK;
const uint32_t* vals = buf;
if (iwl_trans_grab_nic_access(trans, &flags)) {
iwl_write32(trans, HBUS_TARG_MEM_WADDR, addr);
for (offs = 0; offs < dwords; offs++) {
iwl_write32(trans, HBUS_TARG_MEM_WDAT, vals ? vals[offs] : 0);
}
iwl_trans_release_nic_access(trans, &flags);
} else {
ret = ZX_ERR_UNAVAILABLE;
}
return ret;
}
static void iwl_trans_pcie_freeze_txq_timer(struct iwl_trans* trans, unsigned long txqs,
bool freeze) {
#if 0 // NEEDS_PORTING
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
int queue;
for_each_set_bit(queue, &txqs, BITS_PER_LONG) {
struct iwl_txq* txq = trans_pcie->txq[queue];
unsigned long now;
spin_lock_bh(&txq->lock);
now = jiffies;
if (txq->frozen == freeze) { goto next_queue; }
IWL_DEBUG_TX_QUEUES(trans, "%s TXQ %d\n", freeze ? "Freezing" : "Waking", queue);
txq->frozen = freeze;
if (txq->read_ptr == txq->write_ptr) { goto next_queue; }
if (freeze) {
if (unlikely(time_after(now, txq->stuck_timer.expires))) {
/*
* The timer should have fired, maybe it is
* spinning right now on the lock.
*/
goto next_queue;
}
/* remember how long until the timer fires */
txq->frozen_expiry_remainder = txq->stuck_timer.expires - now;
del_timer(&txq->stuck_timer);
goto next_queue;
}
/*
* Wake a non-empty queue -> arm timer with the
* remainder before it froze
*/
mod_timer(&txq->stuck_timer, now + txq->frozen_expiry_remainder);
next_queue:
spin_unlock_bh(&txq->lock);
}
#endif // NEEDS_PORTING
IWL_ERR(trans, "%s needs porting\n", __FUNCTION__);
}
static void iwl_trans_pcie_block_txq_ptrs(struct iwl_trans* trans, bool block) {
#if 0 // NEEDS_PORTING
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
int i;
for (i = 0; i < trans->cfg->base_params->num_of_queues; i++) {
struct iwl_txq* txq = trans_pcie->txq[i];
if (i == trans_pcie->cmd_queue) { continue; }
spin_lock_bh(&txq->lock);
if (!block && !(WARN_ON_ONCE(!txq->block))) {
txq->block--;
if (!txq->block) { iwl_write32(trans, HBUS_TARG_WRPTR, txq->write_ptr | (i << 8)); }
} else if (block) {
txq->block++;
}
spin_unlock_bh(&txq->lock);
}
#endif // NEEDS_PORTING
IWL_ERR(trans, "%s needs porting\n", __FUNCTION__);
}
#define IWL_FLUSH_WAIT_MS 2000
void iwl_trans_pcie_log_scd_error(struct iwl_trans* trans, struct iwl_txq* txq) {
uint32_t txq_id = txq->id;
uint32_t status;
bool active;
uint8_t fifo;
if (trans->cfg->use_tfh) {
IWL_ERR(trans, "Queue %d is stuck %d %d\n", txq_id, txq->read_ptr, txq->write_ptr);
/* TODO: access new SCD registers and dump them */
return;
}
status = iwl_read_prph(trans, SCD_QUEUE_STATUS_BITS(txq_id));
fifo = (status >> SCD_QUEUE_STTS_REG_POS_TXF) & 0x7;
active = !!(status & BIT(SCD_QUEUE_STTS_REG_POS_ACTIVE));
IWL_ERR(trans,
"Queue %d is %sactive on fifo %d and stuck for %lu ms. SW [%d, %d] HW [%d, %d] FH "
"TRB=0x0%x\n",
txq_id, active ? "" : "in", fifo, txq->wd_timeout / ZX_MSEC(1), txq->read_ptr,
txq->write_ptr,
iwl_read_prph(trans, SCD_QUEUE_RDPTR(txq_id)) &
(trans->cfg->base_params->max_tfd_queue_size - 1),
iwl_read_prph(trans, SCD_QUEUE_WRPTR(txq_id)) &
(trans->cfg->base_params->max_tfd_queue_size - 1),
iwl_read_direct32(trans, FH_TX_TRB_REG(fifo)));
}
#if 0 // NEEDS_PORTING
static int iwl_trans_pcie_rxq_dma_data(struct iwl_trans* trans, int queue,
struct iwl_trans_rxq_dma_data* data) {
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
if (queue >= trans->num_rx_queues || !trans_pcie->rxq) { return -EINVAL; }
data->fr_bd_cb = trans_pcie->rxq[queue].bd_dma;
data->urbd_stts_wrptr = trans_pcie->rxq[queue].rb_stts_dma;
data->ur_bd_cb = trans_pcie->rxq[queue].used_bd_dma;
data->fr_bd_wid = 0;
return 0;
}
#endif // NEEDS_PORTING
static zx_status_t iwl_trans_pcie_wait_txq_empty(struct iwl_trans* trans, int txq_idx) {
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
struct iwl_txq* txq;
zx_time_t now = iwl_time_now(trans->dev);
uint8_t wr_ptr;
/* Make sure the NIC is still alive in the bus */
if (test_bit(STATUS_TRANS_DEAD, &trans->status)) {
return ZX_ERR_NO_RESOURCES;
}
if (!test_bit(txq_idx, trans_pcie->queue_used)) {
return ZX_ERR_INVALID_ARGS;
}
IWL_DEBUG_TX_QUEUES(trans, "Emptying queue %d...\n", txq_idx);
txq = trans_pcie->txq[txq_idx];
wr_ptr = READ_ONCE(txq->write_ptr);
while (txq->read_ptr != READ_ONCE(txq->write_ptr) &&
zx_time_sub_time(iwl_time_now(trans->dev), now) < ZX_MSEC(IWL_FLUSH_WAIT_MS)) {
uint8_t write_ptr = READ_ONCE(txq->write_ptr);
if (wr_ptr != write_ptr) {
IWL_WARN(trans, "WR pointer moved while flushing %d -> %d\n", wr_ptr, write_ptr);
return ZX_ERR_TIMED_OUT;
}
zx_nanosleep(zx_deadline_after(ZX_MSEC(1)));
}
if (txq->read_ptr != txq->write_ptr) {
IWL_ERR(trans, "fail to flush all tx fifo queues Q %d\n", txq_idx);
iwl_trans_pcie_log_scd_error(trans, txq);
return ZX_ERR_TIMED_OUT;
}
IWL_DEBUG_TX_QUEUES(trans, "Queue %d is now empty.\n", txq_idx);
return ZX_OK;
}
static zx_status_t iwl_trans_pcie_wait_txqs_empty(struct iwl_trans* trans, uint32_t txq_bm) {
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
int cnt;
zx_status_t ret = ZX_OK;
/* waiting for all the tx frames complete might take a while */
for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) {
if (cnt == trans_pcie->cmd_queue) {
continue;
}
if (!test_bit(cnt, trans_pcie->queue_used)) {
continue;
}
if (!(BIT(cnt) & txq_bm)) {
continue;
}
ret = iwl_trans_pcie_wait_txq_empty(trans, cnt);
if (ret != ZX_OK) {
break;
}
}
return ret;
}
static void iwl_trans_pcie_set_bits_mask(struct iwl_trans* trans, uint32_t reg, uint32_t mask,
uint32_t value) {
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
mtx_lock(&trans_pcie->reg_lock);
__iwl_trans_pcie_set_bits_mask(trans, reg, mask, value);
mtx_unlock(&trans_pcie->reg_lock);
}
static void iwl_trans_pcie_ref(struct iwl_trans* trans) {
// This function is to tell the power management core that we are going to use the device,
// please do not put the device into the power saving mode.
//
// TODO(fxbug.dev/29735): supports power management in Fuchsia.
}
static void iwl_trans_pcie_unref(struct iwl_trans* trans) {
// This function is to tell the power management core that we no longer use this device,
// feel free to put the device into the power saving mode.
//
// TODO(fxbug.dev/29735): supports power management in Fuchsia.
}
#if 0 // NEEDS_PORTING
static const char* get_csr_string(int cmd) {
#define IWL_CMD(x) \
case x: \
return #x
switch (cmd) {
IWL_CMD(CSR_HW_IF_CONFIG_REG);
IWL_CMD(CSR_INT_COALESCING);
IWL_CMD(CSR_INT);
IWL_CMD(CSR_INT_MASK);
IWL_CMD(CSR_FH_INT_STATUS);
IWL_CMD(CSR_GPIO_IN);
IWL_CMD(CSR_RESET);
IWL_CMD(CSR_GP_CNTRL);
IWL_CMD(CSR_HW_REV);
IWL_CMD(CSR_EEPROM_REG);
IWL_CMD(CSR_EEPROM_GP);
IWL_CMD(CSR_OTP_GP_REG);
IWL_CMD(CSR_GIO_REG);
IWL_CMD(CSR_GP_UCODE_REG);
IWL_CMD(CSR_GP_DRIVER_REG);
IWL_CMD(CSR_UCODE_DRV_GP1);
IWL_CMD(CSR_UCODE_DRV_GP2);
IWL_CMD(CSR_LED_REG);
IWL_CMD(CSR_DRAM_INT_TBL_REG);
IWL_CMD(CSR_GIO_CHICKEN_BITS);
IWL_CMD(CSR_ANA_PLL_CFG);
IWL_CMD(CSR_HW_REV_WA_REG);
IWL_CMD(CSR_MONITOR_STATUS_REG);
IWL_CMD(CSR_DBG_HPET_MEM_REG);
default:
return "UNKNOWN";
}
#undef IWL_CMD
}
void iwl_pcie_dump_csr(struct iwl_trans* trans) {
int i;
static const uint32_t csr_tbl[] = {CSR_HW_IF_CONFIG_REG,
CSR_INT_COALESCING,
CSR_INT,
CSR_INT_MASK,
CSR_FH_INT_STATUS,
CSR_GPIO_IN,
CSR_RESET,
CSR_GP_CNTRL,
CSR_HW_REV,
CSR_EEPROM_REG,
CSR_EEPROM_GP,
CSR_OTP_GP_REG,
CSR_GIO_REG,
CSR_GP_UCODE_REG,
CSR_GP_DRIVER_REG,
CSR_UCODE_DRV_GP1,
CSR_UCODE_DRV_GP2,
CSR_LED_REG,
CSR_DRAM_INT_TBL_REG,
CSR_GIO_CHICKEN_BITS,
CSR_ANA_PLL_CFG,
CSR_MONITOR_STATUS_REG,
CSR_HW_REV_WA_REG,
CSR_DBG_HPET_MEM_REG};
IWL_ERR(trans, "CSR values:\n");
IWL_ERR(trans,
"(2nd byte of CSR_INT_COALESCING is "
"CSR_INT_PERIODIC_REG)\n");
for (i = 0; i < ARRAY_SIZE(csr_tbl); i++) {
IWL_ERR(trans, " %25s: 0X%08x\n", get_csr_string(csr_tbl[i]),
iwl_read32(trans, csr_tbl[i]));
}
}
#ifdef CPTCFG_IWLWIFI_DEBUGFS
/* create and remove of files */
#define DEBUGFS_ADD_FILE(name, parent, mode) \
do { \
if (!debugfs_create_file(#name, mode, parent, trans, &iwl_dbgfs_##name##_ops)) \
goto err; \
} while (0)
/* file operation */
#define DEBUGFS_READ_FILE_OPS(name) \
static const struct file_operations iwl_dbgfs_##name##_ops = { \
.read = iwl_dbgfs_##name##_read, \
.open = simple_open, \
.llseek = generic_file_llseek, \
};
#define DEBUGFS_WRITE_FILE_OPS(name) \
static const struct file_operations iwl_dbgfs_##name##_ops = { \
.write = iwl_dbgfs_##name##_write, \
.open = simple_open, \
.llseek = generic_file_llseek, \
};
#define DEBUGFS_READ_WRITE_FILE_OPS(name) \
static const struct file_operations iwl_dbgfs_##name##_ops = { \
.write = iwl_dbgfs_##name##_write, \
.read = iwl_dbgfs_##name##_read, \
.open = simple_open, \
.llseek = generic_file_llseek, \
};
static ssize_t iwl_dbgfs_tx_queue_read(struct file* file, char __user* user_buf, size_t count,
loff_t* ppos) {
struct iwl_trans* trans = file->private_data;
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
struct iwl_txq* txq;
char* buf;
int pos = 0;
int cnt;
int ret;
size_t bufsz;
bufsz = sizeof(char) * 75 * trans->cfg->base_params->num_of_queues;
if (!trans_pcie->txq_memory) { return -EAGAIN; }
buf = kzalloc(bufsz, GFP_KERNEL);
if (!buf) { return -ENOMEM; }
for (cnt = 0; cnt < trans->cfg->base_params->num_of_queues; cnt++) {
txq = trans_pcie->txq[cnt];
pos +=
scnprintf(buf + pos, bufsz - pos,
"hwq %.2d: read=%u write=%u use=%d stop=%d need_update=%d frozen=%d%s\n", cnt,
txq->read_ptr, txq->write_ptr, !!test_bit(cnt, trans_pcie->queue_used),
!!test_bit(cnt, trans_pcie->queue_stopped), txq->need_update, txq->frozen,
(cnt == trans_pcie->cmd_queue ? " HCMD" : ""));
}
ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos);
kfree(buf);
return ret;
}
static ssize_t iwl_dbgfs_rx_queue_read(struct file* file, char __user* user_buf, size_t count,
loff_t* ppos) {
struct iwl_trans* trans = file->private_data;
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
char* buf;
int pos = 0, i, ret;
size_t bufsz = sizeof(buf);
bufsz = sizeof(char) * 121 * trans->num_rx_queues;
if (!trans_pcie->rxq) { return -EAGAIN; }
buf = kzalloc(bufsz, GFP_KERNEL);
if (!buf) { return -ENOMEM; }
for (i = 0; i < trans->num_rx_queues && pos < bufsz; i++) {
struct iwl_rxq* rxq = &trans_pcie->rxq[i];
pos += scnprintf(buf + pos, bufsz - pos, "queue#: %2d\n", i);
pos += scnprintf(buf + pos, bufsz - pos, "\tread: %u\n", rxq->read);
pos += scnprintf(buf + pos, bufsz - pos, "\twrite: %u\n", rxq->write);
pos += scnprintf(buf + pos, bufsz - pos, "\twrite_actual: %u\n", rxq->write_actual);
pos += scnprintf(buf + pos, bufsz - pos, "\tneed_update: %2d\n", rxq->need_update);
pos += scnprintf(buf + pos, bufsz - pos, "\tfree_count: %u\n", rxq->free_count);
if (rxq->rb_stts) {
uint32_t r = __le16_to_cpu(iwl_get_closed_rb_stts(trans, rxq));
pos += scnprintf(buf + pos, bufsz - pos, "\tclosed_rb_num: %u\n", r & 0x0FFF);
} else {
pos += scnprintf(buf + pos, bufsz - pos, "\tclosed_rb_num: Not Allocated\n");
}
}
ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos);
kfree(buf);
return ret;
}
static ssize_t iwl_dbgfs_interrupt_read(struct file* file, char __user* user_buf, size_t count,
loff_t* ppos) {
struct iwl_trans* trans = file->private_data;
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
struct isr_statistics* isr_stats = &trans_pcie->isr_stats;
int pos = 0;
char* buf;
int bufsz = 24 * 64; /* 24 items * 64 char per item */
ssize_t ret;
buf = kzalloc(bufsz, GFP_KERNEL);
if (!buf) { return -ENOMEM; }
pos += scnprintf(buf + pos, bufsz - pos, "Interrupt Statistics Report:\n");
pos += scnprintf(buf + pos, bufsz - pos, "HW Error:\t\t\t %u\n", isr_stats->hw);
pos += scnprintf(buf + pos, bufsz - pos, "SW Error:\t\t\t %u\n", isr_stats->sw);
if (isr_stats->sw || isr_stats->hw) {
pos += scnprintf(buf + pos, bufsz - pos, "\tLast Restarting Code: 0x%X\n",
isr_stats->err_code);
}
#ifdef CPTCFG_IWLWIFI_DEBUG
pos += scnprintf(buf + pos, bufsz - pos, "Frame transmitted:\t\t %u\n", isr_stats->sch);
pos += scnprintf(buf + pos, bufsz - pos, "Alive interrupt:\t\t %u\n", isr_stats->alive);
#endif
pos +=
scnprintf(buf + pos, bufsz - pos, "HW RF KILL switch toggled:\t %u\n", isr_stats->rfkill);
pos += scnprintf(buf + pos, bufsz - pos, "CT KILL:\t\t\t %u\n", isr_stats->ctkill);
pos += scnprintf(buf + pos, bufsz - pos, "Wakeup Interrupt:\t\t %u\n", isr_stats->wakeup);
pos += scnprintf(buf + pos, bufsz - pos, "Rx command responses:\t\t %u\n", isr_stats->rx);
pos += scnprintf(buf + pos, bufsz - pos, "Tx/FH interrupt:\t\t %u\n", isr_stats->tx);
pos += scnprintf(buf + pos, bufsz - pos, "Unexpected INTA:\t\t %u\n", isr_stats->unhandled);
ret = simple_read_from_buffer(user_buf, count, ppos, buf, pos);
kfree(buf);
return ret;
}
static ssize_t iwl_dbgfs_interrupt_write(struct file* file, const char __user* user_buf,
size_t count, loff_t* ppos) {
struct iwl_trans* trans = file->private_data;
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
struct isr_statistics* isr_stats = &trans_pcie->isr_stats;
uint32_t reset_flag;
int ret;
ret = kstrtou32_from_user(user_buf, count, 16, &reset_flag);
if (ret) { return ret; }
if (reset_flag == 0) { memset(isr_stats, 0, sizeof(*isr_stats)); }
return count;
}
static ssize_t iwl_dbgfs_csr_write(struct file* file, const char __user* user_buf, size_t count,
loff_t* ppos) {
struct iwl_trans* trans = file->private_data;
iwl_pcie_dump_csr(trans);
return count;
}
static ssize_t iwl_dbgfs_fh_reg_read(struct file* file, char __user* user_buf, size_t count,
loff_t* ppos) {
struct iwl_trans* trans = file->private_data;
char* buf = NULL;
ssize_t ret;
ret = iwl_dump_fh(trans, &buf);
if (ret < 0) { return ret; }
if (!buf) { return -EINVAL; }
ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
kfree(buf);
return ret;
}
static ssize_t iwl_dbgfs_rfkill_read(struct file* file, char __user* user_buf, size_t count,
loff_t* ppos) {
struct iwl_trans* trans = file->private_data;
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
char buf[100];
int pos;
pos = scnprintf(buf, sizeof(buf), "debug: %d\nhw: %d\n", trans_pcie->debug_rfkill,
!(iwl_read32(trans, CSR_GP_CNTRL) & CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW));
return simple_read_from_buffer(user_buf, count, ppos, buf, pos);
}
static ssize_t iwl_dbgfs_rfkill_write(struct file* file, const char __user* user_buf, size_t count,
loff_t* ppos) {
struct iwl_trans* trans = file->private_data;
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
bool old = trans_pcie->debug_rfkill;
int ret;
ret = kstrtobool_from_user(user_buf, count, &trans_pcie->debug_rfkill);
if (ret) { return ret; }
if (old == trans_pcie->debug_rfkill) { return count; }
IWL_WARN(trans, "changing debug rfkill %d->%d\n", old, trans_pcie->debug_rfkill);
iwl_pcie_handle_rfkill_irq(trans);
return count;
}
static int iwl_dbgfs_monitor_data_open(struct inode* inode, struct file* file) {
struct iwl_trans* trans = inode->i_private;
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
if (!trans->dbg_dest_tlv || trans->dbg_dest_tlv->monitor_mode != EXTERNAL_MODE) {
IWL_ERR(trans, "Debug destination is not set to DRAM\n");
return -ENOENT;
}
if (trans_pcie->fw_mon_data.state != IWL_FW_MON_DBGFS_STATE_CLOSED) { return -EBUSY; }
trans_pcie->fw_mon_data.state = IWL_FW_MON_DBGFS_STATE_OPEN;
return simple_open(inode, file);
}
static int iwl_dbgfs_monitor_data_release(struct inode* inode, struct file* file) {
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(inode->i_private);
if (trans_pcie->fw_mon_data.state == IWL_FW_MON_DBGFS_STATE_OPEN) {
trans_pcie->fw_mon_data.state = IWL_FW_MON_DBGFS_STATE_CLOSED;
}
return 0;
}
static bool iwl_write_to_user_buf(char __user* user_buf, ssize_t count, void* buf, ssize_t* size,
ssize_t* bytes_copied) {
int buf_size_left = count - *bytes_copied;
buf_size_left = buf_size_left - (buf_size_left % sizeof(uint32_t));
if (*size > buf_size_left) { *size = buf_size_left; }
*size -= copy_to_user(user_buf, buf, *size);
*bytes_copied += *size;
if (buf_size_left == *size) { return true; }
return false;
}
static ssize_t iwl_dbgfs_monitor_data_read(struct file* file, char __user* user_buf, size_t count,
loff_t* ppos) {
struct iwl_trans* trans = file->private_data;
struct iwl_trans_pcie* trans_pcie = IWL_TRANS_GET_PCIE_TRANS(trans);
void *cpu_addr = (void*)trans->fw_mon