blob: cbfbed4d9e2943d9c3ab1b3a17d111ef77347725 [file] [log] [blame]
// VK tests
//
// Copyright (C) 2014 LunarG, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
// DEALINGS IN THE SOFTWARE.
// Blit (copy, clear, and resolve) tests
#include "math.h"
#include "test_common.h"
#include "vktestbinding.h"
#include "test_environment.h"
#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
namespace vk_testing {
size_t get_format_size(VkFormat format);
class ImageChecker {
public:
explicit ImageChecker(const VkImageCreateInfo &info, const std::vector<VkBufferImageCopy> &regions)
: info_(info), regions_(regions), pattern_(HASH) {}
explicit ImageChecker(const VkImageCreateInfo &info, const std::vector<VkImageSubresourceRange> &ranges);
explicit ImageChecker(const VkImageCreateInfo &info);
void set_solid_pattern(const std::vector<uint8_t> &solid);
VkDeviceSize buffer_size() const;
bool fill(Buffer &buf) const { return walk(FILL, buf); }
bool fill(Image &img) const { return walk(FILL, img); }
bool check(Buffer &buf) const { return walk(CHECK, buf); }
bool check(Image &img) const { return walk(CHECK, img); }
const std::vector<VkBufferImageCopy> &regions() const { return regions_; }
static void hash_salt_generate() { hash_salt_++; }
private:
enum Action {
FILL,
CHECK,
};
enum Pattern {
HASH,
SOLID,
};
size_t buffer_cpp() const;
VkSubresourceLayout buffer_layout(const VkBufferImageCopy &region) const;
bool walk(Action action, Buffer &buf) const;
bool walk(Action action, Image &img) const;
bool walk_region(Action action, const VkBufferImageCopy &region, const VkSubresourceLayout &layout, void *data) const;
std::vector<uint8_t> pattern_hash(const VkImageSubresourceCopy &subres, const VkOffset3D &offset) const;
static uint32_t hash_salt_;
VkImageCreateInfo info_;
std::vector<VkBufferImageCopy> regions_;
Pattern pattern_;
std::vector<uint8_t> pattern_solid_;
};
uint32_t ImageChecker::hash_salt_;
ImageChecker::ImageChecker(const VkImageCreateInfo &info)
: info_(info), regions_(), pattern_(HASH)
{
// create a region for every mip level in array slice 0
VkDeviceSize offset = 0;
for (uint32_t lv = 0; lv < info_.mipLevels; lv++) {
VkBufferImageCopy region = {};
region.bufferOffset = offset;
region.imageSubresource.mipLevel = lv;
region.imageSubresource.arrayLayer = 0;
region.imageExtent = Image::extent(info_.extent, lv);
if (info_.usage & VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT) {
if (info_.format != VK_FORMAT_S8_UINT) {
region.imageSubresource.aspect = VK_IMAGE_ASPECT_DEPTH;
regions_.push_back(region);
}
if (info_.format == VK_FORMAT_D16_UNORM_S8_UINT ||
info_.format == VK_FORMAT_D32_SFLOAT_S8_UINT ||
info_.format == VK_FORMAT_S8_UINT) {
region.imageSubresource.aspect = VK_IMAGE_ASPECT_STENCIL;
regions_.push_back(region);
}
} else {
region.imageSubresource.aspect = VK_IMAGE_ASPECT_COLOR;
regions_.push_back(region);
}
offset += buffer_layout(region).size;
}
// arraySize should be limited in our tests. If this proves to be an
// issue, we can store only the regions for array slice 0 and be smart.
if (info_.arraySize > 1) {
const VkDeviceSize slice_pitch = offset;
const uint32_t slice_region_count = regions_.size();
regions_.reserve(slice_region_count * info_.arraySize);
for (uint32_t slice = 1; slice < info_.arraySize; slice++) {
for (uint32_t i = 0; i < slice_region_count; i++) {
VkBufferImageCopy region = regions_[i];
region.bufferOffset += slice_pitch * slice;
region.imageSubresource.arrayLayer = slice;
regions_.push_back(region);
}
}
}
}
ImageChecker::ImageChecker(const VkImageCreateInfo &info, const std::vector<VkImageSubresourceRange> &ranges)
: info_(info), regions_(), pattern_(HASH)
{
VkDeviceSize offset = 0;
for (std::vector<VkImageSubresourceRange>::const_iterator it = ranges.begin();
it != ranges.end(); it++) {
for (uint32_t lv = 0; lv < it->mipLevels; lv++) {
for (uint32_t layer = 0; layer < it->arraySize; layer++) {
VkBufferImageCopy region = {};
region.bufferOffset = offset;
region.imageSubresource = Image::subresource(*it, lv, layer, 1);
region.imageExtent = Image::extent(info_.extent, lv);
regions_.push_back(region);
offset += buffer_layout(region).size;
}
}
}
}
void ImageChecker::set_solid_pattern(const std::vector<uint8_t> &solid)
{
pattern_ = SOLID;
pattern_solid_.clear();
pattern_solid_.reserve(buffer_cpp());
for (size_t i = 0; i < buffer_cpp(); i++)
pattern_solid_.push_back(solid[i % solid.size()]);
}
size_t ImageChecker::buffer_cpp() const
{
return get_format_size(info_.format);
}
VkSubresourceLayout ImageChecker::buffer_layout(const VkBufferImageCopy &region) const
{
VkSubresourceLayout layout = {};
layout.offset = region.bufferOffset;
layout.rowPitch = buffer_cpp() * region.imageExtent.width;
layout.depthPitch = layout.rowPitch * region.imageExtent.height;
layout.size = layout.depthPitch * region.imageExtent.depth;
return layout;
}
VkDeviceSize ImageChecker::buffer_size() const
{
VkDeviceSize size = 0;
for (std::vector<VkBufferImageCopy>::const_iterator it = regions_.begin();
it != regions_.end(); it++) {
const VkSubresourceLayout layout = buffer_layout(*it);
if (size < layout.offset + layout.size)
size = layout.offset + layout.size;
}
return size;
}
bool ImageChecker::walk_region(Action action, const VkBufferImageCopy &region,
const VkSubresourceLayout &layout, void *data) const
{
for (int32_t z = 0; z < region.imageExtent.depth; z++) {
for (int32_t y = 0; y < region.imageExtent.height; y++) {
for (int32_t x = 0; x < region.imageExtent.width; x++) {
uint8_t *dst = static_cast<uint8_t *>(data);
dst += layout.offset + layout.depthPitch * z +
layout.rowPitch * y + buffer_cpp() * x;
VkOffset3D offset = region.imageOffset;
offset.x += x;
offset.y += y;
offset.z += z;
const std::vector<uint8_t> &val = (pattern_ == HASH) ?
pattern_hash(region.imageSubresource, offset) :
pattern_solid_;
assert(val.size() == buffer_cpp());
if (action == FILL) {
memcpy(dst, &val[0], val.size());
} else {
for (size_t i = 0; i < val.size(); i++) {
EXPECT_EQ(val[i], dst[i]) <<
"Offset is: (" << x << ", " << y << ", " << z << ")\n"
"Format is: (" << info_.format << ")\n";
if (val[i] != dst[i])
return false;
}
}
}
}
}
return true;
}
bool ImageChecker::walk(Action action, Buffer &buf) const
{
void *data = buf.memory().map();
if (!data)
return false;
std::vector<VkBufferImageCopy>::const_iterator it;
for (it = regions_.begin(); it != regions_.end(); it++) {
if (!walk_region(action, *it, buffer_layout(*it), data))
break;
}
buf.memory().unmap();
return (it == regions_.end());
}
bool ImageChecker::walk(Action action, Image &img) const
{
void *data = img.memory().map();
if (!data)
return false;
std::vector<VkBufferImageCopy>::const_iterator it;
for (it = regions_.begin(); it != regions_.end(); it++) {
if (!walk_region(action, *it, img.subresource_layout(it->imageSubresource), data))
break;
}
img.memory().unmap();
return (it == regions_.end());
}
std::vector<uint8_t> ImageChecker::pattern_hash(const VkImageSubresourceCopy &subres, const VkOffset3D &offset) const
{
#define HASH_BYTE(val, b) static_cast<uint8_t>((static_cast<uint32_t>(val) >> (b * 8)) & 0xff)
#define HASH_BYTES(val) HASH_BYTE(val, 0), HASH_BYTE(val, 1), HASH_BYTE(val, 2), HASH_BYTE(val, 3)
const unsigned char input[] = {
HASH_BYTES(hash_salt_),
HASH_BYTES(subres.mipLevel),
HASH_BYTES(subres.arrayLayer),
HASH_BYTES(offset.x),
HASH_BYTES(offset.y),
HASH_BYTES(offset.z),
};
unsigned long hash = 5381;
for (int32_t i = 0; i < ARRAY_SIZE(input); i++)
hash = ((hash << 5) + hash) + input[i];
const uint8_t output[4] = { HASH_BYTES(hash) };
#undef HASH_BYTES
#undef HASH_BYTE
std::vector<uint8_t> val;
val.reserve(buffer_cpp());
for (size_t i = 0; i < buffer_cpp(); i++)
val.push_back(output[i % 4]);
return val;
}
size_t get_format_size(VkFormat format)
{
static bool format_table_unverified = true;
static const struct format_info {
VkFormat format;
size_t size;
uint32_t channel_count;
} format_table[VK_FORMAT_NUM] = {
{ VK_FORMAT_UNDEFINED, 0, 0 },
{ VK_FORMAT_R4G4_UNORM, 1, 2 },
{ VK_FORMAT_R4G4_USCALED, 1, 2 },
{ VK_FORMAT_R4G4B4A4_UNORM, 2, 4 },
{ VK_FORMAT_R4G4B4A4_USCALED, 2, 4 },
{ VK_FORMAT_R5G6B5_UNORM, 2, 3 },
{ VK_FORMAT_R5G6B5_USCALED, 2, 3 },
{ VK_FORMAT_R5G5B5A1_UNORM, 2, 4 },
{ VK_FORMAT_R5G5B5A1_USCALED, 2, 4 },
{ VK_FORMAT_R8_UNORM, 1, 1 },
{ VK_FORMAT_R8_SNORM, 1, 1 },
{ VK_FORMAT_R8_USCALED, 1, 1 },
{ VK_FORMAT_R8_SSCALED, 1, 1 },
{ VK_FORMAT_R8_UINT, 1, 1 },
{ VK_FORMAT_R8_SINT, 1, 1 },
{ VK_FORMAT_R8_SRGB, 1, 1 },
{ VK_FORMAT_R8G8_UNORM, 2, 2 },
{ VK_FORMAT_R8G8_SNORM, 2, 2 },
{ VK_FORMAT_R8G8_USCALED, 2, 2 },
{ VK_FORMAT_R8G8_SSCALED, 2, 2 },
{ VK_FORMAT_R8G8_UINT, 2, 2 },
{ VK_FORMAT_R8G8_SINT, 2, 2 },
{ VK_FORMAT_R8G8_SRGB, 2, 2 },
{ VK_FORMAT_R8G8B8_UNORM, 3, 3 },
{ VK_FORMAT_R8G8B8_SNORM, 3, 3 },
{ VK_FORMAT_R8G8B8_USCALED, 3, 3 },
{ VK_FORMAT_R8G8B8_SSCALED, 3, 3 },
{ VK_FORMAT_R8G8B8_UINT, 3, 3 },
{ VK_FORMAT_R8G8B8_SINT, 3, 3 },
{ VK_FORMAT_R8G8B8_SRGB, 3, 3 },
{ VK_FORMAT_R8G8B8A8_UNORM, 4, 4 },
{ VK_FORMAT_R8G8B8A8_SNORM, 4, 4 },
{ VK_FORMAT_R8G8B8A8_USCALED, 4, 4 },
{ VK_FORMAT_R8G8B8A8_SSCALED, 4, 4 },
{ VK_FORMAT_R8G8B8A8_UINT, 4, 4 },
{ VK_FORMAT_R8G8B8A8_SINT, 4, 4 },
{ VK_FORMAT_R8G8B8A8_SRGB, 4, 4 },
{ VK_FORMAT_R10G10B10A2_UNORM, 4, 4 },
{ VK_FORMAT_R10G10B10A2_SNORM, 4, 4 },
{ VK_FORMAT_R10G10B10A2_USCALED, 4, 4 },
{ VK_FORMAT_R10G10B10A2_SSCALED, 4, 4 },
{ VK_FORMAT_R10G10B10A2_UINT, 4, 4 },
{ VK_FORMAT_R10G10B10A2_SINT, 4, 4 },
{ VK_FORMAT_R16_UNORM, 2, 1 },
{ VK_FORMAT_R16_SNORM, 2, 1 },
{ VK_FORMAT_R16_USCALED, 2, 1 },
{ VK_FORMAT_R16_SSCALED, 2, 1 },
{ VK_FORMAT_R16_UINT, 2, 1 },
{ VK_FORMAT_R16_SINT, 2, 1 },
{ VK_FORMAT_R16_SFLOAT, 2, 1 },
{ VK_FORMAT_R16G16_UNORM, 4, 2 },
{ VK_FORMAT_R16G16_SNORM, 4, 2 },
{ VK_FORMAT_R16G16_USCALED, 4, 2 },
{ VK_FORMAT_R16G16_SSCALED, 4, 2 },
{ VK_FORMAT_R16G16_UINT, 4, 2 },
{ VK_FORMAT_R16G16_SINT, 4, 2 },
{ VK_FORMAT_R16G16_SFLOAT, 4, 2 },
{ VK_FORMAT_R16G16B16_UNORM, 6, 3 },
{ VK_FORMAT_R16G16B16_SNORM, 6, 3 },
{ VK_FORMAT_R16G16B16_USCALED, 6, 3 },
{ VK_FORMAT_R16G16B16_SSCALED, 6, 3 },
{ VK_FORMAT_R16G16B16_UINT, 6, 3 },
{ VK_FORMAT_R16G16B16_SINT, 6, 3 },
{ VK_FORMAT_R16G16B16_SFLOAT, 6, 3 },
{ VK_FORMAT_R16G16B16A16_UNORM, 8, 4 },
{ VK_FORMAT_R16G16B16A16_SNORM, 8, 4 },
{ VK_FORMAT_R16G16B16A16_USCALED, 8, 4 },
{ VK_FORMAT_R16G16B16A16_SSCALED, 8, 4 },
{ VK_FORMAT_R16G16B16A16_UINT, 8, 4 },
{ VK_FORMAT_R16G16B16A16_SINT, 8, 4 },
{ VK_FORMAT_R16G16B16A16_SFLOAT, 8, 4 },
{ VK_FORMAT_R32_UINT, 4, 1 },
{ VK_FORMAT_R32_SINT, 4, 1 },
{ VK_FORMAT_R32_SFLOAT, 4, 1 },
{ VK_FORMAT_R32G32_UINT, 8, 2 },
{ VK_FORMAT_R32G32_SINT, 8, 2 },
{ VK_FORMAT_R32G32_SFLOAT, 8, 2 },
{ VK_FORMAT_R32G32B32_UINT, 12, 3 },
{ VK_FORMAT_R32G32B32_SINT, 12, 3 },
{ VK_FORMAT_R32G32B32_SFLOAT, 12, 3 },
{ VK_FORMAT_R32G32B32A32_UINT, 16, 4 },
{ VK_FORMAT_R32G32B32A32_SINT, 16, 4 },
{ VK_FORMAT_R32G32B32A32_SFLOAT, 16, 4 },
{ VK_FORMAT_R64_SFLOAT, 8, 1 },
{ VK_FORMAT_R64G64_SFLOAT, 16, 2 },
{ VK_FORMAT_R64G64B64_SFLOAT, 24, 3 },
{ VK_FORMAT_R64G64B64A64_SFLOAT, 32, 4 },
{ VK_FORMAT_R11G11B10_UFLOAT, 4, 3 },
{ VK_FORMAT_R9G9B9E5_UFLOAT, 4, 3 },
{ VK_FORMAT_D16_UNORM, 2, 1 },
{ VK_FORMAT_D24_UNORM_X8, 3, 1 },
{ VK_FORMAT_D32_SFLOAT, 4, 1 },
{ VK_FORMAT_S8_UINT, 1, 1 },
{ VK_FORMAT_D16_UNORM_S8_UINT, 3, 2 },
{ VK_FORMAT_D24_UNORM_S8_UINT, 4, 2 },
{ VK_FORMAT_D32_SFLOAT_S8_UINT, 8, 2 },
{ VK_FORMAT_BC1_RGB_UNORM, 8, 4 },
{ VK_FORMAT_BC1_RGB_SRGB, 8, 4 },
{ VK_FORMAT_BC1_RGBA_UNORM, 8, 4 },
{ VK_FORMAT_BC1_RGBA_SRGB, 8, 4 },
{ VK_FORMAT_BC2_UNORM, 16, 4 },
{ VK_FORMAT_BC2_SRGB, 16, 4 },
{ VK_FORMAT_BC3_UNORM, 16, 4 },
{ VK_FORMAT_BC3_SRGB, 16, 4 },
{ VK_FORMAT_BC4_UNORM, 8, 4 },
{ VK_FORMAT_BC4_SNORM, 8, 4 },
{ VK_FORMAT_BC5_UNORM, 16, 4 },
{ VK_FORMAT_BC5_SNORM, 16, 4 },
{ VK_FORMAT_BC6H_UFLOAT, 16, 4 },
{ VK_FORMAT_BC6H_SFLOAT, 16, 4 },
{ VK_FORMAT_BC7_UNORM, 16, 4 },
{ VK_FORMAT_BC7_SRGB, 16, 4 },
// TODO: Initialize remaining compressed formats.
{ VK_FORMAT_ETC2_R8G8B8_UNORM, 0, 0 },
{ VK_FORMAT_ETC2_R8G8B8_SRGB, 0, 0 },
{ VK_FORMAT_ETC2_R8G8B8A1_UNORM, 0, 0 },
{ VK_FORMAT_ETC2_R8G8B8A1_SRGB, 0, 0 },
{ VK_FORMAT_ETC2_R8G8B8A8_UNORM, 0, 0 },
{ VK_FORMAT_ETC2_R8G8B8A8_SRGB, 0, 0 },
{ VK_FORMAT_EAC_R11_UNORM, 0, 0 },
{ VK_FORMAT_EAC_R11_SNORM, 0, 0 },
{ VK_FORMAT_EAC_R11G11_UNORM, 0, 0 },
{ VK_FORMAT_EAC_R11G11_SNORM, 0, 0 },
{ VK_FORMAT_ASTC_4x4_UNORM, 0, 0 },
{ VK_FORMAT_ASTC_4x4_SRGB, 0, 0 },
{ VK_FORMAT_ASTC_5x4_UNORM, 0, 0 },
{ VK_FORMAT_ASTC_5x4_SRGB, 0, 0 },
{ VK_FORMAT_ASTC_5x5_UNORM, 0, 0 },
{ VK_FORMAT_ASTC_5x5_SRGB, 0, 0 },
{ VK_FORMAT_ASTC_6x5_UNORM, 0, 0 },
{ VK_FORMAT_ASTC_6x5_SRGB, 0, 0 },
{ VK_FORMAT_ASTC_6x6_UNORM, 0, 0 },
{ VK_FORMAT_ASTC_6x6_SRGB, 0, 0 },
{ VK_FORMAT_ASTC_8x5_UNORM, 0, 0 },
{ VK_FORMAT_ASTC_8x5_SRGB, 0, 0 },
{ VK_FORMAT_ASTC_8x6_UNORM, 0, 0 },
{ VK_FORMAT_ASTC_8x6_SRGB, 0, 0 },
{ VK_FORMAT_ASTC_8x8_UNORM, 0, 0 },
{ VK_FORMAT_ASTC_8x8_SRGB, 0, 0 },
{ VK_FORMAT_ASTC_10x5_UNORM, 0, 0 },
{ VK_FORMAT_ASTC_10x5_SRGB, 0, 0 },
{ VK_FORMAT_ASTC_10x6_UNORM, 0, 0 },
{ VK_FORMAT_ASTC_10x6_SRGB, 0, 0 },
{ VK_FORMAT_ASTC_10x8_UNORM, 0, 0 },
{ VK_FORMAT_ASTC_10x8_SRGB, 0, 0 },
{ VK_FORMAT_ASTC_10x10_UNORM, 0, 0 },
{ VK_FORMAT_ASTC_10x10_SRGB, 0, 0 },
{ VK_FORMAT_ASTC_12x10_UNORM, 0, 0 },
{ VK_FORMAT_ASTC_12x10_SRGB, 0, 0 },
{ VK_FORMAT_ASTC_12x12_UNORM, 0, 0 },
{ VK_FORMAT_ASTC_12x12_SRGB, 0, 0 },
{ VK_FORMAT_B4G4R4A4_UNORM, 2, 4 },
{ VK_FORMAT_B5G5R5A1_UNORM, 2, 4 },
{ VK_FORMAT_B5G6R5_UNORM, 2, 3 },
{ VK_FORMAT_B5G6R5_USCALED, 2, 3 },
{ VK_FORMAT_B8G8R8_UNORM, 3, 3 },
{ VK_FORMAT_B8G8R8_SNORM, 3, 3 },
{ VK_FORMAT_B8G8R8_USCALED, 3, 3 },
{ VK_FORMAT_B8G8R8_SSCALED, 3, 3 },
{ VK_FORMAT_B8G8R8_UINT, 3, 3 },
{ VK_FORMAT_B8G8R8_SINT, 3, 3 },
{ VK_FORMAT_B8G8R8_SRGB, 3, 3 },
{ VK_FORMAT_B8G8R8A8_UNORM, 4, 4 },
{ VK_FORMAT_B8G8R8A8_SNORM, 4, 4 },
{ VK_FORMAT_B8G8R8A8_USCALED, 4, 4 },
{ VK_FORMAT_B8G8R8A8_SSCALED, 4, 4 },
{ VK_FORMAT_B8G8R8A8_UINT, 4, 4 },
{ VK_FORMAT_B8G8R8A8_SINT, 4, 4 },
{ VK_FORMAT_B8G8R8A8_SRGB, 4, 4 },
{ VK_FORMAT_B10G10R10A2_UNORM, 4, 4 },
{ VK_FORMAT_B10G10R10A2_SNORM, 4, 4 },
{ VK_FORMAT_B10G10R10A2_USCALED, 4, 4 },
{ VK_FORMAT_B10G10R10A2_SSCALED, 4, 4 },
{ VK_FORMAT_B10G10R10A2_UINT, 4, 4 },
{ VK_FORMAT_B10G10R10A2_SINT, 4, 4 },
};
if (format_table_unverified)
{
for (unsigned int i = 0; i < VK_FORMAT_NUM; i++)
{
assert(format_table[i].format == i);
}
format_table_unverified = false;
}
return format_table[format].size;
}
VkExtent3D get_mip_level_extent(const VkExtent3D &extent, uint32_t mip_level)
{
const VkExtent3D ext = {
(extent.width >> mip_level) ? extent.width >> mip_level : 1,
(extent.height >> mip_level) ? extent.height >> mip_level : 1,
(extent.depth >> mip_level) ? extent.depth >> mip_level : 1,
};
return ext;
}
}; // namespace vk_testing
namespace {
#define DO(action) ASSERT_EQ(true, action);
static vk_testing::Environment *environment;
class VkCmdBlitTest : public ::testing::Test {
protected:
VkCmdBlitTest() :
dev_(environment->default_device()),
queue_(*dev_.graphics_queues()[0]),
pool_(dev_, vk_testing::CmdPool::create_info(dev_.graphics_queue_node_index_)),
cmd_(dev_, vk_testing::CmdBuffer::create_info(pool_.handle()))
{
// make sure every test uses a different pattern
vk_testing::ImageChecker::hash_salt_generate();
}
bool submit_and_done()
{
queue_.submit(cmd_);
queue_.wait();
mem_refs_.clear();
return true;
}
vk_testing::Device &dev_;
vk_testing::Queue &queue_;
vk_testing::CmdPool pool_;
vk_testing::CmdBuffer cmd_;
/* TODO: We should be able to remove these now */
std::vector<VkDeviceMemory> mem_refs_;
};
typedef VkCmdBlitTest VkCmdFillBufferTest;
TEST_F(VkCmdFillBufferTest, Basic)
{
vk_testing::Buffer buf;
VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
buf.init_as_dst(dev_, 20, reqs);
cmd_.begin();
vkCmdFillBuffer(cmd_.handle(), buf.handle(), 0, 4, 0x11111111);
vkCmdFillBuffer(cmd_.handle(), buf.handle(), 4, 16, 0x22222222);
cmd_.end();
submit_and_done();
const uint32_t *data = static_cast<const uint32_t *>(buf.memory().map());
EXPECT_EQ(0x11111111, data[0]);
EXPECT_EQ(0x22222222, data[1]);
EXPECT_EQ(0x22222222, data[2]);
EXPECT_EQ(0x22222222, data[3]);
EXPECT_EQ(0x22222222, data[4]);
buf.memory().unmap();
}
TEST_F(VkCmdFillBufferTest, Large)
{
const VkDeviceSize size = 32 * 1024 * 1024;
vk_testing::Buffer buf;
VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
buf.init_as_dst(dev_, size, reqs);
cmd_.begin();
vkCmdFillBuffer(cmd_.handle(), buf.handle(), 0, size / 2, 0x11111111);
vkCmdFillBuffer(cmd_.handle(), buf.handle(), size / 2, size / 2, 0x22222222);
cmd_.end();
submit_and_done();
const uint32_t *data = static_cast<const uint32_t *>(buf.memory().map());
VkDeviceSize offset;
for (offset = 0; offset < size / 2; offset += 4)
EXPECT_EQ(0x11111111, data[offset / 4]) << "Offset is: " << offset;
for (; offset < size; offset += 4)
EXPECT_EQ(0x22222222, data[offset / 4]) << "Offset is: " << offset;
buf.memory().unmap();
}
TEST_F(VkCmdFillBufferTest, Overlap)
{
vk_testing::Buffer buf;
VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
buf.init_as_dst(dev_, 64, reqs);
cmd_.begin();
vkCmdFillBuffer(cmd_.handle(), buf.handle(), 0, 48, 0x11111111);
vkCmdFillBuffer(cmd_.handle(), buf.handle(), 32, 32, 0x22222222);
cmd_.end();
submit_and_done();
const uint32_t *data = static_cast<const uint32_t *>(buf.memory().map());
VkDeviceSize offset;
for (offset = 0; offset < 32; offset += 4)
EXPECT_EQ(0x11111111, data[offset / 4]) << "Offset is: " << offset;
for (; offset < 64; offset += 4)
EXPECT_EQ(0x22222222, data[offset / 4]) << "Offset is: " << offset;
buf.memory().unmap();
}
TEST_F(VkCmdFillBufferTest, MultiAlignments)
{
vk_testing::Buffer bufs[9];
VkDeviceSize size = 4;
VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
cmd_.begin();
for (int i = 0; i < ARRAY_SIZE(bufs); i++) {
bufs[i].init_as_dst(dev_, size, reqs);
vkCmdFillBuffer(cmd_.handle(), bufs[i].handle(), 0, size, 0x11111111);
size <<= 1;
}
cmd_.end();
submit_and_done();
size = 4;
for (int i = 0; i < ARRAY_SIZE(bufs); i++) {
const uint32_t *data = static_cast<const uint32_t *>(bufs[i].memory().map());
VkDeviceSize offset;
for (offset = 0; offset < size; offset += 4)
EXPECT_EQ(0x11111111, data[offset / 4]) << "Buffser is: " << i << "\n" <<
"Offset is: " << offset;
bufs[i].memory().unmap();
size <<= 1;
}
}
typedef VkCmdBlitTest VkCmdCopyBufferTest;
TEST_F(VkCmdCopyBufferTest, Basic)
{
vk_testing::Buffer src, dst;
VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
src.init_as_src(dev_, 4, reqs);
uint32_t *data = static_cast<uint32_t *>(src.memory().map());
data[0] = 0x11111111;
src.memory().unmap();
dst.init_as_dst(dev_, 4, reqs);
cmd_.begin();
VkBufferCopy region = {};
region.copySize = 4;
vkCmdCopyBuffer(cmd_.handle(), src.handle(), dst.handle(), 1, &region);
cmd_.end();
submit_and_done();
data = static_cast<uint32_t *>(dst.memory().map());
EXPECT_EQ(0x11111111, data[0]);
dst.memory().unmap();
}
TEST_F(VkCmdCopyBufferTest, Large)
{
const VkDeviceSize size = 32 * 1024 * 1024;
vk_testing::Buffer src, dst;
VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
src.init_as_src(dev_, size * sizeof(VkDeviceSize), reqs);
VkDeviceSize *data = static_cast<VkDeviceSize *>(src.memory().map());
VkDeviceSize offset;
for (offset = 0; offset < size; offset += 4)
data[offset / 4] = offset;
src.memory().unmap();
dst.init_as_dst(dev_, size * sizeof(VkDeviceSize), reqs);
cmd_.begin();
VkBufferCopy region = {};
region.copySize = size * sizeof(VkDeviceSize);
vkCmdCopyBuffer(cmd_.handle(), src.handle(), dst.handle(), 1, &region);
cmd_.end();
submit_and_done();
data = static_cast<VkDeviceSize *>(dst.memory().map());
for (offset = 0; offset < size; offset += 4)
EXPECT_EQ(offset, data[offset / 4]);
dst.memory().unmap();
}
TEST_F(VkCmdCopyBufferTest, MultiAlignments)
{
const VkBufferCopy regions[] = {
/* well aligned */
{ 0, 0, 256 },
{ 0, 256, 128 },
{ 0, 384, 64 },
{ 0, 448, 32 },
{ 0, 480, 16 },
{ 0, 496, 8 },
/* ill aligned */
{ 7, 510, 16 },
{ 16, 530, 13 },
{ 32, 551, 16 },
{ 45, 570, 15 },
{ 50, 590, 1 },
};
vk_testing::Buffer src, dst;
VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
src.init_as_src(dev_, 256, reqs);
uint8_t *data = static_cast<uint8_t *>(src.memory().map());
for (int i = 0; i < 256; i++)
data[i] = i;
src.memory().unmap();
dst.init_as_dst(dev_, 1024, reqs);
cmd_.begin();
vkCmdCopyBuffer(cmd_.handle(), src.handle(), dst.handle(), ARRAY_SIZE(regions), regions);
cmd_.end();
submit_and_done();
data = static_cast<uint8_t *>(dst.memory().map());
for (int i = 0; i < ARRAY_SIZE(regions); i++) {
const VkBufferCopy &r = regions[i];
for (int j = 0; j < r.copySize; j++) {
EXPECT_EQ(r.srcOffset + j, data[r.destOffset + j]) <<
"Region is: " << i << "\n" <<
"Offset is: " << r.destOffset + j;
}
}
dst.memory().unmap();
}
TEST_F(VkCmdCopyBufferTest, RAWHazard)
{
vk_testing::Buffer bufs[3];
VkEventCreateInfo event_info;
VkEvent event;
VkResult err;
VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
VkBufferUsageFlags usage = {};
// typedef struct VkEventCreateInfo_
// {
// VkStructureType sType; // Must be VK_STRUCTURE_TYPE_EVENT_CREATE_INFO
// const void* pNext; // Pointer to next structure
// VkFlags flags; // Reserved
// } VkEventCreateInfo;
memset(&event_info, 0, sizeof(event_info));
event_info.sType = VK_STRUCTURE_TYPE_EVENT_CREATE_INFO;
err = vkCreateEvent(dev_.handle(), &event_info, &event);
ASSERT_VK_SUCCESS(err);
err = vkResetEvent(dev_.handle(), event);
ASSERT_VK_SUCCESS(err);
for (int i = 0; i < ARRAY_SIZE(bufs); i++) {
bufs[i].init_as_src_and_dst(dev_, 4, reqs, usage);
uint32_t *data = static_cast<uint32_t *>(bufs[i].memory().map());
data[0] = 0x22222222 * (i + 1);
bufs[i].memory().unmap();
}
cmd_.begin();
vkCmdFillBuffer(cmd_.handle(), bufs[0].handle(), 0, 4, 0x11111111);
// is this necessary?
VkBufferMemoryBarrier memory_barrier = bufs[0].buffer_memory_barrier(
VK_MEMORY_OUTPUT_TRANSFER_BIT, VK_MEMORY_INPUT_TRANSFER_BIT, 0, 4);
VkBufferMemoryBarrier *pmemory_barrier = &memory_barrier;
VkPipelineStageFlags src_stages = VK_PIPELINE_STAGE_TRANSFER_BIT | VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
VkPipelineStageFlags dest_stages = VK_PIPELINE_STAGE_TRANSFER_BIT | VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT;
vkCmdPipelineBarrier(cmd_.handle(), src_stages, dest_stages, false, 1, (const void * const*)&pmemory_barrier);
VkBufferCopy region = {};
region.copySize = 4;
vkCmdCopyBuffer(cmd_.handle(), bufs[0].handle(), bufs[1].handle(), 1, &region);
memory_barrier = bufs[1].buffer_memory_barrier(
VK_MEMORY_OUTPUT_TRANSFER_BIT, VK_MEMORY_INPUT_TRANSFER_BIT, 0, 4);
pmemory_barrier = &memory_barrier;
vkCmdPipelineBarrier(cmd_.handle(), src_stages, dest_stages, false, 1, (const void * const*)&pmemory_barrier);
vkCmdCopyBuffer(cmd_.handle(), bufs[1].handle(), bufs[2].handle(), 1, &region);
/* Use vkCmdSetEvent and vkCmdWaitEvents to test them.
* This could be vkCmdPipelineBarrier.
*/
vkCmdSetEvent(cmd_.handle(), event, VK_PIPELINE_STAGE_TRANSFER_BIT);
// Additional commands could go into the buffer here before the wait.
memory_barrier = bufs[1].buffer_memory_barrier(
VK_MEMORY_OUTPUT_TRANSFER_BIT, VK_MEMORY_INPUT_HOST_READ_BIT, 0, 4);
pmemory_barrier = &memory_barrier;
vkCmdWaitEvents(cmd_.handle(), 1, &event, src_stages, dest_stages, 1, (const void **)&pmemory_barrier);
cmd_.end();
submit_and_done();
const uint32_t *data = static_cast<const uint32_t *>(bufs[2].memory().map());
EXPECT_EQ(0x11111111, data[0]);
bufs[2].memory().unmap();
vkDestroyEvent(dev_.handle(), event);
}
class VkCmdBlitImageTest : public VkCmdBlitTest {
protected:
void init_test_formats(VkFlags features)
{
first_linear_format_ = VK_FORMAT_UNDEFINED;
first_optimal_format_ = VK_FORMAT_UNDEFINED;
for (std::vector<vk_testing::Device::Format>::const_iterator it = dev_.formats().begin();
it != dev_.formats().end(); it++) {
if (it->features & features) {
test_formats_.push_back(*it);
if (it->tiling == VK_IMAGE_TILING_LINEAR &&
first_linear_format_ == VK_FORMAT_UNDEFINED)
first_linear_format_ = it->format;
if (it->tiling == VK_IMAGE_TILING_OPTIMAL &&
first_optimal_format_ == VK_FORMAT_UNDEFINED)
first_optimal_format_ = it->format;
}
}
}
void init_test_formats()
{
init_test_formats(static_cast<VkFlags>(-1));
}
void fill_src(vk_testing::Image &img, const vk_testing::ImageChecker &checker)
{
if (img.transparent()) {
checker.fill(img);
return;
}
ASSERT_EQ(true, img.copyable());
vk_testing::Buffer in_buf;
VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
in_buf.init_as_src(dev_, checker.buffer_size(), reqs);
checker.fill(in_buf);
// copy in and tile
cmd_.begin();
vkCmdCopyBufferToImage(cmd_.handle(), in_buf.handle(),
img.handle(), VK_IMAGE_LAYOUT_TRANSFER_DESTINATION_OPTIMAL,
checker.regions().size(), &checker.regions()[0]);
cmd_.end();
submit_and_done();
}
void check_dst(vk_testing::Image &img, const vk_testing::ImageChecker &checker)
{
if (img.transparent()) {
DO(checker.check(img));
return;
}
ASSERT_EQ(true, img.copyable());
vk_testing::Buffer out_buf;
VkMemoryPropertyFlags reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
out_buf.init_as_dst(dev_, checker.buffer_size(), reqs);
// copy out and linearize
cmd_.begin();
vkCmdCopyImageToBuffer(cmd_.handle(),
img.handle(), VK_IMAGE_LAYOUT_TRANSFER_SOURCE_OPTIMAL,
out_buf.handle(),
checker.regions().size(), &checker.regions()[0]);
cmd_.end();
submit_and_done();
DO(checker.check(out_buf));
}
std::vector<vk_testing::Device::Format> test_formats_;
VkFormat first_linear_format_;
VkFormat first_optimal_format_;
};
class VkCmdCopyBufferToImageTest : public VkCmdBlitImageTest {
protected:
virtual void SetUp()
{
VkCmdBlitTest::SetUp();
init_test_formats(VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT);
ASSERT_NE(true, test_formats_.empty());
}
void test_copy_memory_to_image(const VkImageCreateInfo &img_info, const vk_testing::ImageChecker &checker)
{
vk_testing::Buffer buf;
vk_testing::Image img;
VkMemoryPropertyFlags buffer_reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
VkMemoryPropertyFlags image_reqs =
(img_info.tiling == VK_IMAGE_TILING_LINEAR)?VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT:0;
buf.init_as_src(dev_, checker.buffer_size(), buffer_reqs);
checker.fill(buf);
img.init(dev_, img_info, image_reqs);
cmd_.begin();
vkCmdCopyBufferToImage(cmd_.handle(),
buf.handle(),
img.handle(), VK_IMAGE_LAYOUT_TRANSFER_DESTINATION_OPTIMAL,
checker.regions().size(), &checker.regions()[0]);
cmd_.end();
submit_and_done();
check_dst(img, checker);
}
void test_copy_memory_to_image(const VkImageCreateInfo &img_info, const std::vector<VkBufferImageCopy> &regions)
{
vk_testing::ImageChecker checker(img_info, regions);
test_copy_memory_to_image(img_info, checker);
}
void test_copy_memory_to_image(const VkImageCreateInfo &img_info)
{
vk_testing::ImageChecker checker(img_info);
test_copy_memory_to_image(img_info, checker);
}
};
TEST_F(VkCmdCopyBufferToImageTest, Basic)
{
for (std::vector<vk_testing::Device::Format>::const_iterator it = test_formats_.begin();
it != test_formats_.end(); it++) {
// not sure what to do here
if (it->format == VK_FORMAT_UNDEFINED ||
(it->format >= VK_FORMAT_B8G8R8_UNORM &&
it->format <= VK_FORMAT_B8G8R8_SRGB))
continue;
VkImageCreateInfo img_info = vk_testing::Image::create_info();
img_info.imageType = VK_IMAGE_TYPE_2D;
img_info.format = it->format;
img_info.extent.width = 64;
img_info.extent.height = 64;
img_info.tiling = it->tiling;
img_info.usage = VK_IMAGE_USAGE_TRANSFER_DESTINATION_BIT |
VK_IMAGE_USAGE_TRANSFER_SOURCE_BIT;
test_copy_memory_to_image(img_info);
}
}
class VkCmdCopyImageToBufferTest : public VkCmdBlitImageTest {
protected:
virtual void SetUp()
{
VkCmdBlitTest::SetUp();
init_test_formats(VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT);
ASSERT_NE(true, test_formats_.empty());
}
void test_copy_image_to_memory(const VkImageCreateInfo &img_info, const vk_testing::ImageChecker &checker)
{
vk_testing::Image img;
vk_testing::Buffer buf;
VkMemoryPropertyFlags buffer_reqs = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
VkMemoryPropertyFlags image_reqs =
(img_info.tiling == VK_IMAGE_TILING_LINEAR)?VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT:0;
img.init(dev_, img_info, image_reqs);
fill_src(img, checker);
buf.init_as_dst(dev_, checker.buffer_size(), buffer_reqs);
cmd_.begin();
vkCmdCopyImageToBuffer(cmd_.handle(),
img.handle(), VK_IMAGE_LAYOUT_TRANSFER_SOURCE_OPTIMAL,
buf.handle(),
checker.regions().size(), &checker.regions()[0]);
cmd_.end();
submit_and_done();
checker.check(buf);
}
void test_copy_image_to_memory(const VkImageCreateInfo &img_info, const std::vector<VkBufferImageCopy> &regions)
{
vk_testing::ImageChecker checker(img_info, regions);
test_copy_image_to_memory(img_info, checker);
}
void test_copy_image_to_memory(const VkImageCreateInfo &img_info)
{
vk_testing::ImageChecker checker(img_info);
test_copy_image_to_memory(img_info, checker);
}
};
TEST_F(VkCmdCopyImageToBufferTest, Basic)
{
for (std::vector<vk_testing::Device::Format>::const_iterator it = test_formats_.begin();
it != test_formats_.end(); it++) {
// not sure what to do here
if (it->format == VK_FORMAT_UNDEFINED ||
(it->format >= VK_FORMAT_B8G8R8_UNORM &&
it->format <= VK_FORMAT_B8G8R8_SRGB))
continue;
VkImageCreateInfo img_info = vk_testing::Image::create_info();
img_info.imageType = VK_IMAGE_TYPE_2D;
img_info.format = it->format;
img_info.extent.width = 64;
img_info.extent.height = 64;
img_info.tiling = it->tiling;
img_info.usage = VK_IMAGE_USAGE_TRANSFER_SOURCE_BIT |
VK_IMAGE_USAGE_TRANSFER_DESTINATION_BIT; // Going to fill it before copy
test_copy_image_to_memory(img_info);
}
}
class VkCmdCopyImageTest : public VkCmdBlitImageTest {
protected:
virtual void SetUp()
{
VkCmdBlitTest::SetUp();
init_test_formats(VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT);
ASSERT_NE(true, test_formats_.empty());
}
void test_copy_image(const VkImageCreateInfo &src_info, const VkImageCreateInfo &dst_info,
const std::vector<VkImageCopy> &copies)
{
// convert VkImageCopy to two sets of VkBufferImageCopy
std::vector<VkBufferImageCopy> src_regions, dst_regions;
VkDeviceSize src_offset = 0, dst_offset = 0;
for (std::vector<VkImageCopy>::const_iterator it = copies.begin(); it != copies.end(); it++) {
VkBufferImageCopy src_region = {}, dst_region = {};
src_region.bufferOffset = src_offset;
src_region.imageSubresource = it->srcSubresource;
src_region.imageOffset = it->srcOffset;
src_region.imageExtent = it->extent;
src_regions.push_back(src_region);
dst_region.bufferOffset = src_offset;
dst_region.imageSubresource = it->destSubresource;
dst_region.imageOffset = it->destOffset;
dst_region.imageExtent = it->extent;
dst_regions.push_back(dst_region);
const VkDeviceSize size = it->extent.width * it->extent.height * it->extent.depth;
src_offset += vk_testing::get_format_size(src_info.format) * size;
dst_offset += vk_testing::get_format_size(dst_info.format) * size;
}
vk_testing::ImageChecker src_checker(src_info, src_regions);
vk_testing::ImageChecker dst_checker(dst_info, dst_regions);
VkMemoryPropertyFlags src_reqs =
(src_info.tiling == VK_IMAGE_TILING_LINEAR)?VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT:0;
VkMemoryPropertyFlags dst_reqs =
(dst_info.tiling == VK_IMAGE_TILING_LINEAR)?VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT:0;
vk_testing::Image src;
src.init(dev_, src_info, src_reqs);
fill_src(src, src_checker);
vk_testing::Image dst;
dst.init(dev_, dst_info, dst_reqs);
cmd_.begin();
vkCmdCopyImage(cmd_.handle(),
src.handle(), VK_IMAGE_LAYOUT_TRANSFER_SOURCE_OPTIMAL,
dst.handle(), VK_IMAGE_LAYOUT_TRANSFER_DESTINATION_OPTIMAL,
copies.size(), &copies[0]);
cmd_.end();
submit_and_done();
check_dst(dst, dst_checker);
}
};
TEST_F(VkCmdCopyImageTest, Basic)
{
for (std::vector<vk_testing::Device::Format>::const_iterator it = test_formats_.begin();
it != test_formats_.end(); it++) {
// not sure what to do here
if (it->format == VK_FORMAT_UNDEFINED ||
(it->format >= VK_FORMAT_B8G8R8_UNORM &&
it->format <= VK_FORMAT_B8G8R8_SRGB))
continue;
VkImageCreateInfo img_info = vk_testing::Image::create_info();
img_info.imageType = VK_IMAGE_TYPE_2D;
img_info.format = it->format;
img_info.extent.width = 64;
img_info.extent.height = 64;
img_info.tiling = it->tiling;
img_info.usage = VK_IMAGE_USAGE_TRANSFER_SOURCE_BIT | VK_IMAGE_USAGE_TRANSFER_DESTINATION_BIT;
VkImageCopy copy = {};
copy.srcSubresource = vk_testing::Image::subresource(VK_IMAGE_ASPECT_COLOR, 0, 0, 1);
copy.destSubresource = copy.srcSubresource;
copy.extent = img_info.extent;
test_copy_image(img_info, img_info, std::vector<VkImageCopy>(&copy, &copy + 1));
}
}
class VkCmdClearColorImageTest : public VkCmdBlitImageTest {
protected:
VkCmdClearColorImageTest() {}
virtual void SetUp()
{
VkCmdBlitTest::SetUp();
init_test_formats(VK_FORMAT_FEATURE_SAMPLED_IMAGE_BIT);
ASSERT_NE(true, test_formats_.empty());
}
union Color {
float color[4];
uint32_t raw[4];
};
std::vector<uint8_t> color_to_raw(VkFormat format, const VkClearColorValue &color)
{
std::vector<uint8_t> raw;
// TODO support all formats
switch (format) {
case VK_FORMAT_R8G8B8A8_UNORM:
raw.push_back((uint8_t)(color.float32[0] * 255.0f));
raw.push_back((uint8_t)(color.float32[1] * 255.0f));
raw.push_back((uint8_t)(color.float32[2] * 255.0f));
raw.push_back((uint8_t)(color.float32[3] * 255.0f));
break;
case VK_FORMAT_B8G8R8A8_UNORM:
raw.push_back((uint8_t)(color.float32[2] * 255.0f));
raw.push_back((uint8_t)(color.float32[1] * 255.0f));
raw.push_back((uint8_t)(color.float32[0] * 255.0f));
raw.push_back((uint8_t)(color.float32[3] * 255.0f));
break;
default:
break;
}
return raw;
}
void test_clear_color_image(const VkImageCreateInfo &img_info,
const VkClearColorValue &clear_color,
const std::vector<VkImageSubresourceRange> &ranges)
{
vk_testing::Image img;
VkMemoryPropertyFlags image_reqs =
(img_info.tiling == VK_IMAGE_TILING_LINEAR)?VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT:0;
img.init(dev_, img_info, image_reqs);
const VkFlags all_cache_outputs =
VK_MEMORY_OUTPUT_HOST_WRITE_BIT |
VK_MEMORY_OUTPUT_SHADER_WRITE_BIT |
VK_MEMORY_OUTPUT_COLOR_ATTACHMENT_BIT |
VK_MEMORY_OUTPUT_DEPTH_STENCIL_ATTACHMENT_BIT |
VK_MEMORY_OUTPUT_TRANSFER_BIT;
const VkFlags all_cache_inputs =
VK_MEMORY_INPUT_HOST_READ_BIT |
VK_MEMORY_INPUT_INDIRECT_COMMAND_BIT |
VK_MEMORY_INPUT_INDEX_FETCH_BIT |
VK_MEMORY_INPUT_VERTEX_ATTRIBUTE_FETCH_BIT |
VK_MEMORY_INPUT_UNIFORM_READ_BIT |
VK_MEMORY_INPUT_SHADER_READ_BIT |
VK_MEMORY_INPUT_COLOR_ATTACHMENT_BIT |
VK_MEMORY_INPUT_DEPTH_STENCIL_ATTACHMENT_BIT |
VK_MEMORY_INPUT_TRANSFER_BIT;
std::vector<VkImageMemoryBarrier> to_clear;
std::vector<VkImageMemoryBarrier *> p_to_clear;
std::vector<VkImageMemoryBarrier> to_xfer;
std::vector<VkImageMemoryBarrier *> p_to_xfer;
for (std::vector<VkImageSubresourceRange>::const_iterator it = ranges.begin();
it != ranges.end(); it++) {
to_clear.push_back(img.image_memory_barrier(all_cache_outputs, all_cache_inputs,
VK_IMAGE_LAYOUT_GENERAL,
VK_IMAGE_LAYOUT_GENERAL,
*it));
p_to_clear.push_back(&to_clear.back());
to_xfer.push_back(img.image_memory_barrier(all_cache_outputs, all_cache_inputs,
VK_IMAGE_LAYOUT_GENERAL,
VK_IMAGE_LAYOUT_TRANSFER_SOURCE_OPTIMAL, *it));
p_to_xfer.push_back(&to_xfer.back());
}
cmd_.begin();
VkPipelineStageFlags src_stages = VK_PIPELINE_STAGE_ALL_GPU_COMMANDS;
VkPipelineStageFlags dest_stages = VK_PIPELINE_STAGE_ALL_GPU_COMMANDS;
vkCmdPipelineBarrier(cmd_.handle(), src_stages, dest_stages, false, 1, (const void * const*)&p_to_clear[0]);
vkCmdClearColorImage(cmd_.handle(),
img.handle(), VK_IMAGE_LAYOUT_GENERAL,
&clear_color, ranges.size(), &ranges[0]);
vkCmdPipelineBarrier(cmd_.handle(), src_stages, dest_stages, false, 1, (const void * const*)&p_to_xfer[0]);
cmd_.end();
submit_and_done();
// cannot verify
if (!img.transparent() && !img.copyable())
return;
vk_testing::ImageChecker checker(img_info, ranges);
const std::vector<uint8_t> solid_pattern = color_to_raw(img_info.format, clear_color);
if (solid_pattern.empty())
return;
checker.set_solid_pattern(solid_pattern);
check_dst(img, checker);
}
void test_clear_color_image(const VkImageCreateInfo &img_info,
const float color[4],
const std::vector<VkImageSubresourceRange> &ranges)
{
VkClearColorValue c = {};
memcpy(c.float32, color, sizeof(c.float32));
test_clear_color_image(img_info, c, ranges);
}
};
TEST_F(VkCmdClearColorImageTest, Basic)
{
for (std::vector<vk_testing::Device::Format>::const_iterator it = test_formats_.begin();
it != test_formats_.end(); it++) {
const float color[4] = { 0.0f, 1.0f, 0.0f, 1.0f };
VkFormatProperties props;
VkResult err;
err = vkGetPhysicalDeviceFormatProperties(dev_.phy().handle(), it->format, &props);
ASSERT_EQ(err, VK_SUCCESS);
if (it->tiling == VK_IMAGE_TILING_LINEAR && !(props.linearTilingFeatures & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT))
continue;
if (it->tiling == VK_IMAGE_TILING_OPTIMAL && !(props.optimalTilingFeatures & VK_FORMAT_FEATURE_COLOR_ATTACHMENT_BIT))
continue;
VkImageCreateInfo img_info = vk_testing::Image::create_info();
img_info.imageType = VK_IMAGE_TYPE_2D;
img_info.format = it->format;
img_info.extent.width = 64;
img_info.extent.height = 64;
img_info.tiling = it->tiling;
img_info.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT |
VK_IMAGE_USAGE_TRANSFER_SOURCE_BIT; // Going to check contents
const VkImageSubresourceRange range =
vk_testing::Image::subresource_range(img_info, VK_IMAGE_ASPECT_COLOR_BIT);
std::vector<VkImageSubresourceRange> ranges(&range, &range + 1);
test_clear_color_image(img_info, color, ranges);
}
}
class VkCmdClearDepthStencilTest : public VkCmdBlitImageTest {
protected:
virtual void SetUp()
{
VkCmdBlitTest::SetUp();
init_test_formats(VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT);
ASSERT_NE(true, test_formats_.empty());
}
std::vector<uint8_t> ds_to_raw(VkFormat format, float depth, uint32_t stencil)
{
std::vector<uint8_t> raw;
// depth
switch (format) {
case VK_FORMAT_D16_UNORM:
case VK_FORMAT_D16_UNORM_S8_UINT:
{
const uint16_t unorm = (uint16_t)roundf(depth * 65535.0f);
raw.push_back(unorm & 0xff);
raw.push_back(unorm >> 8);
}
break;
case VK_FORMAT_D32_SFLOAT:
case VK_FORMAT_D32_SFLOAT_S8_UINT:
{
const union {
float depth;
uint32_t u32;
} u = { depth };
raw.push_back((u.u32 ) & 0xff);
raw.push_back((u.u32 >> 8) & 0xff);
raw.push_back((u.u32 >> 16) & 0xff);
raw.push_back((u.u32 >> 24) & 0xff);
}
break;
default:
break;
}
// stencil
switch (format) {
case VK_FORMAT_S8_UINT:
raw.push_back(stencil);
break;
case VK_FORMAT_D16_UNORM_S8_UINT:
raw.push_back(stencil);
raw.push_back(0);
break;
case VK_FORMAT_D32_SFLOAT_S8_UINT:
raw.push_back(stencil);
raw.push_back(0);
raw.push_back(0);
raw.push_back(0);
break;
default:
break;
}
return raw;
}
void test_clear_depth_stencil(const VkImageCreateInfo &img_info,
float depth, uint32_t stencil,
const std::vector<VkImageSubresourceRange> &ranges)
{
vk_testing::Image img;
VkMemoryPropertyFlags image_reqs =
(img_info.tiling == VK_IMAGE_TILING_LINEAR)?VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT:0;
img.init(dev_, img_info, image_reqs);
const VkFlags all_cache_outputs =
VK_MEMORY_OUTPUT_HOST_WRITE_BIT |
VK_MEMORY_OUTPUT_SHADER_WRITE_BIT |
VK_MEMORY_OUTPUT_COLOR_ATTACHMENT_BIT |
VK_MEMORY_OUTPUT_DEPTH_STENCIL_ATTACHMENT_BIT |
VK_MEMORY_OUTPUT_TRANSFER_BIT;
const VkFlags all_cache_inputs =
VK_MEMORY_INPUT_HOST_READ_BIT |
VK_MEMORY_INPUT_INDIRECT_COMMAND_BIT |
VK_MEMORY_INPUT_INDEX_FETCH_BIT |
VK_MEMORY_INPUT_VERTEX_ATTRIBUTE_FETCH_BIT |
VK_MEMORY_INPUT_UNIFORM_READ_BIT |
VK_MEMORY_INPUT_SHADER_READ_BIT |
VK_MEMORY_INPUT_COLOR_ATTACHMENT_BIT |
VK_MEMORY_INPUT_DEPTH_STENCIL_ATTACHMENT_BIT |
VK_MEMORY_INPUT_TRANSFER_BIT;
std::vector<VkImageMemoryBarrier> to_clear;
std::vector<VkImageMemoryBarrier *> p_to_clear;
std::vector<VkImageMemoryBarrier> to_xfer;
std::vector<VkImageMemoryBarrier *> p_to_xfer;
unsigned int i = 0;
for (std::vector<VkImageSubresourceRange>::const_iterator it = ranges.begin();
it != ranges.end(); it++) {
to_clear.push_back(img.image_memory_barrier(all_cache_outputs, all_cache_inputs,
VK_IMAGE_LAYOUT_GENERAL,
VK_IMAGE_LAYOUT_GENERAL,
*it));
to_xfer.push_back(img.image_memory_barrier(all_cache_outputs, all_cache_inputs,
VK_IMAGE_LAYOUT_GENERAL,
VK_IMAGE_LAYOUT_TRANSFER_SOURCE_OPTIMAL, *it));
}
for (std::vector<VkImageSubresourceRange>::const_iterator it = ranges.begin();
it != ranges.end(); it++) {
p_to_clear.push_back(to_clear.data() + i);
p_to_xfer.push_back(to_xfer.data() + i);
i++;
}
cmd_.begin();
VkPipelineStageFlags src_stages = VK_PIPELINE_STAGE_ALL_GPU_COMMANDS;
VkPipelineStageFlags dest_stages = VK_PIPELINE_STAGE_ALL_GPU_COMMANDS;
vkCmdPipelineBarrier(cmd_.handle(), src_stages, dest_stages, false, to_clear.size(), (const void * const*) p_to_clear.data());
VkClearDepthStencilValue clear_value = {
depth,
stencil
};
vkCmdClearDepthStencilImage(cmd_.handle(),
img.handle(), VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
&clear_value,
ranges.size(), &ranges[0]);
vkCmdPipelineBarrier(cmd_.handle(), src_stages, dest_stages, false, to_xfer.size(), (const void * const*)p_to_xfer.data());
cmd_.end();
submit_and_done();
// cannot verify
if (!img.transparent() && !img.copyable())
return;
vk_testing::ImageChecker checker(img_info, ranges);
checker.set_solid_pattern(ds_to_raw(img_info.format, depth, stencil));
check_dst(img, checker);
}
};
TEST_F(VkCmdClearDepthStencilTest, Basic)
{
for (std::vector<vk_testing::Device::Format>::const_iterator it = test_formats_.begin();
it != test_formats_.end(); it++) {
VkFormatProperties props;
VkResult err;
err = vkGetPhysicalDeviceFormatProperties(dev_.phy().handle(), it->format, &props);
ASSERT_EQ(err, VK_SUCCESS);
if (it->tiling == VK_IMAGE_TILING_LINEAR && !(props.linearTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT))
continue;
if (it->tiling == VK_IMAGE_TILING_OPTIMAL && !(props.optimalTilingFeatures & VK_FORMAT_FEATURE_DEPTH_STENCIL_ATTACHMENT_BIT))
continue;
// known driver issues
if (it->format == VK_FORMAT_S8_UINT ||
it->format == VK_FORMAT_D24_UNORM_X8 ||
it->format == VK_FORMAT_D16_UNORM_S8_UINT ||
it->format == VK_FORMAT_D24_UNORM_S8_UINT)
continue;
VkImageCreateInfo img_info = vk_testing::Image::create_info();
img_info.imageType = VK_IMAGE_TYPE_2D;
img_info.format = it->format;
img_info.extent.width = 64;
img_info.extent.height = 64;
img_info.tiling = it->tiling;
img_info.usage = VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
const VkImageSubresourceRange range =
vk_testing::Image::subresource_range(img_info, VK_IMAGE_ASPECT_DEPTH_BIT);
std::vector<VkImageSubresourceRange> ranges(&range, &range + 1);
if (it->format == VK_FORMAT_D32_SFLOAT_S8_UINT ||
it->format == VK_FORMAT_D16_UNORM_S8_UINT ||
it->format == VK_FORMAT_D24_UNORM_S8_UINT) {
const VkImageSubresourceRange range2 =
vk_testing::Image::subresource_range(img_info, VK_IMAGE_ASPECT_STENCIL_BIT);
ranges.push_back(range2);
}
test_clear_depth_stencil(img_info, 0.25f, 63, ranges);
}
}
}; // namespace
int main(int argc, char **argv)
{
::testing::InitGoogleTest(&argc, argv);
vk_testing::set_error_callback(test_error_callback);
environment = new vk_testing::Environment();
if (!environment->parse_args(argc, argv))
return -1;
::testing::AddGlobalTestEnvironment(environment);
return RUN_ALL_TESTS();
}