blob: aafc1b715d5803e7c5e1a36ad588a1344ae58abb [file] [log] [blame]
/*
*
* Copyright (C) 2015 Valve Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Author: Chia-I Wu <olvaffe@gmail.com>
* Author: Courtney Goeltzenleuchter <courtney@LunarG.com>
* Author: Ian Elliott <ian@LunarG.com>
* Author: Jon Ashburn <jon@lunarg.com>
*
*/
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <stdbool.h>
#include <string.h>
#include <sys/types.h>
#if defined(_WIN32)
#include "dirent_on_windows.h"
#else // _WIN32
#include <dirent.h>
#endif // _WIN32
#include "vk_loader_platform.h"
#include "loader.h"
#include "gpa_helper.h"
#include "table_ops.h"
#include "debug_report.h"
#include "wsi.h"
#include "vulkan/vk_icd.h"
#include "cJSON.h"
#include "murmurhash.h"
static loader_platform_dl_handle loader_add_layer_lib(
const struct loader_instance *inst,
const char *chain_type,
struct loader_layer_properties *layer_prop);
static void loader_remove_layer_lib(
struct loader_instance *inst,
struct loader_layer_properties *layer_prop);
struct loader_struct loader = {0};
// TLS for instance for alloc/free callbacks
THREAD_LOCAL_DECL struct loader_instance *tls_instance;
static bool loader_init_generic_list(
const struct loader_instance *inst,
struct loader_generic_list *list_info,
size_t element_size);
static int loader_platform_combine_path(char *dest, int len, ...);
struct loader_phys_dev_per_icd {
uint32_t count;
VkPhysicalDevice *phys_devs;
};
enum loader_debug {
LOADER_INFO_BIT = 0x01,
LOADER_WARN_BIT = 0x02,
LOADER_PERF_BIT = 0x04,
LOADER_ERROR_BIT = 0x08,
LOADER_DEBUG_BIT = 0x10,
};
uint32_t g_loader_debug = 0;
uint32_t g_loader_log_msgs = 0;
//thread safety lock for accessing global data structures such as "loader"
// all entrypoints on the instance chain need to be locked except GPA
// additionally CreateDevice and DestroyDevice needs to be locked
loader_platform_thread_mutex loader_lock;
loader_platform_thread_mutex loader_json_lock;
// This table contains the loader's instance dispatch table, which contains
// default functions if no instance layers are activated. This contains
// pointers to "terminator functions".
const VkLayerInstanceDispatchTable instance_disp = {
.GetInstanceProcAddr = vkGetInstanceProcAddr,
.CreateInstance = loader_CreateInstance,
.DestroyInstance = loader_DestroyInstance,
.EnumeratePhysicalDevices = loader_EnumeratePhysicalDevices,
.GetPhysicalDeviceFeatures = loader_GetPhysicalDeviceFeatures,
.GetPhysicalDeviceFormatProperties = loader_GetPhysicalDeviceFormatProperties,
.GetPhysicalDeviceImageFormatProperties = loader_GetPhysicalDeviceImageFormatProperties,
.GetPhysicalDeviceProperties = loader_GetPhysicalDeviceProperties,
.GetPhysicalDeviceQueueFamilyProperties = loader_GetPhysicalDeviceQueueFamilyProperties,
.GetPhysicalDeviceMemoryProperties = loader_GetPhysicalDeviceMemoryProperties,
.EnumerateDeviceExtensionProperties = loader_EnumerateDeviceExtensionProperties,
.EnumerateDeviceLayerProperties = loader_EnumerateDeviceLayerProperties,
.GetPhysicalDeviceSparseImageFormatProperties = loader_GetPhysicalDeviceSparseImageFormatProperties,
.DestroySurfaceKHR = loader_DestroySurfaceKHR,
.GetPhysicalDeviceSurfaceSupportKHR = loader_GetPhysicalDeviceSurfaceSupportKHR,
.GetPhysicalDeviceSurfaceCapabilitiesKHR = loader_GetPhysicalDeviceSurfaceCapabilitiesKHR,
.GetPhysicalDeviceSurfaceFormatsKHR = loader_GetPhysicalDeviceSurfaceFormatsKHR,
.GetPhysicalDeviceSurfacePresentModesKHR = loader_GetPhysicalDeviceSurfacePresentModesKHR,
.DbgCreateMsgCallback = loader_DbgCreateMsgCallback,
.DbgDestroyMsgCallback = loader_DbgDestroyMsgCallback,
#ifdef VK_USE_PLATFORM_MIR_KHR
.CreateMirSurfaceKHR = loader_CreateMirSurfaceKHR,
.GetPhysicalDeviceMirPresentationSupportKHR = loader_GetPhysicalDeviceMirPresentationSupportKHR,
#endif
#ifdef VK_USE_PLATFORM_WAYLAND_KHR
.CreateWaylandSurfaceKHR = loader_CreateWaylandSurfaceKHR,
.GetPhysicalDeviceWaylandPresentationSupportKHR = loader_GetPhysicalDeviceWaylandPresentationSupportKHR,
#endif
#ifdef VK_USE_PLATFORM_WIN32_KHR
.CreateWin32SurfaceKHR = loader_CreateWin32SurfaceKHR,
.GetPhysicalDeviceWin32PresentationSupportKHR = loader_GetPhysicalDeviceWin32PresentationSupportKHR,
#endif
#ifdef VK_USE_PLATFORM_XCB_KHR
.CreateXcbSurfaceKHR = loader_CreateXcbSurfaceKHR,
.GetPhysicalDeviceXcbPresentationSupportKHR = loader_GetPhysicalDeviceXcbPresentationSupportKHR,
#endif
#ifdef VK_USE_PLATFORM_XLIB_KHR
.CreateXlibSurfaceKHR = loader_CreateXlibSurfaceKHR,
.GetPhysicalDeviceXlibPresentationSupportKHR = loader_GetPhysicalDeviceXlibPresentationSupportKHR,
#endif
#ifdef VK_USE_PLATFORM_ANDROID_KHR
.CreateAndroidSurfaceKHR = loader_CreateAndroidSurfaceKHR,
#endif
};
LOADER_PLATFORM_THREAD_ONCE_DECLARATION(once_init);
void* loader_heap_alloc(
const struct loader_instance *instance,
size_t size,
VkSystemAllocationScope alloc_scope)
{
if (instance && instance->alloc_callbacks.pfnAllocation) {
/* TODO: What should default alignment be? 1, 4, 8, other? */
return instance->alloc_callbacks.pfnAllocation(instance->alloc_callbacks.pUserData, size, 4, alloc_scope);
}
return malloc(size);
}
void loader_heap_free(
const struct loader_instance *instance,
void *pMemory)
{
if (pMemory == NULL) return;
if (instance && instance->alloc_callbacks.pfnFree) {
instance->alloc_callbacks.pfnFree(instance->alloc_callbacks.pUserData, pMemory);
return;
}
free(pMemory);
}
void* loader_heap_realloc(
const struct loader_instance *instance,
void *pMemory,
size_t orig_size,
size_t size,
VkSystemAllocationScope alloc_scope)
{
if (pMemory == NULL || orig_size == 0)
return loader_heap_alloc(instance, size, alloc_scope);
if (size == 0) {
loader_heap_free(instance, pMemory);
return NULL;
}
if (instance && instance->alloc_callbacks.pfnAllocation) {
if (size <= orig_size) {
memset(((uint8_t *)pMemory) + size, 0, orig_size - size);
return pMemory;
}
void *new_ptr = instance->alloc_callbacks.pfnAllocation(instance->alloc_callbacks.pUserData, size, 4, alloc_scope);
if (!new_ptr)
return NULL;
memcpy(new_ptr, pMemory, orig_size);
instance->alloc_callbacks.pfnFree(instance->alloc_callbacks.pUserData, pMemory);
return new_ptr;
}
return realloc(pMemory, size);
}
void *loader_tls_heap_alloc(size_t size)
{
return loader_heap_alloc(tls_instance, size, VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
}
void loader_tls_heap_free(void *pMemory)
{
loader_heap_free(tls_instance, pMemory);
}
static void loader_log(VkFlags msg_type, int32_t msg_code,
const char *format, ...)
{
char msg[512];
va_list ap;
int ret;
if (!(msg_type & g_loader_log_msgs)) {
return;
}
va_start(ap, format);
ret = vsnprintf(msg, sizeof(msg), format, ap);
if ((ret >= (int) sizeof(msg)) || ret < 0) {
msg[sizeof(msg)-1] = '\0';
}
va_end(ap);
#if defined(WIN32)
OutputDebugString(msg);
OutputDebugString("\n");
#endif
fputs(msg, stderr);
fputc('\n', stderr);
}
#if defined(WIN32)
static char *loader_get_next_path(char *path);
/**
* Find the list of registry files (names within a key) in key "location".
*
* This function looks in the registry (hive = DEFAULT_VK_REGISTRY_HIVE) key as given in "location"
* for a list or name/values which are added to a returned list (function return value).
* The DWORD values within the key must be 0 or they are skipped.
* Function return is a string with a ';' separated list of filenames.
* Function return is NULL if no valid name/value pairs are found in the key,
* or the key is not found.
*
* \returns
* A string list of filenames as pointer.
* When done using the returned string list, pointer should be freed.
*/
static char *loader_get_registry_files(const struct loader_instance *inst, char *location)
{
LONG rtn_value;
HKEY hive, key;
DWORD access_flags;
char name[2048];
char *out = NULL;
char *loc = location;
char *next;
DWORD idx = 0;
DWORD name_size = sizeof(name);
DWORD value;
DWORD total_size = 4096;
DWORD value_size = sizeof(value);
while(*loc)
{
next = loader_get_next_path(loc);
hive = DEFAULT_VK_REGISTRY_HIVE;
access_flags = KEY_QUERY_VALUE;
rtn_value = RegOpenKeyEx(hive, loc, 0, access_flags, &key);
if (rtn_value != ERROR_SUCCESS) {
// We didn't find the key. Try the 32-bit hive (where we've seen the
// key end up on some people's systems):
access_flags |= KEY_WOW64_32KEY;
rtn_value = RegOpenKeyEx(hive, loc, 0, access_flags, &key);
if (rtn_value != ERROR_SUCCESS) {
// We still couldn't find the key, so give up:
loc = next;
continue;
}
}
while ((rtn_value = RegEnumValue(key, idx++, name, &name_size, NULL, NULL, (LPBYTE) &value, &value_size)) == ERROR_SUCCESS) {
if (value_size == sizeof(value) && value == 0) {
if (out == NULL) {
out = loader_heap_alloc(inst, total_size, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
out[0] = '\0';
}
else if (strlen(out) + name_size + 1 > total_size) {
out = loader_heap_realloc(inst, out, total_size, total_size * 2, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
total_size *= 2;
}
if (out == NULL) {
loader_log(VK_DBG_REPORT_ERROR_BIT, 0, "Out of memory, failed loader_get_registry_files");
return NULL;
}
if (strlen(out) == 0)
snprintf(out, name_size + 1, "%s", name);
else
snprintf(out + strlen(out), name_size + 2, "%c%s", PATH_SEPERATOR, name);
}
name_size = 2048;
}
loc = next;
}
return out;
}
#endif // WIN32
/**
* Combine path elements, separating each element with the platform-specific
* directory separator, and save the combined string to a destination buffer,
* not exceeding the given length. Path elements are given as variadic args,
* with a NULL element terminating the list.
*
* \returns the total length of the combined string, not including an ASCII
* NUL termination character. This length may exceed the available storage:
* in this case, the written string will be truncated to avoid a buffer
* overrun, and the return value will greater than or equal to the storage
* size. A NULL argument may be provided as the destination buffer in order
* to determine the required string length without actually writing a string.
*/
static int loader_platform_combine_path(char *dest, int len, ...)
{
int required_len = 0;
va_list ap;
const char *component;
va_start(ap, len);
while((component = va_arg(ap, const char *))) {
if (required_len > 0) {
// This path element is not the first non-empty element; prepend
// a directory separator if space allows
if (dest && required_len + 1 < len) {
snprintf(dest + required_len, len - required_len, "%c",
DIRECTORY_SYMBOL);
}
required_len++;
}
if (dest && required_len < len) {
strncpy(dest + required_len, component, len - required_len);
}
required_len += strlen(component);
}
va_end(ap);
// strncpy(3) won't add a NUL terminating byte in the event of truncation.
if (dest && required_len >= len) {
dest[len - 1] = '\0';
}
return required_len;
}
/**
* Given string of three part form "maj.min.pat" convert to a vulkan version
* number.
*/
static uint32_t loader_make_version(const char *vers_str)
{
uint32_t vers = 0, major=0, minor=0, patch=0;
char *minor_str= NULL;
char *patch_str = NULL;
char *cstr;
char *str;
if (!vers_str)
return vers;
cstr = loader_stack_alloc(strlen(vers_str) + 1);
strcpy(cstr, vers_str);
while ((str = strchr(cstr, '.')) != NULL) {
if (minor_str == NULL) {
minor_str = str + 1;
*str = '\0';
major = atoi(cstr);
}
else if (patch_str == NULL) {
patch_str = str + 1;
*str = '\0';
minor = atoi(minor_str);
}
else {
return vers;
}
cstr = str + 1;
}
patch = atoi(patch_str);
return VK_MAKE_VERSION(major, minor, patch);
}
bool compare_vk_extension_properties(const VkExtensionProperties *op1, const VkExtensionProperties *op2)
{
return strcmp(op1->extensionName, op2->extensionName) == 0 ? true : false;
}
/**
* Search the given ext_array for an extension
* matching the given vk_ext_prop
*/
bool has_vk_extension_property_array(
const VkExtensionProperties *vk_ext_prop,
const uint32_t count,
const VkExtensionProperties *ext_array)
{
for (uint32_t i = 0; i < count; i++) {
if (compare_vk_extension_properties(vk_ext_prop, &ext_array[i]))
return true;
}
return false;
}
/**
* Search the given ext_list for an extension
* matching the given vk_ext_prop
*/
bool has_vk_extension_property(
const VkExtensionProperties *vk_ext_prop,
const struct loader_extension_list *ext_list)
{
for (uint32_t i = 0; i < ext_list->count; i++) {
if (compare_vk_extension_properties(&ext_list->list[i], vk_ext_prop))
return true;
}
return false;
}
static inline bool loader_is_layer_type_device(const enum layer_type type) {
if ((type & VK_LAYER_TYPE_DEVICE_EXPLICIT) ||
(type & VK_LAYER_TYPE_DEVICE_IMPLICIT))
return true;
return false;
}
/*
* Search the given layer list for a layer matching the given layer name
*/
static struct loader_layer_properties *loader_get_layer_property(
const char *name,
const struct loader_layer_list *layer_list)
{
for (uint32_t i = 0; i < layer_list->count; i++) {
const VkLayerProperties *item = &layer_list->list[i].info;
if (strcmp(name, item->layerName) == 0)
return &layer_list->list[i];
}
return NULL;
}
/**
* Get the next unused layer property in the list. Init the property to zero.
*/
static struct loader_layer_properties *loader_get_next_layer_property(
const struct loader_instance *inst,
struct loader_layer_list *layer_list)
{
if (layer_list->capacity == 0) {
layer_list->list = loader_heap_alloc(inst,
sizeof(struct loader_layer_properties) * 64,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (layer_list->list == NULL) {
loader_log(VK_DBG_REPORT_ERROR_BIT, 0, "Out of memory can't add any layer properties to list");
return NULL;
}
memset(layer_list->list, 0, sizeof(struct loader_layer_properties) * 64);
layer_list->capacity = sizeof(struct loader_layer_properties) * 64;
}
// ensure enough room to add an entry
if ((layer_list->count + 1) * sizeof (struct loader_layer_properties)
> layer_list->capacity) {
layer_list->list = loader_heap_realloc(inst, layer_list->list,
layer_list->capacity,
layer_list->capacity * 2,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (layer_list->list == NULL) {
loader_log(VK_DBG_REPORT_ERROR_BIT, 0,
"realloc failed for layer list");
}
layer_list->capacity *= 2;
}
layer_list->count++;
return &(layer_list->list[layer_list->count - 1]);
}
/**
* Remove all layer properties entrys from the list
*/
void loader_delete_layer_properties(
const struct loader_instance *inst,
struct loader_layer_list *layer_list)
{
uint32_t i, j;
struct loader_device_extension_list *dev_ext_list;
if (!layer_list)
return;
for (i = 0; i < layer_list->count; i++) {
loader_destroy_generic_list(inst, (struct loader_generic_list *)
&layer_list->list[i].instance_extension_list);
dev_ext_list = &layer_list->list[i].device_extension_list;
if (dev_ext_list->capacity > 0 && dev_ext_list->list->entrypoint_count > 0) {
for (j= 0; j < dev_ext_list->list->entrypoint_count; j++) {
loader_heap_free(inst, dev_ext_list->list->entrypoints[j]);
}
loader_heap_free(inst, dev_ext_list->list->entrypoints);
}
loader_destroy_generic_list(inst, (struct loader_generic_list *)
dev_ext_list);
}
layer_list->count = 0;
if (layer_list->capacity > 0) {
layer_list->capacity = 0;
loader_heap_free(inst, layer_list->list);
}
}
static void loader_add_global_extensions(
const struct loader_instance *inst,
const PFN_vkEnumerateInstanceExtensionProperties fp_get_props,
const char *lib_name,
struct loader_extension_list *ext_list)
{
uint32_t i, count;
VkExtensionProperties *ext_props;
VkResult res;
if (!fp_get_props) {
/* No EnumerateInstanceExtensionProperties defined */
return;
}
res = fp_get_props(NULL, &count, NULL);
if (res != VK_SUCCESS) {
loader_log(VK_DBG_REPORT_WARN_BIT, 0, "Error getting global extension count from %s", lib_name);
return;
}
if (count == 0) {
/* No ExtensionProperties to report */
return;
}
ext_props = loader_stack_alloc(count * sizeof(VkExtensionProperties));
res = fp_get_props(NULL, &count, ext_props);
if (res != VK_SUCCESS) {
loader_log(VK_DBG_REPORT_WARN_BIT, 0, "Error getting global extensions from %s", lib_name);
return;
}
for (i = 0; i < count; i++) {
char spec_version[64];
snprintf(spec_version, sizeof(spec_version), "%d.%d.%d",
VK_MAJOR(ext_props[i].specVersion),
VK_MINOR(ext_props[i].specVersion),
VK_PATCH(ext_props[i].specVersion));
loader_log(VK_DBG_REPORT_DEBUG_BIT, 0,
"Global Extension: %s (%s) version %s",
ext_props[i].extensionName, lib_name, spec_version);
loader_add_to_ext_list(inst, ext_list, 1, &ext_props[i]);
}
return;
}
/*
* Initialize ext_list with the physical device extensions.
* The extension properties are passed as inputs in count and ext_props.
*/
static VkResult loader_init_physical_device_extensions(
const struct loader_instance *inst,
struct loader_physical_device *phys_dev,
uint32_t count,
VkExtensionProperties *ext_props,
struct loader_extension_list *ext_list)
{
VkResult res;
uint32_t i;
if (!loader_init_generic_list(inst, (struct loader_generic_list *) ext_list,
sizeof(VkExtensionProperties))) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
for (i = 0; i < count; i++) {
char spec_version[64];
snprintf(spec_version, sizeof (spec_version), "%d.%d.%d",
VK_MAJOR(ext_props[i].specVersion),
VK_MINOR(ext_props[i].specVersion),
VK_PATCH(ext_props[i].specVersion));
loader_log(VK_DBG_REPORT_DEBUG_BIT, 0,
"PhysicalDevice Extension: %s (%s) version %s",
ext_props[i].extensionName, phys_dev->this_icd->this_icd_lib->lib_name, spec_version);
res = loader_add_to_ext_list(inst, ext_list, 1, &ext_props[i]);
if (res != VK_SUCCESS)
return res;
}
return VK_SUCCESS;
}
static VkResult loader_add_physical_device_extensions(
const struct loader_instance *inst,
VkPhysicalDevice physical_device,
const char *lib_name,
struct loader_extension_list *ext_list)
{
uint32_t i, count;
VkResult res;
VkExtensionProperties *ext_props;
res = loader_EnumerateDeviceExtensionProperties(physical_device, NULL, &count, NULL);
if (res == VK_SUCCESS && count > 0) {
ext_props = loader_stack_alloc(count * sizeof (VkExtensionProperties));
if (!ext_props)
return VK_ERROR_OUT_OF_HOST_MEMORY;
res = loader_EnumerateDeviceExtensionProperties(physical_device, NULL, &count, ext_props);
if (res != VK_SUCCESS)
return res;
for (i = 0; i < count; i++) {
char spec_version[64];
snprintf(spec_version, sizeof (spec_version), "%d.%d.%d",
VK_MAJOR(ext_props[i].specVersion),
VK_MINOR(ext_props[i].specVersion),
VK_PATCH(ext_props[i].specVersion));
loader_log(VK_DBG_REPORT_DEBUG_BIT, 0,
"PhysicalDevice Extension: %s (%s) version %s",
ext_props[i].extensionName, lib_name, spec_version);
res = loader_add_to_ext_list(inst, ext_list, 1, &ext_props[i]);
if (res != VK_SUCCESS)
return res;
}
} else {
loader_log(VK_DBG_REPORT_ERROR_BIT, 0, "Error getting physical device extension info count from library %s", lib_name);
return res;
}
return VK_SUCCESS;
}
static bool loader_init_generic_list(const struct loader_instance *inst,
struct loader_generic_list *list_info,
size_t element_size)
{
list_info->capacity = 32 * element_size;
list_info->list = loader_heap_alloc(inst, list_info->capacity, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (list_info->list == NULL) {
return false;
}
memset(list_info->list, 0, list_info->capacity);
list_info->count = 0;
return true;
}
void loader_destroy_generic_list(const struct loader_instance *inst,
struct loader_generic_list *list)
{
loader_heap_free(inst, list->list);
list->count = 0;
list->capacity = 0;
}
/*
* Append non-duplicate extension properties defined in props
* to the given ext_list.
* Return
* Vk_SUCCESS on success
*/
VkResult loader_add_to_ext_list(
const struct loader_instance *inst,
struct loader_extension_list *ext_list,
uint32_t prop_list_count,
const VkExtensionProperties *props)
{
uint32_t i;
const VkExtensionProperties *cur_ext;
if (ext_list->list == NULL || ext_list->capacity == 0) {
loader_init_generic_list(inst, (struct loader_generic_list *) ext_list,
sizeof(VkExtensionProperties));
}
if (ext_list->list == NULL)
return VK_ERROR_OUT_OF_HOST_MEMORY;
for (i = 0; i < prop_list_count; i++) {
cur_ext = &props[i];
// look for duplicates
if (has_vk_extension_property(cur_ext, ext_list)) {
continue;
}
// add to list at end
// check for enough capacity
if (ext_list->count * sizeof(VkExtensionProperties)
>= ext_list->capacity) {
ext_list->list = loader_heap_realloc(inst,
ext_list->list,
ext_list->capacity,
ext_list->capacity * 2,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (ext_list->list == NULL)
return VK_ERROR_OUT_OF_HOST_MEMORY;
// double capacity
ext_list->capacity *= 2;
}
memcpy(&ext_list->list[ext_list->count], cur_ext, sizeof(VkExtensionProperties));
ext_list->count++;
}
return VK_SUCCESS;
}
/*
* Append one extension property defined in props with entrypoints
* defined in entrys to the given ext_list.
* Return
* Vk_SUCCESS on success
*/
VkResult loader_add_to_dev_ext_list(
const struct loader_instance *inst,
struct loader_device_extension_list *ext_list,
const VkExtensionProperties *props,
uint32_t entry_count,
char **entrys)
{
uint32_t idx;
if (ext_list->list == NULL || ext_list->capacity == 0) {
loader_init_generic_list(inst, (struct loader_generic_list *) ext_list,
sizeof(struct loader_dev_ext_props));
}
if (ext_list->list == NULL)
return VK_ERROR_OUT_OF_HOST_MEMORY;
idx =ext_list->count;
// add to list at end
// check for enough capacity
if (idx * sizeof (struct loader_dev_ext_props)
>= ext_list->capacity) {
ext_list->list = loader_heap_realloc(inst,
ext_list->list,
ext_list->capacity,
ext_list->capacity * 2,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (ext_list->list == NULL)
return VK_ERROR_OUT_OF_HOST_MEMORY;
// double capacity
ext_list->capacity *= 2;
}
memcpy(&ext_list->list[idx].props, props, sizeof(struct loader_dev_ext_props));
ext_list->list[idx].entrypoint_count = entry_count;
ext_list->list[idx].entrypoints = loader_heap_alloc(inst,
sizeof(char *) * entry_count,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (ext_list->list[idx].entrypoints == NULL)
return VK_ERROR_OUT_OF_HOST_MEMORY;
for (uint32_t i = 0; i < entry_count; i++) {
ext_list->list[idx].entrypoints[i] = loader_heap_alloc(inst,
strlen(entrys[i]) + 1,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (ext_list->list[idx].entrypoints[i] == NULL)
return VK_ERROR_OUT_OF_HOST_MEMORY;
strcpy(ext_list->list[idx].entrypoints[i], entrys[i]);
}
ext_list->count++;
return VK_SUCCESS;
}
/**
* Search the given search_list for any layers in the props list.
* Add these to the output layer_list. Don't add duplicates to the output layer_list.
*/
static VkResult loader_add_layer_names_to_list(
const struct loader_instance *inst,
struct loader_layer_list *output_list,
uint32_t name_count,
const char * const *names,
const struct loader_layer_list *search_list)
{
struct loader_layer_properties *layer_prop;
VkResult err = VK_SUCCESS;
for (uint32_t i = 0; i < name_count; i++) {
const char *search_target = names[i];
layer_prop = loader_get_layer_property(search_target, search_list);
if (!layer_prop) {
loader_log(VK_DBG_REPORT_ERROR_BIT, 0, "Unable to find layer %s", search_target);
err = VK_ERROR_LAYER_NOT_PRESENT;
continue;
}
loader_add_to_layer_list(inst, output_list, 1, layer_prop);
}
return err;
}
/*
* Manage lists of VkLayerProperties
*/
static bool loader_init_layer_list(const struct loader_instance *inst,
struct loader_layer_list *list)
{
list->capacity = 32 * sizeof(struct loader_layer_properties);
list->list = loader_heap_alloc(inst, list->capacity, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (list->list == NULL) {
return false;
}
memset(list->list, 0, list->capacity);
list->count = 0;
return true;
}
void loader_destroy_layer_list(const struct loader_instance *inst,
struct loader_layer_list *layer_list)
{
loader_heap_free(inst, layer_list->list);
layer_list->count = 0;
layer_list->capacity = 0;
}
/*
* Manage list of layer libraries (loader_lib_info)
*/
static bool loader_init_layer_library_list(const struct loader_instance *inst,
struct loader_layer_library_list *list)
{
list->capacity = 32 * sizeof(struct loader_lib_info);
list->list = loader_heap_alloc(inst, list->capacity, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (list->list == NULL) {
return false;
}
memset(list->list, 0, list->capacity);
list->count = 0;
return true;
}
void loader_destroy_layer_library_list(const struct loader_instance *inst,
struct loader_layer_library_list *list)
{
for (uint32_t i = 0; i < list->count; i++) {
loader_heap_free(inst, list->list[i].lib_name);
}
loader_heap_free(inst, list->list);
list->count = 0;
list->capacity = 0;
}
void loader_add_to_layer_library_list(
const struct loader_instance *inst,
struct loader_layer_library_list *list,
uint32_t item_count,
const struct loader_lib_info *new_items)
{
uint32_t i;
struct loader_lib_info *item;
if (list->list == NULL || list->capacity == 0) {
loader_init_layer_library_list(inst, list);
}
if (list->list == NULL)
return;
for (i = 0; i < item_count; i++) {
item = (struct loader_lib_info *) &new_items[i];
// look for duplicates
for (uint32_t j = 0; j < list->count; j++) {
if (strcmp(list->list[i].lib_name, new_items->lib_name) == 0) {
continue;
}
}
// add to list at end
// check for enough capacity
if (list->count * sizeof(struct loader_lib_info)
>= list->capacity) {
list->list = loader_heap_realloc(inst,
list->list,
list->capacity,
list->capacity * 2,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
// double capacity
list->capacity *= 2;
}
memcpy(&list->list[list->count], item, sizeof(struct loader_lib_info));
list->count++;
}
}
/*
* Search the given layer list for a list
* matching the given VkLayerProperties
*/
bool has_vk_layer_property(
const VkLayerProperties *vk_layer_prop,
const struct loader_layer_list *list)
{
for (uint32_t i = 0; i < list->count; i++) {
if (strcmp(vk_layer_prop->layerName, list->list[i].info.layerName) == 0)
return true;
}
return false;
}
/*
* Search the given layer list for a layer
* matching the given name
*/
bool has_layer_name(
const char *name,
const struct loader_layer_list *list)
{
for (uint32_t i = 0; i < list->count; i++) {
if (strcmp(name, list->list[i].info.layerName) == 0)
return true;
}
return false;
}
/*
* Append non-duplicate layer properties defined in prop_list
* to the given layer_info list
*/
void loader_add_to_layer_list(
const struct loader_instance *inst,
struct loader_layer_list *list,
uint32_t prop_list_count,
const struct loader_layer_properties *props)
{
uint32_t i;
struct loader_layer_properties *layer;
if (list->list == NULL || list->capacity == 0) {
loader_init_layer_list(inst, list);
}
if (list->list == NULL)
return;
for (i = 0; i < prop_list_count; i++) {
layer = (struct loader_layer_properties *) &props[i];
// look for duplicates
if (has_vk_layer_property(&layer->info, list)) {
continue;
}
// add to list at end
// check for enough capacity
if (list->count * sizeof(struct loader_layer_properties)
>= list->capacity) {
list->list = loader_heap_realloc(inst,
list->list,
list->capacity,
list->capacity * 2,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
// double capacity
list->capacity *= 2;
}
memcpy(&list->list[list->count], layer, sizeof(struct loader_layer_properties));
list->count++;
}
}
/**
* Search the search_list for any layer with a name
* that matches the given name and a type that matches the given type
* Add all matching layers to the found_list
* Do not add if found loader_layer_properties is already
* on the found_list.
*/
static void loader_find_layer_name_add_list(
const struct loader_instance *inst,
const char *name,
const enum layer_type type,
const struct loader_layer_list *search_list,
struct loader_layer_list *found_list)
{
bool found = false;
for (uint32_t i = 0; i < search_list->count; i++) {
struct loader_layer_properties *layer_prop = &search_list->list[i];
if (0 == strcmp(layer_prop->info.layerName, name) &&
(layer_prop->type & type)) {
/* Found a layer with the same name, add to found_list */
loader_add_to_layer_list(inst, found_list, 1, layer_prop);
found = true;
}
}
if (!found) {
loader_log(VK_DBG_REPORT_WARN_BIT, 0, "Warning, couldn't find layer name %s to activate", name);
}
}
static VkExtensionProperties *get_extension_property(
const char *name,
const struct loader_extension_list *list)
{
for (uint32_t i = 0; i < list->count; i++) {
if (strcmp(name, list->list[i].extensionName) == 0)
return &list->list[i];
}
return NULL;
}
static VkExtensionProperties *get_dev_extension_property(
const char *name,
const struct loader_device_extension_list *list)
{
for (uint32_t i = 0; i < list->count; i++) {
if (strcmp(name, list->list[i].props.extensionName) == 0)
return &list->list[i].props;
}
return NULL;
}
/*
* For global extensions implemented within the loader (i.e. DEBUG_REPORT
* the extension must provide two entry points for the loader to use:
* - "trampoline" entry point - this is the address returned by GetProcAddr
* and will always do what's necessary to support a global call.
* - "terminator" function - this function will be put at the end of the
* instance chain and will contain the necessary logic to call / process
* the extension for the appropriate ICDs that are available.
* There is no generic mechanism for including these functions, the references
* must be placed into the appropriate loader entry points.
* GetInstanceProcAddr: call extension GetInstanceProcAddr to check for GetProcAddr requests
* loader_coalesce_extensions(void) - add extension records to the list of global
* extension available to the app.
* instance_disp - add function pointer for terminator function to this array.
* The extension itself should be in a separate file that will be
* linked directly with the loader.
*/
void loader_get_icd_loader_instance_extensions(
const struct loader_instance *inst,
struct loader_icd_libs *icd_libs,
struct loader_extension_list *inst_exts)
{
struct loader_extension_list icd_exts;
loader_log(VK_DBG_REPORT_DEBUG_BIT, 0, "Build ICD instance extension list");
// traverse scanned icd list adding non-duplicate extensions to the list
for (uint32_t i = 0; i < icd_libs->count; i++) {
loader_init_generic_list(inst, (struct loader_generic_list *) &icd_exts,
sizeof(VkExtensionProperties));
loader_add_global_extensions(inst, icd_libs->list[i].EnumerateInstanceExtensionProperties,
icd_libs->list[i].lib_name,
&icd_exts);
loader_add_to_ext_list(inst, inst_exts,
icd_exts.count,
icd_exts.list);
loader_destroy_generic_list(inst, (struct loader_generic_list *) &icd_exts);
};
// Traverse loader's extensions, adding non-duplicate extensions to the list
wsi_add_instance_extensions(inst, inst_exts);
debug_report_add_instance_extensions(inst, inst_exts);
}
struct loader_physical_device *loader_get_physical_device(const VkPhysicalDevice physdev)
{
uint32_t i;
for (struct loader_instance *inst = loader.instances; inst; inst = inst->next) {
for (i = 0; i < inst->total_gpu_count; i++) {
//TODO this aliases physDevices within instances, need for this
// function to go away
if (inst->phys_devs[i].disp == loader_get_instance_dispatch(physdev)) {
return &inst->phys_devs[i];
}
}
}
return NULL;
}
struct loader_icd *loader_get_icd_and_device(const VkDevice device,
struct loader_device **found_dev)
{
*found_dev = NULL;
for (struct loader_instance *inst = loader.instances; inst; inst = inst->next) {
for (struct loader_icd *icd = inst->icds; icd; icd = icd->next) {
for (struct loader_device *dev = icd->logical_device_list; dev; dev = dev->next)
/* Value comparison of device prevents object wrapping by layers */
if (loader_get_dispatch(dev->device) == loader_get_dispatch(device)) {
*found_dev = dev;
return icd;
}
}
}
return NULL;
}
static void loader_destroy_logical_device(const struct loader_instance *inst,
struct loader_device *dev)
{
loader_heap_free(inst, dev->app_extension_props);
if (dev->activated_layer_list.count)
loader_destroy_layer_list(inst, &dev->activated_layer_list);
loader_heap_free(inst, dev);
}
static struct loader_device *loader_add_logical_device(
const struct loader_instance *inst,
const VkDevice dev,
struct loader_device **device_list)
{
struct loader_device *new_dev;
new_dev = loader_heap_alloc(inst, sizeof(struct loader_device), VK_SYSTEM_ALLOCATION_SCOPE_DEVICE);
if (!new_dev) {
loader_log(VK_DBG_REPORT_ERROR_BIT, 0, "Failed to alloc struct laoder-device");
return NULL;
}
memset(new_dev, 0, sizeof(struct loader_device));
new_dev->next = *device_list;
new_dev->device = dev;
*device_list = new_dev;
return new_dev;
}
void loader_remove_logical_device(
const struct loader_instance *inst,
struct loader_icd *icd,
struct loader_device *found_dev)
{
struct loader_device *dev, *prev_dev;
if (!icd || !found_dev)
return;
prev_dev = NULL;
dev = icd->logical_device_list;
while (dev && dev != found_dev) {
prev_dev = dev;
dev = dev->next;
}
if (prev_dev)
prev_dev->next = found_dev->next;
else
icd->logical_device_list = found_dev->next;
loader_destroy_logical_device(inst, found_dev);
}
static void loader_icd_destroy(
struct loader_instance *ptr_inst,
struct loader_icd *icd)
{
ptr_inst->total_icd_count--;
for (struct loader_device *dev = icd->logical_device_list; dev; ) {
struct loader_device *next_dev = dev->next;
loader_destroy_logical_device(ptr_inst, dev);
dev = next_dev;
}
loader_heap_free(ptr_inst, icd);
}
static struct loader_icd * loader_icd_create(const struct loader_instance *inst)
{
struct loader_icd *icd;
icd = loader_heap_alloc(inst, sizeof(*icd), VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (!icd)
return NULL;
memset(icd, 0, sizeof(*icd));
return icd;
}
static struct loader_icd *loader_icd_add(
struct loader_instance *ptr_inst,
const struct loader_scanned_icds *icd_lib)
{
struct loader_icd *icd;
icd = loader_icd_create(ptr_inst);
if (!icd)
return NULL;
icd->this_icd_lib = icd_lib;
icd->this_instance = ptr_inst;
/* prepend to the list */
icd->next = ptr_inst->icds;
ptr_inst->icds = icd;
ptr_inst->total_icd_count++;
return icd;
}
void loader_scanned_icd_clear(
const struct loader_instance *inst,
struct loader_icd_libs *icd_libs)
{
if (icd_libs->capacity == 0)
return;
for (uint32_t i = 0; i < icd_libs->count; i++) {
loader_platform_close_library(icd_libs->list[i].handle);
loader_heap_free(inst, icd_libs->list[i].lib_name);
}
loader_heap_free(inst, icd_libs->list);
icd_libs->capacity = 0;
icd_libs->count = 0;
icd_libs->list = NULL;
}
static void loader_scanned_icd_init(const struct loader_instance *inst,
struct loader_icd_libs *icd_libs)
{
loader_scanned_icd_clear(inst, icd_libs);
icd_libs->capacity = 8 * sizeof(struct loader_scanned_icds);
icd_libs->list = loader_heap_alloc(inst, icd_libs->capacity, VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
}
static void loader_scanned_icd_add(
const struct loader_instance *inst,
struct loader_icd_libs *icd_libs,
const char *filename,
uint32_t api_version)
{
loader_platform_dl_handle handle;
PFN_vkCreateInstance fp_create_inst;
PFN_vkEnumerateInstanceExtensionProperties fp_get_global_ext_props;
PFN_vkGetInstanceProcAddr fp_get_proc_addr;
struct loader_scanned_icds *new_node;
/* TODO implement ref counting of libraries, for now this function leaves
libraries open and the scanned_icd_clear closes them */
// Used to call: dlopen(filename, RTLD_LAZY);
handle = loader_platform_open_library(filename);
if (!handle) {
loader_log(VK_DBG_REPORT_WARN_BIT, 0, loader_platform_open_library_error(filename));
return;
}
#define LOOKUP_LD(func_ptr, func) do { \
func_ptr = (PFN_vk ##func) loader_platform_get_proc_address(handle, "vk" #func); \
if (!func_ptr) { \
loader_log(VK_DBG_REPORT_WARN_BIT, 0, loader_platform_get_proc_address_error("vk" #func)); \
return; \
} \
} while (0)
LOOKUP_LD(fp_get_proc_addr, GetInstanceProcAddr);
LOOKUP_LD(fp_create_inst, CreateInstance);
LOOKUP_LD(fp_get_global_ext_props, EnumerateInstanceExtensionProperties);
#undef LOOKUP_LD
// check for enough capacity
if ((icd_libs->count * sizeof(struct loader_scanned_icds)) >= icd_libs->capacity) {
icd_libs->list = loader_heap_realloc(inst,
icd_libs->list,
icd_libs->capacity,
icd_libs->capacity * 2,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
// double capacity
icd_libs->capacity *= 2;
}
new_node = &(icd_libs->list[icd_libs->count]);
new_node->handle = handle;
new_node->api_version = api_version;
new_node->GetInstanceProcAddr = fp_get_proc_addr;
new_node->CreateInstance = fp_create_inst;
new_node->EnumerateInstanceExtensionProperties = fp_get_global_ext_props;
new_node->lib_name = (char *) loader_heap_alloc(inst,
strlen(filename) + 1,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (!new_node->lib_name) {
loader_log(VK_DBG_REPORT_WARN_BIT, 0, "Out of memory can't add icd");
return;
}
strcpy(new_node->lib_name, filename);
icd_libs->count++;
}
static bool loader_icd_init_entrys(struct loader_icd *icd,
VkInstance inst,
const PFN_vkGetInstanceProcAddr fp_gipa)
{
/* initialize entrypoint function pointers */
#define LOOKUP_GIPA(func, required) do { \
icd->func = (PFN_vk ##func) fp_gipa(inst, "vk" #func); \
if (!icd->func && required) { \
loader_log(VK_DBG_REPORT_WARN_BIT, 0, \
loader_platform_get_proc_address_error("vk" #func)); \
return false; \
} \
} while (0)
LOOKUP_GIPA(GetDeviceProcAddr, true);
LOOKUP_GIPA(DestroyInstance, true);
LOOKUP_GIPA(EnumeratePhysicalDevices, true);
LOOKUP_GIPA(GetPhysicalDeviceFeatures, true);
LOOKUP_GIPA(GetPhysicalDeviceFormatProperties, true);
LOOKUP_GIPA(GetPhysicalDeviceImageFormatProperties, true);
LOOKUP_GIPA(CreateDevice, true);
LOOKUP_GIPA(GetPhysicalDeviceProperties, true);
LOOKUP_GIPA(GetPhysicalDeviceMemoryProperties, true);
LOOKUP_GIPA(GetPhysicalDeviceQueueFamilyProperties, true);
LOOKUP_GIPA(EnumerateDeviceExtensionProperties, true);
LOOKUP_GIPA(GetPhysicalDeviceSparseImageFormatProperties, true);
LOOKUP_GIPA(DbgCreateMsgCallback, false);
LOOKUP_GIPA(DbgDestroyMsgCallback, false);
LOOKUP_GIPA(GetPhysicalDeviceSurfaceSupportKHR, false);
LOOKUP_GIPA(GetPhysicalDeviceSurfaceCapabilitiesKHR, false);
LOOKUP_GIPA(GetPhysicalDeviceSurfaceFormatsKHR, false);
LOOKUP_GIPA(GetPhysicalDeviceSurfacePresentModesKHR, false);
#ifdef VK_USE_PLATFORM_WIN32_KHR
LOOKUP_GIPA(GetPhysicalDeviceWin32PresentationSupportKHR, false);
#endif
#ifdef VK_USE_PLATFORM_XCB_KHR
LOOKUP_GIPA(GetPhysicalDeviceXcbPresentationSupportKHR, false);
#endif
#undef LOOKUP_GIPA
return true;
}
static void loader_debug_init(void)
{
const char *env;
if (g_loader_debug > 0)
return;
g_loader_debug = 0;
/* parse comma-separated debug options */
env = getenv("VK_LOADER_DEBUG");
while (env) {
const char *p = strchr(env, ',');
size_t len;
if (p)
len = p - env;
else
len = strlen(env);
if (len > 0) {
if (strncmp(env, "all", len) == 0) {
g_loader_debug = ~0u;
g_loader_log_msgs = ~0u;
} else if (strncmp(env, "warn", len) == 0) {
g_loader_debug |= LOADER_WARN_BIT;
g_loader_log_msgs |= VK_DBG_REPORT_WARN_BIT;
} else if (strncmp(env, "info", len) == 0) {
g_loader_debug |= LOADER_INFO_BIT;
g_loader_log_msgs |= VK_DBG_REPORT_INFO_BIT;
} else if (strncmp(env, "perf", len) == 0) {
g_loader_debug |= LOADER_PERF_BIT;
g_loader_log_msgs |= VK_DBG_REPORT_PERF_WARN_BIT;
} else if (strncmp(env, "error", len) == 0) {
g_loader_debug |= LOADER_ERROR_BIT;
g_loader_log_msgs |= VK_DBG_REPORT_ERROR_BIT;
} else if (strncmp(env, "debug", len) == 0) {
g_loader_debug |= LOADER_DEBUG_BIT;
g_loader_log_msgs |= VK_DBG_REPORT_DEBUG_BIT;
}
}
if (!p)
break;
env = p + 1;
}
}
void loader_initialize(void)
{
// initialize mutexs
loader_platform_thread_create_mutex(&loader_lock);
loader_platform_thread_create_mutex(&loader_json_lock);
// initialize logging
loader_debug_init();
// initial cJSON to use alloc callbacks
cJSON_Hooks alloc_fns = {
.malloc_fn = loader_tls_heap_alloc,
.free_fn = loader_tls_heap_free,
};
cJSON_InitHooks(&alloc_fns);
}
struct loader_manifest_files {
uint32_t count;
char **filename_list;
};
/**
* Get next file or dirname given a string list or registry key path
*
* \returns
* A pointer to first char in the next path.
* The next path (or NULL) in the list is returned in next_path.
* Note: input string is modified in some cases. PASS IN A COPY!
*/
static char *loader_get_next_path(char *path)
{
uint32_t len;
char *next;
if (path == NULL)
return NULL;
next = strchr(path, PATH_SEPERATOR);
if (next == NULL) {
len = (uint32_t) strlen(path);
next = path + len;
}
else {
*next = '\0';
next++;
}
return next;
}
/**
* Given a path which is absolute or relative, expand the path if relative or
* leave the path unmodified if absolute. The base path to prepend to relative
* paths is given in rel_base.
*
* \returns
* A string in out_fullpath of the full absolute path
*/
static void loader_expand_path(const char *path,
const char *rel_base,
size_t out_size,
char *out_fullpath)
{
if (loader_platform_is_path_absolute(path)) {
// do not prepend a base to an absolute path
rel_base = "";
}
loader_platform_combine_path(out_fullpath, out_size, rel_base, path, NULL);
}
/**
* Given a filename (file) and a list of paths (dir), try to find an existing
* file in the paths. If filename already is a path then no
* searching in the given paths.
*
* \returns
* A string in out_fullpath of either the full path or file.
*/
static void loader_get_fullpath(const char *file,
const char *dirs,
size_t out_size,
char *out_fullpath)
{
if (!loader_platform_is_path(file) && *dirs) {
char *dirs_copy, *dir, *next_dir;
dirs_copy = loader_stack_alloc(strlen(dirs) + 1);
strcpy(dirs_copy, dirs);
//find if file exists after prepending paths in given list
for (dir = dirs_copy;
*dir && (next_dir = loader_get_next_path(dir));
dir = next_dir) {
loader_platform_combine_path(out_fullpath, out_size, dir, file, NULL);
if (loader_platform_file_exists(out_fullpath)) {
return;
}
}
}
snprintf(out_fullpath, out_size, "%s", file);
}
/**
* Read a JSON file into a buffer.
*
* \returns
* A pointer to a cJSON object representing the JSON parse tree.
* This returned buffer should be freed by caller.
*/
static cJSON *loader_get_json(const char *filename)
{
FILE *file;
char *json_buf;
cJSON *json;
uint64_t len;
file = fopen(filename,"rb");
if (!file) {
loader_log(VK_DBG_REPORT_ERROR_BIT, 0, "Couldn't open JSON file %s", filename);
return NULL;
}
fseek(file, 0, SEEK_END);
len = ftell(file);
fseek(file, 0, SEEK_SET);
json_buf = (char*) loader_stack_alloc(len+1);
if (json_buf == NULL) {
loader_log(VK_DBG_REPORT_ERROR_BIT, 0, "Out of memory can't get JSON file");
fclose(file);
return NULL;
}
if (fread(json_buf, sizeof(char), len, file) != len) {
loader_log(VK_DBG_REPORT_ERROR_BIT, 0, "fread failed can't get JSON file");
fclose(file);
return NULL;
}
fclose(file);
json_buf[len] = '\0';
//parse text from file
json = cJSON_Parse(json_buf);
if (json == NULL)
loader_log(VK_DBG_REPORT_ERROR_BIT, 0, "Can't parse JSON file %s", filename);
return json;
}
/**
* Do a deep copy of the loader_layer_properties structure.
*/
static void loader_copy_layer_properties(
const struct loader_instance *inst,
struct loader_layer_properties *dst,
struct loader_layer_properties *src)
{
uint32_t cnt, i;
memcpy(dst, src, sizeof (*src));
dst->instance_extension_list.list = loader_heap_alloc(
inst,
sizeof(VkExtensionProperties) *
src->instance_extension_list.count,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
dst->instance_extension_list.capacity = sizeof(VkExtensionProperties) *
src->instance_extension_list.count;
memcpy(dst->instance_extension_list.list, src->instance_extension_list.list,
dst->instance_extension_list.capacity);
dst->device_extension_list.list = loader_heap_alloc(
inst,
sizeof(struct loader_dev_ext_props) *
src->device_extension_list.count,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
dst->device_extension_list.capacity = sizeof(struct loader_dev_ext_props) *
src->device_extension_list.count;
memcpy(dst->device_extension_list.list, src->device_extension_list.list,
dst->device_extension_list.capacity);
if (src->device_extension_list.count > 0 &&
src->device_extension_list.list->entrypoint_count > 0) {
cnt = src->device_extension_list.list->entrypoint_count;
dst->device_extension_list.list->entrypoints = loader_heap_alloc(
inst,
sizeof(char *) * cnt,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
for (i = 0; i < cnt; i++) {
dst->device_extension_list.list->entrypoints[i] = loader_heap_alloc(
inst,
strlen(src->device_extension_list.list->entrypoints[i]) + 1,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
strcpy(dst->device_extension_list.list->entrypoints[i],
src->device_extension_list.list->entrypoints[i]);
}
}
}
/**
* Given a cJSON struct (json) of the top level JSON object from layer manifest
* file, add entry to the layer_list.
* Fill out the layer_properties in this list entry from the input cJSON object.
*
* \returns
* void
* layer_list has a new entry and initialized accordingly.
* If the json input object does not have all the required fields no entry
* is added to the list.
*/
static void loader_add_layer_properties(const struct loader_instance *inst,
struct loader_layer_list *layer_instance_list,
struct loader_layer_list *layer_device_list,
cJSON *json,
bool is_implicit,
char *filename)
{
/* Fields in layer manifest file that are required:
* (required) “file_format_version”
* following are required in the "layer" object:
* (required) "name"
* (required) "type"
* (required) “library_path”
* (required) “api_version”
* (required) “implementation_version”
* (required) “description”
* (required for implicit layers) “disable_environment”
*
* First get all required items and if any missing abort
*/
cJSON *item, *layer_node, *ext_item;
char *temp;
char *name, *type, *library_path, *api_version;
char *implementation_version, *description;
cJSON *disable_environment;
int i, j;
VkExtensionProperties ext_prop;
item = cJSON_GetObjectItem(json, "file_format_version");
if (item == NULL) {
return;
}
char *file_vers = cJSON_PrintUnformatted(item);
loader_log(VK_DBG_REPORT_INFO_BIT, 0, "Found manifest file %s, version %s",
filename, file_vers);
if (strcmp(file_vers, "\"1.0.0\"") != 0)
loader_log(VK_DBG_REPORT_WARN_BIT, 0, "Unexpected manifest file version (expected 1.0.0), may cause errors");
loader_tls_heap_free(file_vers);
layer_node = cJSON_GetObjectItem(json, "layer");
if (layer_node == NULL) {
loader_log(VK_DBG_REPORT_WARN_BIT, 0, "Can't find \"layer\" object in manifest JSON file, skipping");
return;
}
// loop through all "layer" objects in the file
do {
#define GET_JSON_OBJECT(node, var) { \
var = cJSON_GetObjectItem(node, #var); \
if (var == NULL) { \
layer_node = layer_node->next; \
continue; \
} \
}
#define GET_JSON_ITEM(node, var) { \
item = cJSON_GetObjectItem(node, #var); \
if (item == NULL) { \
layer_node = layer_node->next; \
continue; \
} \
temp = cJSON_Print(item); \
temp[strlen(temp) - 1] = '\0'; \
var = loader_stack_alloc(strlen(temp) + 1); \
strcpy(var, &temp[1]); \
loader_tls_heap_free(temp); \
}
GET_JSON_ITEM(layer_node, name)
GET_JSON_ITEM(layer_node, type)
GET_JSON_ITEM(layer_node, library_path)
GET_JSON_ITEM(layer_node, api_version)
GET_JSON_ITEM(layer_node, implementation_version)
GET_JSON_ITEM(layer_node, description)
if (is_implicit) {
GET_JSON_OBJECT(layer_node, disable_environment)
}
#undef GET_JSON_ITEM
#undef GET_JSON_OBJECT
// add list entry
struct loader_layer_properties *props=NULL;
if (!strcmp(type, "DEVICE")) {
if (layer_device_list == NULL) {
layer_node = layer_node->next;
continue;
}
props = loader_get_next_layer_property(inst, layer_device_list);
props->type = (is_implicit) ? VK_LAYER_TYPE_DEVICE_IMPLICIT : VK_LAYER_TYPE_DEVICE_EXPLICIT;
}
if (!strcmp(type, "INSTANCE")) {
if (layer_instance_list == NULL) {
layer_node = layer_node->next;
continue;
}
props = loader_get_next_layer_property(inst, layer_instance_list);
props->type = (is_implicit) ? VK_LAYER_TYPE_INSTANCE_IMPLICIT : VK_LAYER_TYPE_INSTANCE_EXPLICIT;
}
if (!strcmp(type, "GLOBAL")) {
if (layer_instance_list != NULL)
props = loader_get_next_layer_property(inst, layer_instance_list);
else if (layer_device_list != NULL)
props = loader_get_next_layer_property(inst, layer_device_list);
else {
layer_node = layer_node->next;
continue;
}
props->type = (is_implicit) ? VK_LAYER_TYPE_GLOBAL_IMPLICIT : VK_LAYER_TYPE_GLOBAL_EXPLICIT;
}
if (props == NULL) {
layer_node = layer_node->next;
continue;
}
strncpy(props->info.layerName, name, sizeof (props->info.layerName));
props->info.layerName[sizeof (props->info.layerName) - 1] = '\0';
char *fullpath = props->lib_name;
char *rel_base;
if (loader_platform_is_path(library_path)) {
// a relative or absolute path
char *name_copy = loader_stack_alloc(strlen(filename) + 1);
strcpy(name_copy, filename);
rel_base = loader_platform_dirname(name_copy);
loader_expand_path(library_path, rel_base, MAX_STRING_SIZE, fullpath);
} else {
// a filename which is assumed in a system directory
loader_get_fullpath(library_path, DEFAULT_VK_LAYERS_PATH, MAX_STRING_SIZE, fullpath);
}
props->info.specVersion = loader_make_version(api_version);
props->info.implementationVersion = atoi(implementation_version);
strncpy((char *) props->info.description, description, sizeof (props->info.description));
props->info.description[sizeof (props->info.description) - 1] = '\0';
if (is_implicit) {
strncpy(props->disable_env_var.name, disable_environment->child->string, sizeof (props->disable_env_var.name));
props->disable_env_var.name[sizeof (props->disable_env_var.name) - 1] = '\0';
strncpy(props->disable_env_var.value, disable_environment->child->valuestring, sizeof (props->disable_env_var.value));
props->disable_env_var.value[sizeof (props->disable_env_var.value) - 1] = '\0';
}
/**
* Now get all optional items and objects and put in list:
* functions
* instance_extensions
* device_extensions
* enable_environment (implicit layers only)
* disable_environment (implicit_layers_only)
*/
#define GET_JSON_OBJECT(node, var) { \
var = cJSON_GetObjectItem(node, #var); \
}
#define GET_JSON_ITEM(node, var) { \
item = cJSON_GetObjectItem(node, #var); \
if (item != NULL) { \
temp = cJSON_Print(item); \
temp[strlen(temp) - 1] = '\0'; \
var = loader_stack_alloc(strlen(temp) + 1);\
strcpy(var, &temp[1]); \
loader_tls_heap_free(temp); \
} \
}
cJSON *instance_extensions, *device_extensions, *functions, *enable_environment;
cJSON *entrypoints;
char *vkGetInstanceProcAddr, *vkGetDeviceProcAddr, *spec_version;
char **entry_array;
vkGetInstanceProcAddr = NULL;
vkGetDeviceProcAddr = NULL;
spec_version = NULL;
entrypoints = NULL;
entry_array = NULL;
/**
* functions
* vkGetInstanceProcAddr
* vkGetDeviceProcAddr
*/
GET_JSON_OBJECT(layer_node, functions)
if (functions != NULL) {
GET_JSON_ITEM(functions, vkGetInstanceProcAddr)
GET_JSON_ITEM(functions, vkGetDeviceProcAddr)
if (vkGetInstanceProcAddr != NULL)
strncpy(props->functions.str_gipa, vkGetInstanceProcAddr, sizeof (props->functions.str_gipa));
props->functions.str_gipa[sizeof (props->functions.str_gipa) - 1] = '\0';
if (vkGetDeviceProcAddr != NULL)
strncpy(props->functions.str_gdpa, vkGetDeviceProcAddr, sizeof (props->functions.str_gdpa));
props->functions.str_gdpa[sizeof (props->functions.str_gdpa) - 1] = '\0';
}
/**
* instance_extensions
* array of
* name
* spec_version
*/
GET_JSON_OBJECT(layer_node, instance_extensions)
if (instance_extensions != NULL) {
int count = cJSON_GetArraySize(instance_extensions);
for (i = 0; i < count; i++) {
ext_item = cJSON_GetArrayItem(instance_extensions, i);
GET_JSON_ITEM(ext_item, name)
GET_JSON_ITEM(ext_item, spec_version)
if (name != NULL) {
strncpy(ext_prop.extensionName, name, sizeof (ext_prop.extensionName));
ext_prop.extensionName[sizeof (ext_prop.extensionName) - 1] = '\0';
}
ext_prop.specVersion = atoi(spec_version);
loader_add_to_ext_list(inst, &props->instance_extension_list, 1, &ext_prop);
}
}
/**
* device_extensions
* array of
* name
* spec_version
* entrypoints
*/
GET_JSON_OBJECT(layer_node, device_extensions)
if (device_extensions != NULL) {
int count = cJSON_GetArraySize(device_extensions);
for (i = 0; i < count; i++) {
ext_item = cJSON_GetArrayItem(device_extensions, i);
GET_JSON_ITEM(ext_item, name)
GET_JSON_ITEM(ext_item, spec_version)
if (name != NULL) {
strncpy(ext_prop.extensionName, name, sizeof (ext_prop.extensionName));
ext_prop.extensionName[sizeof (ext_prop.extensionName) - 1] = '\0';
}
ext_prop.specVersion = atoi(spec_version);
//entrypoints = cJSON_GetObjectItem(ext_item, "entrypoints");
GET_JSON_OBJECT(ext_item, entrypoints)
int entry_count;
if (entrypoints == NULL)
continue;
entry_count = cJSON_GetArraySize(entrypoints);
if (entry_count)
entry_array = (char **) loader_stack_alloc(sizeof(char *) * entry_count);
for (j = 0; j < entry_count; j++) {
ext_item = cJSON_GetArrayItem(entrypoints, j);
if (ext_item != NULL) {
temp = cJSON_Print(ext_item);
temp[strlen(temp) - 1] = '\0';
entry_array[j] = loader_stack_alloc(strlen(temp) + 1);
strcpy(entry_array[j], &temp[1]);
loader_tls_heap_free(temp);
}
}
loader_add_to_dev_ext_list(inst, &props->device_extension_list,
&ext_prop, entry_count, entry_array);
}
}
if (is_implicit) {
GET_JSON_OBJECT(layer_node, enable_environment)
strncpy(props->enable_env_var.name, enable_environment->child->string, sizeof (props->enable_env_var.name));
props->enable_env_var.name[sizeof (props->enable_env_var.name) - 1] = '\0';
strncpy(props->enable_env_var.value, enable_environment->child->valuestring, sizeof (props->enable_env_var.value));
props->enable_env_var.value[sizeof (props->enable_env_var.value) - 1] = '\0';
//TODO add disable_environment for implicit layers
}
#undef GET_JSON_ITEM
#undef GET_JSON_OBJECT
// for global layers need to add them to both device and instance list
if (!strcmp(type, "GLOBAL")) {
struct loader_layer_properties *dev_props;
if (layer_instance_list == NULL || layer_device_list == NULL) {
layer_node = layer_node->next;
continue;
}
dev_props = loader_get_next_layer_property(inst, layer_device_list);
//copy into device layer list
loader_copy_layer_properties(inst, dev_props, props);
}
layer_node = layer_node->next;
} while (layer_node != NULL);
return;
}
/**
* Find the Vulkan library manifest files.
*
* This function scans the location or env_override directories/files
* for a list of JSON manifest files. If env_override is non-NULL
* and has a valid value. Then the location is ignored. Otherwise
* location is used to look for manifest files. The location
* is interpreted as Registry path on Windows and a directory path(s)
* on Linux.
*
* \returns
* A string list of manifest files to be opened in out_files param.
* List has a pointer to string for each manifest filename.
* When done using the list in out_files, pointers should be freed.
* Location or override string lists can be either files or directories as follows:
* | location | override
* --------------------------------
* Win ICD | files | files
* Win Layer | files | dirs
* Linux ICD | dirs | files
* Linux Layer| dirs | dirs
*/
static void loader_get_manifest_files(const struct loader_instance *inst,
const char *env_override,
bool is_layer,
const char *location,
struct loader_manifest_files *out_files)
{
char *override = NULL;
char *loc;
char *file, *next_file, *name;
size_t alloced_count = 64;
char full_path[2048];
DIR *sysdir = NULL;
bool list_is_dirs = false;
struct dirent *dent;
out_files->count = 0;
out_files->filename_list = NULL;
if (env_override != NULL && (override = getenv(env_override))) {
#if !defined(_WIN32)
if (geteuid() != getuid()) {
/* Don't allow setuid apps to use the env var: */
override = NULL;
}
#endif
}
if (location == NULL) {
loader_log(VK_DBG_REPORT_ERROR_BIT, 0,
"Can't get manifest files with NULL location, env_override=%s",
env_override);
return;
}
#if defined(_WIN32)
list_is_dirs = (is_layer && override != NULL) ? true : false;
#else
list_is_dirs = (override == NULL || is_layer) ? true : false;
#endif
// Make a copy of the input we are using so it is not modified
// Also handle getting the location(s) from registry on Windows
if (override == NULL) {
loc = loader_stack_alloc(strlen(location) + 1);
if (loc == NULL) {
loader_log(VK_DBG_REPORT_ERROR_BIT, 0, "Out of memory can't get manifest files");
return;
}
strcpy(loc, location);
#if defined(_WIN32)
loc = loader_get_registry_files(inst, loc);
if (loc == NULL) {
loader_log(VK_DBG_REPORT_ERROR_BIT, 0, "Registry lookup failed can't get manifest files");
return;
}
#endif
}
else {
loc = loader_stack_alloc(strlen(override) + 1);
if (loc == NULL) {
loader_log(VK_DBG_REPORT_ERROR_BIT, 0, "Out of memory can't get manifest files");
return;
}
strcpy(loc, override);
}
// Print out the paths being searched if debugging is enabled
loader_log(VK_DBG_REPORT_DEBUG_BIT, 0, "Searching the following paths for manifest files: %s\n", loc);
file = loc;
while (*file) {
next_file = loader_get_next_path(file);
if (list_is_dirs) {
sysdir = opendir(file);
name = NULL;
if (sysdir) {
dent = readdir(sysdir);
if (dent == NULL)
break;
name = &(dent->d_name[0]);
loader_get_fullpath(name, file, sizeof(full_path), full_path);
name = full_path;
}
}
else {
#if defined(_WIN32)
name = file;
#else
// only Linux has relative paths
char *dir;
// make a copy of location so it isn't modified
dir = loader_stack_alloc(strlen(loc) + 1);
if (dir == NULL) {
loader_log(VK_DBG_REPORT_ERROR_BIT, 0, "Out of memory can't get manifest files");
return;
}
strcpy(dir, loc);
loader_get_fullpath(file, dir, sizeof(full_path), full_path);
name = full_path;
#endif
}
while (name) {
/* Look for files ending with ".json" suffix */
uint32_t nlen = (uint32_t) strlen(name);
const char *suf = name + nlen - 5;
if ((nlen > 5) && !strncmp(suf, ".json", 5)) {
if (out_files->count == 0) {
out_files->filename_list = loader_heap_alloc(inst,
alloced_count * sizeof(char *),
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
}
else if (out_files->count == alloced_count) {
out_files->filename_list = loader_heap_realloc(inst,
out_files->filename_list,
alloced_count * sizeof(char *),
alloced_count * sizeof(char *) * 2,
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
alloced_count *= 2;
}
if (out_files->filename_list == NULL) {
loader_log(VK_DBG_REPORT_ERROR_BIT, 0, "Out of memory can't alloc manifest file list");
return;
}
out_files->filename_list[out_files->count] = loader_heap_alloc(
inst,
strlen(name) + 1,
VK_SYSTEM_ALLOCATION_SCOPE_COMMAND);
if (out_files->filename_list[out_files->count] == NULL) {
loader_log(VK_DBG_REPORT_ERROR_BIT, 0, "Out of memory can't get manifest files");
return;
}
strcpy(out_files->filename_list[out_files->count], name);
out_files->count++;
} else if (!list_is_dirs) {
loader_log(VK_DBG_REPORT_WARN_BIT, 0, "Skipping manifest file %s, file name must end in .json", name);
}
if (list_is_dirs) {
dent = readdir(sysdir);
if (dent == NULL)
break;
name = &(dent->d_name[0]);
loader_get_fullpath(name, file, sizeof(full_path), full_path);
name = full_path;
}
else {
break;
}
}
if (sysdir)
closedir(sysdir);
file = next_file;
}
return;
}
void loader_init_icd_lib_list()
{
}
void loader_destroy_icd_lib_list()
{
}
/**
* Try to find the Vulkan ICD driver(s).
*
* This function scans the default system loader path(s) or path
* specified by the \c VK_ICD_FILENAMES environment variable in
* order to find loadable VK ICDs manifest files. From these
* manifest files it finds the ICD libraries.
*
* \returns
* a list of icds that were discovered
*/
void loader_icd_scan(
const struct loader_instance *inst,
struct loader_icd_libs *icds)
{
char *file_str;
struct loader_manifest_files manifest_files;
loader_scanned_icd_init(inst, icds);
// Get a list of manifest files for ICDs
loader_get_manifest_files(inst, "VK_ICD_FILENAMES", false,
DEFAULT_VK_DRIVERS_INFO, &manifest_files);
if (manifest_files.count == 0)
return;
loader_platform_thread_lock_mutex(&loader_json_lock);
for (uint32_t i = 0; i < manifest_files.count; i++) {
file_str = manifest_files.filename_list[i];
if (file_str == NULL)
continue;
cJSON *json;
json = loader_get_json(file_str);
if (!json)
continue;
cJSON *item, *itemICD;
item = cJSON_GetObjectItem(json, "file_format_version");
if (item == NULL) {
loader_platform_thread_unlock_mutex(&loader_json_lock);
return;
}
char *file_vers = cJSON_Print(item);
loader_log(VK_DBG_REPORT_INFO_BIT, 0, "Found manifest file %s, version %s",
file_str, file_vers);
if (strcmp(file_vers, "\"1.0.0\"") != 0)
loader_log(VK_DBG_REPORT_WARN_BIT, 0, "Unexpected manifest file version (expected 1.0.0), may cause errors");
loader_tls_heap_free(file_vers);
itemICD = cJSON_GetObjectItem(json, "ICD");
if (itemICD != NULL) {
item = cJSON_GetObjectItem(itemICD, "library_path");
if (item != NULL) {
char *temp= cJSON_Print(item);
if (!temp || strlen(temp) == 0) {
loader_log(VK_DBG_REPORT_WARN_BIT, 0, "Can't find \"library_path\" in ICD JSON file %s, skipping", file_str);
loader_tls_heap_free(temp);
loader_heap_free(inst, file_str);
cJSON_Delete(json);
continue;
}
//strip out extra quotes
temp[strlen(temp) - 1] = '\0';
char *library_path = loader_stack_alloc(strlen(temp) + 1);
strcpy(library_path, &temp[1]);
loader_tls_heap_free(temp);
if (!library_path || strlen(library_path) == 0) {
loader_log(VK_DBG_REPORT_WARN_BIT, 0, "Can't find \"library_path\" in ICD JSON file %s, skipping", file_str);
loader_heap_free(inst, file_str);
cJSON_Delete(json);
continue;
}
char fullpath[MAX_STRING_SIZE];
// Print out the paths being searched if debugging is enabled
loader_log(VK_DBG_REPORT_DEBUG_BIT, 0, "Searching for ICD drivers named %s default dir %s\n", library_path, DEFAULT_VK_DRIVERS_PATH);
if (loader_platform_is_path(library_path)) {
// a relative or absolute path
char *name_copy = loader_stack_alloc(strlen(file_str) + 1);
char *rel_base;
strcpy(name_copy, file_str);
rel_base = loader_platform_dirname(name_copy);
loader_expand_path(library_path, rel_base, sizeof(fullpath), fullpath);
} else {
// a filename which is assumed in a system directory
loader_get_fullpath(library_path, DEFAULT_VK_DRIVERS_PATH, sizeof(fullpath), fullpath);
}
uint32_t vers = 0;
item = cJSON_GetObjectItem(itemICD, "api_version");
if (item != NULL) {
temp= cJSON_Print(item);
vers = loader_make_version(temp);
loader_tls_heap_free(temp);
}
loader_scanned_icd_add(inst, icds, fullpath, vers);
}
else
loader_log(VK_DBG_REPORT_WARN_BIT, 0, "Can't find \"library_path\" object in ICD JSON file %s, skipping", file_str);
}
else
loader_log(VK_DBG_REPORT_WARN_BIT, 0, "Can't find \"ICD\" object in ICD JSON file %s, skipping", file_str);
loader_heap_free(inst, file_str);
cJSON_Delete(json);
}
loader_heap_free(inst, manifest_files.filename_list);
loader_platform_thread_unlock_mutex(&loader_json_lock);
}
void loader_layer_scan(
const struct loader_instance *inst,
struct loader_layer_list *instance_layers,
struct loader_layer_list *device_layers)
{
char *file_str;
struct loader_manifest_files manifest_files;
cJSON *json;
uint32_t i;
// Get a list of manifest files for layers
loader_get_manifest_files(inst, LAYERS_PATH_ENV, true, DEFAULT_VK_LAYERS_INFO,
&manifest_files);
if (manifest_files.count == 0)
return;
#if 0 //TODO
/**
* We need a list of the layer libraries, not just a list of
* the layer properties (a layer library could expose more than
* one layer property). This list of scanned layers would be
* used to check for global and physicaldevice layer properties.
*/
if (!loader_init_layer_library_list(&loader.scanned_layer_libraries)) {
loader_log(VK_DBG_REPORT_ERROR_BIT, 0,
"Alloc for layer list failed: %s line: %d", __FILE__, __LINE__);
return;
}
#endif
/* cleanup any previously scanned libraries */
loader_delete_layer_properties(inst, instance_layers);
loader_delete_layer_properties(inst, device_layers);
loader_platform_thread_lock_mutex(&loader_json_lock);
for (i = 0; i < manifest_files.count; i++) {
file_str = manifest_files.filename_list[i];
if (file_str == NULL)
continue;
// parse file into JSON struct
json = loader_get_json(file_str);
if (!json) {
continue;
}
//TODO pass in implicit versus explicit bool
//TODO error if device layers expose instance_extensions
//TODO error if instance layers expose device extensions
loader_add_layer_properties(inst,
instance_layers,
device_layers,
json,
false,
file_str);
loader_heap_free(inst, file_str);
cJSON_Delete(json);
}
loader_heap_free(inst, manifest_files.filename_list);
loader_platform_thread_unlock_mutex(&loader_json_lock);
}
static VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL loader_gpa_instance_internal(VkInstance inst, const char * pName)
{
// inst is not wrapped
if (inst == VK_NULL_HANDLE) {
return NULL;
}
VkLayerInstanceDispatchTable* disp_table = * (VkLayerInstanceDispatchTable **) inst;
void *addr;
if (!strcmp(pName, "vkGetInstanceProcAddr"))
return (void *) loader_gpa_instance_internal;
if (disp_table == NULL)
return NULL;
addr = loader_lookup_instance_dispatch_table(disp_table, pName);
if (addr) {
return addr;
}
if (disp_table->GetInstanceProcAddr == NULL) {
return NULL;
}
return disp_table->GetInstanceProcAddr(inst, pName);
}
/**
* Initialize device_ext dispatch table entry as follows:
* If dev == NULL find all logical devices created within this instance and
* init the entry (given by idx) in the ext dispatch table.
* If dev != NULL only initialize the entry in the given dev's dispatch table.
* The initialization value is gotten by calling down the device chain with GDPA.
* If GDPA returns NULL then don't initialize the dispatch table entry.
*/
static void loader_init_dispatch_dev_ext_entry(struct loader_instance *inst,
struct loader_device *dev,
uint32_t idx,
const char *funcName)
{
void *gdpa_value;
if (dev != NULL) {
gdpa_value = dev->loader_dispatch.core_dispatch.GetDeviceProcAddr(
dev->device, funcName);
if (gdpa_value != NULL)
dev->loader_dispatch.ext_dispatch.DevExt[idx] = (PFN_vkDevExt) gdpa_value;
} else {
for (uint32_t i = 0; i < inst->total_icd_count; i++) {
struct loader_icd *icd = &inst->icds[i];
struct loader_device *dev = icd->logical_device_list;
while (dev) {
gdpa_value = dev->loader_dispatch.core_dispatch.GetDeviceProcAddr(
dev->device, funcName);
if (gdpa_value != NULL)
dev->loader_dispatch.ext_dispatch.DevExt[idx] =
(PFN_vkDevExt) gdpa_value;
dev = dev->next;
}
}
}
}
/**
* Find all dev extension in the hash table and initialize the dispatch table
* for dev for each of those extension entrypoints found in hash table.
*/
static void loader_init_dispatch_dev_ext(struct loader_instance *inst,
struct loader_device *dev)
{
for (uint32_t i = 0; i < MAX_NUM_DEV_EXTS; i++) {
if (inst->disp_hash[i].func_name != NULL)
loader_init_dispatch_dev_ext_entry(inst, dev, i,
inst->disp_hash[i].func_name);
}
}
static bool loader_check_icds_for_address(struct loader_instance *inst,
const char *funcName)
{
struct loader_icd *icd;
icd = inst->icds;
while (icd) {
if (icd->this_icd_lib->GetInstanceProcAddr(icd->instance, funcName))
// this icd supports funcName
return true;
icd = icd->next;
}
return false;
}
static void loader_free_dev_ext_table(struct loader_instance *inst)
{
for (uint32_t i = 0; i < MAX_NUM_DEV_EXTS; i++) {
loader_heap_free(inst, inst->disp_hash[i].func_name);
loader_heap_free(inst, inst->disp_hash[i].list.index);
}
memset(inst->disp_hash, 0, sizeof(inst->disp_hash));
}
static bool loader_add_dev_ext_table(struct loader_instance *inst,
uint32_t *ptr_idx,
const char *funcName)
{
uint32_t i;
uint32_t idx = *ptr_idx;
struct loader_dispatch_hash_list *list = &inst->disp_hash[idx].list;
if (!inst->disp_hash[idx].func_name) {
// no entry here at this idx, so use it
assert(list->capacity == 0);
inst->disp_hash[idx].func_name = (char *) loader_heap_alloc(inst,
strlen(funcName) + 1,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (inst->disp_hash[idx].func_name == NULL) {
loader_log(VK_DBG_REPORT_ERROR_BIT, 0,
"loader_add_dev_ext_table() can't allocate memory for func_name");
return false;
}
strncpy(inst->disp_hash[idx].func_name, funcName, strlen(funcName) + 1);
return true;
}
// check for enough capacity
if (list->capacity == 0) {
list->index = loader_heap_alloc(inst, 8 * sizeof(*(list->index)),
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (list->index == NULL) {
loader_log(VK_DBG_REPORT_ERROR_BIT, 0,
"loader_add_dev_ext_table() can't allocate list memory");
return false;
}
list->capacity = 8 * sizeof(*(list->index));
} else if (list->capacity < (list->count + 1) * sizeof(*(list->index))) {
list->index = loader_heap_realloc(inst, list->index, list->capacity,
list->capacity * 2,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (list->index == NULL) {
loader_log(VK_DBG_REPORT_ERROR_BIT, 0,
"loader_add_dev_ext_table() can't reallocate list memory");
return false;
}
list->capacity *= 2;
}
//find an unused index in the hash table and use it
i = (idx + 1) % MAX_NUM_DEV_EXTS;
do {
if (!inst->disp_hash[i].func_name) {
assert(inst->disp_hash[i].list.capacity == 0);
inst->disp_hash[i].func_name = (char *) loader_heap_alloc(inst,
strlen(funcName) + 1,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (inst->disp_hash[i].func_name == NULL) {
loader_log(VK_DBG_REPORT_ERROR_BIT, 0,
"loader_add_dev_ext_table() can't rallocate func_name memory");
return false;
}
strncpy(inst->disp_hash[i].func_name, funcName, strlen(funcName) + 1);
list->index[list->count] = i;
list->count++;
*ptr_idx = i;
return true;
}
i = (i + 1) % MAX_NUM_DEV_EXTS;
} while (i != idx);
loader_log(VK_DBG_REPORT_ERROR_BIT, 0,
"loader_add_dev_ext_table() couldn't insert into hash table; is it full?");
return false;
}
static bool loader_name_in_dev_ext_table(struct loader_instance *inst,
uint32_t *idx,
const char *funcName)
{
uint32_t alt_idx;
if (inst->disp_hash[*idx].func_name && !strcmp(
inst->disp_hash[*idx].func_name,
funcName))
return true;
// funcName wasn't at the primary spot in the hash table
// search the list of secondary locations (shallow search, not deep search)
for (uint32_t i = 0; i < inst->disp_hash[*idx].list.count; i++) {
alt_idx = inst->disp_hash[*idx].list.index[i];
if (!strcmp(inst->disp_hash[*idx].func_name, funcName)) {
*idx = alt_idx;
return true;
}
}
return false;
}
/**
* This function returns generic trampoline code address for unknown entry points.
* Presumably, these unknown entry points (as given by funcName) are device
* extension entrypoints. A hash table is used to keep a list of unknown entry
* points and their mapping to the device extension dispatch table
* (struct loader_dev_ext_dispatch_table).
* \returns
* For a given entry point string (funcName), if an existing mapping is found the
* trampoline address for that mapping is returned. Otherwise, this unknown entry point
* has not been seen yet. Next check if a layer or ICD supports it. If so then a
* new entry in the hash table is initialized and that trampoline address for
* the new entry is returned. Null is returned if the hash table is full or
* if no discovered layer or ICD returns a non-NULL GetProcAddr for it.
*/
void *loader_dev_ext_gpa(struct loader_instance *inst,
const char *funcName)
{
uint32_t idx;
uint32_t seed = 0;
idx = murmurhash(funcName, strlen(funcName), seed) % MAX_NUM_DEV_EXTS;
if (loader_name_in_dev_ext_table(inst, &idx, funcName))
// found funcName already in hash
return loader_get_dev_ext_trampoline(idx);
// Check if funcName is supported in either ICDs or a layer library
if (!loader_check_icds_for_address(inst, funcName)) {
// TODO Add check in layer libraries for support of address
// if support found in layers continue on
return NULL;
}
if (loader_add_dev_ext_table(inst, &idx, funcName)) {
// successfully added new table entry
// init any dev dispatch table entrys as needed
loader_init_dispatch_dev_ext_entry(inst, NULL, idx, funcName);
return loader_get_dev_ext_trampoline(idx);
}
return NULL;
}
struct loader_instance *loader_get_instance(const VkInstance instance)
{
/* look up the loader_instance in our list by comparing dispatch tables, as
* there is no guarantee the instance is still a loader_instance* after any
* layers which wrap the instance object.
*/
const VkLayerInstanceDispatchTable *disp;
struct loader_instance *ptr_instance = NULL;
disp = loader_get_instance_dispatch(instance);
for (struct loader_instance *inst = loader.instances; inst; inst = inst->next) {
if (inst->disp == disp) {
ptr_instance = inst;
break;
}
}
return ptr_instance;
}
static loader_platform_dl_handle loader_add_layer_lib(
const struct loader_instance *inst,
const char *chain_type,
struct loader_layer_properties *layer_prop)
{
struct loader_lib_info *new_layer_lib_list, *my_lib;
size_t new_alloc_size;
/*
* TODO: We can now track this information in the
* scanned_layer_libraries list.
*/
for (uint32_t i = 0; i < loader.loaded_layer_lib_count; i++) {
if (strcmp(loader.loaded_layer_lib_list[i].lib_name, layer_prop->lib_name) == 0) {
/* Have already loaded this library, just increment ref count */
loader.loaded_layer_lib_list[i].ref_count++;
loader_log(VK_DBG_REPORT_DEBUG_BIT, 0,
"%s Chain: Increment layer reference count for layer library %s",
chain_type, layer_prop->lib_name);
return loader.loaded_layer_lib_list[i].lib_handle;
}
}
/* Haven't seen this library so load it */
new_alloc_size = 0;
if (loader.loaded_layer_lib_capacity == 0)
new_alloc_size = 8 * sizeof(struct loader_lib_info);
else if (loader.loaded_layer_lib_capacity <= loader.loaded_layer_lib_count *
sizeof(struct loader_lib_info))
new_alloc_size = loader.loaded_layer_lib_capacity * 2;
if (new_alloc_size) {
new_layer_lib_list = loader_heap_realloc(
inst, loader.loaded_layer_lib_list,
loader.loaded_layer_lib_capacity,
new_alloc_size,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (!new_layer_lib_list) {
loader_log(VK_DBG_REPORT_ERROR_BIT, 0, "loader: realloc failed in loader_add_layer_lib");
return NULL;
}
loader.loaded_layer_lib_capacity = new_alloc_size;
} else
new_layer_lib_list = loader.loaded_layer_lib_list;
my_lib = &new_layer_lib_list[loader.loaded_layer_lib_count];
strncpy(my_lib->lib_name, layer_prop->lib_name, sizeof(my_lib->lib_name));
my_lib->lib_name[sizeof(my_lib->lib_name) - 1] = '\0';
my_lib->ref_count = 0;
my_lib->lib_handle = NULL;
if ((my_lib->lib_handle = loader_platform_open_library(my_lib->lib_name)) == NULL) {
loader_log(VK_DBG_REPORT_ERROR_BIT, 0,
loader_platform_open_library_error(my_lib->lib_name));
return NULL;
} else {
loader_log(VK_DBG_REPORT_DEBUG_BIT, 0,
"Chain: %s: Loading layer library %s",
chain_type, layer_prop->lib_name);
}
loader.loaded_layer_lib_count++;
loader.loaded_layer_lib_list = new_layer_lib_list;
my_lib->ref_count++;
return my_lib->lib_handle;
}
static void loader_remove_layer_lib(
struct loader_instance *inst,
struct loader_layer_properties *layer_prop)
{
uint32_t idx;
struct loader_lib_info *new_layer_lib_list, *my_lib = NULL;
for (uint32_t i = 0; i < loader.loaded_layer_lib_count; i++) {
if (strcmp(loader.loaded_layer_lib_list[i].lib_name, layer_prop->lib_name) == 0) {
/* found matching library */
idx = i;
my_lib = &loader.loaded_layer_lib_list[i];
break;
}
}
if (my_lib) {
my_lib->ref_count--;
if (my_lib->ref_count > 0) {
loader_log(VK_DBG_REPORT_DEBUG_BIT, 0,
"Decrement reference count for layer library %s", layer_prop->lib_name);
return;
}
}
loader_platform_close_library(my_lib->lib_handle);
loader_log(VK_DBG_REPORT_DEBUG_BIT, 0,
"Unloading layer library %s", layer_prop->lib_name);
/* Need to remove unused library from list */
new_layer_lib_list = loader_heap_alloc(inst,
loader.loaded_layer_lib_capacity,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (!new_layer_lib_list) {
loader_log(VK_DBG_REPORT_ERROR_BIT, 0, "loader: heap alloc failed loader_remove_layer_library");
return;
}
if (idx > 0) {
/* Copy records before idx */
memcpy(new_layer_lib_list, &loader.loaded_layer_lib_list[0],
sizeof(struct loader_lib_info) * idx);
}
if (idx < (loader.loaded_layer_lib_count - 1)) {
/* Copy records after idx */
memcpy(&new_layer_lib_list[idx], &loader.loaded_layer_lib_list[idx+1],
sizeof(struct loader_lib_info) * (loader.loaded_layer_lib_count - idx - 1));
}
loader_heap_free(inst, loader.loaded_layer_lib_list);
loader.loaded_layer_lib_count--;
loader.loaded_layer_lib_list = new_layer_lib_list;
}
/**
* Go through the search_list and find any layers which match type. If layer
* type match is found in then add it to ext_list.
*/
//TODO need to handle implict layer enable env var and disable env var
static void loader_add_layer_implicit(
const struct loader_instance *inst,
const enum layer_type type,
struct loader_layer_list *list,
const struct loader_layer_list *search_list)
{
uint32_t i;
for (i = 0; i < search_list->count; i++) {
const struct loader_layer_properties *prop = &search_list->list[i];
if (prop->type & type) {
/* Found an layer with the same type, add to layer_list */
loader_add_to_layer_list(inst, list, 1, prop);
}
}
}
/**
* Get the layer name(s) from the env_name environment variable. If layer
* is found in search_list then add it to layer_list. But only add it to
* layer_list if type matches.
*/
static void loader_add_layer_env(
const struct loader_instance *inst,
const enum layer_type type,
const char *env_name,
struct loader_layer_list *layer_list,
const struct loader_layer_list *search_list)
{
char *layerEnv;
char *next, *name;
layerEnv = getenv(env_name);
if (layerEnv == NULL) {
return;
}
name = loader_stack_alloc(strlen(layerEnv) + 1);
if (name == NULL) {
return;
}
strcpy(name, layerEnv);
while (name && *name ) {
next = loader_get_next_path(name);
loader_find_layer_name_add_list(inst, name, type, search_list, layer_list);
name = next;
}
return;
}
void loader_deactivate_instance_layers(struct loader_instance *instance)
{
if (!instance->activated_layer_list.count) {
return;
}
/* Create instance chain of enabled layers */
for (uint32_t i = 0; i < instance->activated_layer_list.count; i++) {
struct loader_layer_properties *layer_prop = &instance->activated_layer_list.list[i];
loader_remove_layer_lib(instance, layer_prop);
}
loader_destroy_layer_list(instance, &instance->activated_layer_list);
}
VkResult loader_enable_instance_layers(
struct loader_instance *inst,
const VkInstanceCreateInfo *pCreateInfo,
const struct loader_layer_list *instance_layers)
{
VkResult err;
assert(inst && "Cannot have null instance");
if (!loader_init_layer_list(inst, &inst->activated_layer_list)) {
loader_log(VK_DBG_REPORT_ERROR_BIT, 0, "Failed to alloc Instance activated layer list");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
/* Add any implicit layers first */
loader_add_layer_implicit(
inst,
VK_LAYER_TYPE_INSTANCE_IMPLICIT,
&inst->activated_layer_list,
instance_layers);
/* Add any layers specified via environment variable next */
loader_add_layer_env(
inst,
VK_LAYER_TYPE_INSTANCE_EXPLICIT,
"VK_INSTANCE_LAYERS",
&inst->activated_layer_list,
instance_layers);
/* Add layers specified by the application */
err = loader_add_layer_names_to_list(
inst,
&inst->activated_layer_list,
pCreateInfo->enabledLayerNameCount,
pCreateInfo->ppEnabledLayerNames,
instance_layers);
return err;
}
uint32_t loader_activate_instance_layers(struct loader_instance *inst)
{
uint32_t layer_idx;
VkBaseLayerObject *wrappedInstance;
if (inst == NULL) {
return 0;
}
// NOTE inst is unwrapped at this point in time
void* baseObj = (void*) inst;
void* nextObj = (void*) inst;
VkBaseLayerObject *nextInstObj;
PFN_vkGetInstanceProcAddr nextGPA = loader_gpa_instance_internal;
if (!inst->activated_layer_list.count) {
loader_init_instance_core_dispatch_table(inst->disp, nextGPA, (VkInstance) nextObj, (VkInstance) baseObj);
return 0;
}
wrappedInstance = loader_stack_alloc(sizeof(VkBaseLayerObject)
* inst->activated_layer_list.count);
if (!wrappedInstance) {
loader_log(VK_DBG_REPORT_ERROR_BIT, 0, "Failed to alloc Instance objects for layer");
return 0;
}
/* Create instance chain of enabled layers */
layer_idx = inst->activated_layer_list.count - 1;
for (int32_t i = inst->activated_layer_list.count - 1; i >= 0; i--) {
struct loader_layer_properties *layer_prop = &inst->activated_layer_list.list[i];
loader_platform_dl_handle lib_handle;
/*
* Note: An extension's Get*ProcAddr should not return a function pointer for
* any extension entry points until the extension has been enabled.
* To do this requires a different behavior from Get*ProcAddr functions implemented
* in layers.
* The very first call to a layer will be it's Get*ProcAddr function requesting
* the layer's vkGet*ProcAddr. The layer should initialize its internal dispatch table
* with the wrapped object given (either Instance or Device) and return the layer's
* Get*ProcAddr function. The layer should also use this opportunity to record the
* baseObject so that it can find the correct local dispatch table on future calls.
* Subsequent calls to Get*ProcAddr, CreateInstance, CreateDevice
* will not use a wrapped object and must look up their local dispatch table from
* the given baseObject.
*/
nextInstObj = (wrappedInstance + layer_idx);
nextInstObj->pGPA = (PFN_vkGPA) nextGPA;
nextInstObj->baseObject = baseObj;
nextInstObj->nextObject = nextObj;
nextObj = (void*) nextInstObj;
lib_handle = loader_add_layer_lib(inst, "instance", layer_prop);
if (!lib_handle)
continue; // TODO what should we do in this case
if ((nextGPA = layer_prop->functions.get_instance_proc_addr) == NULL) {
if (layer_prop->functions.str_gipa == NULL || strlen(layer_prop->functions.str_gipa) == 0) {
nextGPA = (PFN_vkGetInstanceProcAddr) loader_platform_get_proc_address(lib_handle, "vkGetInstanceProcAddr");
layer_prop->functions.get_instance_proc_addr = nextGPA;
} else
nextGPA = (PFN_vkGetInstanceProcAddr) loader_platform_get_proc_address(lib_handle, layer_prop->functions.str_gipa);
if (!nextGPA) {
loader_log(VK_DBG_REPORT_ERROR_BIT, 0, "Failed to find vkGetInstanceProcAddr in layer %s", layer_prop->lib_name);
/* TODO: Should we return nextObj, nextGPA to previous? or decrement layer_list count*/
continue;
}
}
loader_log(VK_DBG_REPORT_INFO_BIT, 0,
"Insert instance layer %s (%s)",
layer_prop->info.layerName,
layer_prop->lib_name);
layer_idx--;
}
loader_init_instance_core_dispatch_table(inst->disp, nextGPA, (VkInstance) nextObj, (VkInstance) baseObj);
return inst->activated_layer_list.count;
}
void loader_activate_instance_layer_extensions(struct loader_instance *inst)
{
loader_init_instance_extension_dispatch_table(inst->disp,
inst->disp->GetInstanceProcAddr,
(VkInstance) inst);
}
static VkResult loader_enable_device_layers(
const struct loader_instance *inst,
struct loader_icd *icd,
struct loader_device *dev,
const VkDeviceCreateInfo *pCreateInfo,
const struct loader_layer_list *device_layers)
{
VkResult err;
assert(dev && "Cannot have null device");
if (dev->activated_layer_list.list == NULL || dev->activated_layer_list.capacity == 0) {
loader_init_layer_list(inst, &dev->activated_layer_list);
}
if (dev->activated_layer_list.list == NULL) {
loader_log(VK_DBG_REPORT_ERROR_BIT, 0, "Failed to alloc device activated layer list");
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
/* Add any implicit layers first */
loader_add_layer_implicit(
inst,
VK_LAYER_TYPE_DEVICE_IMPLICIT,
&dev->activated_layer_list,
device_layers);
/* Add any layers specified via environment variable next */
loader_add_layer_env(
inst,
VK_LAYER_TYPE_DEVICE_EXPLICIT,
"VK_DEVICE_LAYERS",
&dev->activated_layer_list,
device_layers);
/* Add layers specified by the application */
err = loader_add_layer_names_to_list(
inst,
&dev->activated_layer_list,
pCreateInfo->enabledLayerNameCount,
pCreateInfo->ppEnabledLayerNames,
device_layers);
return err;
}
/*
* This function terminates the device chain for CreateDevice.
* CreateDevice is a special case and so the loader call's
* the ICD's CreateDevice before creating the chain. Since
* we can't call CreateDevice twice we must terminate the
* device chain with something else.
*/
static VKAPI_ATTR VkResult VKAPI_CALL scratch_vkCreateDevice(
VkPhysicalDevice physicalDevice,
const VkDeviceCreateInfo *pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDevice *pDevice)
{
return VK_SUCCESS;
}
static VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL loader_GetDeviceChainProcAddr(VkDevice device, const char * name)
{
if (!strcmp(name, "vkGetDeviceProcAddr"))
return (PFN_vkVoidFunction) loader_GetDeviceChainProcAddr;
if (!strcmp(name, "vkCreateDevice"))
return (PFN_vkVoidFunction) scratch_vkCreateDevice;
struct loader_device *found_dev;
struct loader_icd *icd = loader_get_icd_and_device(device, &found_dev);
return icd->GetDeviceProcAddr(device, name);
}
static uint32_t loader_activate_device_layers(
const struct loader_instance *inst,
struct loader_device *dev,
VkDevice device)
{
if (!dev) {
return 0;
}
/* activate any layer libraries */
void* nextObj = (void*) device;
void* baseObj = nextObj;
VkBaseLayerObject *nextGpuObj;
PFN_vkGetDeviceProcAddr nextGPA = loader_GetDeviceChainProcAddr;
VkBaseLayerObject *wrappedGpus;
if (!dev->activated_layer_list.count) {
loader_init_device_dispatch_table(&dev->loader_dispatch, nextGPA,
(VkDevice) nextObj, (VkDevice) baseObj);
return 0;
}
wrappedGpus = loader_heap_alloc(inst,
sizeof (VkBaseLayerObject) * dev->activated_layer_list.count,
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (!wrappedGpus) {
loader_log(VK_DBG_REPORT_ERROR_BIT, 0, "Failed to alloc Gpu objects for layer");
return 0;
}
for (int32_t i = dev->activated_layer_list.count - 1; i >= 0; i--) {
struct loader_layer_properties *layer_prop = &dev->activated_layer_list.list[i];
loader_platform_dl_handle lib_handle;
nextGpuObj = (wrappedGpus + i);
nextGpuObj->pGPA = (PFN_vkGPA)nextGPA;
nextGpuObj->baseObject = baseObj;
nextGpuObj->nextObject = nextObj;
nextObj = (void*) nextGpuObj;
lib_handle = loader_add_layer_lib(inst, "device", layer_prop);
if ((nextGPA = layer_prop->functions.get_device_proc_addr) == NULL) {
if (layer_prop->functions.str_gdpa == NULL || strlen(layer_prop->functions.str_gdpa) == 0) {
nextGPA = (PFN_vkGetDeviceProcAddr) loader_platform_get_proc_address(lib_handle, "vkGetDeviceProcAddr");
layer_prop->functions.get_device_proc_addr = nextGPA;
} else
nextGPA = (PFN_vkGetDeviceProcAddr) loader_platform_get_proc_address(lib_handle, layer_prop->functions.str_gdpa);
if (!nextGPA) {
loader_log(VK_DBG_REPORT_ERROR_BIT, 0, "Failed to find vkGetDeviceProcAddr in layer %s", layer_prop->lib_name);
continue;
}
}
loader_log(VK_DBG_REPORT_INFO_BIT, 0,
"Insert device layer library %s (%s)",
layer_prop->info.layerName,
layer_prop->lib_name);
}
loader_init_device_dispatch_table(&dev->loader_dispatch, nextGPA,
(VkDevice) nextObj, (VkDevice) baseObj);
loader_heap_free(inst, wrappedGpus);
return dev->activated_layer_list.count;
}
VkResult loader_validate_layers(
const uint32_t layer_count,
const char * const *ppEnabledLayerNames,
const struct loader_layer_list *list)
{
struct loader_layer_properties *prop;
for (uint32_t i = 0; i < layer_count; i++) {
prop = loader_get_layer_property(ppEnabledLayerNames[i],
list);
if (!prop) {
return VK_ERROR_LAYER_NOT_PRESENT;
}
}
return VK_SUCCESS;
}
VkResult loader_validate_instance_extensions(
const struct loader_extension_list *icd_exts,
const struct loader_layer_list *instance_layer,
const VkInstanceCreateInfo *pCreateInfo)
{
VkExtensionProperties *extension_prop;
struct loader_layer_properties *layer_prop;
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionNameCount; i++) {
extension_prop = get_extension_property(pCreateInfo->ppEnabledExtensionNames[i],
icd_exts);
if (extension_prop) {
continue;
}
extension_prop = NULL;
/* Not in global list, search layer extension lists */
for (uint32_t j = 0; j < pCreateInfo->enabledLayerNameCount; j++) {
layer_prop = loader_get_layer_property(pCreateInfo->ppEnabledLayerNames[i],
instance_layer);
if (!layer_prop) {
/* Should NOT get here, loader_validate_layers
* should have already filtered this case out.
*/
continue;
}
extension_prop = get_extension_property(pCreateInfo->ppEnabledExtensionNames[i],
&layer_prop->instance_extension_list);
if (extension_prop) {
/* Found the extension in one of the layers enabled by the app. */
break;
}
}
if (!extension_prop) {
/* Didn't find extension name in any of the global layers, error out */
return VK_ERROR_EXTENSION_NOT_PRESENT;
}
}
return VK_SUCCESS;
}
VkResult loader_validate_device_extensions(
struct loader_physical_device *phys_dev,
const struct loader_layer_list *device_layer,
const VkDeviceCreateInfo *pCreateInfo)
{
VkExtensionProperties *extension_prop;
struct loader_layer_properties *layer_prop;
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionNameCount; i++) {
const char *extension_name = pCreateInfo->ppEnabledExtensionNames[i];
extension_prop = get_extension_property(extension_name,
&phys_dev->device_extension_cache);
if (extension_prop) {
continue;
}
/* Not in global list, search layer extension lists */
for (uint32_t j = 0; j < pCreateInfo->enabledLayerNameCount; j++) {
const char *layer_name = pCreateInfo->ppEnabledLayerNames[j];
layer_prop = loader_get_layer_property(layer_name,
device_layer);
if (!layer_prop) {
/* Should NOT get here, loader_validate_instance_layers
* should have already filtered this case out.
*/
continue;
}
extension_prop = get_dev_extension_property(extension_name,
&layer_prop->device_extension_list);
if (extension_prop) {
/* Found the extension in one of the layers enabled by the app. */
break;
}
}
if (!extension_prop) {
/* Didn't find extension name in any of the device layers, error out */
return VK_ERROR_EXTENSION_NOT_PRESENT;
}
}
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL loader_CreateInstance(
const VkInstanceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkInstance* pInstance)
{
struct loader_instance *ptr_instance = *(struct loader_instance **) pInstance;
struct loader_icd *icd;
VkExtensionProperties *prop;
char **filtered_extension_names = NULL;
VkInstanceCreateInfo icd_create_info;
VkResult res = VK_SUCCESS;
bool success = false;
memcpy(&icd_create_info, pCreateInfo, sizeof(icd_create_info));
icd_create_info.enabledLayerNameCount = 0;
icd_create_info.ppEnabledLayerNames = NULL;
/*
* NOTE: Need to filter the extensions to only those
* supported by the ICD.
* No ICD will advertise support for layers. An ICD
* library could support a layer, but it would be
* independent of the actual ICD, just in the same library.
*/
filtered_extension_names = loader_stack_alloc(pCreateInfo->enabledExtensionNameCount * sizeof(char *));
if (!filtered_extension_names) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
icd_create_info.ppEnabledExtensionNames = (const char * const *) filtered_extension_names;
for (uint32_t i = 0; i < ptr_instance->icd_libs.count; i++) {
icd = loader_icd_add(ptr_instance, &ptr_instance->icd_libs.list[i]);
if (icd) {
icd_create_info.enabledExtensionNameCount = 0;
struct loader_extension_list icd_exts;
loader_log(VK_DBG_REPORT_DEBUG_BIT, 0, "Build ICD instance extension list");
// traverse scanned icd list adding non-duplicate extensions to the list
loader_init_generic_list(ptr_instance, (struct loader_generic_list *) &icd_exts,
sizeof(VkExtensionProperties));
loader_add_global_extensions(ptr_instance,
icd->this_icd_lib->EnumerateInstanceExtensionProperties,
icd->this_icd_lib->lib_name,
&icd_exts);
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionNameCount; i++) {
prop = get_extension_property(pCreateInfo->ppEnabledExtensionNames[i],
&icd_exts);
if (prop) {
filtered_extension_names[icd_create_info.enabledExtensionNameCount] = (char *) pCreateInfo->ppEnabledExtensionNames[i];
icd_create_info.enabledExtensionNameCount++;
}
}
loader_destroy_generic_list(ptr_instance, (struct loader_generic_list *) &icd_exts);
res = ptr_instance->icd_libs.list[i].CreateInstance(&icd_create_info,
pAllocator,
&(icd->instance));
if (res == VK_SUCCESS)
success = loader_icd_init_entrys(
icd,
icd->instance,
ptr_instance->icd_libs.list[i].GetInstanceProcAddr);
if (res != VK_SUCCESS || !success)
{
ptr_instance->icds = ptr_instance->icds->next;
loader_icd_destroy(ptr_instance, icd);
icd->instance = VK_NULL_HANDLE;
loader_log(VK_DBG_REPORT_ERROR_BIT, 0,
"ICD ignored: failed to CreateInstance and find entrypoints with ICD");
}
}
}
/*
* If no ICDs were added to instance list and res is unchanged
* from it's initial value, the loader was unable to find
* a suitable ICD.
*/
if (ptr_instance->icds == NULL) {
if (res == VK_SUCCESS) {
return VK_ERROR_INCOMPATIBLE_DRIVER;
} else {
return res;
}
}
return VK_SUCCESS;
}
VKAPI_ATTR void VKAPI_CALL loader_DestroyInstance(
VkInstance instance,
const VkAllocationCallbacks* pAllocator)
{
struct loader_instance *ptr_instance = loader_instance(instance);
struct loader_icd *icds = ptr_instance->icds;
struct loader_icd *next_icd;
// Remove this instance from the list of instances:
struct loader_instance *prev = NULL;
struct loader_instance *next = loader.instances;
while (next != NULL) {
if (next == ptr_instance) {
// Remove this instance from the list:
if (prev)
prev->next = next->next;
else
loader.instances = next->next;
break;
}
prev = next;
next = next->next;
}
while (icds) {
if (icds->instance) {
icds->DestroyInstance(icds->instance, pAllocator);
}
next_icd = icds->next;
icds->instance = VK_NULL_HANDLE;
loader_icd_destroy(ptr_instance, icds);
icds = next_icd;
}
loader_delete_layer_properties(ptr_instance, &ptr_instance->device_layer_list);
loader_delete_layer_properties(ptr_instance, &ptr_instance->instance_layer_list);
loader_scanned_icd_clear(ptr_instance, &ptr_instance->icd_libs);
loader_destroy_generic_list(ptr_instance, (struct loader_generic_list *)
&ptr_instance->ext_list);
for (uint32_t i = 0; i < ptr_instance->total_gpu_count; i++)
loader_destroy_generic_list(ptr_instance, (struct loader_generic_list *)
&ptr_instance->phys_devs[i].device_extension_cache);
loader_heap_free(ptr_instance, ptr_instance->phys_devs);
loader_free_dev_ext_table(ptr_instance);
}
VkResult loader_init_physical_device_info(struct loader_instance *ptr_instance)
{
struct loader_icd *icd;
uint32_t i, j, idx, count = 0;
VkResult res;
struct loader_phys_dev_per_icd *phys_devs;
ptr_instance->total_gpu_count = 0;
phys_devs = (struct loader_phys_dev_per_icd *) loader_stack_alloc(
sizeof(struct loader_phys_dev_per_icd) *
ptr_instance->total_icd_count);
if (!phys_devs)
return VK_ERROR_OUT_OF_HOST_MEMORY;
icd = ptr_instance->icds;
for (i = 0; i < ptr_instance->total_icd_count; i++) {
assert(icd);
res = icd->EnumeratePhysicalDevices(icd->instance, &phys_devs[i].count, NULL);
if (res != VK_SUCCESS)
return res;
count += phys_devs[i].count;
icd = icd->next;
}
ptr_instance->phys_devs = (struct loader_physical_device *) loader_heap_alloc(
ptr_instance,
count * sizeof(struct loader_physical_device),
VK_SYSTEM_ALLOCATION_SCOPE_INSTANCE);
if (!ptr_instance->phys_devs)
return VK_ERROR_OUT_OF_HOST_MEMORY;
icd = ptr_instance->icds;
struct loader_physical_device *inst_phys_devs = ptr_instance->phys_devs;
idx = 0;
for (i = 0; i < ptr_instance->total_icd_count; i++) {
assert(icd);
phys_devs[i].phys_devs = (VkPhysicalDevice *) loader_stack_alloc(
phys_devs[i].count * sizeof(VkPhysicalDevice));
if (!phys_devs[i].phys_devs) {
loader_heap_free(ptr_instance, ptr_instance->phys_devs);
ptr_instance->phys_devs = NULL;
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
res = icd->EnumeratePhysicalDevices(
icd->instance,
&(phys_devs[i].count),
phys_devs[i].phys_devs);
if ((res == VK_SUCCESS)) {
ptr_instance->total_gpu_count += phys_devs[i].count;
for (j = 0; j < phys_devs[i].count; j++) {
// initialize the loader's physicalDevice object
loader_set_dispatch((void *) &inst_phys_devs[idx], ptr_instance->disp);
inst_phys_devs[idx].this_instance = ptr_instance;
inst_phys_devs[idx].this_icd = icd;
inst_phys_devs[idx].phys_dev = phys_devs[i].phys_devs[j];
memset(&inst_phys_devs[idx].device_extension_cache, 0, sizeof(struct loader_extension_list));
idx++;
}
} else {
loader_heap_free(ptr_instance, ptr_instance->phys_devs);
ptr_instance->phys_devs = NULL;
return res;
}
icd = icd->next;
}
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL loader_EnumeratePhysicalDevices(
VkInstance instance,
uint32_t* pPhysicalDeviceCount,
VkPhysicalDevice* pPhysicalDevices)
{
uint32_t i;
struct loader_instance *ptr_instance = (struct loader_instance *) instance;
VkResult res = VK_SUCCESS;
if (ptr_instance->total_gpu_count == 0) {
res = loader_init_physical_device_info(ptr_instance);
}
*pPhysicalDeviceCount = ptr_instance->total_gpu_count;
if (!pPhysicalDevices) {
return res;
}
for (i = 0; i < ptr_instance->total_gpu_count; i++) {
pPhysicalDevices[i] = (VkPhysicalDevice) &ptr_instance->phys_devs[i];
}
return res;
}
VKAPI_ATTR void VKAPI_CALL loader_GetPhysicalDeviceProperties(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceProperties* pProperties)
{
struct loader_physical_device *phys_dev = (struct loader_physical_device *) physicalDevice;
struct loader_icd *icd = phys_dev->this_icd;
if (icd->GetPhysicalDeviceProperties)
icd->GetPhysicalDeviceProperties(phys_dev->phys_dev, pProperties);
}
VKAPI_ATTR void VKAPI_CALL loader_GetPhysicalDeviceQueueFamilyProperties (
VkPhysicalDevice physicalDevice,
uint32_t* pQueueFamilyPropertyCount,
VkQueueFamilyProperties* pProperties)
{
struct loader_physical_device *phys_dev = (struct loader_physical_device *) physicalDevice;
struct loader_icd *icd = phys_dev->this_icd;
if (icd->GetPhysicalDeviceQueueFamilyProperties)
icd->GetPhysicalDeviceQueueFamilyProperties(phys_dev->phys_dev, pQueueFamilyPropertyCount, pProperties);
}
VKAPI_ATTR void VKAPI_CALL loader_GetPhysicalDeviceMemoryProperties (
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceMemoryProperties* pProperties)
{
struct loader_physical_device *phys_dev = (struct loader_physical_device *) physicalDevice;
struct loader_icd *icd = phys_dev->this_icd;
if (icd->GetPhysicalDeviceMemoryProperties)
icd->GetPhysicalDeviceMemoryProperties(phys_dev->phys_dev, pProperties);
}
VKAPI_ATTR void VKAPI_CALL loader_GetPhysicalDeviceFeatures(
VkPhysicalDevice physicalDevice,
VkPhysicalDeviceFeatures* pFeatures)
{
struct loader_physical_device *phys_dev = (struct loader_physical_device *) physicalDevice;
struct loader_icd *icd = phys_dev->this_icd;
if (icd->GetPhysicalDeviceFeatures)
icd->GetPhysicalDeviceFeatures(phys_dev->phys_dev, pFeatures);
}
VKAPI_ATTR void VKAPI_CALL loader_GetPhysicalDeviceFormatProperties(
VkPhysicalDevice physicalDevice,
VkFormat format,
VkFormatProperties* pFormatInfo)
{
struct loader_physical_device *phys_dev = (struct loader_physical_device *) physicalDevice;
struct loader_icd *icd = phys_dev->this_icd;
if (icd->GetPhysicalDeviceFormatProperties)
icd->GetPhysicalDeviceFormatProperties(phys_dev->phys_dev, format, pFormatInfo);
}
VKAPI_ATTR VkResult VKAPI_CALL loader_GetPhysicalDeviceImageFormatProperties(
VkPhysicalDevice physicalDevice,
VkFormat format,
VkImageType type,
VkImageTiling tiling,
VkImageUsageFlags usage,
VkImageCreateFlags flags,
VkImageFormatProperties* pImageFormatProperties)
{
struct loader_physical_device *phys_dev = (struct loader_physical_device *) physicalDevice;
struct loader_icd *icd = phys_dev->this_icd;
if (!icd->GetPhysicalDeviceImageFormatProperties)
return VK_ERROR_INITIALIZATION_FAILED;
return icd->GetPhysicalDeviceImageFormatProperties(phys_dev->phys_dev, format,
type, tiling, usage, flags, pImageFormatProperties);
}
VKAPI_ATTR void VKAPI_CALL loader_GetPhysicalDeviceSparseImageFormatProperties(
VkPhysicalDevice physicalDevice,
VkFormat format,
VkImageType type,
VkSampleCountFlagBits samples,
VkImageUsageFlags usage,
VkImageTiling tiling,
uint32_t* pNumProperties,
VkSparseImageFormatProperties* pProperties)
{
struct loader_physical_device *phys_dev = (struct loader_physical_device *) physicalDevice;
struct loader_icd *icd = phys_dev->this_icd;
if (icd->GetPhysicalDeviceSparseImageFormatProperties)
icd->GetPhysicalDeviceSparseImageFormatProperties(phys_dev->phys_dev, format, type, samples, usage, tiling, pNumProperties, pProperties);
}
VKAPI_ATTR VkResult VKAPI_CALL loader_CreateDevice(
VkPhysicalDevice physicalDevice,
const VkDeviceCreateInfo* pCreateInfo,
const VkAllocationCallbacks* pAllocator,
VkDevice* pDevice)
{
struct loader_physical_device *phys_dev;
struct loader_icd *icd;
struct loader_device *dev;
struct loader_instance *inst;
VkDeviceCreateInfo device_create_info;
char **filtered_extension_names = NULL;
VkResult res;
assert(pCreateInfo->queueCreateInfoCount >= 1);
//TODO this only works for one physical device per instance
// once CreateDevice layer bootstrapping is done via DeviceCreateInfo
// hopefully don't need this anymore in trampoline code
phys_dev = loader_get_physical_device(physicalDevice);
icd = phys_dev->this_icd;
if (!icd)
return VK_ERROR_INITIALIZATION_FAILED;
inst = phys_dev->this_instance;
if (!icd->CreateDevice) {
return VK_ERROR_INITIALIZATION_FAILED;
}
/* validate any app enabled layers are available */
if (pCreateInfo->enabledLayerNameCount > 0) {
res = loader_validate_layers(pCreateInfo->enabledLayerNameCount,
pCreateInfo->ppEnabledLayerNames,
&inst->device_layer_list);
if (res != VK_SUCCESS) {
return res;
}
}
/* Get the physical device extensions if they haven't been retrieved yet */
if (phys_dev->device_extension_cache.capacity == 0) {
if (!loader_init_generic_list(inst, (struct loader_generic_list *)
&phys_dev->device_extension_cache,
sizeof(VkExtensionProperties))) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
res = loader_add_physical_device_extensions(
inst, physicalDevice,
phys_dev->this_icd->this_icd_lib->lib_name,
&phys_dev->device_extension_cache);
if (res != VK_SUCCESS) {
return res;
}
}
/* make sure requested extensions to be enabled are supported */
res = loader_validate_device_extensions(phys_dev, &inst->device_layer_list, pCreateInfo);
if (res != VK_SUCCESS) {
return res;
}
/*
* NOTE: Need to filter the extensions to only those
* supported by the ICD.
* No ICD will advertise support for layers. An ICD
* library could support a layer, but it would be
* independent of the actual ICD, just in the same library.
*/
filtered_extension_names = loader_stack_alloc(pCreateInfo->enabledExtensionNameCount * sizeof(char *));
if (!filtered_extension_names) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
/* Copy user's data */
memcpy(&device_create_info, pCreateInfo, sizeof(VkDeviceCreateInfo));
/* ICD's do not use layers */
device_create_info.enabledLayerNameCount = 0;
device_create_info.ppEnabledLayerNames = NULL;
device_create_info.enabledExtensionNameCount = 0;
device_create_info.ppEnabledExtensionNames = (const char * const *) filtered_extension_names;
for (uint32_t i = 0; i < pCreateInfo->enabledExtensionNameCount; i++) {
const char *extension_name = pCreateInfo->ppEnabledExtensionNames[i];
VkExtensionProperties *prop = get_extension_property(extension_name,
&phys_dev->device_extension_cache);
if (prop) {
filtered_extension_names[device_create_info.enabledExtensionNameCount] = (char *) extension_name;
device_create_info.enabledExtensionNameCount++;
}
}
// since physicalDevice object maybe wrapped by a layer need to get unwrapped version
// we haven't yet called down the chain for the layer to unwrap the object
res = icd->CreateDevice(phys_dev->phys_dev, pCreateInfo, pAllocator, pDevice);
if (res != VK_SUCCESS) {
return res;
}
dev = loader_add_logical_device(inst, *pDevice, &icd->logical_device_list);
if (dev == NULL) {
return VK_ERROR_OUT_OF_HOST_MEMORY;
}
loader_init_dispatch(*pDevice, &dev->loader_dispatch);
/* activate any layers on device chain which terminates with device*/
res = loader_enable_device_layers(inst, icd, dev, pCreateInfo, &inst->device_layer_list);
if (res != VK_SUCCESS) {
loader_destroy_logical_device(inst, dev);
return res;
}
loader_activate_device_layers(inst, dev, *pDevice);
/* finally can call down the chain */
res = dev->loader_dispatch.core_dispatch.CreateDevice(physicalDevice, pCreateInfo, pAllocator, pDevice);
/* initialize any device extension dispatch entry's from the instance list*/
loader_init_dispatch_dev_ext(inst, dev);
/* initialize WSI device extensions as part of core dispatch since loader has
* dedicated trampoline code for these*/
loader_init_device_extension_dispatch_table(&dev->loader_dispatch,
dev->loader_dispatch.core_dispatch.GetDeviceProcAddr,
*pDevice);
dev->loader_dispatch.core_dispatch.CreateDevice = icd->CreateDevice;
return res;
}
/**
* Get an instance level or global level entry point address.
* @param instance
* @param pName
* @return
* If instance == NULL returns a global level functions only
* If instance is valid returns a trampoline entry point for all dispatchable Vulkan
* functions both core and extensions.
*/
LOADER_EXPORT VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vkGetInstanceProcAddr(VkInstance instance, const char * pName)
{
void *addr;
addr = globalGetProcAddr(pName);
if (instance == VK_NULL_HANDLE) {
// get entrypoint addresses that are global (no dispatchable object)
return addr;
} else {
// if a global entrypoint return NULL
if (addr)
return NULL;
}
struct loader_instance *ptr_instance = loader_get_instance(instance);
if (ptr_instance == NULL)
return NULL;
// Return trampoline code for non-global entrypoints including any extensions.
// Device extensions are returned if a layer or ICD supports the extension.
// Instance extensions are returned if the extension is enabled and the loader
// or someone else supports the extension
return trampolineGetProcAddr(ptr_instance, pName);
}
/**
* Get a device level or global level entry point address.
* @param device
* @param pName
* @return
* If device is valid, returns a device relative entry point for device level
* entry points both core and extensions.
* Device relative means call down the device chain.
*/
LOADER_EXPORT VKAPI_ATTR PFN_vkVoidFunction VKAPI_CALL vkGetDeviceProcAddr(VkDevice device, const char * pName)
{
void *addr;
/* for entrypoints that loader must handle (ie non-dispatchable or create object)
make sure the loader entrypoint is returned */
addr = loader_non_passthrough_gdpa(pName);
if (addr) {
return addr;
}
/* Although CreateDevice is on device chain it's dispatchable object isn't
* a VkDevice or child of VkDevice so return NULL.
*/
if (!strcmp(pName, "CreateDevice"))
return NULL;
/* return the dispatch table entrypoint for the fastest case */
const VkLayerDispatchTable *disp_table = * (VkLayerDispatchTable **) device;
if (disp_table == NULL)
return NULL;
addr = loader_lookup_device_dispatch_table(disp_table, pName);
if (addr)
return addr;
if (disp_table->GetDeviceProcAddr == NULL)
return NULL;
return disp_table->GetDeviceProcAddr(device, pName);
}
LOADER_EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkEnumerateInstanceExtensionProperties(
const char* pLayerName,
uint32_t* pPropertyCount,
VkExtensionProperties* pProperties)
{
struct loader_extension_list *global_ext_list=NULL;
struct loader_layer_list instance_layers;
struct loader_extension_list icd_extensions;
struct loader_icd_libs icd_libs;
uint32_t copy_size;
tls_instance = NULL;
memset(&icd_extensions, 0, sizeof(icd_extensions));
memset(&instance_layers, 0, sizeof(instance_layers));
loader_platform_thread_once(&once_init, loader_initialize);
/* get layer libraries if needed */
if (pLayerName && strlen(pLayerName) != 0) {
loader_layer_scan(NULL, &instance_layers, NULL);
for (uint32_t i = 0; i < instance_layers.count; i++) {
struct loader_layer_properties *props = &instance_layers.list[i];
if (strcmp(props->info.layerName, pLayerName) == 0) {
global_ext_list = &props->instance_extension_list;
}
}
}
else {
/* Scan/discover all ICD libraries */
memset(&icd_libs, 0 , sizeof(struct loader_icd_libs));
loader_icd_scan(NULL, &icd_libs);
/* get extensions from all ICD's, merge so no duplicates */
loader_get_icd_loader_instance_extensions(NULL, &icd_libs, &icd_extensions);
loader_scanned_icd_clear(NULL, &icd_libs);
global_ext_list = &icd_extensions;
}
if (global_ext_list == NULL) {
loader_destroy_layer_list(NULL, &instance_layers);
return VK_ERROR_LAYER_NOT_PRESENT;
}
if (pProperties == NULL) {
*pPropertyCount = global_ext_list->count;
loader_destroy_layer_list(NULL, &instance_layers);
loader_destroy_generic_list(NULL, (struct loader_generic_list *)
&icd_extensions);
return VK_SUCCESS;
}
copy_size = *pPropertyCount < global_ext_list->count ? *pPropertyCount : global_ext_list->count;
for (uint32_t i = 0; i < copy_size; i++) {
memcpy(&pProperties[i],
&global_ext_list->list[i],
sizeof(VkExtensionProperties));
}
*pPropertyCount = copy_size;
loader_destroy_generic_list(NULL, (struct loader_generic_list *)
&icd_extensions);
if (copy_size < global_ext_list->count) {
loader_destroy_layer_list(NULL, &instance_layers);
return VK_INCOMPLETE;
}
loader_destroy_layer_list(NULL, &instance_layers);
return VK_SUCCESS;
}
LOADER_EXPORT VKAPI_ATTR VkResult VKAPI_CALL vkEnumerateInstanceLayerProperties(
uint32_t* pPropertyCount,
VkLayerProperties* pProperties)
{
struct loader_layer_list instance_layer_list;
tls_instance = NULL;
loader_platform_thread_once(&once_init, loader_initialize);
uint32_t copy_size;
/* get layer libraries */
memset(&instance_layer_list, 0, sizeof(instance_layer_list));
loader_layer_scan(NULL, &instance_layer_list, NULL);
if (pProperties == NULL) {
*pPropertyCount = instance_layer_list.count;
loader_destroy_layer_list(NULL, &instance_layer_list);
return VK_SUCCESS;
}
copy_size = (*pPropertyCount < instance_layer_list.count) ? *pPropertyCount : instance_layer_list.count;
for (uint32_t i = 0; i < copy_size; i++) {
memcpy(&pProperties[i], &instance_layer_list.list[i].info, sizeof(VkLayerProperties));
}
*pPropertyCount = copy_size;
loader_destroy_layer_list(NULL, &instance_layer_list);
if (copy_size < instance_layer_list.count) {
return VK_INCOMPLETE;
}
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL loader_EnumerateDeviceExtensionProperties(
VkPhysicalDevice physicalDevice,
const char* pLayerName,
uint32_t* pPropertyCount,
VkExtensionProperties* pProperties)
{
struct loader_physical_device *phys_dev;
uint32_t copy_size;
uint32_t count;
struct loader_device_extension_list *dev_ext_list=NULL;
//TODO fix this aliases physical devices
phys_dev = loader_get_physical_device(physicalDevice);
/* get layer libraries if needed */
if (pLayerName && strlen(pLayerName) != 0) {
for (uint32_t i = 0; i < phys_dev->this_instance->device_layer_list.count; i++) {
struct loader_layer_properties *props = &phys_dev->this_instance->device_layer_list.list[i];
if (strcmp(props->info.layerName, pLayerName) == 0) {
dev_ext_list = &props->device_extension_list;
}
}
}
else {
/* this case is during the call down the instance chain */
struct loader_icd *icd = phys_dev->this_icd;
VkResult res;
res = icd->EnumerateDeviceExtensionProperties(phys_dev->phys_dev, NULL, pPropertyCount, pProperties);
if (pProperties != NULL && res == VK_SUCCESS) {
/* initialize dev_extension list within the physicalDevice object */
res = loader_init_physical_device_extensions(phys_dev->this_instance,
phys_dev, *pPropertyCount, pProperties,
&phys_dev->device_extension_cache);
}
return res;
}
count = (dev_ext_list == NULL) ? 0: dev_ext_list->count;
if (pProperties == NULL) {
*pPropertyCount = count;
return VK_SUCCESS;
}
copy_size = *pPropertyCount < count ? *pPropertyCount : count;
for (uint32_t i = 0; i < copy_size; i++) {
memcpy(&pProperties[i],
&dev_ext_list->list[i].props,
sizeof(VkExtensionProperties));
}
*pPropertyCount = copy_size;
if (copy_size < count) {
return VK_INCOMPLETE;
}
return VK_SUCCESS;
}
VKAPI_ATTR VkResult VKAPI_CALL loader_EnumerateDeviceLayerProperties(
VkPhysicalDevice physicalDevice,
uint32_t* pPropertyCount,
VkLayerProperties* pProperties)
{
uint32_t copy_size;
struct loader_physical_device *phys_dev;
//TODO fix this, aliases physical devices
phys_dev = loader_get_physical_device(physicalDevice);
uint32_t count = phys_dev->this_instance->device_layer_list.count;
if (pProperties == NULL) {
*pPropertyCount = count;
return VK_SUCCESS;
}
copy_size = (*pPropertyCount < count) ? *pPropertyCount : count;
for (uint32_t i = 0; i < copy_size; i++) {
memcpy(&pProperties[i], &(phys_dev->this_instance->device_layer_list.list[i].info), sizeof(VkLayerProperties));
}
*pPropertyCount = copy_size;
if (copy_size < count) {
return VK_INCOMPLETE;
}
return VK_SUCCESS;
}