blob: 45d7cc02100fa66fc598a09e9bd430aa0588a70b [file] [log] [blame]
/******************************************************************************
*
* Copyright(c) 2012 - 2014 Intel Corporation. All rights reserved.
* Copyright(c) 2013 - 2015 Intel Mobile Communications GmbH
* Copyright(c) 2016 - 2017 Intel Deutschland GmbH
* Copyright(c) 2018 Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Intel Corporation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*****************************************************************************/
#include "src/iwlwifi/fw/api/scan.h"
#include <lib/async/time.h>
#include <stdio.h>
#include <zircon/errors.h>
#include <zircon/status.h>
#include <zircon/time.h>
#include "src/iwlwifi/iwl-io.h"
#include "src/iwlwifi/mvm/mvm.h"
#include "src/iwlwifi/platform/task.h"
#define IWL_DENSE_EBS_SCAN_RATIO 5
#define IWL_SPARSE_EBS_SCAN_RATIO 1
#define IWL_SCAN_DWELL_ACTIVE 10
#define IWL_SCAN_DWELL_PASSIVE 110
#define IWL_SCAN_DWELL_FRAGMENTED 44
#define IWL_SCAN_DWELL_EXTENDED 90
#define IWL_SCAN_NUM_OF_FRAGS 3
/* adaptive dwell max budget time [TU] for full scan */
#define IWL_SCAN_ADWELL_MAX_BUDGET_FULL_SCAN 300
/* adaptive dwell max budget time [TU] for directed scan */
#define IWL_SCAN_ADWELL_MAX_BUDGET_DIRECTED_SCAN 100
/* adaptive dwell default APs number */
#define IWL_SCAN_ADWELL_DEFAULT_N_APS 2
/* adaptive dwell default APs number in social channels (1, 6, 11) */
#define IWL_SCAN_ADWELL_DEFAULT_N_APS_SOCIAL 10
struct iwl_mvm_scan_timing_params {
uint32_t suspend_time;
uint32_t max_out_time;
};
static struct iwl_mvm_scan_timing_params scan_timing[] = {
[IWL_SCAN_TYPE_UNASSOC] =
{
.suspend_time = 0,
.max_out_time = 0,
},
[IWL_SCAN_TYPE_WILD] =
{
.suspend_time = 30,
.max_out_time = 120,
},
[IWL_SCAN_TYPE_MILD] =
{
.suspend_time = 120,
.max_out_time = 120,
},
[IWL_SCAN_TYPE_FRAGMENTED] =
{
.suspend_time = 95,
.max_out_time = 44,
},
[IWL_SCAN_TYPE_FAST_BALANCE] =
{
.suspend_time = 30,
.max_out_time = 37,
},
};
static inline void* iwl_mvm_get_scan_req_umac_data(struct iwl_mvm* mvm) {
struct iwl_scan_req_umac* cmd = mvm->scan_cmd;
if (iwl_mvm_is_adaptive_dwell_v2_supported(mvm)) {
return (void*)&cmd->v8.data;
}
if (iwl_mvm_is_adaptive_dwell_supported(mvm)) {
return (void*)&cmd->v7.data;
}
if (iwl_mvm_cdb_scan_api(mvm)) {
return (void*)&cmd->v6.data;
}
return (void*)&cmd->v1.data;
}
static inline struct iwl_scan_umac_chan_param* iwl_mvm_get_scan_req_umac_channel(
struct iwl_mvm* mvm) {
struct iwl_scan_req_umac* cmd = mvm->scan_cmd;
if (iwl_mvm_is_adaptive_dwell_v2_supported(mvm)) {
return &cmd->v8.channel;
}
if (iwl_mvm_is_adaptive_dwell_supported(mvm)) {
return &cmd->v7.channel;
}
if (iwl_mvm_cdb_scan_api(mvm)) {
return &cmd->v6.channel;
}
return &cmd->v1.channel;
}
static uint8_t iwl_mvm_scan_rx_ant(struct iwl_mvm* mvm) {
if (mvm->scan_rx_ant != ANT_NONE) {
return mvm->scan_rx_ant;
}
return iwl_mvm_get_valid_rx_ant(mvm);
}
static inline __le16 iwl_mvm_scan_rx_chain(struct iwl_mvm* mvm) {
uint16_t rx_chain;
uint8_t rx_ant;
rx_ant = iwl_mvm_scan_rx_ant(mvm);
rx_chain = rx_ant << PHY_RX_CHAIN_VALID_POS;
rx_chain |= rx_ant << PHY_RX_CHAIN_FORCE_MIMO_SEL_POS;
rx_chain |= rx_ant << PHY_RX_CHAIN_FORCE_SEL_POS;
rx_chain |= 0x1 << PHY_RX_CHAIN_DRIVER_FORCE_POS;
return cpu_to_le16(rx_chain);
}
static inline __le32 iwl_mvm_scan_rxon_flags(wlan_info_band_t band) {
if (band == WLAN_INFO_BAND_2GHZ) {
return cpu_to_le32(PHY_BAND_24);
} else {
return cpu_to_le32(PHY_BAND_5);
}
}
static inline __le32 iwl_mvm_scan_rate_n_flags(struct iwl_mvm* mvm, wlan_info_band_t band,
bool no_cck) {
uint32_t tx_ant;
iwl_mvm_toggle_tx_ant(mvm, &mvm->scan_last_antenna_idx);
tx_ant = BIT(mvm->scan_last_antenna_idx) << RATE_MCS_ANT_POS;
if (band == WLAN_INFO_BAND_2GHZ && !no_cck) {
return cpu_to_le32(IWL_RATE_1M_PLCP | RATE_MCS_CCK_MSK | tx_ant);
} else {
return cpu_to_le32(IWL_RATE_6M_PLCP | tx_ant);
}
}
static void iwl_mvm_scan_condition_iterator(void* data, struct iwl_mvm_vif* mvmvif) {
int* global_cnt = data;
if (
#if 0 // NEEDS_PORTING
vif->type != NL80211_IFTYPE_P2P_DEVICE &&
#endif // NEEDS_PORTING
mvmvif->phy_ctxt && mvmvif->phy_ctxt->id < NUM_PHY_CTX) {
*global_cnt += 1;
}
}
static enum iwl_mvm_traffic_load iwl_mvm_get_traffic_load(struct iwl_mvm* mvm) {
return mvm->tcm.result.global_load;
}
static enum iwl_mvm_traffic_load iwl_mvm_get_traffic_load_band(struct iwl_mvm* mvm,
wlan_info_band_t band) {
return mvm->tcm.result.band_load[band];
}
#if 0 // NEEDS_PORTING
struct iwl_is_dcm_with_go_iterator_data {
struct ieee80211_vif* current_vif;
bool is_dcm_with_p2p_go;
};
static void iwl_mvm_is_dcm_with_go_iterator(void* _data, uint8_t* mac, struct ieee80211_vif* vif) {
struct iwl_is_dcm_with_go_iterator_data* data = _data;
struct iwl_mvm_vif* other_mvmvif = iwl_mvm_vif_from_mac80211(vif);
struct iwl_mvm_vif* curr_mvmvif = iwl_mvm_vif_from_mac80211(data->current_vif);
/* exclude the given vif */
if (vif == data->current_vif) { return; }
if (vif->type == NL80211_IFTYPE_AP && vif->p2p && other_mvmvif->phy_ctxt &&
curr_mvmvif->phy_ctxt && other_mvmvif->phy_ctxt->id != curr_mvmvif->phy_ctxt->id) {
data->is_dcm_with_p2p_go = true;
}
}
#endif // NEEDS_PORTING
static enum iwl_mvm_scan_type _iwl_mvm_get_scan_type(struct iwl_mvm* mvm,
enum iwl_mvm_traffic_load load,
bool low_latency) {
int global_cnt = 0;
ieee80211_iterate_active_interfaces_atomic(mvm, iwl_mvm_scan_condition_iterator, &global_cnt);
if (!global_cnt) {
return IWL_SCAN_TYPE_UNASSOC;
}
#if 0 // NEEDS_PORTING
if (fw_has_api(&mvm->fw->ucode_capa, IWL_UCODE_TLV_API_FRAGMENTED_SCAN)) {
if ((load == IWL_MVM_TRAFFIC_HIGH || low_latency) &&
(!vif || vif->type != NL80211_IFTYPE_P2P_DEVICE)) {
return IWL_SCAN_TYPE_FRAGMENTED;
}
/* in case of DCM with GO where BSS DTIM interval < 220msec
* set all scan requests as fast-balance scan
* */
if (vif && vif->type == NL80211_IFTYPE_STATION && vif->bss_conf.dtim_period < 220) {
struct iwl_is_dcm_with_go_iterator_data data = {
.current_vif = vif,
.is_dcm_with_p2p_go = false,
};
ieee80211_iterate_active_interfaces_atomic(mvm->hw, IEEE80211_IFACE_ITER_NORMAL,
iwl_mvm_is_dcm_with_go_iterator, &data);
if (data.is_dcm_with_p2p_go) { return IWL_SCAN_TYPE_FAST_BALANCE; }
}
}
#endif // NEEDS_PORTING
if (load >= IWL_MVM_TRAFFIC_MEDIUM || low_latency) {
return IWL_SCAN_TYPE_MILD;
}
return IWL_SCAN_TYPE_WILD;
}
static enum iwl_mvm_scan_type iwl_mvm_get_scan_type(struct iwl_mvm* mvm,
struct ieee80211_vif* vif) {
enum iwl_mvm_traffic_load load = IWL_MVM_TRAFFIC_LOW;
bool low_latency = false;
load = iwl_mvm_get_traffic_load(mvm);
low_latency = iwl_mvm_low_latency(mvm);
return _iwl_mvm_get_scan_type(mvm, load, low_latency);
}
static enum iwl_mvm_scan_type iwl_mvm_get_scan_type_band(struct iwl_mvm* mvm,
wlan_info_band_t band) {
enum iwl_mvm_traffic_load load;
bool low_latency;
load = iwl_mvm_get_traffic_load_band(mvm, band);
low_latency = iwl_mvm_low_latency_band(mvm, band);
return _iwl_mvm_get_scan_type(mvm, load, low_latency);
}
#if 0 // NEEDS_PORTING
static int iwl_mvm_get_measurement_dwell(struct iwl_mvm* mvm, struct cfg80211_scan_request* req,
struct iwl_mvm_scan_params* params) {
uint32_t duration = scan_timing[params->type].max_out_time;
if (!req->duration) { return 0; }
if (iwl_mvm_is_cdb_supported(mvm)) {
uint32_t hb_time = scan_timing[params->hb_type].max_out_time;
duration = min_t(uint32_t, duration, hb_time);
}
if (req->duration_mandatory && req->duration > duration) {
IWL_DEBUG_SCAN(mvm, "Measurement scan - too long dwell %hu (max out time %u)\n",
req->duration, duration);
return -EOPNOTSUPP;
}
return min_t(uint32_t, (uint32_t)req->duration, duration);
}
#endif // NEEDS_PORTING
static inline bool iwl_mvm_rrm_scan_needed(struct iwl_mvm* mvm) {
/* require rrm scan whenever the fw supports it */
return fw_has_capa(&mvm->fw->ucode_capa, IWL_UCODE_TLV_CAPA_DS_PARAM_SET_IE_SUPPORT);
}
#if 0 // NEEDS_PORTING
static int iwl_mvm_max_scan_ie_fw_cmd_room(struct iwl_mvm* mvm) {
int max_probe_len;
max_probe_len = SCAN_OFFLOAD_PROBE_REQ_SIZE;
/* we create the 802.11 header and SSID element */
max_probe_len -= 24 + 2;
/* DS parameter set element is added on 2.4GHZ band if required */
if (iwl_mvm_rrm_scan_needed(mvm)) { max_probe_len -= 3; }
return max_probe_len;
}
int iwl_mvm_max_scan_ie_len(struct iwl_mvm* mvm) {
int max_ie_len = iwl_mvm_max_scan_ie_fw_cmd_room(mvm);
/* TODO: [BUG] This function should return the maximum allowed size of
* scan IEs, however the LMAC scan api contains both 2GHZ and 5GHZ IEs
* in the same command. So the correct implementation of this function
* is just iwl_mvm_max_scan_ie_fw_cmd_room() / 2. Currently the scan
* command has only 512 bytes and it would leave us with about 240
* bytes for scan IEs, which is clearly not enough. So meanwhile
* we will report an incorrect value. This may result in a failure to
* issue a scan in unified_scan_lmac and unified_sched_scan_lmac
* functions with -ENOBUFS, if a large enough probe will be provided.
*/
return max_ie_len;
}
void iwl_mvm_rx_lmac_scan_iter_complete_notif(struct iwl_mvm* mvm, struct iwl_rx_cmd_buffer* rxb) {
struct iwl_rx_packet* pkt = rxb_addr(rxb);
struct iwl_lmac_scan_complete_notif* notif = (void*)pkt->data;
IWL_DEBUG_SCAN(mvm, "Scan offload iteration complete: status=0x%x scanned channels=%d\n",
notif->status, notif->scanned_channels);
if (mvm->sched_scan_pass_all == SCHED_SCAN_PASS_ALL_FOUND) {
IWL_DEBUG_SCAN(mvm, "Pass all scheduled scan results found\n");
ieee80211_sched_scan_results(mvm->hw);
mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_ENABLED;
}
}
void iwl_mvm_rx_scan_match_found(struct iwl_mvm* mvm, struct iwl_rx_cmd_buffer* rxb) {
IWL_DEBUG_SCAN(mvm, "Scheduled scan results\n");
ieee80211_sched_scan_results(mvm->hw);
}
#endif // NEEDS_PORTING
static const char* iwl_mvm_ebs_status_str(enum iwl_scan_ebs_status status) {
switch (status) {
case IWL_SCAN_EBS_SUCCESS:
return "successful";
case IWL_SCAN_EBS_INACTIVE:
return "inactive";
case IWL_SCAN_EBS_FAILED:
case IWL_SCAN_EBS_CHAN_NOT_FOUND:
default:
return "failed";
}
}
static void notify_mlme_scan_completion(struct iwl_mvm_vif* mvmvif, bool successful) {
wlan_hw_scan_result_t scan_result = {
.code = successful ? WLAN_HW_SCAN_SUCCESS : WLAN_HW_SCAN_ABORTED,
};
wlanmac_ifc_hw_scan_complete(&mvmvif->ifc, &scan_result);
}
void iwl_mvm_rx_lmac_scan_complete_notif(struct iwl_mvm* mvm, struct iwl_rx_cmd_buffer* rxb) {
struct iwl_rx_packet* pkt = rxb_addr(rxb);
struct iwl_periodic_scan_complete* scan_notif = (void*)pkt->data;
bool aborted = (scan_notif->status == IWL_SCAN_OFFLOAD_ABORTED);
zx_status_t status = ZX_OK;
/* If this happens, the firmware has mistakenly sent an LMAC
* notification during UMAC scans -- warn and ignore it.
*/
if (fw_has_capa(&mvm->fw->ucode_capa, IWL_UCODE_TLV_CAPA_UMAC_SCAN)) {
IWL_WARN(mvm, "%s(): got a LMAC scan notif, but FW is UMAC\n", __func__);
return;
}
/* We first check if we were stopping a scan, in which case we
* just clear the stopping flag. Then we check if it was a
* firmware initiated stop, in which case we need to inform
* mac80211.
* Note that we can have a stopping and a running scan
* simultaneously, but we can't have two different types of
* scans stopping or running at the same time (since LMAC
* doesn't support it).
*/
mtx_lock(&mvm->mutex);
#if 0 // NEEDS PORTING
if (mvm->scan_status & IWL_MVM_SCAN_STOPPING_SCHED) {
WARN_ON_ONCE(mvm->scan_status & IWL_MVM_SCAN_STOPPING_REGULAR);
IWL_INFO(mvm, "Scheduled scan %s, EBS status %s\n", aborted ? "aborted" : "completed",
iwl_mvm_ebs_status_str(scan_notif->ebs_status));
IWL_INFO(mvm, "Last line %d, Last iteration %d, Time after last iteration %d\n",
scan_notif->last_schedule_line, scan_notif->last_schedule_iteration,
le32_to_cpu(scan_notif->time_after_last_iter));
mvm->scan_status &= ~IWL_MVM_SCAN_STOPPING_SCHED;
} else if (mvm->scan_status & IWL_MVM_SCAN_STOPPING_REGULAR) {
IWL_INFO(mvm, "Regular scan %s, EBS status %s\n", aborted ? "aborted" : "completed",
iwl_mvm_ebs_status_str(scan_notif->ebs_status));
mvm->scan_status &= ~IWL_MVM_SCAN_STOPPING_REGULAR;
} else if (mvm->scan_status & IWL_MVM_SCAN_SCHED) {
WARN_ON_ONCE(mvm->scan_status & IWL_MVM_SCAN_REGULAR);
IWL_INFO(mvm, "Scheduled scan %s, EBS status %s\n", aborted ? "aborted" : "completed",
iwl_mvm_ebs_status_str(scan_notif->ebs_status));
IWL_INFO(mvm, "Last line %d, Last iteration %d, Time after last iteration %d (FW)\n",
scan_notif->last_schedule_line, scan_notif->last_schedule_iteration,
le32_to_cpu(scan_notif->time_after_last_iter));
mvm->scan_status &= ~IWL_MVM_SCAN_SCHED;
#if 0 // NEEDS_PORTING
// TODO(43486): stop scan
ieee80211_sched_scan_stopped(mvm->hw);
#endif // NEEDS_PORTING
mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_DISABLED;
} else if (mvm->scan_status & IWL_MVM_SCAN_REGULAR) {
#endif // NEEDS PORTING
if (mvm->scan_status & IWL_MVM_SCAN_REGULAR) {
/* We have nothing to do if the scan timeout has happened, since that
* takes care of notifying the SME. It is important to note here that
* only a single scan can be pending at any time. This is guaranteed
* by both SME and iwl_mvm_reg_scan_start().
*/
if ((status = iwl_task_cancel(mvm->scan_timeout_task)) != ZX_OK) {
mtx_unlock(&mvm->mutex);
if (status == ZX_ERR_NOT_FOUND) {
IWL_WARN(mvm, "Scan timeout occurred prior to getting notified by HW\n");
}
return;
}
IWL_INFO(mvm, "Regular scan %s, EBS status %s (FW)\n", aborted ? "aborted" : "completed",
iwl_mvm_ebs_status_str(scan_notif->ebs_status));
mvm->scan_status &= ~IWL_MVM_SCAN_REGULAR;
if (mvm->scan_vif) {
notify_mlme_scan_completion(mvm->scan_vif, !aborted);
} else {
IWL_WARN(mvm, "mvm->scan_vif is not registered, but got a SCAN completion\n");
}
iwl_mvm_unref(mvm, IWL_MVM_REF_SCAN);
#if 0 // NEEDS_PORTING
iwl_mvm_resume_tcm(mvm);
#endif // NEEDS_PORTING
} else {
IWL_ERR(mvm, "got scan complete notification but no scan is running\n");
}
mvm->last_ebs_successful = scan_notif->ebs_status == IWL_SCAN_EBS_SUCCESS ||
scan_notif->ebs_status == IWL_SCAN_EBS_INACTIVE;
mtx_unlock(&mvm->mutex);
}
#if 0 // NEEDS_PORTING
static int iwl_ssid_exist(uint8_t* ssid, uint8_t ssid_len, struct iwl_ssid_ie* ssid_list) {
int i;
for (i = 0; i < PROBE_OPTION_MAX; i++) {
if (!ssid_list[i].len) { break; }
if (ssid_list[i].len == ssid_len && !memcmp(ssid_list->ssid, ssid, ssid_len)) { return i; }
}
return -1;
}
/* We insert the SSIDs in an inverted order, because the FW will
* invert it back.
* TODO(43481): Scan specific SSID
*/
static void iwl_scan_build_ssids(struct iwl_mvm_scan_params* params, struct iwl_ssid_ie* ssids,
uint32_t* ssid_bitmap) {
int i, j;
int index;
/*
* copy SSIDs from match list.
* iwl_config_sched_scan_profiles() uses the order of these ssids to
* config match list.
*/
for (i = 0, j = params->n_match_sets - 1; j >= 0 && i < PROBE_OPTION_MAX; i++, j--) {
/* skip empty SSID matchsets */
if (!params->match_sets[j].ssid.ssid_len) { continue; }
ssids[i].id = WLAN_EID_SSID;
ssids[i].len = params->match_sets[j].ssid.ssid_len;
memcpy(ssids[i].ssid, params->match_sets[j].ssid.ssid, ssids[i].len);
}
/* add SSIDs from scan SSID list */
*ssid_bitmap = 0;
for (j = params->n_ssids - 1; j >= 0 && i < PROBE_OPTION_MAX; i++, j--) {
index = iwl_ssid_exist(params->ssids[j].ssid, params->ssids[j].ssid_len, ssids);
if (index < 0) {
ssids[i].id = WLAN_EID_SSID;
ssids[i].len = params->ssids[j].ssid_len;
memcpy(ssids[i].ssid, params->ssids[j].ssid, ssids[i].len);
*ssid_bitmap |= BIT(i);
} else {
*ssid_bitmap |= BIT(index);
}
}
}
static int iwl_mvm_config_sched_scan_profiles(struct iwl_mvm* mvm,
struct cfg80211_sched_scan_request* req) {
struct iwl_scan_offload_profile* profile;
struct iwl_scan_offload_profile_cfg* profile_cfg;
struct iwl_scan_offload_blacklist* blacklist;
struct iwl_host_cmd cmd = {
.id = SCAN_OFFLOAD_UPDATE_PROFILES_CMD,
.len[1] = sizeof(*profile_cfg),
.dataflags[0] = IWL_HCMD_DFL_NOCOPY,
.dataflags[1] = IWL_HCMD_DFL_NOCOPY,
};
int blacklist_len;
int i;
int ret;
if (WARN_ON(req->n_match_sets > IWL_SCAN_MAX_PROFILES)) { return -EIO; }
if (mvm->fw->ucode_capa.flags & IWL_UCODE_TLV_FLAGS_SHORT_BL) {
blacklist_len = IWL_SCAN_SHORT_BLACKLIST_LEN;
} else {
blacklist_len = IWL_SCAN_MAX_BLACKLIST_LEN;
}
blacklist = kcalloc(blacklist_len, sizeof(*blacklist), GFP_KERNEL);
if (!blacklist) { return -ENOMEM; }
profile_cfg = kzalloc(sizeof(*profile_cfg), GFP_KERNEL);
if (!profile_cfg) {
ret = -ENOMEM;
goto free_blacklist;
}
cmd.data[0] = blacklist;
cmd.len[0] = sizeof(*blacklist) * blacklist_len;
cmd.data[1] = profile_cfg;
/* No blacklist configuration */
profile_cfg->num_profiles = req->n_match_sets;
profile_cfg->active_clients = SCAN_CLIENT_SCHED_SCAN;
profile_cfg->pass_match = SCAN_CLIENT_SCHED_SCAN;
profile_cfg->match_notify = SCAN_CLIENT_SCHED_SCAN;
if (!req->n_match_sets || !req->match_sets[0].ssid.ssid_len) {
profile_cfg->any_beacon_notify = SCAN_CLIENT_SCHED_SCAN;
}
for (i = 0; i < req->n_match_sets; i++) {
profile = &profile_cfg->profiles[i];
profile->ssid_index = i;
/* Support any cipher and auth algorithm */
profile->unicast_cipher = 0xff;
profile->auth_alg = 0xff;
profile->network_type = IWL_NETWORK_TYPE_ANY;
profile->band_selection = IWL_SCAN_OFFLOAD_SELECT_ANY;
profile->client_bitmap = SCAN_CLIENT_SCHED_SCAN;
}
IWL_DEBUG_SCAN(mvm, "Sending scheduled scan profile config\n");
ret = iwl_mvm_send_cmd(mvm, &cmd);
kfree(profile_cfg);
free_blacklist:
kfree(blacklist);
return ret;
}
static bool iwl_mvm_scan_pass_all(struct iwl_mvm* mvm, struct cfg80211_sched_scan_request* req) {
if (req->n_match_sets && req->match_sets[0].ssid.ssid_len) {
IWL_DEBUG_SCAN(mvm, "Sending scheduled scan with filtering, n_match_sets %d\n",
req->n_match_sets);
mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_DISABLED;
return false;
}
IWL_DEBUG_SCAN(mvm, "Sending Scheduled scan without filtering\n");
mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_ENABLED;
return true;
}
static int iwl_mvm_lmac_scan_abort(struct iwl_mvm* mvm) {
int ret;
struct iwl_host_cmd cmd = {
.id = SCAN_OFFLOAD_ABORT_CMD,
};
uint32_t status = CAN_ABORT_STATUS;
ret = iwl_mvm_send_cmd_status(mvm, &cmd, &status);
if (ret) { return ret; }
if (status != CAN_ABORT_STATUS) {
/*
* The scan abort will return 1 for success or
* 2 for "failure". A failure condition can be
* due to simply not being in an active scan which
* can occur if we send the scan abort before the
* microcode has notified us that a scan is completed.
*/
IWL_DEBUG_SCAN(mvm, "SCAN OFFLOAD ABORT ret %d.\n", status);
ret = -ENOENT;
}
return ret;
}
#endif // NEEDS_PORTING
static void iwl_mvm_scan_fill_tx_cmd(struct iwl_mvm* mvm, struct iwl_scan_req_tx_cmd* tx_cmd,
bool no_cck) {
tx_cmd[0].tx_flags = cpu_to_le32(TX_CMD_FLG_SEQ_CTL | TX_CMD_FLG_BT_DIS);
tx_cmd[0].rate_n_flags = iwl_mvm_scan_rate_n_flags(mvm, WLAN_INFO_BAND_2GHZ, no_cck);
tx_cmd[0].sta_id = mvm->aux_sta.sta_id;
tx_cmd[1].tx_flags = cpu_to_le32(TX_CMD_FLG_SEQ_CTL | TX_CMD_FLG_BT_DIS);
tx_cmd[1].rate_n_flags = iwl_mvm_scan_rate_n_flags(mvm, WLAN_INFO_BAND_5GHZ, no_cck);
tx_cmd[1].sta_id = mvm->aux_sta.sta_id;
}
static void iwl_mvm_lmac_scan_cfg_channels(struct iwl_mvm* mvm, uint8_t* channels, int n_channels,
uint32_t ssid_bitmap, struct iwl_scan_req_lmac* cmd) {
struct iwl_scan_channel_cfg_lmac* channel_cfg = (void*)&cmd->data;
int i;
for (i = 0; i < n_channels; i++) {
channel_cfg[i].channel_num = cpu_to_le16(channels[i]);
channel_cfg[i].iter_count = cpu_to_le16(1);
channel_cfg[i].iter_interval = 0;
channel_cfg[i].flags = cpu_to_le32(IWL_UNIFIED_SCAN_CHANNEL_PARTIAL | ssid_bitmap);
}
}
#if 0 // NEEDS_PORTING
static uint8_t* iwl_mvm_copy_and_insert_ds_elem(struct iwl_mvm* mvm, const uint8_t* ies, size_t len,
uint8_t* const pos) {
static const uint8_t before_ds_params[] = {
WLAN_EID_SSID,
WLAN_EID_SUPP_RATES,
WLAN_EID_REQUEST,
WLAN_EID_EXT_SUPP_RATES,
};
size_t offs;
uint8_t* newpos = pos;
if (!iwl_mvm_rrm_scan_needed(mvm)) {
memcpy(newpos, ies, len);
return newpos + len;
}
offs = ieee80211_ie_split(ies, len, before_ds_params, ARRAY_SIZE(before_ds_params), 0);
memcpy(newpos, ies, offs);
newpos += offs;
/* Add a placeholder for DS Parameter Set element */
*newpos++ = WLAN_EID_DS_PARAMS;
*newpos++ = 1;
*newpos++ = 0;
memcpy(newpos, ies + offs, len - offs);
newpos += len - offs;
return newpos;
}
#define WFA_TPC_IE_LEN 9
static void iwl_mvm_add_tpc_report_ie(uint8_t* pos) {
pos[0] = WLAN_EID_VENDOR_SPECIFIC;
pos[1] = WFA_TPC_IE_LEN - 2;
pos[2] = (WLAN_OUI_MICROSOFT >> 16) & 0xff;
pos[3] = (WLAN_OUI_MICROSOFT >> 8) & 0xff;
pos[4] = WLAN_OUI_MICROSOFT & 0xff;
pos[5] = WLAN_OUI_TYPE_MICROSOFT_TPC;
pos[6] = 0;
/* pos[7] - tx power will be inserted by the FW */
pos[7] = 0;
pos[8] = 0;
}
static void iwl_mvm_build_scan_probe(struct iwl_mvm* mvm, struct ieee80211_vif* vif,
struct ieee80211_scan_ies* ies,
struct iwl_mvm_scan_params* params) {
struct ieee80211_mgmt* frame = (void*)params->preq.buf;
uint8_t *pos, *newpos;
const uint8_t* mac_addr =
params->flags & NL80211_SCAN_FLAG_RANDOM_ADDR ? params->mac_addr : NULL;
/*
* Unfortunately, right now the offload scan doesn't support randomising
* within the firmware, so until the firmware API is ready we implement
* it in the driver. This means that the scan iterations won't really be
* random, only when it's restarted, but at least that helps a bit.
*/
if (mac_addr) {
get_random_mask_addr(frame->sa, mac_addr, params->mac_addr_mask);
} else {
memcpy(frame->sa, vif->addr, ETH_ALEN);
}
frame->frame_control = cpu_to_le16(IEEE80211_STYPE_PROBE_REQ);
eth_broadcast_addr(frame->da);
eth_broadcast_addr(frame->bssid);
frame->seq_ctrl = 0;
pos = frame->u.probe_req.variable;
*pos++ = WLAN_EID_SSID;
*pos++ = 0;
params->preq.mac_header.offset = 0;
params->preq.mac_header.len = cpu_to_le16(24 + 2);
/* Insert ds parameter set element on 2.4 GHz band */
newpos = iwl_mvm_copy_and_insert_ds_elem(mvm, ies->ies[NL80211_BAND_2GHZ],
ies->len[NL80211_BAND_2GHZ], pos);
params->preq.band_data[0].offset = cpu_to_le16(pos - params->preq.buf);
params->preq.band_data[0].len = cpu_to_le16(newpos - pos);
pos = newpos;
memcpy(pos, ies->ies[NL80211_BAND_5GHZ], ies->len[NL80211_BAND_5GHZ]);
params->preq.band_data[1].offset = cpu_to_le16(pos - params->preq.buf);
params->preq.band_data[1].len = cpu_to_le16(ies->len[NL80211_BAND_5GHZ]);
pos += ies->len[NL80211_BAND_5GHZ];
memcpy(pos, ies->common_ies, ies->common_ie_len);
params->preq.common_data.offset = cpu_to_le16(pos - params->preq.buf);
if (iwl_mvm_rrm_scan_needed(mvm) &&
!fw_has_capa(&mvm->fw->ucode_capa, IWL_UCODE_TLV_CAPA_WFA_TPC_REP_IE_SUPPORT)) {
iwl_mvm_add_tpc_report_ie(pos + ies->common_ie_len);
params->preq.common_data.len = cpu_to_le16(ies->common_ie_len + WFA_TPC_IE_LEN);
} else {
params->preq.common_data.len = cpu_to_le16(ies->common_ie_len);
}
}
#endif // NEEDS_PORTING
static void iwl_mvm_scan_lmac_dwell(struct iwl_mvm* mvm, struct iwl_scan_req_lmac* cmd,
struct iwl_mvm_scan_params* params) {
cmd->active_dwell = IWL_SCAN_DWELL_ACTIVE;
cmd->passive_dwell = IWL_SCAN_DWELL_PASSIVE;
cmd->fragmented_dwell = IWL_SCAN_DWELL_FRAGMENTED;
cmd->extended_dwell = IWL_SCAN_DWELL_EXTENDED;
cmd->max_out_time = cpu_to_le32(scan_timing[params->type].max_out_time);
cmd->suspend_time = cpu_to_le32(scan_timing[params->type].suspend_time);
cmd->scan_prio = cpu_to_le32(IWL_SCAN_PRIORITY_EXT_6);
}
#if 0 // NEEDS_PORTING
static inline bool iwl_mvm_scan_fits(struct iwl_mvm* mvm, int n_ssids,
struct ieee80211_scan_ies* ies, int n_channels) {
return ((n_ssids <= PROBE_OPTION_MAX) &&
(n_channels <= mvm->fw->ucode_capa.n_scan_channels) &
(ies->common_ie_len + ies->len[NL80211_BAND_2GHZ] + ies->len[NL80211_BAND_5GHZ] <=
iwl_mvm_max_scan_ie_fw_cmd_room(mvm)));
}
static inline bool iwl_mvm_scan_use_ebs(struct iwl_mvm* mvm, struct ieee80211_vif* vif) {
const struct iwl_ucode_capabilities* capa = &mvm->fw->ucode_capa;
bool low_latency;
if (iwl_mvm_is_cdb_supported(mvm)) {
low_latency = iwl_mvm_low_latency_band(mvm, NL80211_BAND_5GHZ);
} else {
low_latency = iwl_mvm_low_latency(mvm);
}
/* We can only use EBS if:
* 1. the feature is supported;
* 2. the last EBS was successful;
* 3. if only single scan, the single scan EBS API is supported;
* 4. it's not a p2p find operation.
* 5. we are not in low latency mode,
* or if fragmented ebs is supported by the FW
*/
return ((capa->flags & IWL_UCODE_TLV_FLAGS_EBS_SUPPORT) && mvm->last_ebs_successful &&
IWL_MVM_ENABLE_EBS && vif->type != NL80211_IFTYPE_P2P_DEVICE &&
(!low_latency || iwl_mvm_is_frag_ebs_supported(mvm)));
}
#endif // NEEDS_PORTING
static inline bool iwl_mvm_is_regular_scan(struct iwl_mvm_scan_params* params) {
return true;
#if 0 // NEEDS_PORTING
return params->n_scan_plans == 1 && params->scan_plans[0].iterations == 1;
#endif // NEEDS_PORTING
}
static bool iwl_mvm_is_scan_fragmented(enum iwl_mvm_scan_type type) {
return (type == IWL_SCAN_TYPE_FRAGMENTED || type == IWL_SCAN_TYPE_FAST_BALANCE);
}
static int iwl_mvm_scan_lmac_flags(struct iwl_mvm* mvm, struct iwl_mvm_scan_params* params) {
int flags = 0;
if (params->n_ssids == 0) {
flags |= IWL_MVM_LMAC_SCAN_FLAG_PASSIVE;
}
#if 0 // NEEDS_PORTING
// TODO(43481): Scan specific SSID
if (params->n_ssids == 1 && params->ssids[0].ssid_len != 0) {
flags |= IWL_MVM_LMAC_SCAN_FLAG_PRE_CONNECTION;
}
#endif // NEEDS_PORTING
if (iwl_mvm_is_scan_fragmented(params->type)) {
flags |= IWL_MVM_LMAC_SCAN_FLAG_FRAGMENTED;
}
if (iwl_mvm_rrm_scan_needed(mvm) &&
fw_has_capa(&mvm->fw->ucode_capa, IWL_UCODE_TLV_CAPA_WFA_TPC_REP_IE_SUPPORT)) {
flags |= IWL_MVM_LMAC_SCAN_FLAGS_RRM_ENABLED;
}
if (params->pass_all) {
flags |= IWL_MVM_LMAC_SCAN_FLAG_PASS_ALL;
} else {
flags |= IWL_MVM_LMAC_SCAN_FLAG_MATCH;
}
#ifdef CPTCFG_IWLWIFI_DEBUGFS
if (mvm->scan_iter_notif_enabled) {
flags |= IWL_MVM_LMAC_SCAN_FLAG_ITER_COMPLETE;
}
#endif
if (mvm->sched_scan_pass_all == SCHED_SCAN_PASS_ALL_ENABLED) {
flags |= IWL_MVM_LMAC_SCAN_FLAG_ITER_COMPLETE;
}
if (iwl_mvm_is_regular_scan(params) &&
#if 0 // NEEDS_PORTING
vif->type != NL80211_IFTYPE_P2P_DEVICE &&
#endif // NEEDS_PORTING
!iwl_mvm_is_scan_fragmented(params->type)) {
flags |= IWL_MVM_LMAC_SCAN_FLAG_EXTENDED_DWELL;
}
return flags;
}
zx_status_t iwl_mvm_scan_lmac(struct iwl_mvm* mvm, struct iwl_mvm_scan_params* params) {
struct iwl_scan_req_lmac* cmd = mvm->scan_cmd;
struct iwl_scan_probe_req* preq = (void*)(cmd->data + sizeof(struct iwl_scan_channel_cfg_lmac) *
mvm->fw->ucode_capa.n_scan_channels);
uint32_t ssid_bitmap = 0;
iwl_assert_lock_held(&mvm->mutex);
memset(cmd, 0, sizeof(*cmd));
if (params->n_scan_plans > IWL_MAX_SCHED_SCAN_PLANS) {
IWL_WARN(mvm, "cannot scan: #plan (%d) is larger than max # (%d)\n", params->n_scan_plans,
IWL_MAX_SCHED_SCAN_PLANS);
return ZX_ERR_INVALID_ARGS;
}
iwl_mvm_scan_lmac_dwell(mvm, cmd, params);
cmd->rx_chain_select = iwl_mvm_scan_rx_chain(mvm);
cmd->iter_num = cpu_to_le32(1);
cmd->n_channels = (uint8_t)params->n_channels;
cmd->delay = cpu_to_le32(params->delay);
cmd->scan_flags = cpu_to_le32(iwl_mvm_scan_lmac_flags(mvm, params));
cmd->flags = iwl_mvm_scan_rxon_flags(params->channels[0] <= 14 ? WLAN_INFO_BAND_2GHZ
: WLAN_INFO_BAND_5GHZ);
cmd->filter_flags = cpu_to_le32(MAC_FILTER_ACCEPT_GRP | MAC_FILTER_IN_BEACON);
iwl_mvm_scan_fill_tx_cmd(mvm, cmd->tx_cmd, params->no_cck);
#if 0 // NEEDS_PORTING
iwl_scan_build_ssids(params, cmd->direct_scan, &ssid_bitmap);
#endif // NEEDS_PORTING
/* this API uses bits 1-20 instead of 0-19 */
ssid_bitmap <<= 1;
// Supports one scan plan for now.
// TODO(43483): Different scan plan
cmd->schedule[0].delay = cpu_to_le16(0);
cmd->schedule[0].iterations = 1;
cmd->schedule[0].full_scan_mul = 1;
#if 0 // NEEDS_PORTING
// TODO(43483): Different scan plan
for (int i = 0; i < params->n_scan_plans; i++) {
struct cfg80211_sched_scan_plan* scan_plan = &params->scan_plans[i];
cmd->schedule[i].delay = cpu_to_le16(scan_plan->interval);
cmd->schedule[i].iterations = scan_plan->iterations;
cmd->schedule[i].full_scan_mul = 1;
}
/*
* If the number of iterations of the last scan plan is set to
* zero, it should run infinitely. However, this is not always the case.
* For example, when regular scan is requested the driver sets one scan
* plan with one iteration.
*/
if (!cmd->schedule[i - 1].iterations) { cmd->schedule[i - 1].iterations = 0xff; }
#endif // NEEDS_PORTING
#if 0 // NEEDS_PORTING
if (iwl_mvm_scan_use_ebs(mvm, vif)) {
cmd->channel_opt[0].flags =
cpu_to_le16(IWL_SCAN_CHANNEL_FLAG_EBS | IWL_SCAN_CHANNEL_FLAG_EBS_ACCURATE |
IWL_SCAN_CHANNEL_FLAG_CACHE_ADD);
cmd->channel_opt[0].non_ebs_ratio = cpu_to_le16(IWL_DENSE_EBS_SCAN_RATIO);
cmd->channel_opt[1].flags =
cpu_to_le16(IWL_SCAN_CHANNEL_FLAG_EBS | IWL_SCAN_CHANNEL_FLAG_EBS_ACCURATE |
IWL_SCAN_CHANNEL_FLAG_CACHE_ADD);
cmd->channel_opt[1].non_ebs_ratio = cpu_to_le16(IWL_SPARSE_EBS_SCAN_RATIO);
}
#endif // NEEDS_PORTING
iwl_mvm_lmac_scan_cfg_channels(mvm, params->channels, params->n_channels, ssid_bitmap, cmd);
*preq = params->preq;
return ZX_OK;
}
static int rate_to_scan_rate_flag(unsigned int rate) {
static const int rate_to_scan_rate[IWL_RATE_COUNT] = {
[IWL_RATE_1M_INDEX] = SCAN_CONFIG_RATE_1M, [IWL_RATE_2M_INDEX] = SCAN_CONFIG_RATE_2M,
[IWL_RATE_5M_INDEX] = SCAN_CONFIG_RATE_5M, [IWL_RATE_11M_INDEX] = SCAN_CONFIG_RATE_11M,
[IWL_RATE_6M_INDEX] = SCAN_CONFIG_RATE_6M, [IWL_RATE_9M_INDEX] = SCAN_CONFIG_RATE_9M,
[IWL_RATE_12M_INDEX] = SCAN_CONFIG_RATE_12M, [IWL_RATE_18M_INDEX] = SCAN_CONFIG_RATE_18M,
[IWL_RATE_24M_INDEX] = SCAN_CONFIG_RATE_24M, [IWL_RATE_36M_INDEX] = SCAN_CONFIG_RATE_36M,
[IWL_RATE_48M_INDEX] = SCAN_CONFIG_RATE_48M, [IWL_RATE_54M_INDEX] = SCAN_CONFIG_RATE_54M,
};
return rate_to_scan_rate[rate];
}
static __le32 iwl_mvm_scan_config_rates(struct iwl_mvm* mvm) {
struct ieee80211_supported_band* band;
uint16_t rates = 0;
int i;
band = &mvm->nvm_data->bands[WLAN_INFO_BAND_2GHZ];
for (i = 0; i < band->n_bitrates; i++) {
rates |= rate_to_scan_rate_flag(iwl_get_rate_index(band->bitrates[i]));
}
band = &mvm->nvm_data->bands[WLAN_INFO_BAND_5GHZ];
for (i = 0; i < band->n_bitrates; i++) {
rates |= rate_to_scan_rate_flag(iwl_get_rate_index(band->bitrates[i]));
}
/* Set both basic rates and supported rates */
rates |= SCAN_CONFIG_SUPPORTED_RATE(rates);
return cpu_to_le32(rates);
}
static void iwl_mvm_fill_scan_dwell(struct iwl_mvm* mvm, struct iwl_scan_dwell* dwell) {
dwell->active = IWL_SCAN_DWELL_ACTIVE;
dwell->passive = IWL_SCAN_DWELL_PASSIVE;
dwell->fragmented = IWL_SCAN_DWELL_FRAGMENTED;
dwell->extended = IWL_SCAN_DWELL_EXTENDED;
}
static void iwl_mvm_fill_channels(struct iwl_mvm* mvm, uint8_t* channels) {
struct ieee80211_supported_band* band;
int i, j = 0;
band = &mvm->nvm_data->bands[WLAN_INFO_BAND_2GHZ];
for (i = 0; i < band->n_channels; i++, j++) {
channels[j] = band->channels[i].ch_num;
}
band = &mvm->nvm_data->bands[WLAN_INFO_BAND_5GHZ];
for (i = 0; i < band->n_channels; i++, j++) {
channels[j] = band->channels[i].ch_num;
}
}
static void iwl_mvm_fill_scan_config_v1(struct iwl_mvm* mvm, void* config, uint32_t flags,
uint8_t channel_flags) {
enum iwl_mvm_scan_type type = iwl_mvm_get_scan_type(mvm, NULL);
struct iwl_scan_config_v1* cfg = config;
cfg->flags = cpu_to_le32(flags);
cfg->tx_chains = cpu_to_le32(iwl_mvm_get_valid_tx_ant(mvm));
cfg->rx_chains = cpu_to_le32(iwl_mvm_scan_rx_ant(mvm));
cfg->legacy_rates = iwl_mvm_scan_config_rates(mvm);
cfg->out_of_channel_time = cpu_to_le32(scan_timing[type].max_out_time);
cfg->suspend_time = cpu_to_le32(scan_timing[type].suspend_time);
iwl_mvm_fill_scan_dwell(mvm, &cfg->dwell);
memcpy(&cfg->mac_addr, &mvm->addresses[0].addr, ETH_ALEN);
cfg->bcast_sta_id = mvm->aux_sta.sta_id;
cfg->channel_flags = channel_flags;
iwl_mvm_fill_channels(mvm, cfg->channel_array);
}
static void iwl_mvm_fill_scan_config(struct iwl_mvm* mvm, void* config, uint32_t flags,
uint8_t channel_flags) {
struct iwl_scan_config* cfg = config;
cfg->flags = cpu_to_le32(flags);
cfg->tx_chains = cpu_to_le32(iwl_mvm_get_valid_tx_ant(mvm));
cfg->rx_chains = cpu_to_le32(iwl_mvm_scan_rx_ant(mvm));
cfg->legacy_rates = iwl_mvm_scan_config_rates(mvm);
if (iwl_mvm_is_cdb_supported(mvm)) {
enum iwl_mvm_scan_type lb_type, hb_type;
lb_type = iwl_mvm_get_scan_type_band(mvm, WLAN_INFO_BAND_2GHZ);
hb_type = iwl_mvm_get_scan_type_band(mvm, WLAN_INFO_BAND_5GHZ);
cfg->out_of_channel_time[SCAN_LB_LMAC_IDX] = cpu_to_le32(scan_timing[lb_type].max_out_time);
cfg->suspend_time[SCAN_LB_LMAC_IDX] = cpu_to_le32(scan_timing[lb_type].suspend_time);
cfg->out_of_channel_time[SCAN_HB_LMAC_IDX] = cpu_to_le32(scan_timing[hb_type].max_out_time);
cfg->suspend_time[SCAN_HB_LMAC_IDX] = cpu_to_le32(scan_timing[hb_type].suspend_time);
} else {
enum iwl_mvm_scan_type type = iwl_mvm_get_scan_type(mvm, NULL);
cfg->out_of_channel_time[SCAN_LB_LMAC_IDX] = cpu_to_le32(scan_timing[type].max_out_time);
cfg->suspend_time[SCAN_LB_LMAC_IDX] = cpu_to_le32(scan_timing[type].suspend_time);
}
iwl_mvm_fill_scan_dwell(mvm, &cfg->dwell);
memcpy(&cfg->mac_addr, &mvm->addresses[0].addr, ETH_ALEN);
cfg->bcast_sta_id = mvm->aux_sta.sta_id;
cfg->channel_flags = channel_flags;
iwl_mvm_fill_channels(mvm, cfg->channel_array);
}
zx_status_t iwl_mvm_config_scan(struct iwl_mvm* mvm) {
void* cfg;
zx_status_t ret = ZX_OK;
uint16_t cmd_size;
struct iwl_host_cmd cmd = {
.id = iwl_cmd_id(SCAN_CFG_CMD, IWL_ALWAYS_LONG_GROUP, 0),
};
enum iwl_mvm_scan_type type = IWL_SCAN_TYPE_NOT_SET;
enum iwl_mvm_scan_type hb_type = IWL_SCAN_TYPE_NOT_SET;
uint32_t num_channels = mvm->nvm_data->bands[WLAN_INFO_BAND_2GHZ].n_channels +
mvm->nvm_data->bands[WLAN_INFO_BAND_5GHZ].n_channels;
uint32_t flags;
uint8_t channel_flags;
if (WARN_ON(num_channels > mvm->fw->ucode_capa.n_scan_channels)) {
return ZX_ERR_BUFFER_TOO_SMALL;
}
if (iwl_mvm_is_cdb_supported(mvm)) {
type = iwl_mvm_get_scan_type_band(mvm, WLAN_INFO_BAND_2GHZ);
hb_type = iwl_mvm_get_scan_type_band(mvm, WLAN_INFO_BAND_5GHZ);
if (type == mvm->scan_type && hb_type == mvm->hb_scan_type) {
return ZX_OK;
}
} else {
type = iwl_mvm_get_scan_type(mvm, NULL);
if (type == mvm->scan_type) {
return ZX_OK;
}
}
type = iwl_mvm_get_scan_type(mvm, NULL);
if (type == mvm->scan_type) {
return ZX_OK;
}
if (iwl_mvm_cdb_scan_api(mvm)) {
cmd_size = sizeof(struct iwl_scan_config);
} else {
cmd_size = sizeof(struct iwl_scan_config_v1);
}
cmd_size += mvm->fw->ucode_capa.n_scan_channels;
cfg = calloc(cmd_size, 1);
if (!cfg) {
return ZX_ERR_NO_MEMORY;
}
flags = SCAN_CONFIG_FLAG_ACTIVATE | SCAN_CONFIG_FLAG_ALLOW_CHUB_REQS |
SCAN_CONFIG_FLAG_SET_TX_CHAINS | SCAN_CONFIG_FLAG_SET_RX_CHAINS |
SCAN_CONFIG_FLAG_SET_AUX_STA_ID | SCAN_CONFIG_FLAG_SET_ALL_TIMES |
SCAN_CONFIG_FLAG_SET_LEGACY_RATES | SCAN_CONFIG_FLAG_SET_MAC_ADDR |
SCAN_CONFIG_FLAG_SET_CHANNEL_FLAGS | SCAN_CONFIG_N_CHANNELS(num_channels) |
(iwl_mvm_is_scan_fragmented(type) ? SCAN_CONFIG_FLAG_SET_FRAGMENTED
: SCAN_CONFIG_FLAG_CLEAR_FRAGMENTED);
channel_flags = IWL_CHANNEL_FLAG_EBS | IWL_CHANNEL_FLAG_ACCURATE_EBS | IWL_CHANNEL_FLAG_EBS_ADD |
IWL_CHANNEL_FLAG_PRE_SCAN_PASSIVE2ACTIVE;
/*
* Check for fragmented scan on LMAC2 - high band.
* LMAC1 - low band is checked above.
*/
if (iwl_mvm_cdb_scan_api(mvm)) {
if (iwl_mvm_is_cdb_supported(mvm))
flags |= (iwl_mvm_is_scan_fragmented(hb_type)) ? SCAN_CONFIG_FLAG_SET_LMAC2_FRAGMENTED
: SCAN_CONFIG_FLAG_CLEAR_LMAC2_FRAGMENTED;
iwl_mvm_fill_scan_config(mvm, cfg, flags, channel_flags);
} else {
iwl_mvm_fill_scan_config_v1(mvm, cfg, flags, channel_flags);
}
cmd.data[0] = cfg;
cmd.len[0] = cmd_size;
cmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
IWL_DEBUG_SCAN(mvm, "Sending UMAC scan config\n");
ret = iwl_mvm_send_cmd(mvm, &cmd);
if (ret == ZX_OK) {
mvm->scan_type = type;
mvm->hb_scan_type = hb_type;
}
kfree(cfg);
return ret;
}
static zx_status_t iwl_mvm_scan_uid_by_status(struct iwl_mvm* mvm, uint32_t status, uint16_t* idx) {
ZX_ASSERT(idx);
for (uint16_t i = 0; i < mvm->max_scans; i++)
if (mvm->scan_uid_status[i] == status) {
*idx = i;
return ZX_OK;
}
return ZX_ERR_NOT_FOUND;
}
static void iwl_mvm_scan_umac_dwell(struct iwl_mvm* mvm, struct iwl_scan_req_umac* cmd,
struct iwl_mvm_scan_params* params) {
struct iwl_mvm_scan_timing_params *timing, *hb_timing;
uint8_t active_dwell, passive_dwell;
timing = &scan_timing[params->type];
active_dwell = params->measurement_dwell ? params->measurement_dwell : IWL_SCAN_DWELL_ACTIVE;
passive_dwell = params->measurement_dwell ? params->measurement_dwell : IWL_SCAN_DWELL_PASSIVE;
if (iwl_mvm_is_adaptive_dwell_supported(mvm)) {
cmd->v7.adwell_default_n_aps_social = IWL_SCAN_ADWELL_DEFAULT_N_APS_SOCIAL;
cmd->v7.adwell_default_n_aps = IWL_SCAN_ADWELL_DEFAULT_N_APS;
/* if custom max budget was configured with debugfs */
if (IWL_MVM_ADWELL_MAX_BUDGET) {
cmd->v7.adwell_max_budget = cpu_to_le16(IWL_MVM_ADWELL_MAX_BUDGET);
}
#if 0 // NEEDS_PORTING
// TODO(fxbug.dev/43481): Scan specific SSID.
else if (params->ssids && params->ssids[0].ssid_len) {
cmd->v7.adwell_max_budget = cpu_to_le16(IWL_SCAN_ADWELL_MAX_BUDGET_DIRECTED_SCAN);
}
#endif // NEEDS_PORTING
else {
cmd->v7.adwell_max_budget = cpu_to_le16(IWL_SCAN_ADWELL_MAX_BUDGET_FULL_SCAN);
}
cmd->v7.scan_priority = cpu_to_le32(IWL_SCAN_PRIORITY_EXT_6);
cmd->v7.max_out_time[SCAN_LB_LMAC_IDX] = cpu_to_le32(timing->max_out_time);
cmd->v7.suspend_time[SCAN_LB_LMAC_IDX] = cpu_to_le32(timing->suspend_time);
if (iwl_mvm_is_cdb_supported(mvm)) {
hb_timing = &scan_timing[params->hb_type];
cmd->v7.max_out_time[SCAN_HB_LMAC_IDX] = cpu_to_le32(hb_timing->max_out_time);
cmd->v7.suspend_time[SCAN_HB_LMAC_IDX] = cpu_to_le32(hb_timing->suspend_time);
}
if (!iwl_mvm_is_adaptive_dwell_v2_supported(mvm)) {
cmd->v7.active_dwell = active_dwell;
cmd->v7.passive_dwell = passive_dwell;
cmd->v7.fragmented_dwell = IWL_SCAN_DWELL_FRAGMENTED;
} else {
cmd->v8.active_dwell[SCAN_LB_LMAC_IDX] = active_dwell;
cmd->v8.passive_dwell[SCAN_LB_LMAC_IDX] = passive_dwell;
if (iwl_mvm_is_cdb_supported(mvm)) {
cmd->v8.active_dwell[SCAN_HB_LMAC_IDX] = active_dwell;
cmd->v8.passive_dwell[SCAN_HB_LMAC_IDX] = passive_dwell;
}
}
} else {
cmd->v1.extended_dwell =
params->measurement_dwell ? params->measurement_dwell : IWL_SCAN_DWELL_EXTENDED;
cmd->v1.active_dwell = active_dwell;
cmd->v1.passive_dwell = passive_dwell;
cmd->v1.fragmented_dwell = IWL_SCAN_DWELL_FRAGMENTED;
if (iwl_mvm_is_cdb_supported(mvm)) {
hb_timing = &scan_timing[params->hb_type];
cmd->v6.max_out_time[SCAN_HB_LMAC_IDX] = cpu_to_le32(hb_timing->max_out_time);
cmd->v6.suspend_time[SCAN_HB_LMAC_IDX] = cpu_to_le32(hb_timing->suspend_time);
}
if (iwl_mvm_cdb_scan_api(mvm)) {
cmd->v6.scan_priority = cpu_to_le32(IWL_SCAN_PRIORITY_EXT_6);
cmd->v6.max_out_time[SCAN_LB_LMAC_IDX] = cpu_to_le32(timing->max_out_time);
cmd->v6.suspend_time[SCAN_LB_LMAC_IDX] = cpu_to_le32(timing->suspend_time);
} else {
cmd->v1.scan_priority = cpu_to_le32(IWL_SCAN_PRIORITY_EXT_6);
cmd->v1.max_out_time = cpu_to_le32(timing->max_out_time);
cmd->v1.suspend_time = cpu_to_le32(timing->suspend_time);
}
}
if (iwl_mvm_is_regular_scan(params)) {
cmd->ooc_priority = cpu_to_le32(IWL_SCAN_PRIORITY_EXT_6);
} else {
cmd->ooc_priority = cpu_to_le32(IWL_SCAN_PRIORITY_EXT_2);
}
}
static void iwl_mvm_umac_scan_cfg_channels(struct iwl_mvm* mvm, uint8_t* channels, int n_channels,
uint32_t ssid_bitmap,
struct iwl_scan_channel_cfg_umac* channel_cfg) {
int i;
for (i = 0; i < n_channels; i++) {
channel_cfg[i].flags = cpu_to_le32(ssid_bitmap);
channel_cfg[i].channel_num = cpu_to_le16(channels[i]);
channel_cfg[i].iter_count = 1;
channel_cfg[i].iter_interval = 0;
}
}
static uint16_t iwl_mvm_scan_umac_flags(struct iwl_mvm* mvm, struct iwl_mvm_scan_params* params) {
uint16_t flags = 0;
if (params->n_ssids == 0) {
flags = IWL_UMAC_SCAN_GEN_FLAGS_PASSIVE;
}
#if 0 // NEEDS_PORTING
// TODO(fxbug.dev/43481): Scan specific SSID.
if (params->n_ssids == 1 && params->ssids[0].ssid_len != 0) {
flags |= IWL_UMAC_SCAN_GEN_FLAGS_PRE_CONNECT;
}
#endif // NEEDS_PORTING
if (iwl_mvm_is_scan_fragmented(params->type)) {
flags |= IWL_UMAC_SCAN_GEN_FLAGS_FRAGMENTED;
}
if (iwl_mvm_is_cdb_supported(mvm) && iwl_mvm_is_scan_fragmented(params->hb_type)) {
flags |= IWL_UMAC_SCAN_GEN_FLAGS_LMAC2_FRAGMENTED;
}
if (iwl_mvm_rrm_scan_needed(mvm) &&
fw_has_capa(&mvm->fw->ucode_capa, IWL_UCODE_TLV_CAPA_WFA_TPC_REP_IE_SUPPORT)) {
flags |= IWL_UMAC_SCAN_GEN_FLAGS_RRM_ENABLED;
}
if (params->pass_all) {
flags |= IWL_UMAC_SCAN_GEN_FLAGS_PASS_ALL;
} else {
flags |= IWL_UMAC_SCAN_GEN_FLAGS_MATCH;
}
if (!iwl_mvm_is_regular_scan(params)) {
flags |= IWL_UMAC_SCAN_GEN_FLAGS_PERIODIC;
}
if (params->measurement_dwell) {
flags |= IWL_UMAC_SCAN_GEN_FLAGS_ITER_COMPLETE;
}
#ifdef CPTCFG_IWLWIFI_DEBUGFS
if (mvm->scan_iter_notif_enabled) {
flags |= IWL_UMAC_SCAN_GEN_FLAGS_ITER_COMPLETE;
}
#endif
if (mvm->sched_scan_pass_all == SCHED_SCAN_PASS_ALL_ENABLED) {
flags |= IWL_UMAC_SCAN_GEN_FLAGS_ITER_COMPLETE;
}
if (iwl_mvm_is_adaptive_dwell_supported(mvm) && IWL_MVM_ADWELL_ENABLE
#if 0 // NEEDS_PORTING
&& vif->type != NL80211_IFTYPE_P2P_DEVICE
#endif // NEEDS_PORTING
) {
flags |= IWL_UMAC_SCAN_GEN_FLAGS_ADAPTIVE_DWELL;
}
/*
* Extended dwell is relevant only for low band to start with, as it is
* being used for social channles only (1, 6, 11), so we can check
* only scan type on low band also for CDB.
*/
if (iwl_mvm_is_regular_scan(params) &&
#if 0 // NEEDS_PORTING
vif->type != NL80211_IFTYPE_P2P_DEVICE &&
#endif // NEEDS_PORTING
!iwl_mvm_is_scan_fragmented(params->type) && !iwl_mvm_is_adaptive_dwell_supported(mvm) &&
!iwl_mvm_is_oce_supported(mvm)) {
flags |= IWL_UMAC_SCAN_GEN_FLAGS_EXTENDED_DWELL;
}
#if 0 // NEEDS_PORTING
if (iwl_mvm_is_oce_supported(mvm)) {
if ((params->flags & NL80211_SCAN_FLAG_OCE_PROBE_REQ_HIGH_TX_RATE)) {
flags |= IWL_UMAC_SCAN_GEN_FLAGS_PROB_REQ_HIGH_TX_RATE;
}
/* Since IWL_UMAC_SCAN_GEN_FLAGS_EXTENDED_DWELL and
* NL80211_SCAN_FLAG_OCE_PROBE_REQ_DEFERRAL_SUPPRESSION shares
* the same bit, we need to make sure that we use this bit here
* only when IWL_UMAC_SCAN_GEN_FLAGS_EXTENDED_DWELL cannot be
* used. */
if ((params->flags & NL80211_SCAN_FLAG_OCE_PROBE_REQ_DEFERRAL_SUPPRESSION) &&
!WARN_ON_ONCE(!iwl_mvm_is_adaptive_dwell_supported(mvm))) {
flags |= IWL_UMAC_SCAN_GEN_FLAGS_PROB_REQ_DEFER_SUPP;
}
if ((params->flags & NL80211_SCAN_FLAG_FILS_MAX_CHANNEL_TIME)) {
flags |= IWL_UMAC_SCAN_GEN_FLAGS_MAX_CHNL_TIME;
}
}
#endif // NEEDS_PORTING
return flags;
}
static zx_status_t iwl_mvm_scan_umac(struct iwl_mvm_vif* mvmvif, struct iwl_mvm_scan_params* params,
int type) {
struct iwl_mvm* mvm = mvmvif->mvm;
struct iwl_scan_req_umac* cmd = mvm->scan_cmd;
struct iwl_scan_umac_chan_param* chan_param;
void* cmd_data = iwl_mvm_get_scan_req_umac_data(mvm);
struct iwl_scan_req_umac_tail* sec_part =
cmd_data + sizeof(struct iwl_scan_channel_cfg_umac) * mvm->fw->ucode_capa.n_scan_channels;
uint16_t uid;
uint32_t ssid_bitmap = 0;
uint8_t channel_flags = 0;
uint16_t gen_flags = 0;
chan_param = iwl_mvm_get_scan_req_umac_channel(mvm);
iwl_assert_lock_held(&mvm->mutex);
#if 0 // NEEDS_PORTING
if (WARN_ON(params->n_scan_plans > IWL_MAX_SCHED_SCAN_PLANS)) { return -EINVAL; }
#endif // NEEDS_PORTING
zx_status_t status;
if ((status = iwl_mvm_scan_uid_by_status(mvm, 0, &uid)) != ZX_OK) {
return status;
}
memset(cmd, 0, iwl_mvm_scan_size(mvm));
iwl_mvm_scan_umac_dwell(mvm, cmd, params);
mvm->scan_uid_status[uid] = type;
cmd->uid = cpu_to_le32(uid);
gen_flags = iwl_mvm_scan_umac_flags(mvm, params);
cmd->general_flags = cpu_to_le16(gen_flags);
if (iwl_mvm_is_adaptive_dwell_v2_supported(mvm)) {
if (gen_flags & IWL_UMAC_SCAN_GEN_FLAGS_FRAGMENTED) {
cmd->v8.num_of_fragments[SCAN_LB_LMAC_IDX] = IWL_SCAN_NUM_OF_FRAGS;
}
if (gen_flags & IWL_UMAC_SCAN_GEN_FLAGS_LMAC2_FRAGMENTED) {
cmd->v8.num_of_fragments[SCAN_HB_LMAC_IDX] = IWL_SCAN_NUM_OF_FRAGS;
}
cmd->v8.general_flags2 = IWL_UMAC_SCAN_GEN_FLAGS2_ALLOW_CHNL_REORDER;
}
// The mvm->scan_vif is not assigned at this point (will be assigned after this function).
// Thus we retrieve the id from mvmvif directly.
cmd->scan_start_mac_id = mvmvif->id;
if (type == IWL_MVM_SCAN_SCHED || type == IWL_MVM_SCAN_NETDETECT) {
cmd->flags = cpu_to_le32(IWL_UMAC_SCAN_FLAG_PREEMPTIVE);
}
#if 0 // NEEDS_PORTING
if (iwl_mvm_scan_use_ebs(mvm, vif)) {
channel_flags = IWL_SCAN_CHANNEL_FLAG_EBS | IWL_SCAN_CHANNEL_FLAG_EBS_ACCURATE |
IWL_SCAN_CHANNEL_FLAG_CACHE_ADD;
/* set fragmented ebs for fragmented scan on HB channels */
if (iwl_mvm_is_frag_ebs_supported(mvm)) {
if (gen_flags & IWL_UMAC_SCAN_GEN_FLAGS_LMAC2_FRAGMENTED ||
(!iwl_mvm_is_cdb_supported(mvm) &&
gen_flags & IWL_UMAC_SCAN_GEN_FLAGS_FRAGMENTED)) {
channel_flags |= IWL_SCAN_CHANNEL_FLAG_EBS_FRAG;
}
}
}
#endif // NEEDS_PORTING
chan_param->flags = channel_flags;
chan_param->count = params->n_channels;
#if 0 // NEEDS_PORTING
iwl_scan_build_ssids(params, sec_part->direct_scan, &ssid_bitmap);
#endif // NEEDS_PORTING
iwl_mvm_umac_scan_cfg_channels(mvm, params->channels, params->n_channels, ssid_bitmap, cmd_data);
#if 1
// Supports one scan plan for now.
// TODO(43483): Different scan plan
sec_part->schedule[0].iter_count = 1;
sec_part->schedule[0].interval = cpu_to_le16(0);
#else // NEEDS_PORTING
for (i = 0; i < params->n_scan_plans; i++) {
struct cfg80211_sched_scan_plan* scan_plan = &params->scan_plans[i];
sec_part->schedule[i].iter_count = scan_plan->iterations;
sec_part->schedule[i].interval = cpu_to_le16(scan_plan->interval);
}
/*
* If the number of iterations of the last scan plan is set to
* zero, it should run infinitely. However, this is not always the case.
* For example, when regular scan is requested the driver sets one scan
* plan with one iteration.
*/
if (!sec_part->schedule[i - 1].iter_count) {
sec_part->schedule[i - 1].iter_count = 0xff;
}
#endif // NEEDS_PORTING
sec_part->delay = cpu_to_le16(params->delay);
sec_part->preq = params->preq;
return ZX_OK;
}
#if 0 // NEEDS_PORTING
static int iwl_mvm_num_scans(struct iwl_mvm* mvm) {
return hweight32(mvm->scan_status & IWL_MVM_SCAN_MASK);
}
static int iwl_mvm_check_running_scans(struct iwl_mvm* mvm, int type) {
bool unified_image = fw_has_capa(&mvm->fw->ucode_capa, IWL_UCODE_TLV_CAPA_CNSLDTD_D3_D0_IMG);
/* This looks a bit arbitrary, but the idea is that if we run
* out of possible simultaneous scans and the userspace is
* trying to run a scan type that is already running, we
* return -EBUSY. But if the userspace wants to start a
* different type of scan, we stop the opposite type to make
* space for the new request. The reason is backwards
* compatibility with old wpa_supplicant that wouldn't stop a
* scheduled scan before starting a normal scan.
*/
if (iwl_mvm_num_scans(mvm) < mvm->max_scans) { return 0; }
/* Use a switch, even though this is a bitmask, so that more
* than one bits set will fall in default and we will warn.
*/
switch (type) {
case IWL_MVM_SCAN_REGULAR:
if (mvm->scan_status & IWL_MVM_SCAN_REGULAR_MASK) { return -EBUSY; }
return iwl_mvm_scan_stop(mvm, IWL_MVM_SCAN_SCHED, true);
case IWL_MVM_SCAN_SCHED:
if (mvm->scan_status & IWL_MVM_SCAN_SCHED_MASK) { return -EBUSY; }
return iwl_mvm_scan_stop(mvm, IWL_MVM_SCAN_REGULAR, true);
case IWL_MVM_SCAN_NETDETECT:
/* For non-unified images, there's no need to stop
* anything for net-detect since the firmware is
* restarted anyway. This way, any sched scans that
* were running will be restarted when we resume.
*/
if (!unified_image) { return 0; }
/* If this is a unified image and we ran out of scans,
* we need to stop something. Prefer stopping regular
* scans, because the results are useless at this
* point, and we should be able to keep running
* another scheduled scan while suspended.
*/
if (mvm->scan_status & IWL_MVM_SCAN_REGULAR_MASK) {
return iwl_mvm_scan_stop(mvm, IWL_MVM_SCAN_REGULAR, true);
}
if (mvm->scan_status & IWL_MVM_SCAN_SCHED_MASK) {
return iwl_mvm_scan_stop(mvm, IWL_MVM_SCAN_SCHED, true);
}
/* fall through, something is wrong if no scan was
* running but we ran out of scans.
*/
default:
WARN_ON(1);
break;
}
return -EIO;
}
#endif // NEEDS_PORTING
/* TODO(49686): check if there is a dynamic way to derive this value. Currently
* this is set to 2x the average time it takes to finish scan.
*/
#define SCAN_TIMEOUT ZX_MSEC(10000)
void iwl_mvm_scan_timeout_wk(void* data) {
struct iwl_mvm* mvm = (struct iwl_mvm*)data;
mtx_lock(&mvm->mutex);
if (!(mvm->scan_status & IWL_MVM_SCAN_REGULAR)) {
mtx_unlock(&mvm->mutex);
IWL_ERR(mvm, "Received scan timeout notification but no scan is running\n");
return;
}
IWL_WARN(mvm, "Regular scan timed out\n");
#if 0 // NEEDS_PORTING
iwl_force_nmi(mvm->trans);
#endif // NEEDS_PORTING
mvm->scan_status &= ~IWL_MVM_SCAN_REGULAR;
if (mvm->scan_vif) {
notify_mlme_scan_completion(mvm->scan_vif, false);
} else {
IWL_ERR(mvm, "mvm->scan_vif is not registered, but got a SCAN timeout\n");
}
iwl_mvm_unref(mvm, IWL_MVM_REF_SCAN);
mtx_unlock(&mvm->mutex);
}
#if 0 // NEEDS_PORTING
static void iwl_mvm_fill_scan_type(struct iwl_mvm* mvm, struct iwl_mvm_scan_params* params,
struct ieee80211_vif* vif) {
if (iwl_mvm_is_cdb_supported(mvm)) {
params->type = iwl_mvm_get_scan_type_band(mvm, vif, NL80211_BAND_2GHZ);
params->hb_type = iwl_mvm_get_scan_type_band(mvm, vif, NL80211_BAND_5GHZ);
} else {
params->type = iwl_mvm_get_scan_type(mvm, vif);
}
}
#endif // NEEDS_PORTING
zx_status_t iwl_mvm_reg_scan_start(struct iwl_mvm_vif* mvmvif,
const wlan_hw_scan_config_t* scan_config) {
struct iwl_mvm* mvm = mvmvif->mvm;
struct iwl_host_cmd hcmd = {
.len =
{
iwl_mvm_scan_size(mvm),
},
.data =
{
mvm->scan_cmd,
},
.dataflags =
{
IWL_HCMD_DFL_NOCOPY,
},
};
zx_status_t ret;
iwl_assert_lock_held(&mvm->mutex);
#if 0 // NEEDS_PORTING
// TODO(43484): Enable LAR (Location Aware Regulatory)
if (iwl_mvm_is_lar_supported(mvm) && !mvm->lar_regdom_set) {
IWL_ERR(mvm, "scan while LAR regdomain is not set\n");
return ZX_ERR_UNAVAILABLE;
}
// TODO(43486): Stop passive scan
ret = iwl_mvm_check_running_scans(mvm, IWL_MVM_SCAN_REGULAR);
if (ret != ZX_OK) {
IWL_ERR(mvm, "another scan is running\n");
return ret; }
#endif // NEEDS_PORTING
/* we should have failed registration if scan_cmd was NULL */
if (!mvm->scan_cmd) {
IWL_WARN(mvm, "scan cmd was not allocated\n");
return ZX_ERR_NO_MEMORY;
}
if (mvm->scan_status & IWL_MVM_SCAN_REGULAR) {
IWL_WARN(mvm, "Scan already in progress - status %x\n", mvm->scan_status);
return ZX_ERR_SHOULD_WAIT;
}
#if 0 // NEEDS_PORTING
if (!iwl_mvm_scan_fits(mvm, req->n_ssids, ies, req->n_channels)) { return ZX_ERR_BUFFER_TOO_SMALL; }
#endif // NEEDS_PORTING
// TODO(43481): Scan specific SSID
struct iwl_mvm_scan_params params = {
.n_ssids = 0,
.ssids = NULL,
.flags = 0,
.delay = 0,
};
params.n_channels = scan_config->num_channels;
for (uint32_t i = 0; i < params.n_channels; ++i) {
params.channels[i] = scan_config->channels[i];
}
#if 0 // NEEDS_PORTING
// TODO(43487): Support Active Scan
params.mac_addr = req->mac_addr;
params.mac_addr_mask = req->mac_addr_mask;
params.no_cck = req->no_cck;
#endif // NEEDS_PORTING
params.pass_all = true;
params.n_match_sets = 0;
params.match_sets = NULL;
// TODO(43483): Different scan plan
// params.scan_plans = &scan_plan;
params.n_scan_plans = 1;
params.type = IWL_SCAN_TYPE_WILD;
#if 0 // NEEDS_PORTING
iwl_mvm_fill_scan_type(mvm, &params, vif);
#endif // NEEDS_PORTING
params.measurement_dwell = 0;
#if 0 // NEEDS_PORTING
ret = iwl_mvm_get_measurement_dwell(mvm, req, &params);
if (ret < 0) { return ret; }
params.measurement_dwell = ret;
#endif // NEEDS_PORTING
#if 0 // NEEDS_PORTING
// TODO(43487): Support Active Scan
iwl_mvm_build_scan_probe(mvm, vif, ies, &params);
#endif // NEEDS_PORTING
if (fw_has_capa(&mvm->fw->ucode_capa, IWL_UCODE_TLV_CAPA_UMAC_SCAN)) {
hcmd.id = iwl_cmd_id(SCAN_REQ_UMAC, IWL_ALWAYS_LONG_GROUP, 0);
ret = iwl_mvm_scan_umac(mvmvif, &params, IWL_MVM_SCAN_REGULAR);
} else {
hcmd.id = SCAN_OFFLOAD_REQUEST_CMD;
ret = iwl_mvm_scan_lmac(mvm, &params);
}
if (ret != ZX_OK) {
return ret;
}
#if 0 // NEEDS_PORTING
iwl_mvm_pause_tcm(mvm, false);
#endif // NEEDS_PORTING
ret = iwl_mvm_send_cmd(mvm, &hcmd);
if (ret != ZX_OK) {
/* If the scan failed, it usually means that the FW was unable
* to allocate the time events. Warn on it, but maybe we
* should try to send the command again with different params.
*/
IWL_ERR(mvm, "Scan failed! %s\n", zx_status_get_string(ret));
#if 0 // NEEDS_PORTING
iwl_mvm_resume_tcm(mvm);
#endif // NEEDS_PORTING
return ret;
}
IWL_DEBUG_SCAN(mvm, "Scan request was sent successfully\n");
mvm->scan_status |= IWL_MVM_SCAN_REGULAR;
mvm->scan_vif = mvmvif;
iwl_mvm_ref(mvm, IWL_MVM_REF_SCAN);
zx_status_t status = iwl_task_post(mvm->scan_timeout_task, SCAN_TIMEOUT);
if (status != ZX_OK) {
/* TODO: is there a way to stop scan? */
IWL_WARN(mvm, "Failed to set scan timeout timer - status %d\n", status);
}
return ZX_OK;
}
#if 0 // NEEDS_PORTING
int iwl_mvm_sched_scan_start(struct iwl_mvm* mvm, struct ieee80211_vif* vif,
struct cfg80211_sched_scan_request* req,
struct ieee80211_scan_ies* ies, int type) {
struct iwl_host_cmd hcmd = {
.len =
{
iwl_mvm_scan_size(mvm),
},
.data =
{
mvm->scan_cmd,
},
.dataflags =
{
IWL_HCMD_DFL_NOCOPY,
},
};
struct iwl_mvm_scan_params params = {};
int ret;
iwl_assert_lock_held(&mvm->mutex);
if (iwl_mvm_is_lar_supported(mvm) && !mvm->lar_regdom_set) {
IWL_ERR(mvm, "sched-scan while LAR regdomain is not set\n");
return -EBUSY;
}
ret = iwl_mvm_check_running_scans(mvm, type);
if (ret) { return ret; }
/* we should have failed registration if scan_cmd was NULL */
if (WARN_ON(!mvm->scan_cmd)) { return -ENOMEM; }
if (!iwl_mvm_scan_fits(mvm, req->n_ssids, ies, req->n_channels)) { return -ENOBUFS; }
params.n_ssids = req->n_ssids;
params.flags = req->flags;
params.n_channels = req->n_channels;
params.ssids = req->ssids;
params.channels = req->channels;
params.mac_addr = req->mac_addr;
params.mac_addr_mask = req->mac_addr_mask;
params.no_cck = false;
params.pass_all = iwl_mvm_scan_pass_all(mvm, req);
params.n_match_sets = req->n_match_sets;
params.match_sets = req->match_sets;
if (!req->n_scan_plans) { return -EINVAL; }
params.n_scan_plans = req->n_scan_plans;
params.scan_plans = req->scan_plans;
iwl_mvm_fill_scan_type(mvm, &params, vif);
/* In theory, LMAC scans can handle a 32-bit delay, but since
* waiting for over 18 hours to start the scan is a bit silly
* and to keep it aligned with UMAC scans (which only support
* 16-bit delays), trim it down to 16-bits.
*/
if (req->delay > U16_MAX) {
IWL_DEBUG_SCAN(mvm, "delay value is > 16-bits, set to max possible\n");
params.delay = U16_MAX;
} else {
params.delay = req->delay;
}
ret = iwl_mvm_config_sched_scan_profiles(mvm, req);
if (ret) { return ret; }
iwl_mvm_build_scan_probe(mvm, vif, ies, &params);
if (fw_has_capa(&mvm->fw->ucode_capa, IWL_UCODE_TLV_CAPA_UMAC_SCAN)) {
hcmd.id = iwl_cmd_id(SCAN_REQ_UMAC, IWL_ALWAYS_LONG_GROUP, 0);
ret = iwl_mvm_scan_umac(mvm, vif, &params, type);
} else {
hcmd.id = SCAN_OFFLOAD_REQUEST_CMD;
ret = iwl_mvm_scan_lmac(mvm, vif, &params);
}
if (ret) { return ret; }
ret = iwl_mvm_send_cmd(mvm, &hcmd);
if (!ret) {
IWL_DEBUG_SCAN(mvm, "Sched scan request was sent successfully\n");
mvm->scan_status |= type;
} else {
/* If the scan failed, it usually means that the FW was unable
* to allocate the time events. Warn on it, but maybe we
* should try to send the command again with different params.
*/
IWL_ERR(mvm, "Sched scan failed! ret %d\n", ret);
}
return ret;
}
#endif // NEEDS_PORTING
void iwl_mvm_rx_umac_scan_complete_notif(struct iwl_mvm* mvm, struct iwl_rx_cmd_buffer* rxb) {
struct iwl_rx_packet* pkt = rxb_addr(rxb);
struct iwl_umac_scan_complete* notif = (void*)pkt->data;
uint32_t uid = le32_to_cpu(notif->uid);
bool aborted = (notif->status == IWL_SCAN_OFFLOAD_ABORTED);
zx_status_t status = ZX_OK;
if (WARN_ON(!(mvm->scan_uid_status[uid] & mvm->scan_status))) {
return;
}
/* if the scan is already stopping, we don't need to notify mac80211 */
if (mvm->scan_uid_status[uid] == IWL_MVM_SCAN_REGULAR) {
if ((status = iwl_task_cancel(mvm->scan_timeout_task)) != ZX_OK) {
if (status == ZX_ERR_NOT_FOUND) {
IWL_WARN(mvm, "Scan timeout occurred prior to getting notified by HW\n");
}
return;
}
if (mvm->scan_vif != NULL) {
notify_mlme_scan_completion(mvm->scan_vif, !aborted);
}
mvm->scan_vif = NULL;
iwl_mvm_unref(mvm, IWL_MVM_REF_SCAN);
#if 0 // NEEDS_PORTING
iwl_mvm_resume_tcm(mvm);
#endif // NEEDS_PORTING
}
#if 0 // NEEDS_PORTING
else if (mvm->scan_uid_status[uid] == IWL_MVM_SCAN_SCHED) {
ieee80211_sched_scan_stopped(mvm->hw);
mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_DISABLED;
}
#endif // NEEDS_PORTING
else {
IWL_WARN(mvm, "Got scan complete notification but no scan is running\n");
}
mvm->scan_status &= ~mvm->scan_uid_status[uid];
IWL_DEBUG_SCAN(mvm, "Scan completed, uid %u type %u, status %s, EBS status %s\n", uid,
mvm->scan_uid_status[uid],
notif->status == IWL_SCAN_OFFLOAD_COMPLETED ? "completed" : "aborted",
iwl_mvm_ebs_status_str(notif->ebs_status));
IWL_DEBUG_SCAN(mvm, "Last line %d, Last iteration %d, Time from last iteration %d\n",
notif->last_schedule, notif->last_iter, le32_to_cpu(notif->time_from_last_iter));
if (notif->ebs_status != IWL_SCAN_EBS_SUCCESS && notif->ebs_status != IWL_SCAN_EBS_INACTIVE) {
mvm->last_ebs_successful = false;
}
mvm->scan_uid_status[uid] = 0;
#if 0 // NEEDS_PORTING
iwl_fw_dbg_apply_point(&mvm->fwrt, IWL_FW_INI_APPLY_SCAN_COMPLETE);
#endif // NEEDS_PORTING
}
#if 0 // NEEDS_PORTING
void iwl_mvm_rx_umac_scan_iter_complete_notif(struct iwl_mvm* mvm, struct iwl_rx_cmd_buffer* rxb) {
struct iwl_rx_packet* pkt = rxb_addr(rxb);
struct iwl_umac_scan_iter_complete_notif* notif = (void*)pkt->data;
mvm->scan_start = le64_to_cpu(notif->start_tsf);
IWL_DEBUG_SCAN(mvm, "UMAC Scan iteration complete: status=0x%x scanned_channels=%d\n",
notif->status, notif->scanned_channels);
if (mvm->sched_scan_pass_all == SCHED_SCAN_PASS_ALL_FOUND) {
IWL_DEBUG_SCAN(mvm, "Pass all scheduled scan results found\n");
ieee80211_sched_scan_results(mvm->hw);
mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_ENABLED;
}
IWL_DEBUG_SCAN(mvm, "UMAC Scan iteration complete: scan started at %llu (TSF)\n",
mvm->scan_start);
}
// TODO(43486): Stop passive scan
static int iwl_mvm_umac_scan_abort(struct iwl_mvm* mvm, int type) {
struct iwl_umac_scan_abort cmd = {};
int uid, ret;
iwl_assert_lock_held(&mvm->mutex);
/* We should always get a valid index here, because we already
* checked that this type of scan was running in the generic
* code.
*/
uid = iwl_mvm_scan_uid_by_status(mvm, type);
if (WARN_ON_ONCE(uid < 0)) { return uid; }
cmd.uid = cpu_to_le32(uid);
IWL_DEBUG_SCAN(mvm, "Sending scan abort, uid %u\n", uid);
ret = iwl_mvm_send_cmd_pdu(mvm, iwl_cmd_id(SCAN_ABORT_UMAC, IWL_ALWAYS_LONG_GROUP, 0), 0,
sizeof(cmd), &cmd);
if (!ret) { mvm->scan_uid_status[uid] = type << IWL_MVM_SCAN_STOPPING_SHIFT; }
return ret;
}
static int iwl_mvm_scan_stop_wait(struct iwl_mvm* mvm, int type) {
struct iwl_notification_wait wait_scan_done;
static const uint16_t scan_done_notif[] = {
SCAN_COMPLETE_UMAC,
SCAN_OFFLOAD_COMPLETE,
};
int ret;
iwl_assert_lock_held(&mvm->mutex);
iwl_init_notification_wait(&mvm->notif_wait, &wait_scan_done, scan_done_notif,
ARRAY_SIZE(scan_done_notif), NULL, NULL);
IWL_DEBUG_SCAN(mvm, "Preparing to stop scan, type %x\n", type);
if (fw_has_capa(&mvm->fw->ucode_capa, IWL_UCODE_TLV_CAPA_UMAC_SCAN)) {
ret = iwl_mvm_umac_scan_abort(mvm, type);
} else {
ret = iwl_mvm_lmac_scan_abort(mvm);
}
if (ret) {
IWL_DEBUG_SCAN(mvm, "couldn't stop scan type %d\n", type);
iwl_remove_notification(&mvm->notif_wait, &wait_scan_done);
return ret;
}
ret = iwl_wait_notification(&mvm->notif_wait, &wait_scan_done, 1 * HZ);
return ret;
}
#endif // NEEDS_PORTING
int iwl_mvm_scan_size(struct iwl_mvm* mvm) {
int base_size = IWL_SCAN_REQ_UMAC_SIZE_V1;
if (iwl_mvm_is_adaptive_dwell_v2_supported(mvm)) {
base_size = IWL_SCAN_REQ_UMAC_SIZE_V8;
} else if (iwl_mvm_is_adaptive_dwell_supported(mvm)) {
base_size = IWL_SCAN_REQ_UMAC_SIZE_V7;
} else if (iwl_mvm_cdb_scan_api(mvm)) {
base_size = IWL_SCAN_REQ_UMAC_SIZE_V6;
}
if (fw_has_capa(&mvm->fw->ucode_capa, IWL_UCODE_TLV_CAPA_UMAC_SCAN))
return base_size +
sizeof(struct iwl_scan_channel_cfg_umac) * mvm->fw->ucode_capa.n_scan_channels +
sizeof(struct iwl_scan_req_umac_tail);
return sizeof(struct iwl_scan_req_lmac) +
sizeof(struct iwl_scan_channel_cfg_lmac) * mvm->fw->ucode_capa.n_scan_channels +
sizeof(struct iwl_scan_probe_req);
}
#if 0 // NEEDS_PORTING
/*
* This function is used in nic restart flow, to inform mac80211 about scans
* that was aborted by restart flow or by an assert.
*/
void iwl_mvm_report_scan_aborted(struct iwl_mvm* mvm) {
if (fw_has_capa(&mvm->fw->ucode_capa, IWL_UCODE_TLV_CAPA_UMAC_SCAN)) {
int uid, i;
uid = iwl_mvm_scan_uid_by_status(mvm, IWL_MVM_SCAN_REGULAR);
if (uid >= 0) {
struct cfg80211_scan_info info = {
.aborted = true,
};
ieee80211_scan_completed(mvm->hw, &info);
mvm->scan_uid_status[uid] = 0;
}
uid = iwl_mvm_scan_uid_by_status(mvm, IWL_MVM_SCAN_SCHED);
if (uid >= 0 && !mvm->fw_restart) {
ieee80211_sched_scan_stopped(mvm->hw);
mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_DISABLED;
mvm->scan_uid_status[uid] = 0;
}
/* We shouldn't have any UIDs still set. Loop over all the
* UIDs to make sure there's nothing left there and warn if
* any is found.
*/
for (i = 0; i < mvm->max_scans; i++) {
if (WARN_ONCE(mvm->scan_uid_status[i], "UMAC scan UID %d status was not cleaned\n",
i)) {
mvm->scan_uid_status[i] = 0;
}
}
} else {
if (mvm->scan_status & IWL_MVM_SCAN_REGULAR) {
struct cfg80211_scan_info info = {
.aborted = true,
};
ieee80211_scan_completed(mvm->hw, &info);
}
/* Sched scan will be restarted by mac80211 in
* restart_hw, so do not report if FW is about to be
* restarted.
*/
if ((mvm->scan_status & IWL_MVM_SCAN_SCHED) && !mvm->fw_restart) {
ieee80211_sched_scan_stopped(mvm->hw);
mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_DISABLED;
}
}
}
// TODO(43486): Stop passive scan
int iwl_mvm_scan_stop(struct iwl_mvm* mvm, int type, bool notify) {
int ret;
if (!(mvm->scan_status & type)) { return 0; }
if (iwl_mvm_is_radio_killed(mvm)) {
ret = 0;
goto out;
}
ret = iwl_mvm_scan_stop_wait(mvm, type);
if (!ret) { mvm->scan_status |= type << IWL_MVM_SCAN_STOPPING_SHIFT; }
out:
/* Clear the scan status so the next scan requests will
* succeed and mark the scan as stopping, so that the Rx
* handler doesn't do anything, as the scan was stopped from
* above.
*/
mvm->scan_status &= ~type;
if (type == IWL_MVM_SCAN_REGULAR) {
/* Since the rx handler won't do anything now, we have
* to release the scan reference here.
*/
iwl_mvm_unref(mvm, IWL_MVM_REF_SCAN);
cancel_delayed_work(&mvm->scan_timeout_dwork);
if (notify) {
struct cfg80211_scan_info info = {
.aborted = true,
};
ieee80211_scan_completed(mvm->hw, &info);
}
} else if (notify) {
ieee80211_sched_scan_stopped(mvm->hw);
mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_DISABLED;
}
return ret;
}
#endif // NEEDS_PORTING