blob: f1b3eee4cfd94e6e898a9eecbc03d624590c626c [file] [log] [blame]
/*
* Vulkan
*
* Copyright (C) 2014-2015 LunarG, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdbool.h>
#include <assert.h>
#ifdef _WIN32
#pragma comment(linker, "/subsystem:windows")
#include <windows.h>
#define APP_NAME_STR_LEN 80
#else // _WIN32
#include <xcb/xcb.h>
#endif // _WIN32
#include <vulkan.h>
#include <vk_ext_khr_swapchain.h>
#include <vk_ext_khr_device_swapchain.h>
#include "vk_debug_report_lunarg.h"
#include "icd-spv.h"
#include "vk_sdk_platform.h"
#include "linmath.h"
#define DEMO_BUFFER_COUNT 2
#define DEMO_TEXTURE_COUNT 1
#define APP_SHORT_NAME "cube"
#define APP_LONG_NAME "The Vulkan Cube Demo Program"
#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
#if defined(NDEBUG) && defined(__GNUC__)
#define U_ASSERT_ONLY __attribute__((unused))
#else
#define U_ASSERT_ONLY
#endif
#ifdef _WIN32
#define ERR_EXIT(err_msg, err_class) \
do { \
MessageBox(NULL, err_msg, err_class, MB_OK); \
exit(1); \
} while (0)
#else // _WIN32
#define ERR_EXIT(err_msg, err_class) \
do { \
printf(err_msg); \
fflush(stdout); \
exit(1); \
} while (0)
#endif // _WIN32
#define GET_INSTANCE_PROC_ADDR(inst, entrypoint) \
{ \
demo->fp##entrypoint = (PFN_vk##entrypoint) vkGetInstanceProcAddr(inst, "vk"#entrypoint); \
if (demo->fp##entrypoint == NULL) { \
ERR_EXIT("vkGetInstanceProcAddr failed to find vk"#entrypoint, \
"vkGetInstanceProcAddr Failure"); \
} \
}
#define GET_DEVICE_PROC_ADDR(dev, entrypoint) \
{ \
demo->fp##entrypoint = (PFN_vk##entrypoint) vkGetDeviceProcAddr(dev, "vk"#entrypoint); \
if (demo->fp##entrypoint == NULL) { \
ERR_EXIT("vkGetDeviceProcAddr failed to find vk"#entrypoint, \
"vkGetDeviceProcAddr Failure"); \
} \
}
/*
* structure to track all objects related to a texture.
*/
struct texture_object {
VkSampler sampler;
VkImage image;
VkImageLayout imageLayout;
VkMemoryAllocInfo mem_alloc;
VkDeviceMemory mem;
VkImageView view;
int32_t tex_width, tex_height;
};
static char *tex_files[] = {
"lunarg.ppm"
};
struct vkcube_vs_uniform {
// Must start with MVP
float mvp[4][4];
float position[12*3][4];
float color[12*3][4];
};
struct vktexcube_vs_uniform {
// Must start with MVP
float mvp[4][4];
float position[12*3][4];
float attr[12*3][4];
};
//--------------------------------------------------------------------------------------
// Mesh and VertexFormat Data
//--------------------------------------------------------------------------------------
struct Vertex
{
float posX, posY, posZ, posW; // Position data
float r, g, b, a; // Color
};
struct VertexPosTex
{
float posX, posY, posZ, posW; // Position data
float u, v, s, t; // Texcoord
};
#define XYZ1(_x_, _y_, _z_) (_x_), (_y_), (_z_), 1.f
#define UV(_u_, _v_) (_u_), (_v_), 0.f, 1.f
static const float g_vertex_buffer_data[] = {
-1.0f,-1.0f,-1.0f, // -X side
-1.0f,-1.0f, 1.0f,
-1.0f, 1.0f, 1.0f,
-1.0f, 1.0f, 1.0f,
-1.0f, 1.0f,-1.0f,
-1.0f,-1.0f,-1.0f,
-1.0f,-1.0f,-1.0f, // -Z side
1.0f, 1.0f,-1.0f,
1.0f,-1.0f,-1.0f,
-1.0f,-1.0f,-1.0f,
-1.0f, 1.0f,-1.0f,
1.0f, 1.0f,-1.0f,
-1.0f,-1.0f,-1.0f, // -Y side
1.0f,-1.0f,-1.0f,
1.0f,-1.0f, 1.0f,
-1.0f,-1.0f,-1.0f,
1.0f,-1.0f, 1.0f,
-1.0f,-1.0f, 1.0f,
-1.0f, 1.0f,-1.0f, // +Y side
-1.0f, 1.0f, 1.0f,
1.0f, 1.0f, 1.0f,
-1.0f, 1.0f,-1.0f,
1.0f, 1.0f, 1.0f,
1.0f, 1.0f,-1.0f,
1.0f, 1.0f,-1.0f, // +X side
1.0f, 1.0f, 1.0f,
1.0f,-1.0f, 1.0f,
1.0f,-1.0f, 1.0f,
1.0f,-1.0f,-1.0f,
1.0f, 1.0f,-1.0f,
-1.0f, 1.0f, 1.0f, // +Z side
-1.0f,-1.0f, 1.0f,
1.0f, 1.0f, 1.0f,
-1.0f,-1.0f, 1.0f,
1.0f,-1.0f, 1.0f,
1.0f, 1.0f, 1.0f,
};
static const float g_uv_buffer_data[] = {
0.0f, 0.0f, // -X side
1.0f, 0.0f,
1.0f, 1.0f,
1.0f, 1.0f,
0.0f, 1.0f,
0.0f, 0.0f,
1.0f, 0.0f, // -Z side
0.0f, 1.0f,
0.0f, 0.0f,
1.0f, 0.0f,
1.0f, 1.0f,
0.0f, 1.0f,
1.0f, 1.0f, // -Y side
1.0f, 0.0f,
0.0f, 0.0f,
1.0f, 1.0f,
0.0f, 0.0f,
0.0f, 1.0f,
1.0f, 1.0f, // +Y side
0.0f, 1.0f,
0.0f, 0.0f,
1.0f, 1.0f,
0.0f, 0.0f,
1.0f, 0.0f,
1.0f, 1.0f, // +X side
0.0f, 1.0f,
0.0f, 0.0f,
0.0f, 0.0f,
1.0f, 0.0f,
1.0f, 1.0f,
0.0f, 1.0f, // +Z side
0.0f, 0.0f,
1.0f, 1.0f,
0.0f, 0.0f,
1.0f, 0.0f,
1.0f, 1.0f,
};
void dumpMatrix(const char *note, mat4x4 MVP)
{
int i;
printf("%s: \n", note);
for (i=0; i<4; i++) {
printf("%f, %f, %f, %f\n", MVP[i][0], MVP[i][1], MVP[i][2], MVP[i][3]);
}
printf("\n");
fflush(stdout);
}
void dumpVec4(const char *note, vec4 vector)
{
printf("%s: \n", note);
printf("%f, %f, %f, %f\n", vector[0], vector[1], vector[2], vector[3]);
printf("\n");
fflush(stdout);
}
VkBool32 dbgFunc(
VkFlags msgFlags,
VkDbgObjectType objType,
uint64_t srcObject,
size_t location,
int32_t msgCode,
const char* pLayerPrefix,
const char* pMsg,
void* pUserData)
{
char *message = (char *) malloc(strlen(pMsg)+100);
assert (message);
if (msgFlags & VK_DBG_REPORT_ERROR_BIT) {
sprintf(message,"ERROR: [%s] Code %d : %s", pLayerPrefix, msgCode, pMsg);
} else if (msgFlags & VK_DBG_REPORT_WARN_BIT) {
// We know that we're submitting queues without fences, ignore this warning
if (strstr(pMsg, "vkQueueSubmit parameter, VkFence fence, is null pointer")){
return false;
}
sprintf(message,"WARNING: [%s] Code %d : %s", pLayerPrefix, msgCode, pMsg);
} else {
return false;
}
#ifdef _WIN32
MessageBox(NULL, message, "Alert", MB_OK);
#else
printf("%s\n",message);
fflush(stdout);
#endif
free(message);
/*
* false indicates that layer should not bail-out of an
* API call that had validation failures. This may mean that the
* app dies inside the driver due to invalid parameter(s).
* That's what would happen without validation layers, so we'll
* keep that behavior here.
*/
return false;
}
typedef struct _SwapchainBuffers {
VkImage image;
VkCmdBuffer cmd;
VkImageView view;
} SwapchainBuffers;
struct demo {
#ifdef _WIN32
#define APP_NAME_STR_LEN 80
HINSTANCE connection; // hInstance - Windows Instance
char name[APP_NAME_STR_LEN]; // Name to put on the window/icon
HWND window; // hWnd - window handle
#else // _WIN32
xcb_connection_t *connection;
xcb_screen_t *screen;
xcb_window_t window;
xcb_intern_atom_reply_t *atom_wm_delete_window;
VkPlatformHandleXcbKHR platform_handle_xcb;
#endif // _WIN32
bool prepared;
bool use_staging_buffer;
bool use_glsl;
VkInstance inst;
VkPhysicalDevice gpu;
VkDevice device;
VkQueue queue;
uint32_t graphics_queue_node_index;
VkPhysicalDeviceProperties gpu_props;
VkQueueFamilyProperties *queue_props;
VkPhysicalDeviceMemoryProperties memory_properties;
VkFramebuffer framebuffer;
int width, height;
VkFormat format;
VkColorSpaceKHR color_space;
PFN_vkGetPhysicalDeviceSurfaceSupportKHR fpGetPhysicalDeviceSurfaceSupportKHR;
PFN_vkGetSurfacePropertiesKHR fpGetSurfacePropertiesKHR;
PFN_vkGetSurfaceFormatsKHR fpGetSurfaceFormatsKHR;
PFN_vkGetSurfacePresentModesKHR fpGetSurfacePresentModesKHR;
PFN_vkCreateSwapchainKHR fpCreateSwapchainKHR;
PFN_vkDestroySwapchainKHR fpDestroySwapchainKHR;
PFN_vkGetSwapchainImagesKHR fpGetSwapchainImagesKHR;
PFN_vkAcquireNextImageKHR fpAcquireNextImageKHR;
PFN_vkQueuePresentKHR fpQueuePresentKHR;
VkSurfaceDescriptionWindowKHR surface_description;
uint32_t swapchainImageCount;
VkSwapchainKHR swap_chain;
SwapchainBuffers *buffers;
VkCmdPool cmd_pool;
struct {
VkFormat format;
VkImage image;
VkMemoryAllocInfo mem_alloc;
VkDeviceMemory mem;
VkImageView view;
} depth;
struct texture_object textures[DEMO_TEXTURE_COUNT];
struct {
VkBuffer buf;
VkMemoryAllocInfo mem_alloc;
VkDeviceMemory mem;
VkDescriptorInfo desc;
} uniform_data;
VkCmdBuffer cmd; // Buffer for initialization commands
VkPipelineLayout pipeline_layout;
VkDescriptorSetLayout desc_layout;
VkPipelineCache pipelineCache;
VkRenderPass render_pass;
VkPipeline pipeline;
mat4x4 projection_matrix;
mat4x4 view_matrix;
mat4x4 model_matrix;
float spin_angle;
float spin_increment;
bool pause;
VkShaderModule vert_shader_module;
VkShaderModule frag_shader_module;
VkDescriptorPool desc_pool;
VkDescriptorSet desc_set;
VkFramebuffer framebuffers[DEMO_BUFFER_COUNT];
bool quit;
int32_t curFrame;
int32_t frameCount;
bool validate;
bool use_break;
PFN_vkDbgCreateMsgCallback dbgCreateMsgCallback;
PFN_vkDbgDestroyMsgCallback dbgDestroyMsgCallback;
PFN_vkDbgMsgCallback dbgBreakCallback;
VkDbgMsgCallback msg_callback;
uint32_t current_buffer;
uint32_t queue_count;
};
static VkResult memory_type_from_properties(struct demo *demo, uint32_t typeBits, VkFlags properties, uint32_t *typeIndex)
{
// Search memtypes to find first index with those properties
for (uint32_t i = 0; i < 32; i++) {
if ((typeBits & 1) == 1) {
// Type is available, does it match user properties?
if ((demo->memory_properties.memoryTypes[i].propertyFlags & properties) == properties) {
*typeIndex = i;
return VK_SUCCESS;
}
}
typeBits >>= 1;
}
// No memory types matched, return failure
return VK_UNSUPPORTED;
}
static void demo_flush_init_cmd(struct demo *demo)
{
VkResult U_ASSERT_ONLY err;
if (demo->cmd == VK_NULL_HANDLE)
return;
err = vkEndCommandBuffer(demo->cmd);
assert(!err);
const VkCmdBuffer cmd_bufs[] = { demo->cmd };
VkFence nullFence = { VK_NULL_HANDLE };
err = vkQueueSubmit(demo->queue, 1, cmd_bufs, nullFence);
assert(!err);
err = vkQueueWaitIdle(demo->queue);
assert(!err);
vkDestroyCommandBuffer(demo->device, demo->cmd);
demo->cmd = VK_NULL_HANDLE;
}
static void demo_set_image_layout(
struct demo *demo,
VkImage image,
VkImageAspectFlags aspectMask,
VkImageLayout old_image_layout,
VkImageLayout new_image_layout)
{
VkResult U_ASSERT_ONLY err;
if (demo->cmd == VK_NULL_HANDLE) {
const VkCmdBufferCreateInfo cmd = {
.sType = VK_STRUCTURE_TYPE_CMD_BUFFER_CREATE_INFO,
.pNext = NULL,
.cmdPool = demo->cmd_pool,
.level = VK_CMD_BUFFER_LEVEL_PRIMARY,
.flags = 0,
};
err = vkCreateCommandBuffer(demo->device, &cmd, &demo->cmd);
assert(!err);
VkCmdBufferBeginInfo cmd_buf_info = {
.sType = VK_STRUCTURE_TYPE_CMD_BUFFER_BEGIN_INFO,
.pNext = NULL,
.flags = VK_CMD_BUFFER_OPTIMIZE_SMALL_BATCH_BIT |
VK_CMD_BUFFER_OPTIMIZE_ONE_TIME_SUBMIT_BIT,
.renderPass = { VK_NULL_HANDLE },
.subpass = 0,
.framebuffer = { VK_NULL_HANDLE },
};
err = vkBeginCommandBuffer(demo->cmd, &cmd_buf_info);
}
VkImageMemoryBarrier image_memory_barrier = {
.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER,
.pNext = NULL,
.outputMask = 0,
.inputMask = 0,
.oldLayout = old_image_layout,
.newLayout = new_image_layout,
.image = image,
.subresourceRange = { aspectMask, 0, 1, 0, 0 }
};
if (new_image_layout == VK_IMAGE_LAYOUT_TRANSFER_DESTINATION_OPTIMAL) {
/* Make sure anything that was copying from this image has completed */
image_memory_barrier.inputMask = VK_MEMORY_INPUT_TRANSFER_BIT;
}
if (new_image_layout == VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL) {
/* Make sure any Copy or CPU writes to image are flushed */
image_memory_barrier.outputMask = VK_MEMORY_OUTPUT_HOST_WRITE_BIT | VK_MEMORY_OUTPUT_TRANSFER_BIT;
}
VkImageMemoryBarrier *pmemory_barrier = &image_memory_barrier;
VkPipelineStageFlags src_stages = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
VkPipelineStageFlags dest_stages = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
vkCmdPipelineBarrier(demo->cmd, src_stages, dest_stages, false, 1, (const void * const*)&pmemory_barrier);
}
static void demo_draw_build_cmd(struct demo *demo, VkCmdBuffer cmd_buf)
{
const VkCmdBufferBeginInfo cmd_buf_info = {
.sType = VK_STRUCTURE_TYPE_CMD_BUFFER_BEGIN_INFO,
.pNext = NULL,
.flags = VK_CMD_BUFFER_OPTIMIZE_SMALL_BATCH_BIT,
.renderPass = { VK_NULL_HANDLE },
.subpass = 0,
.framebuffer = { VK_NULL_HANDLE },
};
const VkClearValue clear_values[2] = {
[0] = { .color.float32 = { 0.2f, 0.2f, 0.2f, 0.2f } },
[1] = { .depthStencil = { 1.0f, 0 } },
};
const VkRenderPassBeginInfo rp_begin = {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_BEGIN_INFO,
.pNext = NULL,
.renderPass = demo->render_pass,
.framebuffer = demo->framebuffers[demo->current_buffer],
.renderArea.offset.x = 0,
.renderArea.offset.y = 0,
.renderArea.extent.width = demo->width,
.renderArea.extent.height = demo->height,
.clearValueCount = 2,
.pClearValues = clear_values,
};
VkResult U_ASSERT_ONLY err;
err = vkBeginCommandBuffer(cmd_buf, &cmd_buf_info);
assert(!err);
vkCmdBeginRenderPass(cmd_buf, &rp_begin, VK_RENDER_PASS_CONTENTS_INLINE);
vkCmdBindPipeline(cmd_buf, VK_PIPELINE_BIND_POINT_GRAPHICS,
demo->pipeline);
vkCmdBindDescriptorSets(cmd_buf, VK_PIPELINE_BIND_POINT_GRAPHICS, demo->pipeline_layout,
0, 1, &demo->desc_set, 0, NULL);
VkViewport viewport;
memset(&viewport, 0, sizeof(viewport));
viewport.height = (float) demo->height;
viewport.width = (float) demo->width;
viewport.minDepth = (float) 0.0f;
viewport.maxDepth = (float) 1.0f;
vkCmdSetViewport(cmd_buf, 1, &viewport);
VkRect2D scissor;
memset(&scissor, 0, sizeof(scissor));
scissor.extent.width = demo->width;
scissor.extent.height = demo->height;
scissor.offset.x = 0;
scissor.offset.y = 0;
vkCmdSetScissor(cmd_buf, 1, &scissor);
vkCmdDraw(cmd_buf, 12 * 3, 1, 0, 0);
vkCmdEndRenderPass(cmd_buf);
err = vkEndCommandBuffer(cmd_buf);
assert(!err);
}
void demo_update_data_buffer(struct demo *demo)
{
mat4x4 MVP, Model, VP;
int matrixSize = sizeof(MVP);
uint8_t *pData;
VkResult U_ASSERT_ONLY err;
mat4x4_mul(VP, demo->projection_matrix, demo->view_matrix);
// Rotate 22.5 degrees around the Y axis
mat4x4_dup(Model, demo->model_matrix);
mat4x4_rotate(demo->model_matrix, Model, 0.0f, 1.0f, 0.0f, (float)degreesToRadians(demo->spin_angle));
mat4x4_mul(MVP, VP, demo->model_matrix);
err = vkMapMemory(demo->device, demo->uniform_data.mem, 0, demo->uniform_data.mem_alloc.allocationSize, 0, (void **) &pData);
assert(!err);
memcpy(pData, (const void*) &MVP[0][0], matrixSize);
vkUnmapMemory(demo->device, demo->uniform_data.mem);
}
static void demo_draw(struct demo *demo)
{
VkResult U_ASSERT_ONLY err;
VkSemaphore presentCompleteSemaphore;
VkSemaphoreCreateInfo presentCompleteSemaphoreCreateInfo = {
.sType = VK_STRUCTURE_TYPE_SEMAPHORE_CREATE_INFO,
.pNext = NULL,
.flags = VK_FENCE_CREATE_SIGNALED_BIT,
};
VkFence nullFence = { VK_NULL_HANDLE };
err = vkCreateSemaphore(demo->device,
&presentCompleteSemaphoreCreateInfo,
&presentCompleteSemaphore);
assert(!err);
// Get the index of the next available swapchain image:
err = demo->fpAcquireNextImageKHR(demo->device, demo->swap_chain,
UINT64_MAX,
presentCompleteSemaphore,
&demo->current_buffer);
// TODO: Deal with the VK_SUBOPTIMAL_KHR and VK_ERROR_OUT_OF_DATE_KHR
// return codes
assert(!err);
// Wait for the present complete semaphore to be signaled to ensure
// that the image won't be rendered to until the presentation
// engine has fully released ownership to the application, and it is
// okay to render to the image.
vkQueueWaitSemaphore(demo->queue, presentCompleteSemaphore);
// FIXME/TODO: DEAL WITH VK_IMAGE_LAYOUT_PRESENT_SOURCE_KHR
err = vkQueueSubmit(demo->queue, 1, &demo->buffers[demo->current_buffer].cmd,
nullFence);
assert(!err);
VkPresentInfoKHR present = {
.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR,
.pNext = NULL,
.swapchainCount = 1,
.swapchains = &demo->swap_chain,
.imageIndices = &demo->current_buffer,
};
// TBD/TODO: SHOULD THE "present" PARAMETER BE "const" IN THE HEADER?
err = demo->fpQueuePresentKHR(demo->queue, &present);
// TODO: Deal with the VK_SUBOPTIMAL_KHR and VK_ERROR_OUT_OF_DATE_KHR
// return codes
assert(!err);
err = vkQueueWaitIdle(demo->queue);
assert(err == VK_SUCCESS);
vkDestroySemaphore(demo->device, presentCompleteSemaphore);
}
static void demo_prepare_buffers(struct demo *demo)
{
VkResult U_ASSERT_ONLY err;
// Check the surface properties and formats
VkSurfacePropertiesKHR surfProperties;
err = demo->fpGetSurfacePropertiesKHR(demo->device,
(const VkSurfaceDescriptionKHR *)&demo->surface_description,
&surfProperties);
assert(!err);
uint32_t presentModeCount;
err = demo->fpGetSurfacePresentModesKHR(demo->device,
(const VkSurfaceDescriptionKHR *)&demo->surface_description,
&presentModeCount, NULL);
assert(!err);
VkPresentModeKHR *presentModes =
(VkPresentModeKHR *)malloc(presentModeCount * sizeof(VkPresentModeKHR));
assert(presentModes);
err = demo->fpGetSurfacePresentModesKHR(demo->device,
(const VkSurfaceDescriptionKHR *)&demo->surface_description,
&presentModeCount, presentModes);
assert(!err);
VkExtent2D swapchainExtent;
// width and height are either both -1, or both not -1.
if (surfProperties.currentExtent.width == -1)
{
// If the surface size is undefined, the size is set to
// the size of the images requested.
swapchainExtent.width = demo->width;
swapchainExtent.height = demo->height;
}
else
{
// If the surface size is defined, the swap chain size must match
swapchainExtent = surfProperties.currentExtent;
}
// If mailbox mode is available, use it, as is the lowest-latency non-
// tearing mode. If not, try IMMEDIATE which will usually be available,
// and is fastest (though it tears). If not, fall back to FIFO which is
// always available.
VkPresentModeKHR swapchainPresentMode = VK_PRESENT_MODE_FIFO_KHR;
for (size_t i = 0; i < presentModeCount; i++) {
if (presentModes[i] == VK_PRESENT_MODE_MAILBOX_KHR) {
swapchainPresentMode = VK_PRESENT_MODE_MAILBOX_KHR;
break;
}
if ((swapchainPresentMode != VK_PRESENT_MODE_MAILBOX_KHR) &&
(presentModes[i] == VK_PRESENT_MODE_IMMEDIATE_KHR)) {
swapchainPresentMode = VK_PRESENT_MODE_IMMEDIATE_KHR;
}
}
#define WORK_AROUND_CODE
#ifdef WORK_AROUND_CODE
// After the proper code was created, other parts of this demo were
// modified to only support DEMO_BUFFER_COUNT number of command buffers,
// images, etc. Live with that for now.
// TODO: Rework this demo code to live with the number of buffers returned
// by vkCreateSwapchainKHR().
uint32_t desiredNumberOfSwapchainImages = DEMO_BUFFER_COUNT;
#else // WORK_AROUND_CODE
// Determine the number of VkImage's to use in the swap chain (we desire to
// own only 1 image at a time, besides the images being displayed and
// queued for display):
uint32_t desiredNumberOfSwapchainImages = surfProperties.minImageCount + 1;
if ((surfProperties.maxImageCount > 0) &&
(desiredNumberOfSwapchainImages > surfProperties.maxImageCount))
{
// Application must settle for fewer images than desired:
desiredNumberOfSwapchainImages = surfProperties.maxImageCount;
}
#endif // WORK_AROUND_CODE
VkSurfaceTransformFlagsKHR preTransform;
if (surfProperties.supportedTransforms & VK_SURFACE_TRANSFORM_NONE_BIT_KHR) {
preTransform = VK_SURFACE_TRANSFORM_NONE_KHR;
} else {
preTransform = surfProperties.currentTransform;
}
const VkSwapchainCreateInfoKHR swap_chain = {
.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR,
.pNext = NULL,
.pSurfaceDescription = (const VkSurfaceDescriptionKHR *)&demo->surface_description,
.minImageCount = desiredNumberOfSwapchainImages,
.imageFormat = demo->format,
.imageColorSpace = demo->color_space,
.imageExtent = {
.width = swapchainExtent.width,
.height = swapchainExtent.height,
},
.imageUsageFlags = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT,
.preTransform = preTransform,
.imageArraySize = 1,
.sharingMode = VK_SHARING_MODE_EXCLUSIVE,
.queueFamilyCount = 0,
.pQueueFamilyIndices = NULL,
.presentMode = swapchainPresentMode,
.oldSwapchain.handle = 0,
.clipped = true,
};
uint32_t i;
err = demo->fpCreateSwapchainKHR(demo->device, &swap_chain, &demo->swap_chain);
assert(!err);
err = demo->fpGetSwapchainImagesKHR(demo->device, demo->swap_chain,
&demo->swapchainImageCount, NULL);
assert(!err);
VkImage* swapchainImages =
(VkImage*)malloc(demo->swapchainImageCount * sizeof(VkImage));
assert(swapchainImages);
err = demo->fpGetSwapchainImagesKHR(demo->device, demo->swap_chain,
&demo->swapchainImageCount,
swapchainImages);
assert(!err);
#ifdef WORK_AROUND_CODE
// After the proper code was created, other parts of this demo were
// modified to only support DEMO_BUFFER_COUNT number of command buffers,
// images, etc. Live with that for now.
// TODO: Rework this demo code to live with the number of buffers returned
// by vkCreateSwapchainKHR().
demo->swapchainImageCount = DEMO_BUFFER_COUNT;
#endif // WORK_AROUND_CODE
demo->buffers = (SwapchainBuffers*)malloc(sizeof(SwapchainBuffers)*demo->swapchainImageCount);
assert(demo->buffers);
for (i = 0; i < demo->swapchainImageCount; i++) {
VkImageViewCreateInfo color_image_view = {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.pNext = NULL,
.format = demo->format,
.channels = {
.r = VK_CHANNEL_SWIZZLE_R,
.g = VK_CHANNEL_SWIZZLE_G,
.b = VK_CHANNEL_SWIZZLE_B,
.a = VK_CHANNEL_SWIZZLE_A,
},
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT,
.baseMipLevel = 0,
.mipLevels = 1,
.baseArrayLayer = 0,
.arraySize = 1
},
.viewType = VK_IMAGE_VIEW_TYPE_2D,
.flags = 0,
};
demo->buffers[i].image = swapchainImages[i];
demo_set_image_layout(demo, demo->buffers[i].image,
VK_IMAGE_ASPECT_COLOR,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL);
color_image_view.image = demo->buffers[i].image;
err = vkCreateImageView(demo->device,
&color_image_view, &demo->buffers[i].view);
assert(!err);
}
}
static void demo_prepare_depth(struct demo *demo)
{
const VkFormat depth_format = VK_FORMAT_D16_UNORM;
const VkImageCreateInfo image = {
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.pNext = NULL,
.imageType = VK_IMAGE_TYPE_2D,
.format = depth_format,
.extent = { demo->width, demo->height, 1 },
.mipLevels = 1,
.arraySize = 1,
.samples = 1,
.tiling = VK_IMAGE_TILING_OPTIMAL,
.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT,
.flags = 0,
};
VkImageViewCreateInfo view = {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.pNext = NULL,
.image.handle = VK_NULL_HANDLE,
.format = depth_format,
.subresourceRange = {
.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT,
.baseMipLevel = 0,
.mipLevels = 1,
.baseArrayLayer = 0,
.arraySize = 1
},
.flags = 0,
.viewType = VK_IMAGE_VIEW_TYPE_2D,
};
VkMemoryRequirements mem_reqs;
VkResult U_ASSERT_ONLY err;
demo->depth.format = depth_format;
/* create image */
err = vkCreateImage(demo->device, &image,
&demo->depth.image);
assert(!err);
err = vkGetImageMemoryRequirements(demo->device,
demo->depth.image, &mem_reqs);
demo->depth.mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOC_INFO;
demo->depth.mem_alloc.pNext = NULL;
demo->depth.mem_alloc.allocationSize = mem_reqs.size;
demo->depth.mem_alloc.memoryTypeIndex = 0;
err = memory_type_from_properties(demo,
mem_reqs.memoryTypeBits,
VK_MEMORY_PROPERTY_DEVICE_ONLY,
&demo->depth.mem_alloc.memoryTypeIndex);
assert(!err);
/* allocate memory */
err = vkAllocMemory(demo->device, &demo->depth.mem_alloc, &demo->depth.mem);
assert(!err);
/* bind memory */
err = vkBindImageMemory(demo->device, demo->depth.image,
demo->depth.mem, 0);
assert(!err);
demo_set_image_layout(demo, demo->depth.image,
VK_IMAGE_ASPECT_DEPTH_BIT,
VK_IMAGE_LAYOUT_UNDEFINED,
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL);
/* create image view */
view.image = demo->depth.image;
err = vkCreateImageView(demo->device, &view, &demo->depth.view);
assert(!err);
}
/* Load a ppm file into memory */
bool loadTexture(const char *filename, uint8_t *rgba_data,
VkSubresourceLayout *layout,
int32_t *width, int32_t *height)
{
FILE *fPtr = fopen(filename,"rb");
char header[256], *cPtr;
if (!fPtr)
return false;
cPtr = fgets(header, 256, fPtr); // P6
if (cPtr == NULL || strncmp(header, "P6\n", 3))
return false;
do {
cPtr = fgets(header, 256, fPtr);
if (cPtr == NULL)
return false;
} while ( !strncmp(header, "#", 1) );
sscanf(header, "%u %u", height, width);
if (rgba_data == NULL)
return true;
fgets(header, 256, fPtr); // Format
if (cPtr == NULL || strncmp(header, "255\n", 3))
return false;
for(int y = 0; y < *height; y++)
{
uint8_t *rowPtr = rgba_data;
for(int x = 0; x < *width; x++)
{
fread(rowPtr, 3, 1, fPtr);
rowPtr[3] = 255; /* Alpha of 1 */
rowPtr += 4;
}
rgba_data += layout->rowPitch;
}
fclose(fPtr);
return true;
}
static void demo_prepare_texture_image(struct demo *demo,
const char *filename,
struct texture_object *tex_obj,
VkImageTiling tiling,
VkImageUsageFlags usage,
VkFlags mem_props)
{
const VkFormat tex_format = VK_FORMAT_R8G8B8A8_UNORM;
int32_t tex_width;
int32_t tex_height;
VkResult U_ASSERT_ONLY err;
if (!loadTexture(filename, NULL, NULL, &tex_width, &tex_height))
{
printf("Failed to load textures\n");
fflush(stdout);
exit(1);
}
tex_obj->tex_width = tex_width;
tex_obj->tex_height = tex_height;
const VkImageCreateInfo image_create_info = {
.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO,
.pNext = NULL,
.imageType = VK_IMAGE_TYPE_2D,
.format = tex_format,
.extent = { tex_width, tex_height, 1 },
.mipLevels = 1,
.arraySize = 1,
.samples = 1,
.tiling = tiling,
.usage = usage,
.flags = 0,
};
VkMemoryRequirements mem_reqs;
err = vkCreateImage(demo->device, &image_create_info,
&tex_obj->image);
assert(!err);
err = vkGetImageMemoryRequirements(demo->device, tex_obj->image, &mem_reqs);
assert(!err);
tex_obj->mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOC_INFO;
tex_obj->mem_alloc.pNext = NULL;
tex_obj->mem_alloc.allocationSize = mem_reqs.size;
tex_obj->mem_alloc.memoryTypeIndex = 0;
err = memory_type_from_properties(demo, mem_reqs.memoryTypeBits, mem_props, &tex_obj->mem_alloc.memoryTypeIndex);
assert(!err);
/* allocate memory */
err = vkAllocMemory(demo->device, &tex_obj->mem_alloc,
&(tex_obj->mem));
assert(!err);
/* bind memory */
err = vkBindImageMemory(demo->device, tex_obj->image,
tex_obj->mem, 0);
assert(!err);
if (mem_props & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) {
const VkImageSubresource subres = {
.aspect = VK_IMAGE_ASPECT_COLOR,
.mipLevel = 0,
.arrayLayer = 0,
};
VkSubresourceLayout layout;
void *data;
err = vkGetImageSubresourceLayout(demo->device, tex_obj->image, &subres, &layout);
assert(!err);
err = vkMapMemory(demo->device, tex_obj->mem, 0, tex_obj->mem_alloc.allocationSize, 0, &data);
assert(!err);
if (!loadTexture(filename, data, &layout, &tex_width, &tex_height)) {
fprintf(stderr, "Error loading texture: %s\n", filename);
}
vkUnmapMemory(demo->device, tex_obj->mem);
}
tex_obj->imageLayout = VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL;
demo_set_image_layout(demo, tex_obj->image,
VK_IMAGE_ASPECT_COLOR,
VK_IMAGE_LAYOUT_UNDEFINED,
tex_obj->imageLayout);
/* setting the image layout does not reference the actual memory so no need to add a mem ref */
}
static void demo_destroy_texture_image(struct demo *demo, struct texture_object *tex_objs)
{
/* clean up staging resources */
vkFreeMemory(demo->device, tex_objs->mem);
vkDestroyImage(demo->device, tex_objs->image);
}
static void demo_prepare_textures(struct demo *demo)
{
const VkFormat tex_format = VK_FORMAT_R8G8B8A8_UNORM;
VkFormatProperties props;
VkResult U_ASSERT_ONLY err;
uint32_t i;
err = vkGetPhysicalDeviceFormatProperties(demo->gpu, tex_format, &props);
assert(!err);
for (i = 0; i < DEMO_TEXTURE_COUNT; i++) {
if ((props.linearTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT) && !demo->use_staging_buffer) {
/* Device can texture using linear textures */
demo_prepare_texture_image(demo, tex_files[i], &demo->textures[i],
VK_IMAGE_TILING_LINEAR, VK_IMAGE_USAGE_SAMPLED_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
} else if (props.optimalTilingFeatures & VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT) {
/* Must use staging buffer to copy linear texture to optimized */
struct texture_object staging_texture;
memset(&staging_texture, 0, sizeof(staging_texture));
demo_prepare_texture_image(demo, tex_files[i], &staging_texture,
VK_IMAGE_TILING_LINEAR, VK_IMAGE_USAGE_TRANSFER_SOURCE_BIT, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
demo_prepare_texture_image(demo, tex_files[i], &demo->textures[i],
VK_IMAGE_TILING_OPTIMAL,
(VK_IMAGE_USAGE_TRANSFER_DESTINATION_BIT | VK_IMAGE_USAGE_SAMPLED_BIT),
VK_MEMORY_PROPERTY_DEVICE_ONLY);
demo_set_image_layout(demo, staging_texture.image,
VK_IMAGE_ASPECT_COLOR,
staging_texture.imageLayout,
VK_IMAGE_LAYOUT_TRANSFER_SOURCE_OPTIMAL);
demo_set_image_layout(demo, demo->textures[i].image,
VK_IMAGE_ASPECT_COLOR,
demo->textures[i].imageLayout,
VK_IMAGE_LAYOUT_TRANSFER_DESTINATION_OPTIMAL);
VkImageCopy copy_region = {
.srcSubresource = { VK_IMAGE_ASPECT_COLOR, 0, 0 },
.srcOffset = { 0, 0, 0 },
.destSubresource = { VK_IMAGE_ASPECT_COLOR, 0, 0 },
.destOffset = { 0, 0, 0 },
.extent = { staging_texture.tex_width, staging_texture.tex_height, 1 },
};
vkCmdCopyImage(demo->cmd,
staging_texture.image, VK_IMAGE_LAYOUT_TRANSFER_SOURCE_OPTIMAL,
demo->textures[i].image, VK_IMAGE_LAYOUT_TRANSFER_DESTINATION_OPTIMAL,
1, &copy_region);
demo_set_image_layout(demo, demo->textures[i].image,
VK_IMAGE_ASPECT_COLOR,
VK_IMAGE_LAYOUT_TRANSFER_DESTINATION_OPTIMAL,
demo->textures[i].imageLayout);
demo_flush_init_cmd(demo);
demo_destroy_texture_image(demo, &staging_texture);
} else {
/* Can't support VK_FORMAT_R8G8B8A8_UNORM !? */
assert(!"No support for R8G8B8A8_UNORM as texture image format");
}
const VkSamplerCreateInfo sampler = {
.sType = VK_STRUCTURE_TYPE_SAMPLER_CREATE_INFO,
.pNext = NULL,
.magFilter = VK_TEX_FILTER_NEAREST,
.minFilter = VK_TEX_FILTER_NEAREST,
.mipMode = VK_TEX_MIPMAP_MODE_BASE,
.addressModeU = VK_TEX_ADDRESS_MODE_CLAMP,
.addressModeV = VK_TEX_ADDRESS_MODE_CLAMP,
.addressModeW = VK_TEX_ADDRESS_MODE_CLAMP,
.mipLodBias = 0.0f,
.maxAnisotropy = 1,
.compareOp = VK_COMPARE_OP_NEVER,
.minLod = 0.0f,
.maxLod = 0.0f,
.borderColor = VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE,
.unnormalizedCoordinates = VK_FALSE,
};
VkImageViewCreateInfo view = {
.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO,
.pNext = NULL,
.image.handle = VK_NULL_HANDLE,
.viewType = VK_IMAGE_VIEW_TYPE_2D,
.format = tex_format,
.channels = { VK_CHANNEL_SWIZZLE_R,
VK_CHANNEL_SWIZZLE_G,
VK_CHANNEL_SWIZZLE_B,
VK_CHANNEL_SWIZZLE_A, },
.subresourceRange = { VK_IMAGE_ASPECT_COLOR_BIT, 0, 1, 0, 1 },
.flags = 0,
};
/* create sampler */
err = vkCreateSampler(demo->device, &sampler,
&demo->textures[i].sampler);
assert(!err);
/* create image view */
view.image = demo->textures[i].image;
err = vkCreateImageView(demo->device, &view,
&demo->textures[i].view);
assert(!err);
}
}
void demo_prepare_cube_data_buffer(struct demo *demo)
{
VkBufferCreateInfo buf_info;
VkMemoryRequirements mem_reqs;
uint8_t *pData;
int i;
mat4x4 MVP, VP;
VkResult U_ASSERT_ONLY err;
struct vktexcube_vs_uniform data;
mat4x4_mul(VP, demo->projection_matrix, demo->view_matrix);
mat4x4_mul(MVP, VP, demo->model_matrix);
memcpy(data.mvp, MVP, sizeof(MVP));
// dumpMatrix("MVP", MVP);
for (i=0; i<12*3; i++) {
data.position[i][0] = g_vertex_buffer_data[i*3];
data.position[i][1] = g_vertex_buffer_data[i*3+1];
data.position[i][2] = g_vertex_buffer_data[i*3+2];
data.position[i][3] = 1.0f;
data.attr[i][0] = g_uv_buffer_data[2*i];
data.attr[i][1] = g_uv_buffer_data[2*i + 1];
data.attr[i][2] = 0;
data.attr[i][3] = 0;
}
memset(&buf_info, 0, sizeof(buf_info));
buf_info.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
buf_info.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT;
buf_info.size = sizeof(data);
err = vkCreateBuffer(demo->device, &buf_info, &demo->uniform_data.buf);
assert(!err);
err = vkGetBufferMemoryRequirements(demo->device, demo->uniform_data.buf, &mem_reqs);
assert(!err);
demo->uniform_data.mem_alloc.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOC_INFO;
demo->uniform_data.mem_alloc.pNext = NULL;
demo->uniform_data.mem_alloc.allocationSize = mem_reqs.size;
demo->uniform_data.mem_alloc.memoryTypeIndex = 0;
err = memory_type_from_properties(demo,
mem_reqs.memoryTypeBits,
VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT,
&demo->uniform_data.mem_alloc.memoryTypeIndex);
assert(!err);
err = vkAllocMemory(demo->device, &demo->uniform_data.mem_alloc, &(demo->uniform_data.mem));
assert(!err);
err = vkMapMemory(demo->device, demo->uniform_data.mem, 0, demo->uniform_data.mem_alloc.allocationSize, 0, (void **) &pData);
assert(!err);
memcpy(pData, &data, sizeof data);
vkUnmapMemory(demo->device, demo->uniform_data.mem);
err = vkBindBufferMemory(demo->device,
demo->uniform_data.buf,
demo->uniform_data.mem, 0);
assert(!err);
demo->uniform_data.desc.bufferInfo.buffer = demo->uniform_data.buf;
demo->uniform_data.desc.bufferInfo.offset = 0;
demo->uniform_data.desc.bufferInfo.range = sizeof(data);
}
static void demo_prepare_descriptor_layout(struct demo *demo)
{
const VkDescriptorSetLayoutBinding layout_bindings[2] = {
[0] = {
.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
.arraySize = 1,
.stageFlags = VK_SHADER_STAGE_VERTEX_BIT,
.pImmutableSamplers = NULL,
},
[1] = {
.descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.arraySize = DEMO_TEXTURE_COUNT,
.stageFlags = VK_SHADER_STAGE_FRAGMENT_BIT,
.pImmutableSamplers = NULL,
},
};
const VkDescriptorSetLayoutCreateInfo descriptor_layout = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO,
.pNext = NULL,
.count = 2,
.pBinding = layout_bindings,
};
VkResult U_ASSERT_ONLY err;
err = vkCreateDescriptorSetLayout(demo->device,
&descriptor_layout, &demo->desc_layout);
assert(!err);
const VkPipelineLayoutCreateInfo pPipelineLayoutCreateInfo = {
.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO,
.pNext = NULL,
.descriptorSetCount = 1,
.pSetLayouts = &demo->desc_layout,
};
err = vkCreatePipelineLayout(demo->device,
&pPipelineLayoutCreateInfo,
&demo->pipeline_layout);
assert(!err);
}
static void demo_prepare_render_pass(struct demo *demo)
{
const VkAttachmentDescription attachments[2] = {
[0] = {
.sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION,
.pNext = NULL,
.format = demo->format,
.samples = 1,
.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR,
.storeOp = VK_ATTACHMENT_STORE_OP_STORE,
.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE,
.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE,
.initialLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
.finalLayout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
},
[1] = {
.sType = VK_STRUCTURE_TYPE_ATTACHMENT_DESCRIPTION,
.pNext = NULL,
.format = demo->depth.format,
.samples = 1,
.loadOp = VK_ATTACHMENT_LOAD_OP_CLEAR,
.storeOp = VK_ATTACHMENT_STORE_OP_DONT_CARE,
.stencilLoadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE,
.stencilStoreOp = VK_ATTACHMENT_STORE_OP_DONT_CARE,
.initialLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
.finalLayout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
},
};
const VkAttachmentReference color_reference = {
.attachment = 0,
.layout = VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
};
const VkSubpassDescription subpass = {
.sType = VK_STRUCTURE_TYPE_SUBPASS_DESCRIPTION,
.pNext = NULL,
.pipelineBindPoint = VK_PIPELINE_BIND_POINT_GRAPHICS,
.flags = 0,
.inputCount = 0,
.pInputAttachments = NULL,
.colorCount = 1,
.pColorAttachments = &color_reference,
.pResolveAttachments = NULL,
.depthStencilAttachment = {
.attachment = 1,
.layout = VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
},
.preserveCount = 0,
.pPreserveAttachments = NULL,
};
const VkRenderPassCreateInfo rp_info = {
.sType = VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO,
.pNext = NULL,
.attachmentCount = 2,
.pAttachments = attachments,
.subpassCount = 1,
.pSubpasses = &subpass,
.dependencyCount = 0,
.pDependencies = NULL,
};
VkResult U_ASSERT_ONLY err;
err = vkCreateRenderPass(demo->device, &rp_info, &demo->render_pass);
assert(!err);
}
static VkShader demo_prepare_shader(struct demo* demo,
VkShaderStage stage,
VkShaderModule* pShaderModule,
const void* code,
size_t size)
{
VkShaderModuleCreateInfo moduleCreateInfo;
VkShaderCreateInfo shaderCreateInfo;
VkShader shader;
VkResult err;
moduleCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
moduleCreateInfo.pNext = NULL;
shaderCreateInfo.sType = VK_STRUCTURE_TYPE_SHADER_CREATE_INFO;
shaderCreateInfo.pNext = NULL;
shaderCreateInfo.pName = "main";
if (!demo->use_glsl) {
moduleCreateInfo.codeSize = size;
moduleCreateInfo.pCode = code;
moduleCreateInfo.flags = 0;
err = vkCreateShaderModule(demo->device, &moduleCreateInfo, pShaderModule);
assert(!err);
shaderCreateInfo.flags = 0;
shaderCreateInfo.module = *pShaderModule;
shaderCreateInfo.pName = "main";
shaderCreateInfo.stage = stage;
err = vkCreateShader(demo->device, &shaderCreateInfo, &shader);
} else {
// Create fake SPV structure to feed GLSL
// to the driver "under the covers"
moduleCreateInfo.codeSize = 3 * sizeof(uint32_t) + size + 1;
moduleCreateInfo.pCode = malloc(moduleCreateInfo.codeSize);
moduleCreateInfo.flags = 0;
/* try version 0 first: VkShaderStage followed by GLSL */
((uint32_t *) moduleCreateInfo.pCode)[0] = ICD_SPV_MAGIC;
((uint32_t *) moduleCreateInfo.pCode)[1] = 0;
((uint32_t *) moduleCreateInfo.pCode)[2] = stage;
memcpy(((uint32_t *) moduleCreateInfo.pCode + 3), code, size + 1);
err = vkCreateShaderModule(demo->device, &moduleCreateInfo, pShaderModule);
if (err) {
free((void *) moduleCreateInfo.pCode);
}
shaderCreateInfo.flags = 0;
shaderCreateInfo.module = *pShaderModule;
shaderCreateInfo.pName = "main";
shaderCreateInfo.stage = stage;
err = vkCreateShader(demo->device, &shaderCreateInfo, &shader);
free((void *) moduleCreateInfo.pCode);
}
return shader;
}
char *demo_read_spv(const char *filename, size_t *psize)
{
long int size;
size_t U_ASSERT_ONLY retval;
void *shader_code;
FILE *fp = fopen(filename, "rb");
if (!fp) return NULL;
fseek(fp, 0L, SEEK_END);
size = ftell(fp);
fseek(fp, 0L, SEEK_SET);
shader_code = malloc(size);
retval = fread(shader_code, size, 1, fp);
assert(retval == 1);
*psize = size;
return shader_code;
}
static VkShader demo_prepare_vs(struct demo *demo)
{
if (!demo->use_glsl) {
VkShader shader;
void *vertShaderCode;
size_t size;
vertShaderCode = demo_read_spv("cube-vert.spv", &size);
shader = demo_prepare_shader(demo, VK_SHADER_STAGE_VERTEX, &demo->vert_shader_module,
vertShaderCode, size);
free(vertShaderCode);
return shader;
} else {
static const char *vertShaderText =
"#version 140\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
"\n"
"layout(binding = 0) uniform buf {\n"
" mat4 MVP;\n"
" vec4 position[12*3];\n"
" vec4 attr[12*3];\n"
"} ubuf;\n"
"\n"
"layout (location = 0) out vec4 texcoord;\n"
"\n"
"void main() \n"
"{\n"
" texcoord = ubuf.attr[gl_VertexID];\n"
" gl_Position = ubuf.MVP * ubuf.position[gl_VertexID];\n"
"\n"
" // GL->VK conventions\n"
" gl_Position.y = -gl_Position.y;\n"
" gl_Position.z = (gl_Position.z + gl_Position.w) / 2.0;\n"
"}\n";
return demo_prepare_shader(demo, VK_SHADER_STAGE_VERTEX, &demo->vert_shader_module,
(const void *) vertShaderText,
strlen(vertShaderText));
}
}
static VkShader demo_prepare_fs(struct demo *demo)
{
if (!demo->use_glsl) {
VkShader shader;
void *fragShaderCode;
size_t size;
fragShaderCode = demo_read_spv("cube-frag.spv", &size);
shader = demo_prepare_shader(demo, VK_SHADER_STAGE_FRAGMENT, &demo->frag_shader_module,
fragShaderCode, size);
free(fragShaderCode);
return shader;
} else {
static const char *fragShaderText =
"#version 140\n"
"#extension GL_ARB_separate_shader_objects : enable\n"
"#extension GL_ARB_shading_language_420pack : enable\n"
"layout (binding = 1) uniform sampler2D tex;\n"
"\n"
"layout (location = 0) in vec4 texcoord;\n"
"layout (location = 0) out vec4 uFragColor;\n"
"void main() {\n"
" uFragColor = texture(tex, texcoord.xy);\n"
"}\n";
return demo_prepare_shader(demo, VK_SHADER_STAGE_FRAGMENT, &demo->frag_shader_module,
(const void *) fragShaderText,
strlen(fragShaderText));
}
}
static void demo_prepare_pipeline(struct demo *demo)
{
VkGraphicsPipelineCreateInfo pipeline;
VkPipelineCacheCreateInfo pipelineCache;
VkPipelineInputAssemblyStateCreateInfo ia;
VkPipelineRasterStateCreateInfo rs;
VkPipelineColorBlendStateCreateInfo cb;
VkPipelineDepthStencilStateCreateInfo ds;
VkPipelineViewportStateCreateInfo vp;
VkPipelineMultisampleStateCreateInfo ms;
VkDynamicState dynamicStateEnables[VK_DYNAMIC_STATE_NUM];
VkPipelineDynamicStateCreateInfo dynamicState;
VkResult U_ASSERT_ONLY err;
memset(dynamicStateEnables, 0, sizeof dynamicStateEnables);
memset(&dynamicState, 0, sizeof dynamicState);
dynamicState.sType = VK_STRUCTURE_TYPE_PIPELINE_DYNAMIC_STATE_CREATE_INFO;
dynamicState.pDynamicStates = dynamicStateEnables;
memset(&pipeline, 0, sizeof(pipeline));
pipeline.sType = VK_STRUCTURE_TYPE_GRAPHICS_PIPELINE_CREATE_INFO;
pipeline.layout = demo->pipeline_layout;
memset(&ia, 0, sizeof(ia));
ia.sType = VK_STRUCTURE_TYPE_PIPELINE_INPUT_ASSEMBLY_STATE_CREATE_INFO;
ia.topology = VK_PRIMITIVE_TOPOLOGY_TRIANGLE_LIST;
memset(&rs, 0, sizeof(rs));
rs.sType = VK_STRUCTURE_TYPE_PIPELINE_RASTER_STATE_CREATE_INFO;
rs.fillMode = VK_FILL_MODE_SOLID;
rs.cullMode = VK_CULL_MODE_BACK;
rs.frontFace = VK_FRONT_FACE_CCW;
rs.depthClipEnable = VK_TRUE;
rs.rasterizerDiscardEnable = VK_FALSE;
rs.depthBiasEnable = VK_FALSE;
memset(&cb, 0, sizeof(cb));
cb.sType = VK_STRUCTURE_TYPE_PIPELINE_COLOR_BLEND_STATE_CREATE_INFO;
VkPipelineColorBlendAttachmentState att_state[1];
memset(att_state, 0, sizeof(att_state));
att_state[0].channelWriteMask = 0xf;
att_state[0].blendEnable = VK_FALSE;
cb.attachmentCount = 1;
cb.pAttachments = att_state;
memset(&vp, 0, sizeof(vp));
vp.sType = VK_STRUCTURE_TYPE_PIPELINE_VIEWPORT_STATE_CREATE_INFO;
vp.viewportCount = 1;
dynamicStateEnables[dynamicState.dynamicStateCount++] = VK_DYNAMIC_STATE_VIEWPORT;
vp.scissorCount = 1;
dynamicStateEnables[dynamicState.dynamicStateCount++] = VK_DYNAMIC_STATE_SCISSOR;
memset(&ds, 0, sizeof(ds));
ds.sType = VK_STRUCTURE_TYPE_PIPELINE_DEPTH_STENCIL_STATE_CREATE_INFO;
ds.depthTestEnable = VK_TRUE;
ds.depthWriteEnable = VK_TRUE;
ds.depthCompareOp = VK_COMPARE_OP_LESS_EQUAL;
ds.depthBoundsTestEnable = VK_FALSE;
ds.back.stencilFailOp = VK_STENCIL_OP_KEEP;
ds.back.stencilPassOp = VK_STENCIL_OP_KEEP;
ds.back.stencilCompareOp = VK_COMPARE_OP_ALWAYS;
ds.stencilTestEnable = VK_FALSE;
ds.front = ds.back;
memset(&ms, 0, sizeof(ms));
ms.sType = VK_STRUCTURE_TYPE_PIPELINE_MULTISAMPLE_STATE_CREATE_INFO;
ms.pSampleMask = NULL;
ms.rasterSamples = 1;
// Two stages: vs and fs
pipeline.stageCount = 2;
VkPipelineShaderStageCreateInfo shaderStages[2];
memset(&shaderStages, 0, 2 * sizeof(VkPipelineShaderStageCreateInfo));
shaderStages[0].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
shaderStages[0].stage = VK_SHADER_STAGE_VERTEX;
shaderStages[0].shader = demo_prepare_vs(demo);
shaderStages[1].sType = VK_STRUCTURE_TYPE_PIPELINE_SHADER_STAGE_CREATE_INFO;
shaderStages[1].stage = VK_SHADER_STAGE_FRAGMENT;
shaderStages[1].shader = demo_prepare_fs(demo);
memset(&pipelineCache, 0, sizeof(pipelineCache));
pipelineCache.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
err = vkCreatePipelineCache(demo->device, &pipelineCache, &demo->pipelineCache);
assert(!err);
pipeline.pVertexInputState = NULL;
pipeline.pInputAssemblyState = &ia;
pipeline.pRasterState = &rs;
pipeline.pColorBlendState = &cb;
pipeline.pMultisampleState = &ms;
pipeline.pViewportState = &vp;
pipeline.pDepthStencilState = &ds;
pipeline.pStages = shaderStages;
pipeline.renderPass = demo->render_pass;
pipeline.pDynamicState = &dynamicState;
pipeline.renderPass = demo->render_pass;
err = vkCreateGraphicsPipelines(demo->device, demo->pipelineCache, 1, &pipeline, &demo->pipeline);
assert(!err);
for (uint32_t i = 0; i < pipeline.stageCount; i++) {
vkDestroyShader(demo->device, shaderStages[i].shader);
}
vkDestroyShaderModule(demo->device, demo->frag_shader_module);
vkDestroyShaderModule(demo->device, demo->vert_shader_module);
}
static void demo_prepare_descriptor_pool(struct demo *demo)
{
const VkDescriptorTypeCount type_counts[2] = {
[0] = {
.type = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER,
.count = 1,
},
[1] = {
.type = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER,
.count = DEMO_TEXTURE_COUNT,
},
};
const VkDescriptorPoolCreateInfo descriptor_pool = {
.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO,
.pNext = NULL,
.poolUsage = VK_DESCRIPTOR_POOL_USAGE_ONE_SHOT,
.maxSets = 1,
.count = 2,
.pTypeCount = type_counts,
};
VkResult U_ASSERT_ONLY err;
err = vkCreateDescriptorPool(demo->device,
&descriptor_pool, &demo->desc_pool);
assert(!err);
}
static void demo_prepare_descriptor_set(struct demo *demo)
{
VkDescriptorInfo tex_descs[DEMO_TEXTURE_COUNT];
VkWriteDescriptorSet writes[2];
VkResult U_ASSERT_ONLY err;
uint32_t i;
err = vkAllocDescriptorSets(demo->device, demo->desc_pool,
VK_DESCRIPTOR_SET_USAGE_STATIC,
1, &demo->desc_layout,
&demo->desc_set);
assert(!err);
memset(&tex_descs, 0, sizeof(tex_descs));
for (i = 0; i < DEMO_TEXTURE_COUNT; i++) {
tex_descs[i].sampler = demo->textures[i].sampler;
tex_descs[i].imageView = demo->textures[i].view;
tex_descs[i].imageLayout = VK_IMAGE_LAYOUT_GENERAL;
}
memset(&writes, 0, sizeof(writes));
writes[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writes[0].destSet = demo->desc_set;
writes[0].count = 1;
writes[0].descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
writes[0].pDescriptors = &demo->uniform_data.desc;
writes[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
writes[1].destSet = demo->desc_set;
writes[1].destBinding = 1;
writes[1].count = DEMO_TEXTURE_COUNT;
writes[1].descriptorType = VK_DESCRIPTOR_TYPE_COMBINED_IMAGE_SAMPLER;
writes[1].pDescriptors = tex_descs;
vkUpdateDescriptorSets(demo->device, 2, writes, 0, NULL);
}
static void demo_prepare_framebuffers(struct demo *demo)
{
VkImageView attachments[2];
attachments[1] = demo->depth.view;
const VkFramebufferCreateInfo fb_info = {
.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO,
.pNext = NULL,
.renderPass = demo->render_pass,
.attachmentCount = 2,
.pAttachments = attachments,
.width = demo->width,
.height = demo->height,
.layers = 1,
};
VkResult U_ASSERT_ONLY err;
uint32_t i;
for (i = 0; i < DEMO_BUFFER_COUNT; i++) {
attachments[0] = demo->buffers[i].view;
err = vkCreateFramebuffer(demo->device, &fb_info, &demo->framebuffers[i]);
assert(!err);
}
}
static void demo_prepare(struct demo *demo)
{
VkResult U_ASSERT_ONLY err;
const VkCmdPoolCreateInfo cmd_pool_info = {
.sType = VK_STRUCTURE_TYPE_CMD_POOL_CREATE_INFO,
.pNext = NULL,
.queueFamilyIndex = demo->graphics_queue_node_index,
.flags = 0,
};
err = vkCreateCommandPool(demo->device, &cmd_pool_info, &demo->cmd_pool);
assert(!err);
const VkCmdBufferCreateInfo cmd = {
.sType = VK_STRUCTURE_TYPE_CMD_BUFFER_CREATE_INFO,
.pNext = NULL,
.cmdPool = demo->cmd_pool,
.level = VK_CMD_BUFFER_LEVEL_PRIMARY,
.flags = 0,
};
demo_prepare_buffers(demo);
demo_prepare_depth(demo);
demo_prepare_textures(demo);
demo_prepare_cube_data_buffer(demo);
demo_prepare_descriptor_layout(demo);
demo_prepare_render_pass(demo);
demo_prepare_pipeline(demo);
for (uint32_t i = 0; i < demo->swapchainImageCount; i++) {
err = vkCreateCommandBuffer(demo->device, &cmd, &demo->buffers[i].cmd);
assert(!err);
}
demo_prepare_descriptor_pool(demo);
demo_prepare_descriptor_set(demo);
demo_prepare_framebuffers(demo);
for (uint32_t i = 0; i < demo->swapchainImageCount; i++) {
demo->current_buffer = i;
demo_draw_build_cmd(demo, demo->buffers[i].cmd);
}
/*
* Prepare functions above may generate pipeline commands
* that need to be flushed before beginning the render loop.
*/
demo_flush_init_cmd(demo);
demo->current_buffer = 0;
demo->prepared = true;
}
static void demo_cleanup(struct demo *demo)
{
uint32_t i;
demo->prepared = false;
for (i = 0; i < DEMO_BUFFER_COUNT; i++) {
vkDestroyFramebuffer(demo->device, demo->framebuffers[i]);
}
vkFreeDescriptorSets(demo->device, demo->desc_pool, 1, &demo->desc_set);
vkDestroyDescriptorPool(demo->device, demo->desc_pool);
vkDestroyPipeline(demo->device, demo->pipeline);
vkDestroyPipelineCache(demo->device, demo->pipelineCache);
vkDestroyRenderPass(demo->device, demo->render_pass);
vkDestroyPipelineLayout(demo->device, demo->pipeline_layout);
vkDestroyDescriptorSetLayout(demo->device, demo->desc_layout);
for (i = 0; i < DEMO_TEXTURE_COUNT; i++) {
vkDestroyImageView(demo->device, demo->textures[i].view);
vkDestroyImage(demo->device, demo->textures[i].image);
vkFreeMemory(demo->device, demo->textures[i].mem);
vkDestroySampler(demo->device, demo->textures[i].sampler);
}
demo->fpDestroySwapchainKHR(demo->device, demo->swap_chain);
vkDestroyImageView(demo->device, demo->depth.view);
vkDestroyImage(demo->device, demo->depth.image);
vkFreeMemory(demo->device, demo->depth.mem);
vkDestroyBuffer(demo->device, demo->uniform_data.buf);
vkFreeMemory(demo->device, demo->uniform_data.mem);
for (i = 0; i < demo->swapchainImageCount; i++) {
vkDestroyImageView(demo->device, demo->buffers[i].view);
vkDestroyCommandBuffer(demo->device, demo->buffers[i].cmd);
}
free(demo->buffers);
free(demo->queue_props);
vkDestroyCommandPool(demo->device, demo->cmd_pool);
vkDestroyDevice(demo->device);
if (demo->validate) {
demo->dbgDestroyMsgCallback(demo->inst, demo->msg_callback);
}
vkDestroyInstance(demo->inst);
#ifndef _WIN32
xcb_destroy_window(demo->connection, demo->window);
xcb_disconnect(demo->connection);
free(demo->atom_wm_delete_window);
#endif // _WIN32
}
// On MS-Windows, make this a global, so it's available to WndProc()
struct demo demo;
#ifdef _WIN32
static void demo_run(struct demo *demo)
{
if (!demo->prepared)
return;
// Wait for work to finish before updating MVP.
vkDeviceWaitIdle(demo->device);
demo_update_data_buffer(demo);
demo_draw(demo);
// Wait for work to finish before updating MVP.
vkDeviceWaitIdle(demo->device);
demo->curFrame++;
if (demo->frameCount != INT_MAX && demo->curFrame == demo->frameCount)
{
demo->quit=true;
demo_cleanup(demo);
ExitProcess(0);
}
}
// MS-Windows event handling function:
LRESULT CALLBACK WndProc(HWND hWnd,
UINT uMsg,
WPARAM wParam,
LPARAM lParam)
{
switch(uMsg)
{
case WM_CLOSE:
PostQuitMessage(0);
break;
case WM_PAINT:
demo_run(&demo);
return 0;
default:
break;
}
return (DefWindowProc(hWnd, uMsg, wParam, lParam));
}
static void demo_create_window(struct demo *demo)
{
WNDCLASSEX win_class;
// Initialize the window class structure:
win_class.cbSize = sizeof(WNDCLASSEX);
win_class.style = CS_HREDRAW | CS_VREDRAW;
win_class.lpfnWndProc = WndProc;
win_class.cbClsExtra = 0;
win_class.cbWndExtra = 0;
win_class.hInstance = demo->connection; // hInstance
win_class.hIcon = LoadIcon(NULL, IDI_APPLICATION);
win_class.hCursor = LoadCursor(NULL, IDC_ARROW);
win_class.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
win_class.lpszMenuName = NULL;
win_class.lpszClassName = demo->name;
win_class.hIconSm = LoadIcon(NULL, IDI_WINLOGO);
// Register window class:
if (!RegisterClassEx(&win_class)) {
// It didn't work, so try to give a useful error:
printf("Unexpected error trying to start the application!\n");
fflush(stdout);
exit(1);
}
// Create window with the registered class:
RECT wr = { 0, 0, demo->width, demo->height };
AdjustWindowRect(&wr, WS_OVERLAPPEDWINDOW, FALSE);
demo->window = CreateWindowEx(0,
demo->name, // class name
demo->name, // app name
WS_OVERLAPPEDWINDOW | // window style
WS_VISIBLE |
WS_SYSMENU,
100,100, // x/y coords
wr.right-wr.left, // width
wr.bottom-wr.top, // height
NULL, // handle to parent
NULL, // handle to menu
demo->connection, // hInstance
NULL); // no extra parameters
if (!demo->window) {
// It didn't work, so try to give a useful error:
printf("Cannot create a window in which to draw!\n");
fflush(stdout);
exit(1);
}
}
#else // _WIN32
static void demo_handle_event(struct demo *demo,
const xcb_generic_event_t *event)
{
uint8_t event_code = event->response_type & 0x7f;
switch (event_code) {
case XCB_EXPOSE:
// TODO: Resize window
break;
case XCB_CLIENT_MESSAGE:
if((*(xcb_client_message_event_t*)event).data.data32[0] ==
(*demo->atom_wm_delete_window).atom) {
demo->quit = true;
}
break;
case XCB_KEY_RELEASE:
{
const xcb_key_release_event_t *key =
(const xcb_key_release_event_t *) event;
switch (key->detail) {
case 0x9: // Escape
demo->quit = true;
break;
case 0x71: // left arrow key
demo->spin_angle += demo->spin_increment;
break;
case 0x72: // right arrow key
demo->spin_angle -= demo->spin_increment;
break;
case 0x41:
demo->pause = !demo->pause;
break;
}
}
break;
default:
break;
}
}
static void demo_run(struct demo *demo)
{
xcb_flush(demo->connection);
while (!demo->quit) {
xcb_generic_event_t *event;
if (demo->pause) {
event = xcb_wait_for_event(demo->connection);
} else {
event = xcb_poll_for_event(demo->connection);
}
if (event) {
demo_handle_event(demo, event);
free(event);
}
// Wait for work to finish before updating MVP.
vkDeviceWaitIdle(demo->device);
demo_update_data_buffer(demo);
demo_draw(demo);
// Wait for work to finish before updating MVP.
vkDeviceWaitIdle(demo->device);
demo->curFrame++;
if (demo->frameCount != INT32_MAX && demo->curFrame == demo->frameCount)
demo->quit = true;
}
}
static void demo_create_window(struct demo *demo)
{
uint32_t value_mask, value_list[32];
demo->window = xcb_generate_id(demo->connection);
value_mask = XCB_CW_BACK_PIXEL | XCB_CW_EVENT_MASK;
value_list[0] = demo->screen->black_pixel;
value_list[1] = XCB_EVENT_MASK_KEY_RELEASE |
XCB_EVENT_MASK_EXPOSURE;
xcb_create_window(demo->connection,
XCB_COPY_FROM_PARENT,
demo->window, demo->screen->root,
0, 0, demo->width, demo->height, 0,
XCB_WINDOW_CLASS_INPUT_OUTPUT,
demo->screen->root_visual,
value_mask, value_list);
/* Magic code that will send notification when window is destroyed */
xcb_intern_atom_cookie_t cookie = xcb_intern_atom(demo->connection, 1, 12,
"WM_PROTOCOLS");
xcb_intern_atom_reply_t* reply = xcb_intern_atom_reply(demo->connection, cookie, 0);
xcb_intern_atom_cookie_t cookie2 = xcb_intern_atom(demo->connection, 0, 16, "WM_DELETE_WINDOW");
demo->atom_wm_delete_window = xcb_intern_atom_reply(demo->connection, cookie2, 0);
xcb_change_property(demo->connection, XCB_PROP_MODE_REPLACE,
demo->window, (*reply).atom, 4, 32, 1,
&(*demo->atom_wm_delete_window).atom);
free(reply);
xcb_map_window(demo->connection, demo->window);
// Force the x/y coordinates to 100,100 results are identical in consecutive runs
const uint32_t coords[] = {100, 100};
xcb_configure_window(demo->connection, demo->window,
XCB_CONFIG_WINDOW_X | XCB_CONFIG_WINDOW_Y, coords);
}
#endif // _WIN32
/*
* Return 1 (true) if all layer names specified in check_names
* can be found in given layer properties.
*/
static VkBool32 demo_check_layers(uint32_t check_count, char **check_names,
uint32_t layer_count, VkLayerProperties *layers)
{
for (uint32_t i = 0; i < check_count; i++) {
VkBool32 found = 0;
for (uint32_t j = 0; j < layer_count; j++) {
if (!strcmp(check_names[i], layers[j].layerName)) {
found = 1;
}
}
if (!found) {
fprintf(stderr, "Cannot find layer: %s\n", check_names[i]);
return 0;
}
}
return 1;
}
static void demo_init_vk(struct demo *demo)
{
VkResult err;
char *extension_names[64];
VkExtensionProperties *instance_extensions;
VkPhysicalDevice *physical_devices;
VkLayerProperties *instance_layers;
VkLayerProperties *device_layers;
uint32_t instance_extension_count = 0;
uint32_t instance_layer_count = 0;
uint32_t enabled_extension_count = 0;
uint32_t enabled_layer_count = 0;
char *instance_validation_layers[] = {
"Threading",
"MemTracker",
"ObjectTracker",
"DrawState",
"ParamChecker",
"ShaderChecker",
"Swapchain",
"DeviceLimits",
"Image",
};
char *device_validation_layers[] = {
"Threading",
"MemTracker",
"ObjectTracker",
"DrawState",
"ParamChecker",
"ShaderChecker",
"Swapchain",
"DeviceLimits",
"Image",
};
/* Look for validation layers */
VkBool32 validation_found = 0;
err = vkEnumerateInstanceLayerProperties(&instance_layer_count, NULL);
assert(!err);
instance_layers = malloc(sizeof(VkLayerProperties) * instance_layer_count);
err = vkEnumerateInstanceLayerProperties(&instance_layer_count, instance_layers);
assert(!err);
if (demo->validate) {
validation_found = demo_check_layers(ARRAY_SIZE(instance_validation_layers), instance_validation_layers,
instance_layer_count, instance_layers);
if (!validation_found) {
ERR_EXIT("vkEnumerateInstanceLayerProperties failed to find"
"required validation layer.\n\n"
"Please look at the Getting Started guide for additional "
"information.\n",
"vkCreateInstance Failure");
}
enabled_layer_count = ARRAY_SIZE(instance_validation_layers);
}
err = vkEnumerateInstanceExtensionProperties(NULL, &instance_extension_count, NULL);
assert(!err);
VkBool32 WSIextFound = 0;
memset(extension_names, 0, sizeof(extension_names));
instance_extensions = malloc(sizeof(VkExtensionProperties) * instance_extension_count);
err = vkEnumerateInstanceExtensionProperties(NULL, &instance_extension_count, instance_extensions);
assert(!err);
for (uint32_t i = 0; i < instance_extension_count; i++) {
if (!strcmp("VK_EXT_KHR_swapchain", instance_extensions[i].extName)) {
WSIextFound = 1;
extension_names[enabled_extension_count++] = "VK_EXT_KHR_swapchain";
}
if (!strcmp(VK_DEBUG_REPORT_EXTENSION_NAME, instance_extensions[i].extName)) {
if (demo->validate) {
extension_names[enabled_extension_count++] = VK_DEBUG_REPORT_EXTENSION_NAME;
}
}
assert(enabled_extension_count < 64);
}
if (!WSIextFound) {
ERR_EXIT("vkEnumerateInstanceExtensionProperties failed to find the "
"\"VK_EXT_KHR_swapchain\" extension.\n\nDo you have a compatible "
"Vulkan installable client driver (ICD) installed?\nPlease "
"look at the Getting Started guide for additional "
"information.\n",
"vkCreateInstance Failure");
}
const VkApplicationInfo app = {
.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO,
.pNext = NULL,
.pAppName = APP_SHORT_NAME,
.appVersion = 0,
.pEngineName = APP_SHORT_NAME,
.engineVersion = 0,
.apiVersion = VK_API_VERSION,
};
VkInstanceCreateInfo inst_info = {
.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO,
.pNext = NULL,
.pAppInfo = &app,
.pAllocCb = NULL,
.layerCount = enabled_layer_count,
.ppEnabledLayerNames = (const char *const*) ((demo->validate) ? instance_validation_layers : NULL),
.extensionCount = enabled_extension_count,
.ppEnabledExtensionNames = (const char *const*) extension_names,
};
uint32_t gpu_count;
err = vkCreateInstance(&inst_info, &demo->inst);
if (err == VK_ERROR_INCOMPATIBLE_DRIVER) {
ERR_EXIT("Cannot find a compatible Vulkan installable client driver "
"(ICD).\n\nPlease look at the Getting Started guide for "
"additional information.\n",
"vkCreateInstance Failure");
} else if (err == VK_ERROR_EXTENSION_NOT_PRESENT) {
ERR_EXIT("Cannot find a specified extension library"
".\nMake sure your layers path is set appropriately\n",
"vkCreateInstance Failure");
} else if (err) {
ERR_EXIT("vkCreateInstance failed.\n\nDo you have a compatible Vulkan "
"installable client driver (ICD) installed?\nPlease look at "
"the Getting Started guide for additional information.\n",
"vkCreateInstance Failure");
}
free(instance_layers);
free(instance_extensions);
/* Make initial call to query gpu_count, then second call for gpu info*/
err = vkEnumeratePhysicalDevices(demo->inst, &gpu_count, NULL);
assert(!err && gpu_count > 0);
physical_devices = malloc(sizeof(VkPhysicalDevice) * gpu_count);
err = vkEnumeratePhysicalDevices(demo->inst, &gpu_count, physical_devices);
assert(!err);
/* For cube demo we just grab the first physical device */
demo->gpu = physical_devices[0];
free(physical_devices);
/* Look for validation layers */
validation_found = 0;
enabled_layer_count = 0;
uint32_t device_layer_count = 0;
err = vkEnumerateDeviceLayerProperties(demo->gpu, &device_layer_count, NULL);
assert(!err);
device_layers = malloc(sizeof(VkLayerProperties) * device_layer_count);
err = vkEnumerateDeviceLayerProperties(demo->gpu, &device_layer_count, device_layers);
assert(!err);
if (demo->validate) {
validation_found = demo_check_layers(ARRAY_SIZE(device_validation_layers), device_validation_layers,
device_layer_count, device_layers);
if (!validation_found) {
ERR_EXIT("vkEnumerateDeviceLayerProperties failed to find"
"a required validation layer.\n\n"
"Please look at the Getting Started guide for additional "
"information.\n",
"vkCreateDevice Failure");
}
enabled_layer_count = ARRAY_SIZE(device_validation_layers);
}
uint32_t device_extension_count = 0;
VkExtensionProperties *device_extensions = NULL;
err = vkEnumerateDeviceExtensionProperties(
demo->gpu, NULL, &device_extension_count, NULL);
assert(!err);
WSIextFound = 0;
enabled_extension_count = 0;
memset(extension_names, 0, sizeof(extension_names));
device_extensions = malloc(sizeof(VkExtensionProperties) * device_extension_count);
err = vkEnumerateDeviceExtensionProperties(
demo->gpu, NULL, &device_extension_count, device_extensions);
assert(!err);
for (uint32_t i = 0; i < device_extension_count; i++) {
if (!strcmp("VK_EXT_KHR_device_swapchain", device_extensions[i].extName)) {
WSIextFound = 1;
extension_names[enabled_extension_count++] = "VK_EXT_KHR_device_swapchain";
}
assert(enabled_extension_count < 64);
}
if (!WSIextFound) {
ERR_EXIT("vkEnumerateDeviceExtensionProperties failed to find the "
"\"VK_EXT_KHR_device_swapchain\" extension.\n\nDo you have a compatible "
"Vulkan installable client driver (ICD) installed?\nPlease "
"look at the Getting Started guide for additional "
"information.\n",
"vkCreateInstance Failure");
}
if (demo->validate) {
demo->dbgCreateMsgCallback = (PFN_vkDbgCreateMsgCallback) vkGetInstanceProcAddr(demo->inst, "vkDbgCreateMsgCallback");
demo->dbgDestroyMsgCallback = (PFN_vkDbgDestroyMsgCallback) vkGetInstanceProcAddr(demo->inst, "vkDbgDestroyMsgCallback");
if (!demo->dbgCreateMsgCallback) {
ERR_EXIT("GetProcAddr: Unable to find vkDbgCreateMsgCallback\n",
"vkGetProcAddr Failure");
}
if (!demo->dbgDestroyMsgCallback) {
ERR_EXIT("GetProcAddr: Unable to find vkDbgDestroyMsgCallback\n",
"vkGetProcAddr Failure");
}
demo->dbgBreakCallback = (PFN_vkDbgMsgCallback) vkGetInstanceProcAddr(demo->inst, "vkDbgBreakCallback");
if (!demo->dbgBreakCallback) {
ERR_EXIT("GetProcAddr: Unable to find vkDbgBreakCallback\n",
"vkGetProcAddr Failure");
}
PFN_vkDbgMsgCallback callback;
if (!demo->use_break) {
callback = dbgFunc;
} else {
callback = demo->dbgBreakCallback;
}
err = demo->dbgCreateMsgCallback(
demo->inst,
VK_DBG_REPORT_ERROR_BIT | VK_DBG_REPORT_WARN_BIT,
callback, NULL,
&demo->msg_callback);
switch (err) {
case VK_SUCCESS:
break;
case VK_ERROR_OUT_OF_HOST_MEMORY:
ERR_EXIT("dbgCreateMsgCallback: out of host memory\n",
"dbgCreateMsgCallback Failure");
break;
default:
ERR_EXIT("dbgCreateMsgCallback: unknown failure\n",
"dbgCreateMsgCallback Failure");
break;
}
}
err = vkGetPhysicalDeviceProperties(demo->gpu, &demo->gpu_props);
assert(!err);
/* Call with NULL data to get count */
err = vkGetPhysicalDeviceQueueFamilyProperties(demo->gpu, &demo->queue_count, NULL);
assert(!err);
assert(demo->queue_count >= 1);
demo->queue_props = (VkQueueFamilyProperties *) malloc(demo->queue_count * sizeof(VkQueueFamilyProperties));
err = vkGetPhysicalDeviceQueueFamilyProperties(demo->gpu, &demo->queue_count, demo->queue_props);
assert(!err);
// Find a queue that supports gfx
uint32_t gfx_queue_idx = 0;
for (gfx_queue_idx = 0; gfx_queue_idx<demo->queue_count; gfx_queue_idx++) {
if (demo->queue_props[gfx_queue_idx].queueFlags & VK_QUEUE_GRAPHICS_BIT)
break;
}
assert(gfx_queue_idx < demo->queue_count);
// Query fine-grained feature support for this device.
// If app has specific feature requirements it should check supported features based on this query
VkPhysicalDeviceFeatures physDevFeatures;
err = vkGetPhysicalDeviceFeatures(demo->gpu, &physDevFeatures);
assert(!err);
const VkDeviceQueueCreateInfo queue = {
.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO,
.pNext = NULL,
.queueFamilyIndex = gfx_queue_idx,
.queueCount = 1,
};
VkDeviceCreateInfo device = {
.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO,
.pNext = NULL,
.queueRecordCount = 1,
.pRequestedQueues = &queue,
.layerCount = enabled_layer_count,
.ppEnabledLayerNames = (const char *const*) ((demo->validate) ? device_validation_layers : NULL),
.extensionCount = enabled_extension_count,
.ppEnabledExtensionNames = (const char *const*) extension_names,
.pEnabledFeatures = NULL, // If specific features are required, pass them in here
};
err = vkCreateDevice(demo->gpu, &device, &demo->device);
assert(!err);
free(device_layers);
GET_INSTANCE_PROC_ADDR(demo->inst, GetPhysicalDeviceSurfaceSupportKHR);
GET_DEVICE_PROC_ADDR(demo->device, GetSurfacePropertiesKHR);
GET_DEVICE_PROC_ADDR(demo->device, GetSurfaceFormatsKHR);
GET_DEVICE_PROC_ADDR(demo->device, GetSurfacePresentModesKHR);
GET_DEVICE_PROC_ADDR(demo->device, CreateSwapchainKHR);
GET_DEVICE_PROC_ADDR(demo->device, DestroySwapchainKHR);
GET_DEVICE_PROC_ADDR(demo->device, GetSwapchainImagesKHR);
GET_DEVICE_PROC_ADDR(demo->device, AcquireNextImageKHR);
GET_DEVICE_PROC_ADDR(demo->device, QueuePresentKHR);
}
static void demo_init_vk_wsi(struct demo *demo)
{
VkResult err;
uint32_t i;
// Construct the WSI surface description:
demo->surface_description.sType = VK_STRUCTURE_TYPE_SURFACE_DESCRIPTION_WINDOW_KHR;
demo->surface_description.pNext = NULL;
#ifdef _WIN32
demo->surface_description.platform = VK_PLATFORM_WIN32_KHR;
demo->surface_description.pPlatformHandle = demo->connection;
demo->surface_description.pPlatformWindow = demo->window;
#else // _WIN32
demo->platform_handle_xcb.connection = demo->connection;
demo->platform_handle_xcb.root = demo->screen->root;
demo->surface_description.platform = VK_PLATFORM_XCB_KHR;
demo->surface_description.pPlatformHandle = &demo->platform_handle_xcb;
demo->surface_description.pPlatformWindow = &demo->window;
#endif // _WIN32
// Iterate over each queue to learn whether it supports presenting to WSI:
VkBool32* supportsPresent = (VkBool32 *)malloc(demo->queue_count * sizeof(VkBool32));
for (i = 0; i < demo->queue_count; i++) {
demo->fpGetPhysicalDeviceSurfaceSupportKHR(demo->gpu, i,
(VkSurfaceDescriptionKHR *) &demo->surface_description,
&supportsPresent[i]);
}
// Search for a graphics and a present queue in the array of queue
// families, try to find one that supports both
uint32_t graphicsQueueNodeIndex = UINT32_MAX;
uint32_t presentQueueNodeIndex = UINT32_MAX;
for (i = 0; i < demo->queue_count; i++) {
if ((demo->queue_props[i].queueFlags & VK_QUEUE_GRAPHICS_BIT) != 0) {
if (graphicsQueueNodeIndex == UINT32_MAX) {
graphicsQueueNodeIndex = i;
}
if (supportsPresent[i] == VK_TRUE) {
graphicsQueueNodeIndex = i;
presentQueueNodeIndex = i;
break;
}
}
}
if (presentQueueNodeIndex == UINT32_MAX) {
// If didn't find a queue that supports both graphics and present, then
// find a separate present queue.
for (uint32_t i = 0; i < demo->queue_count; ++i) {
if (supportsPresent[i] == VK_TRUE) {
presentQueueNodeIndex = i;
break;
}
}
}
free(supportsPresent);
// Generate error if could not find both a graphics and a present queue
if (graphicsQueueNodeIndex == UINT32_MAX || presentQueueNodeIndex == UINT32_MAX) {
ERR_EXIT("Could not find a graphics and a present queue\n",
"WSI Initialization Failure");
}
// TODO: Add support for separate queues, including presentation,
// synchronization, and appropriate tracking for QueueSubmit
// While it is possible for an application to use a separate graphics and a
// present queues, this demo program assumes it is only using one:
if (graphicsQueueNodeIndex != presentQueueNodeIndex) {
ERR_EXIT("Could not find a common graphics and a present queue\n",
"WSI Initialization Failure");
}
demo->graphics_queue_node_index = graphicsQueueNodeIndex;
err = vkGetDeviceQueue(demo->device, demo->graphics_queue_node_index,
0, &demo->queue);
assert(!err);
// Get the list of VkFormat's that are supported:
uint32_t formatCount;
err = demo->fpGetSurfaceFormatsKHR(demo->device,
(VkSurfaceDescriptionKHR *) &demo->surface_description,
&formatCount, NULL);
assert(!err);
VkSurfaceFormatKHR *surfFormats =
(VkSurfaceFormatKHR *)malloc(formatCount * sizeof(VkSurfaceFormatKHR));
err = demo->fpGetSurfaceFormatsKHR(demo->device,
(VkSurfaceDescriptionKHR *) &demo->surface_description,
&formatCount, surfFormats);
assert(!err);
// If the format list includes just one entry of VK_FORMAT_UNDEFINED,
// the surface has no preferred format. Otherwise, at least one
// supported format will be returned.
if (formatCount == 1 && surfFormats[0].format == VK_FORMAT_UNDEFINED)
{
demo->format = VK_FORMAT_B8G8R8A8_UNORM;
}
else
{
assert(formatCount >= 1);
demo->format = surfFormats[0].format;
}
demo->color_space = surfFormats[0].colorSpace;
demo->quit = false;
demo->curFrame = 0;
// Get Memory information and properties
err = vkGetPhysicalDeviceMemoryProperties(demo->gpu, &demo->memory_properties);
assert(!err);
}
static void demo_init_connection(struct demo *demo)
{
#ifndef _WIN32
const xcb_setup_t *setup;
xcb_screen_iterator_t iter;
int scr;
demo->connection = xcb_connect(NULL, &scr);
if (demo->connection == NULL) {
printf("Cannot find a compatible Vulkan installable client driver "
"(ICD).\nExiting ...\n");
fflush(stdout);
exit(1);
}
setup = xcb_get_setup(demo->connection);
iter = xcb_setup_roots_iterator(setup);
while (scr-- > 0)
xcb_screen_next(&iter);
demo->screen = iter.data;
#endif // _WIN32
}
static void demo_init(struct demo *demo, int argc, char **argv)
{
vec3 eye = {0.0f, 3.0f, 5.0f};
vec3 origin = {0, 0, 0};
vec3 up = {0.0f, 1.0f, 0.0};
memset(demo, 0, sizeof(*demo));
demo->frameCount = INT32_MAX;
for (int i = 1; i < argc; i++) {
if (strcmp(argv[i], "--use_staging") == 0) {
demo->use_staging_buffer = true;
continue;
}
if (strcmp(argv[i], "--use_glsl") == 0) {
demo->use_glsl = true;
continue;
}
if (strcmp(argv[i], "--break") == 0) {
demo->use_break = true;
continue;
}
if (strcmp(argv[i], "--validate") == 0) {
demo->validate = true;
continue;
}
if (strcmp(argv[i], "--c") == 0 &&
demo->frameCount == INT32_MAX &&
i < argc-1 &&
sscanf(argv[i+1],"%d", &demo->frameCount) == 1 &&
demo->frameCount >= 0)
{
i++;
continue;
}
fprintf(stderr, "Usage:\n %s [--use_staging] [--validate] [--break] [--c <framecount>]\n", APP_SHORT_NAME);
fflush(stderr);
exit(1);
}
demo_init_connection(demo);
demo_init_vk(demo);
demo->width = 500;
demo->height = 500;
demo->spin_angle = 0.01f;
demo->spin_increment = 0.01f;
demo->pause = false;
mat4x4_perspective(demo->projection_matrix, (float)degreesToRadians(45.0f), 1.0f, 0.1f, 100.0f);
mat4x4_look_at(demo->view_matrix, eye, origin, up);
mat4x4_identity(demo->model_matrix);
}
#ifdef _WIN32
extern int __getmainargs(
int * _Argc,
char *** _Argv,
char *** _Env,
int _DoWildCard,
int * new_mode);
int WINAPI WinMain(HINSTANCE hInstance,
HINSTANCE hPrevInstance,
LPSTR pCmdLine,
int nCmdShow)
{
MSG msg; // message
bool done; // flag saying when app is complete
int argc;
char** argv;
char** env;
int new_mode = 0;
__getmainargs(&argc,&argv,&env,0,&new_mode);
demo_init(&demo, argc, argv);
demo.connection = hInstance;
strncpy(demo.name, "cube", APP_NAME_STR_LEN);
demo_create_window(&demo);
demo_init_vk_wsi(&demo);
demo_prepare(&demo);
done = false; //initialize loop condition variable
/* main message loop*/
while(!done)
{
PeekMessage(&msg, NULL, 0, 0, PM_REMOVE);
if (msg.message == WM_QUIT) //check for a quit message
{
done = true; //if found, quit app
}
else
{
/* Translate and dispatch to event queue*/
TranslateMessage(&msg);
DispatchMessage(&msg);
}
}
demo_cleanup(&demo);
return (int) msg.wParam;
}
#else // _WIN32
int main(int argc, char **argv)
{
struct demo demo;
demo_init(&demo, argc, argv);
demo_create_window(&demo);
demo_init_vk_wsi(&demo);
demo_prepare(&demo);
demo_run(&demo);
demo_cleanup(&demo);
return 0;
}
#endif // _WIN32