blob: 8464d3ef298708187449cd32d5cd78b6ff86b477 [file] [log] [blame]
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![crate_name = "rustc_resolve"]
#![unstable(feature = "rustc_private", issue = "27812")]
#![crate_type = "dylib"]
#![crate_type = "rlib"]
#![doc(html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk-v2.png",
html_favicon_url = "https://doc.rust-lang.org/favicon.ico",
html_root_url = "https://doc.rust-lang.org/nightly/")]
#![feature(associated_consts)]
#![feature(borrow_state)]
#![feature(rustc_diagnostic_macros)]
#![feature(rustc_private)]
#![feature(staged_api)]
#[macro_use]
extern crate log;
#[macro_use]
extern crate syntax;
extern crate arena;
#[macro_use]
#[no_link]
extern crate rustc_bitflags;
extern crate rustc_front;
extern crate rustc;
use self::PatternBindingMode::*;
use self::Namespace::*;
use self::NamespaceResult::*;
use self::ResolveResult::*;
use self::FallbackSuggestion::*;
use self::TypeParameters::*;
use self::RibKind::*;
use self::UseLexicalScopeFlag::*;
use self::ModulePrefixResult::*;
use self::AssocItemResolveResult::*;
use self::NameSearchType::*;
use self::BareIdentifierPatternResolution::*;
use self::ParentLink::*;
use self::FallbackChecks::*;
use rustc::front::map as hir_map;
use rustc::session::Session;
use rustc::lint;
use rustc::middle::cstore::{CrateStore, DefLike, DlDef};
use rustc::middle::def::*;
use rustc::middle::def_id::DefId;
use rustc::middle::pat_util::pat_bindings;
use rustc::middle::privacy::*;
use rustc::middle::subst::{ParamSpace, FnSpace, TypeSpace};
use rustc::middle::ty::{Freevar, FreevarMap, TraitMap, GlobMap};
use rustc::util::nodemap::{NodeMap, DefIdSet, FnvHashMap};
use syntax::ast;
use syntax::ast::{CRATE_NODE_ID, Name, NodeId, CrateNum, TyIs, TyI8, TyI16, TyI32, TyI64};
use syntax::ast::{TyUs, TyU8, TyU16, TyU32, TyU64, TyF64, TyF32};
use syntax::attr::AttrMetaMethods;
use syntax::codemap::{self, Span, Pos};
use syntax::errors::DiagnosticBuilder;
use syntax::parse::token::{self, special_names, special_idents};
use syntax::util::lev_distance::find_best_match_for_name;
use rustc_front::intravisit::{self, FnKind, Visitor};
use rustc_front::hir;
use rustc_front::hir::{Arm, BindByRef, BindByValue, BindingMode, Block};
use rustc_front::hir::Crate;
use rustc_front::hir::{Expr, ExprAgain, ExprBreak, ExprCall, ExprField};
use rustc_front::hir::{ExprLoop, ExprWhile, ExprMethodCall};
use rustc_front::hir::{ExprPath, ExprStruct, FnDecl};
use rustc_front::hir::{ForeignItemFn, ForeignItemStatic, Generics};
use rustc_front::hir::{ImplItem, Item, ItemConst, ItemEnum, ItemExternCrate};
use rustc_front::hir::{ItemFn, ItemForeignMod, ItemImpl, ItemMod, ItemStatic, ItemDefaultImpl};
use rustc_front::hir::{ItemStruct, ItemTrait, ItemTy, ItemUse};
use rustc_front::hir::Local;
use rustc_front::hir::{Pat, PatEnum, PatIdent, PatLit, PatQPath};
use rustc_front::hir::{PatRange, PatStruct, Path, PrimTy};
use rustc_front::hir::{TraitRef, Ty, TyBool, TyChar, TyFloat, TyInt};
use rustc_front::hir::{TyRptr, TyStr, TyUint, TyPath, TyPtr};
use rustc_front::util::walk_pat;
use std::collections::{HashMap, HashSet};
use std::cell::{Cell, RefCell};
use std::fmt;
use std::mem::replace;
use std::rc::Rc;
use resolve_imports::{Target, ImportDirective, ImportResolutionPerNamespace};
use resolve_imports::Shadowable;
// NB: This module needs to be declared first so diagnostics are
// registered before they are used.
pub mod diagnostics;
mod check_unused;
mod build_reduced_graph;
mod resolve_imports;
// Perform the callback, not walking deeper if the return is true
macro_rules! execute_callback {
($node: expr, $walker: expr) => (
if let Some(ref callback) = $walker.callback {
if callback($node, &mut $walker.resolved) {
return;
}
}
)
}
enum SuggestionType {
Macro(String),
Function(token::InternedString),
NotFound,
}
pub enum ResolutionError<'a> {
/// error E0260: name conflicts with an extern crate
NameConflictsWithExternCrate(Name),
/// error E0401: can't use type parameters from outer function
TypeParametersFromOuterFunction,
/// error E0402: cannot use an outer type parameter in this context
OuterTypeParameterContext,
/// error E0403: the name is already used for a type parameter in this type parameter list
NameAlreadyUsedInTypeParameterList(Name),
/// error E0404: is not a trait
IsNotATrait(&'a str),
/// error E0405: use of undeclared trait name
UndeclaredTraitName(&'a str),
/// error E0406: undeclared associated type
UndeclaredAssociatedType,
/// error E0407: method is not a member of trait
MethodNotMemberOfTrait(Name, &'a str),
/// error E0437: type is not a member of trait
TypeNotMemberOfTrait(Name, &'a str),
/// error E0438: const is not a member of trait
ConstNotMemberOfTrait(Name, &'a str),
/// error E0408: variable `{}` from pattern #1 is not bound in pattern
VariableNotBoundInPattern(Name, usize),
/// error E0409: variable is bound with different mode in pattern #{} than in pattern #1
VariableBoundWithDifferentMode(Name, usize),
/// error E0410: variable from pattern is not bound in pattern #1
VariableNotBoundInParentPattern(Name, usize),
/// error E0411: use of `Self` outside of an impl or trait
SelfUsedOutsideImplOrTrait,
/// error E0412: use of undeclared
UseOfUndeclared(&'a str, &'a str),
/// error E0413: declaration shadows an enum variant or unit-like struct in scope
DeclarationShadowsEnumVariantOrUnitLikeStruct(Name),
/// error E0414: only irrefutable patterns allowed here
OnlyIrrefutablePatternsAllowedHere(DefId, Name),
/// error E0415: identifier is bound more than once in this parameter list
IdentifierBoundMoreThanOnceInParameterList(&'a str),
/// error E0416: identifier is bound more than once in the same pattern
IdentifierBoundMoreThanOnceInSamePattern(&'a str),
/// error E0417: static variables cannot be referenced in a pattern
StaticVariableReference,
/// error E0418: is not an enum variant, struct or const
NotAnEnumVariantStructOrConst(&'a str),
/// error E0419: unresolved enum variant, struct or const
UnresolvedEnumVariantStructOrConst(&'a str),
/// error E0420: is not an associated const
NotAnAssociatedConst(&'a str),
/// error E0421: unresolved associated const
UnresolvedAssociatedConst(&'a str),
/// error E0422: does not name a struct
DoesNotNameAStruct(&'a str),
/// error E0423: is a struct variant name, but this expression uses it like a function name
StructVariantUsedAsFunction(&'a str),
/// error E0424: `self` is not available in a static method
SelfNotAvailableInStaticMethod,
/// error E0425: unresolved name
UnresolvedName(&'a str, &'a str, UnresolvedNameContext),
/// error E0426: use of undeclared label
UndeclaredLabel(&'a str),
/// error E0427: cannot use `ref` binding mode with ...
CannotUseRefBindingModeWith(&'a str),
/// error E0428: duplicate definition
DuplicateDefinition(&'a str, Name),
/// error E0429: `self` imports are only allowed within a { } list
SelfImportsOnlyAllowedWithin,
/// error E0430: `self` import can only appear once in the list
SelfImportCanOnlyAppearOnceInTheList,
/// error E0431: `self` import can only appear in an import list with a non-empty prefix
SelfImportOnlyInImportListWithNonEmptyPrefix,
/// error E0432: unresolved import
UnresolvedImport(Option<(&'a str, &'a str)>),
/// error E0433: failed to resolve
FailedToResolve(&'a str),
/// error E0434: can't capture dynamic environment in a fn item
CannotCaptureDynamicEnvironmentInFnItem,
/// error E0435: attempt to use a non-constant value in a constant
AttemptToUseNonConstantValueInConstant,
}
/// Context of where `ResolutionError::UnresolvedName` arose.
#[derive(Clone, PartialEq, Eq, Debug)]
pub enum UnresolvedNameContext {
/// `PathIsMod(id)` indicates that a given path, used in
/// expression context, actually resolved to a module rather than
/// a value. The `id` attached to the variant is the node id of
/// the erroneous path expression.
PathIsMod(ast::NodeId),
/// `Other` means we have no extra information about the context
/// of the unresolved name error. (Maybe we could eliminate all
/// such cases; but for now, this is an information-free default.)
Other,
}
fn resolve_error<'b, 'a: 'b, 'tcx: 'a>(resolver: &'b Resolver<'a, 'tcx>,
span: syntax::codemap::Span,
resolution_error: ResolutionError<'b>) {
resolve_struct_error(resolver, span, resolution_error).emit();
}
fn resolve_struct_error<'b, 'a: 'b, 'tcx: 'a>(resolver: &'b Resolver<'a, 'tcx>,
span: syntax::codemap::Span,
resolution_error: ResolutionError<'b>)
-> DiagnosticBuilder<'a> {
if !resolver.emit_errors {
return resolver.session.diagnostic().struct_dummy();
}
match resolution_error {
ResolutionError::NameConflictsWithExternCrate(name) => {
struct_span_err!(resolver.session,
span,
E0260,
"the name `{}` conflicts with an external crate \
that has been imported into this module",
name)
}
ResolutionError::TypeParametersFromOuterFunction => {
struct_span_err!(resolver.session,
span,
E0401,
"can't use type parameters from outer function; try using a local \
type parameter instead")
}
ResolutionError::OuterTypeParameterContext => {
struct_span_err!(resolver.session,
span,
E0402,
"cannot use an outer type parameter in this context")
}
ResolutionError::NameAlreadyUsedInTypeParameterList(name) => {
struct_span_err!(resolver.session,
span,
E0403,
"the name `{}` is already used for a type parameter in this type \
parameter list",
name)
}
ResolutionError::IsNotATrait(name) => {
struct_span_err!(resolver.session, span, E0404, "`{}` is not a trait", name)
}
ResolutionError::UndeclaredTraitName(name) => {
struct_span_err!(resolver.session,
span,
E0405,
"use of undeclared trait name `{}`",
name)
}
ResolutionError::UndeclaredAssociatedType => {
struct_span_err!(resolver.session, span, E0406, "undeclared associated type")
}
ResolutionError::MethodNotMemberOfTrait(method, trait_) => {
struct_span_err!(resolver.session,
span,
E0407,
"method `{}` is not a member of trait `{}`",
method,
trait_)
}
ResolutionError::TypeNotMemberOfTrait(type_, trait_) => {
struct_span_err!(resolver.session,
span,
E0437,
"type `{}` is not a member of trait `{}`",
type_,
trait_)
}
ResolutionError::ConstNotMemberOfTrait(const_, trait_) => {
struct_span_err!(resolver.session,
span,
E0438,
"const `{}` is not a member of trait `{}`",
const_,
trait_)
}
ResolutionError::VariableNotBoundInPattern(variable_name, pattern_number) => {
struct_span_err!(resolver.session,
span,
E0408,
"variable `{}` from pattern #1 is not bound in pattern #{}",
variable_name,
pattern_number)
}
ResolutionError::VariableBoundWithDifferentMode(variable_name, pattern_number) => {
struct_span_err!(resolver.session,
span,
E0409,
"variable `{}` is bound with different mode in pattern #{} than in \
pattern #1",
variable_name,
pattern_number)
}
ResolutionError::VariableNotBoundInParentPattern(variable_name, pattern_number) => {
struct_span_err!(resolver.session,
span,
E0410,
"variable `{}` from pattern #{} is not bound in pattern #1",
variable_name,
pattern_number)
}
ResolutionError::SelfUsedOutsideImplOrTrait => {
struct_span_err!(resolver.session,
span,
E0411,
"use of `Self` outside of an impl or trait")
}
ResolutionError::UseOfUndeclared(kind, name) => {
struct_span_err!(resolver.session,
span,
E0412,
"use of undeclared {} `{}`",
kind,
name)
}
ResolutionError::DeclarationShadowsEnumVariantOrUnitLikeStruct(name) => {
struct_span_err!(resolver.session,
span,
E0413,
"declaration of `{}` shadows an enum variant \
or unit-like struct in scope",
name)
}
ResolutionError::OnlyIrrefutablePatternsAllowedHere(did, name) => {
let mut err = struct_span_err!(resolver.session,
span,
E0414,
"only irrefutable patterns allowed here");
err.span_note(span,
"there already is a constant in scope sharing the same \
name as this pattern");
if let Some(sp) = resolver.ast_map.span_if_local(did) {
err.span_note(sp, "constant defined here");
}
if let Some(directive) = resolver.current_module
.import_resolutions
.borrow()
.get(&name) {
let item = resolver.ast_map.expect_item(directive.value_ns.id);
err.span_note(item.span, "constant imported here");
}
err
}
ResolutionError::IdentifierBoundMoreThanOnceInParameterList(identifier) => {
struct_span_err!(resolver.session,
span,
E0415,
"identifier `{}` is bound more than once in this parameter list",
identifier)
}
ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(identifier) => {
struct_span_err!(resolver.session,
span,
E0416,
"identifier `{}` is bound more than once in the same pattern",
identifier)
}
ResolutionError::StaticVariableReference => {
struct_span_err!(resolver.session,
span,
E0417,
"static variables cannot be referenced in a pattern, use a \
`const` instead")
}
ResolutionError::NotAnEnumVariantStructOrConst(name) => {
struct_span_err!(resolver.session,
span,
E0418,
"`{}` is not an enum variant, struct or const",
name)
}
ResolutionError::UnresolvedEnumVariantStructOrConst(name) => {
struct_span_err!(resolver.session,
span,
E0419,
"unresolved enum variant, struct or const `{}`",
name)
}
ResolutionError::NotAnAssociatedConst(name) => {
struct_span_err!(resolver.session,
span,
E0420,
"`{}` is not an associated const",
name)
}
ResolutionError::UnresolvedAssociatedConst(name) => {
struct_span_err!(resolver.session,
span,
E0421,
"unresolved associated const `{}`",
name)
}
ResolutionError::DoesNotNameAStruct(name) => {
struct_span_err!(resolver.session,
span,
E0422,
"`{}` does not name a structure",
name)
}
ResolutionError::StructVariantUsedAsFunction(path_name) => {
struct_span_err!(resolver.session,
span,
E0423,
"`{}` is the name of a struct or struct variant, but this expression \
uses it like a function name",
path_name)
}
ResolutionError::SelfNotAvailableInStaticMethod => {
struct_span_err!(resolver.session,
span,
E0424,
"`self` is not available in a static method. Maybe a `self` \
argument is missing?")
}
ResolutionError::UnresolvedName(path, msg, context) => {
let mut err = struct_span_err!(resolver.session,
span,
E0425,
"unresolved name `{}`{}",
path,
msg);
match context {
UnresolvedNameContext::Other => { } // no help available
UnresolvedNameContext::PathIsMod(id) => {
let mut help_msg = String::new();
let parent_id = resolver.ast_map.get_parent_node(id);
if let Some(hir_map::Node::NodeExpr(e)) = resolver.ast_map.find(parent_id) {
match e.node {
ExprField(_, ident) => {
help_msg = format!("To reference an item from the \
`{module}` module, use \
`{module}::{ident}`",
module = &*path,
ident = ident.node);
}
ExprMethodCall(ident, _, _) => {
help_msg = format!("To call a function from the \
`{module}` module, use \
`{module}::{ident}(..)`",
module = &*path,
ident = ident.node);
}
ExprCall(_, _) => {
help_msg = format!("No function corresponds to `{module}(..)`",
module = &*path);
}
_ => { } // no help available
}
} else {
help_msg = format!("Module `{module}` cannot be the value of an expression",
module = &*path);
}
if !help_msg.is_empty() {
err.fileline_help(span, &help_msg);
}
}
}
err
}
ResolutionError::UndeclaredLabel(name) => {
struct_span_err!(resolver.session,
span,
E0426,
"use of undeclared label `{}`",
name)
}
ResolutionError::CannotUseRefBindingModeWith(descr) => {
struct_span_err!(resolver.session,
span,
E0427,
"cannot use `ref` binding mode with {}",
descr)
}
ResolutionError::DuplicateDefinition(namespace, name) => {
struct_span_err!(resolver.session,
span,
E0428,
"duplicate definition of {} `{}`",
namespace,
name)
}
ResolutionError::SelfImportsOnlyAllowedWithin => {
struct_span_err!(resolver.session,
span,
E0429,
"{}",
"`self` imports are only allowed within a { } list")
}
ResolutionError::SelfImportCanOnlyAppearOnceInTheList => {
struct_span_err!(resolver.session,
span,
E0430,
"`self` import can only appear once in the list")
}
ResolutionError::SelfImportOnlyInImportListWithNonEmptyPrefix => {
struct_span_err!(resolver.session,
span,
E0431,
"`self` import can only appear in an import list with a \
non-empty prefix")
}
ResolutionError::UnresolvedImport(name) => {
let msg = match name {
Some((n, p)) => format!("unresolved import `{}`{}", n, p),
None => "unresolved import".to_owned(),
};
struct_span_err!(resolver.session, span, E0432, "{}", msg)
}
ResolutionError::FailedToResolve(msg) => {
struct_span_err!(resolver.session, span, E0433, "failed to resolve. {}", msg)
}
ResolutionError::CannotCaptureDynamicEnvironmentInFnItem => {
struct_span_err!(resolver.session,
span,
E0434,
"{}",
"can't capture dynamic environment in a fn item; use the || { ... } \
closure form instead")
}
ResolutionError::AttemptToUseNonConstantValueInConstant => {
struct_span_err!(resolver.session,
span,
E0435,
"attempt to use a non-constant value in a constant")
}
}
}
#[derive(Copy, Clone)]
struct BindingInfo {
span: Span,
binding_mode: BindingMode,
}
// Map from the name in a pattern to its binding mode.
type BindingMap = HashMap<Name, BindingInfo>;
#[derive(Copy, Clone, PartialEq)]
enum PatternBindingMode {
RefutableMode,
LocalIrrefutableMode,
ArgumentIrrefutableMode,
}
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug)]
pub enum Namespace {
TypeNS,
ValueNS,
}
/// A NamespaceResult represents the result of resolving an import in
/// a particular namespace. The result is either definitely-resolved,
/// definitely- unresolved, or unknown.
#[derive(Clone)]
enum NamespaceResult<'a> {
/// Means that resolve hasn't gathered enough information yet to determine
/// whether the name is bound in this namespace. (That is, it hasn't
/// resolved all `use` directives yet.)
UnknownResult,
/// Means that resolve has determined that the name is definitely
/// not bound in the namespace.
UnboundResult,
/// Means that resolve has determined that the name is bound in the Module
/// argument, and specified by the NameBinding argument.
BoundResult(Module<'a>, NameBinding<'a>),
}
impl<'a> NamespaceResult<'a> {
fn is_unknown(&self) -> bool {
match *self {
UnknownResult => true,
_ => false,
}
}
fn is_unbound(&self) -> bool {
match *self {
UnboundResult => true,
_ => false,
}
}
}
impl<'a, 'v, 'tcx> Visitor<'v> for Resolver<'a, 'tcx> {
fn visit_nested_item(&mut self, item: hir::ItemId) {
self.visit_item(self.ast_map.expect_item(item.id))
}
fn visit_item(&mut self, item: &Item) {
execute_callback!(hir_map::Node::NodeItem(item), self);
self.resolve_item(item);
}
fn visit_arm(&mut self, arm: &Arm) {
self.resolve_arm(arm);
}
fn visit_block(&mut self, block: &Block) {
execute_callback!(hir_map::Node::NodeBlock(block), self);
self.resolve_block(block);
}
fn visit_expr(&mut self, expr: &Expr) {
execute_callback!(hir_map::Node::NodeExpr(expr), self);
self.resolve_expr(expr);
}
fn visit_local(&mut self, local: &Local) {
execute_callback!(hir_map::Node::NodeLocal(&*local.pat), self);
self.resolve_local(local);
}
fn visit_ty(&mut self, ty: &Ty) {
self.resolve_type(ty);
}
fn visit_generics(&mut self, generics: &Generics) {
self.resolve_generics(generics);
}
fn visit_poly_trait_ref(&mut self, tref: &hir::PolyTraitRef, m: &hir::TraitBoundModifier) {
match self.resolve_trait_reference(tref.trait_ref.ref_id, &tref.trait_ref.path, 0) {
Ok(def) => self.record_def(tref.trait_ref.ref_id, def),
Err(_) => {
// error already reported
self.record_def(tref.trait_ref.ref_id, err_path_resolution())
}
}
intravisit::walk_poly_trait_ref(self, tref, m);
}
fn visit_variant(&mut self,
variant: &hir::Variant,
generics: &Generics,
item_id: ast::NodeId) {
execute_callback!(hir_map::Node::NodeVariant(variant), self);
if let Some(ref dis_expr) = variant.node.disr_expr {
// resolve the discriminator expr as a constant
self.with_constant_rib(|this| {
this.visit_expr(dis_expr);
});
}
// `intravisit::walk_variant` without the discriminant expression.
self.visit_variant_data(&variant.node.data,
variant.node.name,
generics,
item_id,
variant.span);
}
fn visit_foreign_item(&mut self, foreign_item: &hir::ForeignItem) {
execute_callback!(hir_map::Node::NodeForeignItem(foreign_item), self);
let type_parameters = match foreign_item.node {
ForeignItemFn(_, ref generics) => {
HasTypeParameters(generics, FnSpace, ItemRibKind)
}
ForeignItemStatic(..) => NoTypeParameters,
};
self.with_type_parameter_rib(type_parameters, |this| {
intravisit::walk_foreign_item(this, foreign_item);
});
}
fn visit_fn(&mut self,
function_kind: FnKind<'v>,
declaration: &'v FnDecl,
block: &'v Block,
_: Span,
node_id: NodeId) {
let rib_kind = match function_kind {
FnKind::ItemFn(_, generics, _, _, _, _) => {
self.visit_generics(generics);
ItemRibKind
}
FnKind::Method(_, sig, _) => {
self.visit_generics(&sig.generics);
self.visit_explicit_self(&sig.explicit_self);
MethodRibKind
}
FnKind::Closure => ClosureRibKind(node_id),
};
self.resolve_function(rib_kind, declaration, block);
}
}
type ErrorMessage = Option<(Span, String)>;
enum ResolveResult<T> {
Failed(ErrorMessage), // Failed to resolve the name, optional helpful error message.
Indeterminate, // Couldn't determine due to unresolved globs.
Success(T), // Successfully resolved the import.
}
impl<T> ResolveResult<T> {
fn success(&self) -> bool {
match *self {
Success(_) => true,
_ => false,
}
}
}
enum FallbackSuggestion {
NoSuggestion,
Field,
Method,
TraitItem,
StaticMethod(String),
TraitMethod(String),
}
#[derive(Copy, Clone)]
enum TypeParameters<'a> {
NoTypeParameters,
HasTypeParameters(// Type parameters.
&'a Generics,
// Identifies the things that these parameters
// were declared on (type, fn, etc)
ParamSpace,
// The kind of the rib used for type parameters.
RibKind),
}
// The rib kind controls the translation of local
// definitions (`DefLocal`) to upvars (`DefUpvar`).
#[derive(Copy, Clone, Debug)]
enum RibKind {
// No translation needs to be applied.
NormalRibKind,
// We passed through a closure scope at the given node ID.
// Translate upvars as appropriate.
ClosureRibKind(NodeId /* func id */),
// We passed through an impl or trait and are now in one of its
// methods. Allow references to ty params that impl or trait
// binds. Disallow any other upvars (including other ty params that are
// upvars).
MethodRibKind,
// We passed through an item scope. Disallow upvars.
ItemRibKind,
// We're in a constant item. Can't refer to dynamic stuff.
ConstantItemRibKind,
}
#[derive(Copy, Clone)]
enum UseLexicalScopeFlag {
DontUseLexicalScope,
UseLexicalScope,
}
enum ModulePrefixResult<'a> {
NoPrefixFound,
PrefixFound(Module<'a>, usize),
}
#[derive(Copy, Clone)]
enum AssocItemResolveResult {
/// Syntax such as `<T>::item`, which can't be resolved until type
/// checking.
TypecheckRequired,
/// We should have been able to resolve the associated item.
ResolveAttempt(Option<PathResolution>),
}
#[derive(Copy, Clone, PartialEq)]
enum NameSearchType {
/// We're doing a name search in order to resolve a `use` directive.
ImportSearch,
/// We're doing a name search in order to resolve a path type, a path
/// expression, or a path pattern.
PathSearch,
}
#[derive(Copy, Clone)]
enum BareIdentifierPatternResolution {
FoundStructOrEnumVariant(Def, LastPrivate),
FoundConst(Def, LastPrivate, Name),
BareIdentifierPatternUnresolved,
}
/// One local scope.
#[derive(Debug)]
struct Rib {
bindings: HashMap<Name, DefLike>,
kind: RibKind,
}
impl Rib {
fn new(kind: RibKind) -> Rib {
Rib {
bindings: HashMap::new(),
kind: kind,
}
}
}
/// A definition along with the index of the rib it was found on
struct LocalDef {
ribs: Option<(Namespace, usize)>,
def: Def,
}
impl LocalDef {
fn from_def(def: Def) -> Self {
LocalDef {
ribs: None,
def: def,
}
}
}
/// The link from a module up to its nearest parent node.
#[derive(Clone,Debug)]
enum ParentLink<'a> {
NoParentLink,
ModuleParentLink(Module<'a>, Name),
BlockParentLink(Module<'a>, NodeId),
}
/// One node in the tree of modules.
pub struct ModuleS<'a> {
parent_link: ParentLink<'a>,
def: Cell<Option<Def>>,
is_public: bool,
children: RefCell<HashMap<Name, NameBindings<'a>>>,
imports: RefCell<Vec<ImportDirective>>,
// The external module children of this node that were declared with
// `extern crate`.
external_module_children: RefCell<HashMap<Name, Module<'a>>>,
// The anonymous children of this node. Anonymous children are pseudo-
// modules that are implicitly created around items contained within
// blocks.
//
// For example, if we have this:
//
// fn f() {
// fn g() {
// ...
// }
// }
//
// There will be an anonymous module created around `g` with the ID of the
// entry block for `f`.
anonymous_children: RefCell<NodeMap<Module<'a>>>,
// The status of resolving each import in this module.
import_resolutions: RefCell<HashMap<Name, ImportResolutionPerNamespace<'a>>>,
// The number of unresolved globs that this module exports.
glob_count: Cell<usize>,
// The number of unresolved pub imports (both regular and globs) in this module
pub_count: Cell<usize>,
// The number of unresolved pub glob imports in this module
pub_glob_count: Cell<usize>,
// The index of the import we're resolving.
resolved_import_count: Cell<usize>,
// Whether this module is populated. If not populated, any attempt to
// access the children must be preceded with a
// `populate_module_if_necessary` call.
populated: Cell<bool>,
}
pub type Module<'a> = &'a ModuleS<'a>;
impl<'a> ModuleS<'a> {
fn new(parent_link: ParentLink<'a>, def: Option<Def>, external: bool, is_public: bool) -> Self {
ModuleS {
parent_link: parent_link,
def: Cell::new(def),
is_public: is_public,
children: RefCell::new(HashMap::new()),
imports: RefCell::new(Vec::new()),
external_module_children: RefCell::new(HashMap::new()),
anonymous_children: RefCell::new(NodeMap()),
import_resolutions: RefCell::new(HashMap::new()),
glob_count: Cell::new(0),
pub_count: Cell::new(0),
pub_glob_count: Cell::new(0),
resolved_import_count: Cell::new(0),
populated: Cell::new(!external),
}
}
fn def_id(&self) -> Option<DefId> {
self.def.get().as_ref().map(Def::def_id)
}
fn is_normal(&self) -> bool {
match self.def.get() {
Some(DefMod(_)) | Some(DefForeignMod(_)) => true,
_ => false,
}
}
fn is_trait(&self) -> bool {
match self.def.get() {
Some(DefTrait(_)) => true,
_ => false,
}
}
fn all_imports_resolved(&self) -> bool {
if self.imports.borrow_state() == ::std::cell::BorrowState::Writing {
// it is currently being resolved ! so nope
false
} else {
self.imports.borrow().len() == self.resolved_import_count.get()
}
}
pub fn inc_glob_count(&self) {
self.glob_count.set(self.glob_count.get() + 1);
}
pub fn dec_glob_count(&self) {
assert!(self.glob_count.get() > 0);
self.glob_count.set(self.glob_count.get() - 1);
}
pub fn inc_pub_count(&self) {
self.pub_count.set(self.pub_count.get() + 1);
}
pub fn dec_pub_count(&self) {
assert!(self.pub_count.get() > 0);
self.pub_count.set(self.pub_count.get() - 1);
}
pub fn inc_pub_glob_count(&self) {
self.pub_glob_count.set(self.pub_glob_count.get() + 1);
}
pub fn dec_pub_glob_count(&self) {
assert!(self.pub_glob_count.get() > 0);
self.pub_glob_count.set(self.pub_glob_count.get() - 1);
}
}
impl<'a> fmt::Debug for ModuleS<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f,
"{:?}, {}",
self.def,
if self.is_public {
"public"
} else {
"private"
})
}
}
bitflags! {
#[derive(Debug)]
flags DefModifiers: u8 {
// Enum variants are always considered `PUBLIC`, this is needed for `use Enum::Variant`
// or `use Enum::*` to work on private enums.
const PUBLIC = 1 << 0,
const IMPORTABLE = 1 << 1,
// Variants are considered `PUBLIC`, but some of them live in private enums.
// We need to track them to prohibit reexports like `pub use PrivEnum::Variant`.
const PRIVATE_VARIANT = 1 << 2,
}
}
// Records a possibly-private value, type, or module definition.
#[derive(Debug)]
struct NsDef<'a> {
modifiers: DefModifiers, // see note in ImportResolutionPerNamespace about how to use this
def_or_module: DefOrModule<'a>,
span: Option<Span>,
}
#[derive(Debug)]
enum DefOrModule<'a> {
Def(Def),
Module(Module<'a>),
}
impl<'a> NsDef<'a> {
fn create_from_module(module: Module<'a>, span: Option<Span>) -> Self {
let modifiers = if module.is_public {
DefModifiers::PUBLIC
} else {
DefModifiers::empty()
} | DefModifiers::IMPORTABLE;
NsDef { modifiers: modifiers, def_or_module: DefOrModule::Module(module), span: span }
}
fn create_from_def(def: Def, modifiers: DefModifiers, span: Option<Span>) -> Self {
NsDef { modifiers: modifiers, def_or_module: DefOrModule::Def(def), span: span }
}
fn module(&self) -> Option<Module<'a>> {
match self.def_or_module {
DefOrModule::Module(ref module) => Some(module),
DefOrModule::Def(_) => None,
}
}
fn def(&self) -> Option<Def> {
match self.def_or_module {
DefOrModule::Def(def) => Some(def),
DefOrModule::Module(ref module) => module.def.get(),
}
}
}
// Records at most one definition that a name in a namespace is bound to
#[derive(Clone,Debug)]
pub struct NameBinding<'a>(Rc<RefCell<Option<NsDef<'a>>>>);
impl<'a> NameBinding<'a> {
fn new() -> Self {
NameBinding(Rc::new(RefCell::new(None)))
}
fn create_from_module(module: Module<'a>) -> Self {
NameBinding(Rc::new(RefCell::new(Some(NsDef::create_from_module(module, None)))))
}
fn set(&self, ns_def: NsDef<'a>) {
*self.0.borrow_mut() = Some(ns_def);
}
fn set_modifiers(&self, modifiers: DefModifiers) {
if let Some(ref mut ns_def) = *self.0.borrow_mut() {
ns_def.modifiers = modifiers
}
}
fn borrow(&self) -> ::std::cell::Ref<Option<NsDef<'a>>> {
self.0.borrow()
}
// Lifted versions of the NsDef methods and fields
fn def(&self) -> Option<Def> {
self.borrow().as_ref().and_then(NsDef::def)
}
fn module(&self) -> Option<Module<'a>> {
self.borrow().as_ref().and_then(NsDef::module)
}
fn span(&self) -> Option<Span> {
self.borrow().as_ref().and_then(|def| def.span)
}
fn modifiers(&self) -> Option<DefModifiers> {
self.borrow().as_ref().and_then(|def| Some(def.modifiers))
}
fn defined(&self) -> bool {
self.borrow().is_some()
}
fn defined_with(&self, modifiers: DefModifiers) -> bool {
self.modifiers().map(|m| m.contains(modifiers)).unwrap_or(false)
}
fn is_public(&self) -> bool {
self.defined_with(DefModifiers::PUBLIC)
}
fn def_and_lp(&self) -> (Def, LastPrivate) {
let def = self.def().unwrap();
(def, LastMod(if self.is_public() { AllPublic } else { DependsOn(def.def_id()) }))
}
}
// Records the definitions (at most one for each namespace) that a name is
// bound to.
#[derive(Clone,Debug)]
pub struct NameBindings<'a> {
type_ns: NameBinding<'a>, // < Meaning in type namespace.
value_ns: NameBinding<'a>, // < Meaning in value namespace.
}
impl<'a> ::std::ops::Index<Namespace> for NameBindings<'a> {
type Output = NameBinding<'a>;
fn index(&self, namespace: Namespace) -> &NameBinding<'a> {
match namespace { TypeNS => &self.type_ns, ValueNS => &self.value_ns }
}
}
impl<'a> NameBindings<'a> {
fn new() -> Self {
NameBindings {
type_ns: NameBinding::new(),
value_ns: NameBinding::new(),
}
}
/// Creates a new module in this set of name bindings.
fn define_module(&self, module: Module<'a>, sp: Span) {
self.type_ns.set(NsDef::create_from_module(module, Some(sp)));
}
/// Records a type definition.
fn define_type(&self, def: Def, sp: Span, modifiers: DefModifiers) {
debug!("defining type for def {:?} with modifiers {:?}", def, modifiers);
self.type_ns.set(NsDef::create_from_def(def, modifiers, Some(sp)));
}
/// Records a value definition.
fn define_value(&self, def: Def, sp: Span, modifiers: DefModifiers) {
debug!("defining value for def {:?} with modifiers {:?}", def, modifiers);
self.value_ns.set(NsDef::create_from_def(def, modifiers, Some(sp)));
}
}
/// Interns the names of the primitive types.
struct PrimitiveTypeTable {
primitive_types: HashMap<Name, PrimTy>,
}
impl PrimitiveTypeTable {
fn new() -> PrimitiveTypeTable {
let mut table = PrimitiveTypeTable { primitive_types: HashMap::new() };
table.intern("bool", TyBool);
table.intern("char", TyChar);
table.intern("f32", TyFloat(TyF32));
table.intern("f64", TyFloat(TyF64));
table.intern("isize", TyInt(TyIs));
table.intern("i8", TyInt(TyI8));
table.intern("i16", TyInt(TyI16));
table.intern("i32", TyInt(TyI32));
table.intern("i64", TyInt(TyI64));
table.intern("str", TyStr);
table.intern("usize", TyUint(TyUs));
table.intern("u8", TyUint(TyU8));
table.intern("u16", TyUint(TyU16));
table.intern("u32", TyUint(TyU32));
table.intern("u64", TyUint(TyU64));
table
}
fn intern(&mut self, string: &str, primitive_type: PrimTy) {
self.primitive_types.insert(token::intern(string), primitive_type);
}
}
/// The main resolver class.
pub struct Resolver<'a, 'tcx: 'a> {
session: &'a Session,
ast_map: &'a hir_map::Map<'tcx>,
graph_root: Module<'a>,
trait_item_map: FnvHashMap<(Name, DefId), DefId>,
structs: FnvHashMap<DefId, Vec<Name>>,
// The number of imports that are currently unresolved.
unresolved_imports: usize,
// The module that represents the current item scope.
current_module: Module<'a>,
// The current set of local scopes, for values.
// FIXME #4948: Reuse ribs to avoid allocation.
value_ribs: Vec<Rib>,
// The current set of local scopes, for types.
type_ribs: Vec<Rib>,
// The current set of local scopes, for labels.
label_ribs: Vec<Rib>,
// The trait that the current context can refer to.
current_trait_ref: Option<(DefId, TraitRef)>,
// The current self type if inside an impl (used for better errors).
current_self_type: Option<Ty>,
// The idents for the primitive types.
primitive_type_table: PrimitiveTypeTable,
def_map: RefCell<DefMap>,
freevars: FreevarMap,
freevars_seen: NodeMap<NodeMap<usize>>,
export_map: ExportMap,
trait_map: TraitMap,
external_exports: ExternalExports,
// Whether or not to print error messages. Can be set to true
// when getting additional info for error message suggestions,
// so as to avoid printing duplicate errors
emit_errors: bool,
make_glob_map: bool,
// Maps imports to the names of items actually imported (this actually maps
// all imports, but only glob imports are actually interesting).
glob_map: GlobMap,
used_imports: HashSet<(NodeId, Namespace)>,
used_crates: HashSet<CrateNum>,
// Callback function for intercepting walks
callback: Option<Box<Fn(hir_map::Node, &mut bool) -> bool>>,
// The intention is that the callback modifies this flag.
// Once set, the resolver falls out of the walk, preserving the ribs.
resolved: bool,
arenas: &'a ResolverArenas<'a>,
}
pub struct ResolverArenas<'a> {
modules: arena::TypedArena<ModuleS<'a>>,
}
#[derive(PartialEq)]
enum FallbackChecks {
Everything,
OnlyTraitAndStatics,
}
impl<'a, 'tcx> Resolver<'a, 'tcx> {
fn new(session: &'a Session,
ast_map: &'a hir_map::Map<'tcx>,
make_glob_map: MakeGlobMap,
arenas: &'a ResolverArenas<'a>)
-> Resolver<'a, 'tcx> {
let root_def_id = ast_map.local_def_id(CRATE_NODE_ID);
let graph_root = ModuleS::new(NoParentLink, Some(DefMod(root_def_id)), false, true);
let graph_root = arenas.modules.alloc(graph_root);
Resolver {
session: session,
ast_map: ast_map,
// The outermost module has def ID 0; this is not reflected in the
// AST.
graph_root: graph_root,
trait_item_map: FnvHashMap(),
structs: FnvHashMap(),
unresolved_imports: 0,
current_module: graph_root,
value_ribs: Vec::new(),
type_ribs: Vec::new(),
label_ribs: Vec::new(),
current_trait_ref: None,
current_self_type: None,
primitive_type_table: PrimitiveTypeTable::new(),
def_map: RefCell::new(NodeMap()),
freevars: NodeMap(),
freevars_seen: NodeMap(),
export_map: NodeMap(),
trait_map: NodeMap(),
used_imports: HashSet::new(),
used_crates: HashSet::new(),
external_exports: DefIdSet(),
emit_errors: true,
make_glob_map: make_glob_map == MakeGlobMap::Yes,
glob_map: HashMap::new(),
callback: None,
resolved: false,
arenas: arenas,
}
}
fn arenas() -> ResolverArenas<'a> {
ResolverArenas {
modules: arena::TypedArena::new(),
}
}
fn new_module(&self,
parent_link: ParentLink<'a>,
def: Option<Def>,
external: bool,
is_public: bool) -> Module<'a> {
self.arenas.modules.alloc(ModuleS::new(parent_link, def, external, is_public))
}
#[inline]
fn record_import_use(&mut self, import_id: NodeId, name: Name) {
if !self.make_glob_map {
return;
}
if self.glob_map.contains_key(&import_id) {
self.glob_map.get_mut(&import_id).unwrap().insert(name);
return;
}
let mut new_set = HashSet::new();
new_set.insert(name);
self.glob_map.insert(import_id, new_set);
}
fn get_trait_name(&self, did: DefId) -> Name {
if let Some(node_id) = self.ast_map.as_local_node_id(did) {
self.ast_map.expect_item(node_id).name
} else {
self.session.cstore.item_name(did)
}
}
/// Check that an external crate doesn't collide with items or other external crates.
fn check_for_conflicts_for_external_crate(&self, module: Module<'a>, name: Name, span: Span) {
if module.external_module_children.borrow().contains_key(&name) {
span_err!(self.session,
span,
E0259,
"an external crate named `{}` has already been imported into this module",
name);
}
match module.children.borrow().get(&name) {
Some(name_bindings) if name_bindings.type_ns.defined() => {
resolve_error(self,
name_bindings.type_ns.span().unwrap_or(codemap::DUMMY_SP),
ResolutionError::NameConflictsWithExternCrate(name));
}
_ => {},
}
}
/// Checks that the names of items don't collide with external crates.
fn check_for_conflicts_between_external_crates_and_items(&self,
module: Module<'a>,
name: Name,
span: Span) {
if module.external_module_children.borrow().contains_key(&name) {
resolve_error(self, span, ResolutionError::NameConflictsWithExternCrate(name));
}
}
/// Resolves the given module path from the given root `module_`.
fn resolve_module_path_from_root(&mut self,
module_: Module<'a>,
module_path: &[Name],
index: usize,
span: Span,
name_search_type: NameSearchType,
lp: LastPrivate)
-> ResolveResult<(Module<'a>, LastPrivate)> {
fn search_parent_externals<'a>(needle: Name, module: Module<'a>)
-> Option<Module<'a>> {
match module.external_module_children.borrow().get(&needle) {
Some(_) => Some(module),
None => match module.parent_link {
ModuleParentLink(ref parent, _) => {
search_parent_externals(needle, parent)
}
_ => None,
},
}
}
let mut search_module = module_;
let mut index = index;
let module_path_len = module_path.len();
let mut closest_private = lp;
// Resolve the module part of the path. This does not involve looking
// upward though scope chains; we simply resolve names directly in
// modules as we go.
while index < module_path_len {
let name = module_path[index];
match self.resolve_name_in_module(search_module,
name,
TypeNS,
name_search_type,
false) {
Failed(None) => {
let segment_name = name.as_str();
let module_name = module_to_string(search_module);
let mut span = span;
let msg = if "???" == &module_name[..] {
span.hi = span.lo + Pos::from_usize(segment_name.len());
match search_parent_externals(name, &self.current_module) {
Some(module) => {
let path_str = names_to_string(module_path);
let target_mod_str = module_to_string(&*module);
let current_mod_str = module_to_string(&*self.current_module);
let prefix = if target_mod_str == current_mod_str {
"self::".to_string()
} else {
format!("{}::", target_mod_str)
};
format!("Did you mean `{}{}`?", prefix, path_str)
}
None => format!("Maybe a missing `extern crate {}`?", segment_name),
}
} else {
format!("Could not find `{}` in `{}`", segment_name, module_name)
};
return Failed(Some((span, msg)));
}
Failed(err) => return Failed(err),
Indeterminate => {
debug!("(resolving module path for import) module resolution is \
indeterminate: {}",
name);
return Indeterminate;
}
Success((target, used_proxy)) => {
// Check to see whether there are type bindings, and, if
// so, whether there is a module within.
if let Some(module_def) = target.binding.module() {
// track extern crates for unused_extern_crate lint
if let Some(did) = module_def.def_id() {
self.used_crates.insert(did.krate);
}
search_module = module_def;
// Keep track of the closest private module used
// when resolving this import chain.
if !used_proxy && !search_module.is_public {
if let Some(did) = search_module.def_id() {
closest_private = LastMod(DependsOn(did));
}
}
} else {
let msg = format!("Not a module `{}`", name);
return Failed(Some((span, msg)));
}
}
}
index += 1;
}
return Success((search_module, closest_private));
}
/// Attempts to resolve the module part of an import directive or path
/// rooted at the given module.
///
/// On success, returns the resolved module, and the closest *private*
/// module found to the destination when resolving this path.
fn resolve_module_path(&mut self,
module_: Module<'a>,
module_path: &[Name],
use_lexical_scope: UseLexicalScopeFlag,
span: Span,
name_search_type: NameSearchType)
-> ResolveResult<(Module<'a>, LastPrivate)> {
let module_path_len = module_path.len();
assert!(module_path_len > 0);
debug!("(resolving module path for import) processing `{}` rooted at `{}`",
names_to_string(module_path),
module_to_string(&*module_));
// Resolve the module prefix, if any.
let module_prefix_result = self.resolve_module_prefix(module_, module_path);
let search_module;
let start_index;
let last_private;
match module_prefix_result {
Failed(None) => {
let mpath = names_to_string(module_path);
let mpath = &mpath[..];
match mpath.rfind(':') {
Some(idx) => {
let msg = format!("Could not find `{}` in `{}`",
// idx +- 1 to account for the
// colons on either side
&mpath[idx + 1..],
&mpath[..idx - 1]);
return Failed(Some((span, msg)));
}
None => {
return Failed(None);
}
}
}
Failed(err) => return Failed(err),
Indeterminate => {
debug!("(resolving module path for import) indeterminate; bailing");
return Indeterminate;
}
Success(NoPrefixFound) => {
// There was no prefix, so we're considering the first element
// of the path. How we handle this depends on whether we were
// instructed to use lexical scope or not.
match use_lexical_scope {
DontUseLexicalScope => {
// This is a crate-relative path. We will start the
// resolution process at index zero.
search_module = self.graph_root;
start_index = 0;
last_private = LastMod(AllPublic);
}
UseLexicalScope => {
// This is not a crate-relative path. We resolve the
// first component of the path in the current lexical
// scope and then proceed to resolve below that.
match self.resolve_module_in_lexical_scope(module_, module_path[0]) {
Failed(err) => return Failed(err),
Indeterminate => {
debug!("(resolving module path for import) indeterminate; bailing");
return Indeterminate;
}
Success(containing_module) => {
search_module = containing_module;
start_index = 1;
last_private = LastMod(AllPublic);
}
}
}
}
}
Success(PrefixFound(ref containing_module, index)) => {
search_module = containing_module;
start_index = index;
last_private = LastMod(DependsOn(containing_module.def_id()
.unwrap()));
}
}
self.resolve_module_path_from_root(search_module,
module_path,
start_index,
span,
name_search_type,
last_private)
}
/// Invariant: This must only be called during main resolution, not during
/// import resolution.
fn resolve_item_in_lexical_scope(&mut self,
module_: Module<'a>,
name: Name,
namespace: Namespace,
record_used: bool)
-> ResolveResult<(Target<'a>, bool)> {
debug!("(resolving item in lexical scope) resolving `{}` in namespace {:?} in `{}`",
name,
namespace,
module_to_string(&*module_));
// The current module node is handled specially. First, check for
// its immediate children.
build_reduced_graph::populate_module_if_necessary(self, &module_);
match module_.children.borrow().get(&name) {
Some(name_bindings) if name_bindings[namespace].defined() => {
debug!("top name bindings succeeded");
return Success((Target::new(module_,
name_bindings[namespace].clone(),
Shadowable::Never),
false));
}
Some(_) | None => {
// Not found; continue.
}
}
// Now check for its import directives. We don't have to have resolved
// all its imports in the usual way; this is because chains of
// adjacent import statements are processed as though they mutated the
// current scope.
if let Some(import_resolution) = module_.import_resolutions.borrow().get(&name) {
match import_resolution[namespace].target.clone() {
None => {
// Not found; continue.
debug!("(resolving item in lexical scope) found import resolution, but not \
in namespace {:?}",
namespace);
}
Some(target) => {
debug!("(resolving item in lexical scope) using import resolution");
// track used imports and extern crates as well
let id = import_resolution[namespace].id;
if record_used {
self.used_imports.insert((id, namespace));
self.record_import_use(id, name);
if let Some(DefId{krate: kid, ..}) = target.target_module.def_id() {
self.used_crates.insert(kid);
}
}
return Success((target, false));
}
}
}
// Search for external modules.
if namespace == TypeNS {
let children = module_.external_module_children.borrow();
if let Some(module) = children.get(&name) {
let name_binding = NameBinding::create_from_module(module);
debug!("lower name bindings succeeded");
return Success((Target::new(module_, name_binding, Shadowable::Never),
false));
}
}
// Finally, proceed up the scope chain looking for parent modules.
let mut search_module = module_;
loop {
// Go to the next parent.
match search_module.parent_link {
NoParentLink => {
// No more parents. This module was unresolved.
debug!("(resolving item in lexical scope) unresolved module");
return Failed(None);
}
ModuleParentLink(parent_module_node, _) => {
if search_module.is_normal() {
// We stop the search here.
debug!("(resolving item in lexical scope) unresolved module: not \
searching through module parents");
return Failed(None);
} else {
search_module = parent_module_node;
}
}
BlockParentLink(parent_module_node, _) => {
search_module = parent_module_node;
}
}
// Resolve the name in the parent module.
match self.resolve_name_in_module(search_module,
name,
namespace,
PathSearch,
true) {
Failed(Some((span, msg))) => {
resolve_error(self, span, ResolutionError::FailedToResolve(&*msg));
}
Failed(None) => (), // Continue up the search chain.
Indeterminate => {
// We couldn't see through the higher scope because of an
// unresolved import higher up. Bail.
debug!("(resolving item in lexical scope) indeterminate higher scope; bailing");
return Indeterminate;
}
Success((target, used_reexport)) => {
// We found the module.
debug!("(resolving item in lexical scope) found name in module, done");
return Success((target, used_reexport));
}
}
}
}
/// Resolves a module name in the current lexical scope.
fn resolve_module_in_lexical_scope(&mut self,
module_: Module<'a>,
name: Name)
-> ResolveResult<Module<'a>> {
// If this module is an anonymous module, resolve the item in the
// lexical scope. Otherwise, resolve the item from the crate root.
let resolve_result = self.resolve_item_in_lexical_scope(module_, name, TypeNS, true);
match resolve_result {
Success((target, _)) => {
if let Some(module_def) = target.binding.module() {
return Success(module_def)
} else {
debug!("!!! (resolving module in lexical scope) module \
wasn't actually a module!");
return Failed(None);
}
}
Indeterminate => {
debug!("(resolving module in lexical scope) indeterminate; bailing");
return Indeterminate;
}
Failed(err) => {
debug!("(resolving module in lexical scope) failed to resolve");
return Failed(err);
}
}
}
/// Returns the nearest normal module parent of the given module.
fn get_nearest_normal_module_parent(&mut self, module_: Module<'a>) -> Option<Module<'a>> {
let mut module_ = module_;
loop {
match module_.parent_link {
NoParentLink => return None,
ModuleParentLink(new_module, _) |
BlockParentLink(new_module, _) => {
let new_module = new_module;
if new_module.is_normal() {
return Some(new_module);
}
module_ = new_module;
}
}
}
}
/// Returns the nearest normal module parent of the given module, or the
/// module itself if it is a normal module.
fn get_nearest_normal_module_parent_or_self(&mut self, module_: Module<'a>) -> Module<'a> {
if module_.is_normal() {
return module_;
}
match self.get_nearest_normal_module_parent(module_) {
None => module_,
Some(new_module) => new_module,
}
}
/// Resolves a "module prefix". A module prefix is one or both of (a) `self::`;
/// (b) some chain of `super::`.
/// grammar: (SELF MOD_SEP ) ? (SUPER MOD_SEP) *
fn resolve_module_prefix(&mut self,
module_: Module<'a>,
module_path: &[Name])
-> ResolveResult<ModulePrefixResult<'a>> {
// Start at the current module if we see `self` or `super`, or at the
// top of the crate otherwise.
let mut i = match &*module_path[0].as_str() {
"self" => 1,
"super" => 0,
_ => return Success(NoPrefixFound),
};
let mut containing_module = self.get_nearest_normal_module_parent_or_self(module_);
// Now loop through all the `super`s we find.
while i < module_path.len() && "super" == module_path[i].as_str() {
debug!("(resolving module prefix) resolving `super` at {}",
module_to_string(&*containing_module));
match self.get_nearest_normal_module_parent(containing_module) {
None => return Failed(None),
Some(new_module) => {
containing_module = new_module;
i += 1;
}
}
}
debug!("(resolving module prefix) finished resolving prefix at {}",
module_to_string(&*containing_module));
return Success(PrefixFound(containing_module, i));
}
/// Attempts to resolve the supplied name in the given module for the
/// given namespace. If successful, returns the target corresponding to
/// the name.
///
/// The boolean returned on success is an indicator of whether this lookup
/// passed through a public re-export proxy.
fn resolve_name_in_module(&mut self,
module_: Module<'a>,
name: Name,
namespace: Namespace,
name_search_type: NameSearchType,
allow_private_imports: bool)
-> ResolveResult<(Target<'a>, bool)> {
debug!("(resolving name in module) resolving `{}` in `{}`",
name,
module_to_string(&*module_));
// First, check the direct children of the module.
build_reduced_graph::populate_module_if_necessary(self, &module_);
let children = module_.children.borrow();
match children.get(&name) {
Some(name_bindings) if name_bindings[namespace].defined() => {
debug!("(resolving name in module) found node as child");
return Success((Target::new(module_,
name_bindings[namespace].clone(),
Shadowable::Never),
false));
}
Some(_) | None => {
// Continue.
}
}
// Next, check the module's imports if necessary.
// If this is a search of all imports, we should be done with glob
// resolution at this point.
if name_search_type == PathSearch {
assert_eq!(module_.glob_count.get(), 0);
}
// Check the list of resolved imports.
let children = module_.import_resolutions.borrow();
match children.get(&name) {
Some(import_resolution) if allow_private_imports ||
import_resolution[namespace].is_public => {
if import_resolution[namespace].is_public &&
import_resolution.outstanding_references != 0 {
debug!("(resolving name in module) import unresolved; bailing out");
return Indeterminate;
}
match import_resolution[namespace].target.clone() {
None => {
debug!("(resolving name in module) name found, but not in namespace {:?}",
namespace);
}
Some(target) => {
debug!("(resolving name in module) resolved to import");
// track used imports and extern crates as well
let id = import_resolution[namespace].id;
self.used_imports.insert((id, namespace));
self.record_import_use(id, name);
if let Some(DefId{krate: kid, ..}) = target.target_module.def_id() {
self.used_crates.insert(kid);
}
return Success((target, true));
}
}
}
Some(..) | None => {} // Continue.
}
// Finally, search through external children.
if namespace == TypeNS {
let children = module_.external_module_children.borrow();
if let Some(module) = children.get(&name) {
let name_binding = NameBinding::create_from_module(module);
return Success((Target::new(module_, name_binding, Shadowable::Never),
false));
}
}
// We're out of luck.
debug!("(resolving name in module) failed to resolve `{}`", name);
return Failed(None);
}
fn report_unresolved_imports(&mut self, module_: Module<'a>) {
let index = module_.resolved_import_count.get();
let imports = module_.imports.borrow();
let import_count = imports.len();
if index != import_count {
resolve_error(self,
(*imports)[index].span,
ResolutionError::UnresolvedImport(None));
}
// Descend into children and anonymous children.
build_reduced_graph::populate_module_if_necessary(self, &module_);
for (_, child_node) in module_.children.borrow().iter() {
match child_node.type_ns.module() {
None => {
// Continue.
}
Some(child_module) => {
self.report_unresolved_imports(child_module);
}
}
}
for (_, module_) in module_.anonymous_children.borrow().iter() {
self.report_unresolved_imports(module_);
}
}
// AST resolution
//
// We maintain a list of value ribs and type ribs.
//
// Simultaneously, we keep track of the current position in the module
// graph in the `current_module` pointer. When we go to resolve a name in
// the value or type namespaces, we first look through all the ribs and
// then query the module graph. When we resolve a name in the module
// namespace, we can skip all the ribs (since nested modules are not
// allowed within blocks in Rust) and jump straight to the current module
// graph node.
//
// Named implementations are handled separately. When we find a method
// call, we consult the module node to find all of the implementations in
// scope. This information is lazily cached in the module node. We then
// generate a fake "implementation scope" containing all the
// implementations thus found, for compatibility with old resolve pass.
fn with_scope<F>(&mut self, name: Option<Name>, f: F)
where F: FnOnce(&mut Resolver)
{
let orig_module = self.current_module;
// Move down in the graph.
match name {
None => {
// Nothing to do.
}
Some(name) => {
build_reduced_graph::populate_module_if_necessary(self, &orig_module);
match orig_module.children.borrow().get(&name) {
None => {
debug!("!!! (with scope) didn't find `{}` in `{}`",
name,
module_to_string(&*orig_module));
}
Some(name_bindings) => {
match name_bindings.type_ns.module() {
None => {
debug!("!!! (with scope) didn't find module for `{}` in `{}`",
name,
module_to_string(&*orig_module));
}
Some(module_) => {
self.current_module = module_;
}
}
}
}
}
}
f(self);
self.current_module = orig_module;
}
/// Searches the current set of local scopes for labels.
/// Stops after meeting a closure.
fn search_label(&self, name: Name) -> Option<DefLike> {
for rib in self.label_ribs.iter().rev() {
match rib.kind {
NormalRibKind => {
// Continue
}
_ => {
// Do not resolve labels across function boundary
return None;
}
}
let result = rib.bindings.get(&name).cloned();
if result.is_some() {
return result;
}
}
None
}
fn resolve_crate(&mut self, krate: &hir::Crate) {
debug!("(resolving crate) starting");
intravisit::walk_crate(self, krate);
}
fn check_if_primitive_type_name(&self, name: Name, span: Span) {
if let Some(_) = self.primitive_type_table.primitive_types.get(&name) {
span_err!(self.session,
span,
E0317,
"user-defined types or type parameters cannot shadow the primitive types");
}
}
fn resolve_item(&mut self, item: &Item) {
let name = item.name;
debug!("(resolving item) resolving {}", name);
match item.node {
ItemEnum(_, ref generics) |
ItemTy(_, ref generics) |
ItemStruct(_, ref generics) => {
self.check_if_primitive_type_name(name, item.span);
self.with_type_parameter_rib(HasTypeParameters(generics, TypeSpace, ItemRibKind),
|this| intravisit::walk_item(this, item));
}
ItemFn(_, _, _, _, ref generics, _) => {
self.with_type_parameter_rib(HasTypeParameters(generics, FnSpace, ItemRibKind),
|this| intravisit::walk_item(this, item));
}
ItemDefaultImpl(_, ref trait_ref) => {
self.with_optional_trait_ref(Some(trait_ref), |_, _| {});
}
ItemImpl(_, _, ref generics, ref opt_trait_ref, ref self_type, ref impl_items) => {
self.resolve_implementation(generics,
opt_trait_ref,
&**self_type,
item.id,
impl_items);
}
ItemTrait(_, ref generics, ref bounds, ref trait_items) => {
self.check_if_primitive_type_name(name, item.span);
// Create a new rib for the trait-wide type parameters.
self.with_type_parameter_rib(HasTypeParameters(generics,
TypeSpace,
ItemRibKind),
|this| {
let local_def_id = this.ast_map.local_def_id(item.id);
this.with_self_rib(DefSelfTy(Some(local_def_id), None), |this| {
this.visit_generics(generics);
walk_list!(this, visit_ty_param_bound, bounds);
for trait_item in trait_items {
match trait_item.node {
hir::ConstTraitItem(_, ref default) => {
// Only impose the restrictions of
// ConstRibKind if there's an actual constant
// expression in a provided default.
if default.is_some() {
this.with_constant_rib(|this| {
intravisit::walk_trait_item(this, trait_item)
});
} else {
intravisit::walk_trait_item(this, trait_item)
}
}
hir::MethodTraitItem(ref sig, _) => {
let type_parameters =
HasTypeParameters(&sig.generics,
FnSpace,
MethodRibKind);
this.with_type_parameter_rib(type_parameters, |this| {
intravisit::walk_trait_item(this, trait_item)
});
}
hir::TypeTraitItem(..) => {
this.check_if_primitive_type_name(trait_item.name,
trait_item.span);
this.with_type_parameter_rib(NoTypeParameters, |this| {
intravisit::walk_trait_item(this, trait_item)
});
}
};
}
});
});
}
ItemMod(_) | ItemForeignMod(_) => {
self.with_scope(Some(name), |this| {
intravisit::walk_item(this, item);
});
}
ItemConst(..) | ItemStatic(..) => {
self.with_constant_rib(|this| {
intravisit::walk_item(this, item);
});
}
ItemUse(ref view_path) => {
// check for imports shadowing primitive types
let check_rename = |this: &Self, id, name| {
match this.def_map.borrow().get(&id).map(|d| d.full_def()) {
Some(DefTy(..)) | Some(DefStruct(..)) | Some(DefTrait(..)) | None => {
this.check_if_primitive_type_name(name, item.span);
}
_ => {}
}
};
match view_path.node {
hir::ViewPathSimple(name, _) => {
check_rename(self, item.id, name);
}
hir::ViewPathList(ref prefix, ref items) => {
for item in items {
if let Some(name) = item.node.rename() {
check_rename(self, item.node.id(), name);
}
}
// Resolve prefix of an import with empty braces (issue #28388)
if items.is_empty() && !prefix.segments.is_empty() {
match self.resolve_crate_relative_path(prefix.span,
&prefix.segments,
TypeNS) {
Some((def, lp)) =>
self.record_def(item.id, PathResolution::new(def, lp, 0)),
None => {
resolve_error(self,
prefix.span,
ResolutionError::FailedToResolve(
&path_names_to_string(prefix, 0)));
self.record_def(item.id, err_path_resolution());
}
}
}
}
_ => {}
}
}
ItemExternCrate(_) => {
// do nothing, these are just around to be encoded
}
}
}
fn with_type_parameter_rib<F>(&mut self, type_parameters: TypeParameters, f: F)
where F: FnOnce(&mut Resolver)
{
match type_parameters {
HasTypeParameters(generics, space, rib_kind) => {
let mut function_type_rib = Rib::new(rib_kind);
let mut seen_bindings = HashSet::new();
for (index, type_parameter) in generics.ty_params.iter().enumerate() {
let name = type_parameter.name;
debug!("with_type_parameter_rib: {}", type_parameter.id);
if seen_bindings.contains(&name) {
resolve_error(self,
type_parameter.span,
ResolutionError::NameAlreadyUsedInTypeParameterList(name));
}
seen_bindings.insert(name);
// plain insert (no renaming)
function_type_rib.bindings
.insert(name,
DlDef(DefTyParam(space,
index as u32,
self.ast_map
.local_def_id(type_parameter.id),
name)));
}
self.type_ribs.push(function_type_rib);
}
NoTypeParameters => {
// Nothing to do.
}
}
f(self);
match type_parameters {
HasTypeParameters(..) => {
if !self.resolved {
self.type_ribs.pop();
}
}
NoTypeParameters => {}
}
}
fn with_label_rib<F>(&mut self, f: F)
where F: FnOnce(&mut Resolver)
{
self.label_ribs.push(Rib::new(NormalRibKind));
f(self);
if !self.resolved {
self.label_ribs.pop();
}
}
fn with_constant_rib<F>(&mut self, f: F)
where F: FnOnce(&mut Resolver)
{
self.value_ribs.push(Rib::new(ConstantItemRibKind));
self.type_ribs.push(Rib::new(ConstantItemRibKind));
f(self);
if !self.resolved {
self.type_ribs.pop();
self.value_ribs.pop();
}
}
fn resolve_function(&mut self, rib_kind: RibKind, declaration: &FnDecl, block: &Block) {
// Create a value rib for the function.
self.value_ribs.push(Rib::new(rib_kind));
// Create a label rib for the function.
self.label_ribs.push(Rib::new(rib_kind));
// Add each argument to the rib.
let mut bindings_list = HashMap::new();
for argument in &declaration.inputs {
self.resolve_pattern(&*argument.pat, ArgumentIrrefutableMode, &mut bindings_list);
self.visit_ty(&*argument.ty);
debug!("(resolving function) recorded argument");
}
intravisit::walk_fn_ret_ty(self, &declaration.output);
// Resolve the function body.
self.visit_block(block);
debug!("(resolving function) leaving function");
if !self.resolved {
self.label_ribs.pop();
self.value_ribs.pop();
}
}
fn resolve_trait_reference(&mut self,
id: NodeId,
trait_path: &Path,
path_depth: usize)
-> Result<PathResolution, ()> {
if let Some(path_res) = self.resolve_path(id, trait_path, path_depth, TypeNS, true) {
if let DefTrait(_) = path_res.base_def {
debug!("(resolving trait) found trait def: {:?}", path_res);
Ok(path_res)
} else {
let mut err =
resolve_struct_error(self,
trait_path.span,
ResolutionError::IsNotATrait(&*path_names_to_string(trait_path,
path_depth)));
// If it's a typedef, give a note
if let DefTy(..) = path_res.base_def {
err.span_note(trait_path.span,
"`type` aliases cannot be used for traits");
}
err.emit();
Err(())
}
} else {
resolve_error(self,
trait_path.span,
ResolutionError::UndeclaredTraitName(&*path_names_to_string(trait_path,
path_depth)));
Err(())
}
}
fn resolve_generics(&mut self, generics: &Generics) {
for type_parameter in generics.ty_params.iter() {
self.check_if_primitive_type_name(type_parameter.name, type_parameter.span);
}
for predicate in &generics.where_clause.predicates {
match predicate {
&hir::WherePredicate::BoundPredicate(_) |
&hir::WherePredicate::RegionPredicate(_) => {}
&hir::WherePredicate::EqPredicate(ref eq_pred) => {
let path_res = self.resolve_path(eq_pred.id, &eq_pred.path, 0, TypeNS, true);
if let Some(PathResolution { base_def: DefTyParam(..), .. }) = path_res {
self.record_def(eq_pred.id, path_res.unwrap());
} else {
resolve_error(self,
eq_pred.span,
ResolutionError::UndeclaredAssociatedType);
self.record_def(eq_pred.id, err_path_resolution());
}
}
}
}
intravisit::walk_generics(self, generics);
}
fn with_current_self_type<T, F>(&mut self, self_type: &Ty, f: F) -> T
where F: FnOnce(&mut Resolver) -> T
{
// Handle nested impls (inside fn bodies)
let previous_value = replace(&mut self.current_self_type, Some(self_type.clone()));
let result = f(self);
self.current_self_type = previous_value;
result
}
fn with_optional_trait_ref<T, F>(&mut self, opt_trait_ref: Option<&TraitRef>, f: F) -> T
where F: FnOnce(&mut Resolver, Option<DefId>) -> T
{
let mut new_val = None;
let mut new_id = None;
if let Some(trait_ref) = opt_trait_ref {
if let Ok(path_res) = self.resolve_trait_reference(trait_ref.ref_id,
&trait_ref.path,
0) {
assert!(path_res.depth == 0);
self.record_def(trait_ref.ref_id, path_res);
new_val = Some((path_res.base_def.def_id(), trait_ref.clone()));
new_id = Some(path_res.base_def.def_id());
} else {
self.record_def(trait_ref.ref_id, err_path_resolution());
}
intravisit::walk_trait_ref(self, trait_ref);
}
let original_trait_ref = replace(&mut self.current_trait_ref, new_val);
let result = f(self, new_id);
self.current_trait_ref = original_trait_ref;
result
}
fn with_self_rib<F>(&mut self, self_def: Def, f: F)
where F: FnOnce(&mut Resolver)
{
let mut self_type_rib = Rib::new(NormalRibKind);
// plain insert (no renaming, types are not currently hygienic....)
let name = special_names::type_self;
self_type_rib.bindings.insert(name, DlDef(self_def));
self.type_ribs.push(self_type_rib);
f(self);
if !self.resolved {
self.type_ribs.pop();
}
}
fn resolve_implementation(&mut self,
generics: &Generics,
opt_trait_reference: &Option<TraitRef>,
self_type: &Ty,
item_id: NodeId,
impl_items: &[ImplItem]) {
// If applicable, create a rib for the type parameters.
self.with_type_parameter_rib(HasTypeParameters(generics,
TypeSpace,
ItemRibKind),
|this| {
// Resolve the type parameters.
this.visit_generics(generics);
// Resolve the trait reference, if necessary.
this.with_optional_trait_ref(opt_trait_reference.as_ref(), |this, trait_id| {
// Resolve the self type.
this.visit_ty(self_type);
this.with_self_rib(DefSelfTy(trait_id, Some((item_id, self_type.id))), |this| {
this.with_current_self_type(self_type, |this| {
for impl_item in impl_items {
match impl_item.node {
hir::ImplItemKind::Const(..) => {
// If this is a trait impl, ensure the const
// exists in trait
this.check_trait_item(impl_item.name,
impl_item.span,
|n, s| ResolutionError::ConstNotMemberOfTrait(n, s));
this.with_constant_rib(|this| {
intravisit::walk_impl_item(this, impl_item);
});
}
hir::ImplItemKind::Method(ref sig, _) => {
// If this is a trait impl, ensure the method
// exists in trait
this.check_trait_item(impl_item.name,
impl_item.span,
|n, s| ResolutionError::MethodNotMemberOfTrait(n, s));
// We also need a new scope for the method-
// specific type parameters.
let type_parameters =
HasTypeParameters(&sig.generics,
FnSpace,
MethodRibKind);
this.with_type_parameter_rib(type_parameters, |this| {
intravisit::walk_impl_item(this, impl_item);
});
}
hir::ImplItemKind::Type(ref ty) => {
// If this is a trait impl, ensure the type
// exists in trait
this.check_trait_item(impl_item.name,
impl_item.span,
|n, s| ResolutionError::TypeNotMemberOfTrait(n, s));
this.visit_ty(ty);
}
}
}
});
});
});
});
}
fn check_trait_item<F>(&self, name: Name, span: Span, err: F)
where F: FnOnce(Name, &str) -> ResolutionError
{
// If there is a TraitRef in scope for an impl, then the method must be in the
// trait.
if let Some((did, ref trait_ref)) = self.current_trait_ref {
if !self.trait_item_map.contains_key(&(name, did)) {
let path_str = path_names_to_string(&trait_ref.path, 0);
resolve_error(self, span, err(name, &*path_str));
}
}
}
fn resolve_local(&mut self, local: &Local) {
// Resolve the type.
walk_list!(self, visit_ty, &local.ty);
// Resolve the initializer.
walk_list!(self, visit_expr, &local.init);
// Resolve the pattern.
self.resolve_pattern(&*local.pat, LocalIrrefutableMode, &mut HashMap::new());
}
// build a map from pattern identifiers to binding-info's.
// this is done hygienically. This could arise for a macro
// that expands into an or-pattern where one 'x' was from the
// user and one 'x' came from the macro.
fn binding_mode_map(&mut self, pat: &Pat) -> BindingMap {
let mut result = HashMap::new();
pat_bindings(&self.def_map, pat, |binding_mode, _id, sp, path1| {
let name = path1.node;
result.insert(name,
BindingInfo {
span: sp,
binding_mode: binding_mode,
});
});
return result;
}
// check that all of the arms in an or-pattern have exactly the
// same set of bindings, with the same binding modes for each.
fn check_consistent_bindings(&mut self, arm: &Arm) {
if arm.pats.is_empty() {
return;
}
let map_0 = self.binding_mode_map(&*arm.pats[0]);
for (i, p) in arm.pats.iter().enumerate() {
let map_i = self.binding_mode_map(&**p);
for (&key, &binding_0) in &map_0 {
match map_i.get(&key) {
None => {
resolve_error(self,
p.span,
ResolutionError::VariableNotBoundInPattern(key, i + 1));
}
Some(binding_i) => {
if binding_0.binding_mode != binding_i.binding_mode {
resolve_error(self,
binding_i.span,
ResolutionError::VariableBoundWithDifferentMode(key,
i + 1));
}
}
}
}
for (&key, &binding) in &map_i {
if !map_0.contains_key(&key) {
resolve_error(self,
binding.span,
ResolutionError::VariableNotBoundInParentPattern(key, i + 1));
}
}
}
}
fn resolve_arm(&mut self, arm: &Arm) {
self.value_ribs.push(Rib::new(NormalRibKind));
let mut bindings_list = HashMap::new();
for pattern in &arm.pats {
self.resolve_pattern(&**pattern, RefutableMode, &mut bindings_list);
}
// This has to happen *after* we determine which
// pat_idents are variants
self.check_consistent_bindings(arm);
walk_list!(self, visit_expr, &arm.guard);
self.visit_expr(&*arm.body);
if !self.resolved {
self.value_ribs.pop();
}
}
fn resolve_block(&mut self, block: &Block) {
debug!("(resolving block) entering block");
self.value_ribs.push(Rib::new(NormalRibKind));
// Move down in the graph, if there's an anonymous module rooted here.
let orig_module = self.current_module;
match orig_module.anonymous_children.borrow().get(&block.id) {
None => {
// Nothing to do.
}
Some(anonymous_module) => {
debug!("(resolving block) found anonymous module, moving down");
self.current_module = anonymous_module;
}
}
// Check for imports appearing after non-item statements.
let mut found_non_item = false;
for statement in &block.stmts {
if let hir::StmtDecl(ref declaration, _) = statement.node {
if let hir::DeclItem(i) = declaration.node {
let i = self.ast_map.expect_item(i.id);
match i.node {
ItemExternCrate(_) | ItemUse(_) if found_non_item => {
span_err!(self.session,
i.span,
E0154,
"imports are not allowed after non-item statements");
}
_ => {}
}
} else {
found_non_item = true
}
} else {
found_non_item = true;
}
}
// Descend into the block.
intravisit::walk_block(self, block);
// Move back up.
if !self.resolved {
self.current_module = orig_module;
self.value_ribs.pop();
}
debug!("(resolving block) leaving block");
}
fn resolve_type(&mut self, ty: &Ty) {
match ty.node {
TyPath(ref maybe_qself, ref path) => {
let resolution = match self.resolve_possibly_assoc_item(ty.id,
maybe_qself.as_ref(),
path,
TypeNS,
true) {
// `<T>::a::b::c` is resolved by typeck alone.
TypecheckRequired => {
// Resolve embedded types.
intravisit::walk_ty(self, ty);
return;
}
ResolveAttempt(resolution) => resolution,
};
// This is a path in the type namespace. Walk through scopes
// looking for it.
match resolution {
Some(def) => {
// Write the result into the def map.
debug!("(resolving type) writing resolution for `{}` (id {}) = {:?}",
path_names_to_string(path, 0),
ty.id,
def);
self.record_def(ty.id, def);
}
None => {
self.record_def(ty.id, err_path_resolution());
// Keep reporting some errors even if they're ignored above.
self.resolve_path(ty.id, path, 0, TypeNS, true);
let kind = if maybe_qself.is_some() {
"associated type"
} else {
"type name"
};
let self_type_name = special_idents::type_self.name;
let is_invalid_self_type_name = path.segments.len() > 0 &&
maybe_qself.is_none() &&
path.segments[0].identifier.name ==
self_type_name;
if is_invalid_self_type_name {
resolve_error(self,
ty.span,
ResolutionError::SelfUsedOutsideImplOrTrait);
} else {
resolve_error(self,
ty.span,
ResolutionError::UseOfUndeclared(
kind,
&*path_names_to_string(path,
0))
);
}
}
}
}
_ => {}
}
// Resolve embedded types.
intravisit::walk_ty(self, ty);
}
fn resolve_pattern(&mut self,
pattern: &Pat,
mode: PatternBindingMode,
// Maps idents to the node ID for the (outermost)
// pattern that binds them
bindings_list: &mut HashMap<Name, NodeId>) {
let pat_id = pattern.id;
walk_pat(pattern, |pattern| {
match pattern.node {
PatIdent(binding_mode, ref path1, ref at_rhs) => {
// The meaning of PatIdent with no type parameters
// depends on whether an enum variant or unit-like struct
// with that name is in scope. The probing lookup has to
// be careful not to emit spurious errors. Only matching
// patterns (match) can match nullary variants or
// unit-like structs. For binding patterns (let
// and the LHS of @-patterns), matching such a value is
// simply disallowed (since it's rarely what you want).
let const_ok = mode == RefutableMode && at_rhs.is_none();
let ident = path1.node;
let renamed = ident.name;
match self.resolve_bare_identifier_pattern(ident.unhygienic_name,
pattern.span) {
FoundStructOrEnumVariant(def, lp) if const_ok => {
debug!("(resolving pattern) resolving `{}` to struct or enum variant",
renamed);
self.enforce_default_binding_mode(pattern,
binding_mode,
"an enum variant");
self.record_def(pattern.id,
PathResolution {
base_def: def,
last_private: lp,
depth: 0,
});
}
FoundStructOrEnumVariant(..) => {
resolve_error(
self,
pattern.span,
ResolutionError::DeclarationShadowsEnumVariantOrUnitLikeStruct(
renamed)
);
self.record_def(pattern.id, err_path_resolution());
}
FoundConst(def, lp, _) if const_ok => {
debug!("(resolving pattern) resolving `{}` to constant", renamed);
self.enforce_default_binding_mode(pattern, binding_mode, "a constant");
self.record_def(pattern.id,
PathResolution {
base_def: def,
last_private: lp,
depth: 0,
});
}
FoundConst(def, _, name) => {
resolve_error(
self,
pattern.span,
ResolutionError::OnlyIrrefutablePatternsAllowedHere(def.def_id(),
name)
);
self.record_def(pattern.id, err_path_resolution());
}
BareIdentifierPatternUnresolved => {
debug!("(resolving pattern) binding `{}`", renamed);
let def_id = self.ast_map.local_def_id(pattern.id);
let def = DefLocal(def_id, pattern.id);
// Record the definition so that later passes
// will be able to distinguish variants from
// locals in patterns.
self.record_def(pattern.id,
PathResolution {
base_def: def,
last_private: LastMod(AllPublic),
depth: 0,
});
// Add the binding to the local ribs, if it
// doesn't already exist in the bindings list. (We
// must not add it if it's in the bindings list
// because that breaks the assumptions later
// passes make about or-patterns.)
if !bindings_list.contains_key(&renamed) {
let this = &mut *self;
let last_rib = this.value_ribs.last_mut().unwrap();
last_rib.bindings.insert(renamed, DlDef(def));
bindings_list.insert(renamed, pat_id);
} else if mode == ArgumentIrrefutableMode &&
bindings_list.contains_key(&renamed) {
// Forbid duplicate bindings in the same
// parameter list.
resolve_error(
self,
pattern.span,
ResolutionError::IdentifierBoundMoreThanOnceInParameterList(
&ident.name.as_str())
);
} else if bindings_list.get(&renamed) == Some(&pat_id) {
// Then this is a duplicate variable in the
// same disjunction, which is an error.
resolve_error(
self,
pattern.span,
ResolutionError::IdentifierBoundMoreThanOnceInSamePattern(
&ident.name.as_str())
);
}
// Else, not bound in the same pattern: do
// nothing.
}
}
}
PatEnum(ref path, _) => {
// This must be an enum variant, struct or const.
let resolution = match self.resolve_possibly_assoc_item(pat_id,
None,
path,
ValueNS,
false) {
// The below shouldn't happen because all
// qualified paths should be in PatQPath.
TypecheckRequired =>
self.session.span_bug(path.span,
"resolve_possibly_assoc_item claimed
\
that a path in PatEnum requires typecheck
\
to resolve, but qualified paths should be
\
PatQPath"),
ResolveAttempt(resolution) => resolution,
};
if let Some(path_res) = resolution {
match path_res.base_def {
DefVariant(..) | DefStruct(..) | DefConst(..) => {
self.record_def(pattern.id, path_res);
}
DefStatic(..) => {
resolve_error(&self,
path.span,
ResolutionError::StaticVariableReference);
self.record_def(pattern.id, err_path_resolution());
}
_ => {
// If anything ends up here entirely resolved,
// it's an error. If anything ends up here
// partially resolved, that's OK, because it may
// be a `T::CONST` that typeck will resolve.
if path_res.depth == 0 {
resolve_error(
self,
path.span,
ResolutionError::NotAnEnumVariantStructOrConst(
&path.segments
.last()
.unwrap()
.identifier
.name
.as_str())
);
self.record_def(pattern.id, err_path_resolution());
} else {
let const_name = path.segments
.last()
.unwrap()
.identifier
.name;
let traits = self.get_traits_containing_item(const_name);
self.trait_map.insert(pattern.id, traits);
self.record_def(pattern.id, path_res);
}
}
}
} else {
resolve_error(
self,
path.span,
ResolutionError::UnresolvedEnumVariantStructOrConst(
&path.segments.last().unwrap().identifier.name.as_str())
);
self.record_def(pattern.id, err_path_resolution());
}
intravisit::walk_path(self, path);
}
PatQPath(ref qself, ref path) => {
// Associated constants only.
let resolution = match self.resolve_possibly_assoc_item(pat_id,
Some(qself),
path,
ValueNS,
false) {
TypecheckRequired => {
// All `<T>::CONST` should end up here, and will
// require use of the trait map to resolve
// during typechecking.
let const_name = path.segments
.last()
.unwrap()
.identifier
.name;
let traits = self.get_traits_containing_item(const_name);
self.trait_map.insert(pattern.id, traits);
intravisit::walk_pat(self, pattern);
return true;
}
ResolveAttempt(resolution) => resolution,
};
if let Some(path_res) = resolution {
match path_res.base_def {
// All `<T as Trait>::CONST` should end up here, and
// have the trait already selected.
DefAssociatedConst(..) => {
self.record_def(pattern.id, path_res);
}
_ => {
resolve_error(
self,
path.span,
ResolutionError::NotAnAssociatedConst(
&path.segments.last().unwrap().identifier.name.as_str()
)
);
self.record_def(pattern.id, err_path_resolution());
}
}
} else {
resolve_error(self,
path.span,
ResolutionError::UnresolvedAssociatedConst(&path.segments
.last()
.unwrap()
.identifier
.name
.as_str()));
self.record_def(pattern.id, err_path_resolution());
}
intravisit::walk_pat(self, pattern);
}
PatStruct(ref path, _, _) => {
match self.resolve_path(pat_id, path, 0, TypeNS, false) {
Some(definition) => {
self.record_def(pattern.id, definition);
}
result => {
debug!("(resolving pattern) didn't find struct def: {:?}", result);
resolve_error(
self,
path.span,
ResolutionError::DoesNotNameAStruct(
&*path_names_to_string(path, 0))
);
self.record_def(pattern.id, err_path_resolution());
}
}
intravisit::walk_path(self, path);
}
PatLit(_) | PatRange(..) => {
intravisit::walk_pat(self, pattern);
}
_ => {
// Nothing to do.
}
}
true
});
}
fn resolve_bare_identifier_pattern(&mut self,
name: Name,
span: Span)
-> BareIdentifierPatternResolution {
let module = self.current_module;
match self.resolve_item_in_lexical_scope(module, name, ValueNS, true) {
Success((target, _)) => {
debug!("(resolve bare identifier pattern) succeeded in finding {} at {:?}",
name,
target.binding.borrow());
match target.binding.def() {
None => {
panic!("resolved name in the value namespace to a set of name bindings \
with no def?!");
}
// For the two success cases, this lookup can be
// considered as not having a private component because
// the lookup happened only within the current module.
Some(def @ DefVariant(..)) | Some(def @ DefStruct(..)) => {
return FoundStructOrEnumVariant(def, LastMod(AllPublic));
}
Some(def @ DefConst(..)) | Some(def @ DefAssociatedConst(..)) => {
return FoundConst(def, LastMod(AllPublic), name);
}
Some(DefStatic(..)) => {
resolve_error(self, span, ResolutionError::StaticVariableReference);
return BareIdentifierPatternUnresolved;
}
_ => return BareIdentifierPatternUnresolved
}
}
Indeterminate => {
panic!("unexpected indeterminate result");
}
Failed(err) => {
match err {
Some((span, msg)) => {
resolve_error(self, span, ResolutionError::FailedToResolve(&*msg));
}
None => (),
}
debug!("(resolve bare identifier pattern) failed to find {}", name);
return BareIdentifierPatternUnresolved;
}
}
}
/// Handles paths that may refer to associated items
fn resolve_possibly_assoc_item(&mut self,
id: NodeId,
maybe_qself: Option<&hir::QSelf>,
path: &Path,
namespace: Namespace,
check_ribs: bool)
-> AssocItemResolveResult {
let max_assoc_types;
match maybe_qself {
Some(qself) => {
if qself.position == 0 {
return TypecheckRequired;
}
max_assoc_types = path.segments.len() - qself.position;
// Make sure the trait is valid.
let _ = self.resolve_trait_reference(id, path, max_assoc_types);
}
None => {
max_assoc_types = path.segments.len();
}
}
let mut resolution = self.with_no_errors(|this| {
this.resolve_path(id, path, 0, namespace, check_ribs)
});
for depth in 1..max_assoc_types {
if resolution.is_some() {
break;
}
self.with_no_errors(|this| {
resolution = this.resolve_path(id, path, depth, TypeNS, true);
});
}
if let Some(DefMod(_)) = resolution.map(|r| r.base_def) {
// A module is not a valid type or value.
resolution = None;
}
ResolveAttempt(resolution)
}
/// If `check_ribs` is true, checks the local definitions first; i.e.
/// doesn't skip straight to the containing module.
/// Skips `path_depth` trailing segments, which is also reflected in the
/// returned value. See `middle::def::PathResolution` for more info.
pub fn resolve_path(&mut self,
id: NodeId,
path: &Path,
path_depth: usize,
namespace: Namespace,
check_ribs: bool)
-> Option<PathResolution> {
let span = path.span;
let segments = &path.segments[..path.segments.len() - path_depth];
let mk_res = |(def, lp)| PathResolution::new(def, lp, path_depth);
if path.global {
let def = self.resolve_crate_relative_path(span, segments, namespace);
return def.map(mk_res);
}
// Try to find a path to an item in a module.
let last_ident = segments.last().unwrap().identifier;
if segments.len() <= 1 {
let unqualified_def = self.resolve_identifier(last_ident, namespace, check_ribs, true);
return unqualified_def.and_then(|def| self.adjust_local_def(def, span))
.map(|def| {
PathResolution::new(def, LastMod(AllPublic), path_depth)
});
}
let unqualified_def = self.resolve_identifier(last_ident, namespace, check_ribs, false);
let def = self.resolve_module_relative_path(span, segments, namespace);
match (def, unqualified_def) {
(Some((ref d, _)), Some(ref ud)) if *d == ud.def => {
self.session
.add_lint(lint::builtin::UNUSED_QUALIFICATIONS,
id,
span,
"unnecessary qualification".to_string());
}
_ => {}
}
def.map(mk_res)
}
// Resolve a single identifier
fn resolve_identifier(&mut self,
identifier: hir::Ident,
namespace: Namespace,
check_ribs: bool,
record_used: bool)
-> Option<LocalDef> {
// First, check to see whether the name is a primitive type.
if namespace == TypeNS {
if let Some(&prim_ty) = self.primitive_type_table
.primitive_types
.get(&identifier.unhygienic_name) {
return Some(LocalDef::from_def(DefPrimTy(prim_ty)));
}
}
if check_ribs {
if let Some(def) = self.resolve_identifier_in_local_ribs(identifier, namespace) {
return Some(def);
}
}
let name = identifier.unhygienic_name;
self.resolve_item_by_name_in_lexical_scope(name, namespace, record_used)
.map(LocalDef::from_def)
}
// Resolve a local definition, potentially adjusting for closures.
fn adjust_local_def(&mut self, local_def: LocalDef, span: Span) -> Option<Def> {
let ribs = match local_def.ribs {
Some((TypeNS, i)) => &self.type_ribs[i + 1..],
Some((ValueNS, i)) => &self.value_ribs[i + 1..],
_ => &[] as &[_],
};
let mut def = local_def.def;
match def {
DefUpvar(..) => {
self.session.span_bug(span, &format!("unexpected {:?} in bindings", def))
}
DefLocal(_, node_id) => {
for rib in ribs {
match rib.kind {
NormalRibKind => {
// Nothing to do. Continue.
}
ClosureRibKind(function_id) => {
let prev_def = def;
let node_def_id = self.ast_map.local_def_id(node_id);
let seen = self.freevars_seen
.entry(function_id)
.or_insert_with(|| NodeMap());
if let Some(&index) = seen.get(&node_id) {
def = DefUpvar(node_def_id, node_id, index, function_id);
continue;
}
let vec = self.freevars
.entry(function_id)
.or_insert_with(|| vec![]);
let depth = vec.len();
vec.push(Freevar {
def: prev_def,
span: span,
});
def = DefUpvar(node_def_id, node_id, depth, function_id);
seen.insert(node_id, depth);
}
ItemRibKind | MethodRibKind => {
// This was an attempt to access an upvar inside a
// named function item. This is not allowed, so we
// report an error.
resolve_error(self,
span,
ResolutionError::CannotCaptureDynamicEnvironmentInFnItem);
return None;
}
ConstantItemRibKind => {
// Still doesn't deal with upvars
resolve_error(self,
span,
ResolutionError::AttemptToUseNonConstantValueInConstant);
return None;
}
}
}
}
DefTyParam(..) | DefSelfTy(..) => {
for rib in ribs {
match rib.kind {
NormalRibKind | MethodRibKind | ClosureRibKind(..) => {
// Nothing to do. Continue.
}
ItemRibKind => {
// This was an attempt to use a type parameter outside
// its scope.
resolve_error(self,
span,
ResolutionError::TypeParametersFromOuterFunction);
return None;
}
ConstantItemRibKind => {
// see #9186
resolve_error(self, span, ResolutionError::OuterTypeParameterContext);
return None;
}
}
}
}
_ => {}
}
return Some(def);
}
// resolve a "module-relative" path, e.g. a::b::c
fn resolve_module_relative_path(&mut self,
span: Span,
segments: &[hir::PathSegment],
namespace: Namespace)
-> Option<(Def, LastPrivate)> {
let module_path = segments.split_last()
.unwrap()
.1
.iter()
.map(|ps| ps.identifier.name)
.collect::<Vec<_>>();
let containing_module;
let last_private;
let current_module = self.current_module;
match self.resolve_module_path(current_module,
&module_path[..],
UseLexicalScope,
span,
PathSearch) {
Failed(err) => {
let (span, msg) = match err {
Some((span, msg)) => (span, msg),
None => {
let msg = format!("Use of undeclared type or module `{}`",
names_to_string(&module_path));
(span, msg)
}
};
resolve_error(self, span, ResolutionError::FailedToResolve(&*msg));
return None;
}
Indeterminate => panic!("indeterminate unexpected"),
Success((resulting_module, resulting_last_private)) => {
containing_module = resulting_module;
last_private = resulting_last_private;
}
}
let name = segments.last().unwrap().identifier.name;
let def = match self.resolve_name_in_module(containing_module,
name,
namespace,
NameSearchType::PathSearch,
false) {
Success((Target { binding, .. }, _)) => {
let (def, lp) = binding.def_and_lp();
(def, last_private.or(lp))
}
_ => return None,
};
if let Some(DefId{krate: kid, ..}) = containing_module.def_id() {
self.used_crates.insert(kid);
}
return Some(def);
}
/// Invariant: This must be called only during main resolution, not during
/// import resolution.
fn resolve_crate_relative_path(&mut self,
span: Span,
segments: &[hir::PathSegment],
namespace: Namespace)
-> Option<(Def, LastPrivate)> {
let module_path = segments.split_last()
.unwrap()
.1
.iter()
.map(|ps| ps.identifier.name)
.collect::<Vec<_>>();
let root_module = self.graph_root;
let containing_module;
let last_private;
match self.resolve_module_path_from_root(root_module,
&module_path[..],
0,
span,
PathSearch,
LastMod(AllPublic)) {
Failed(err) => {
let (span, msg) = match err {
Some((span, msg)) => (span, msg),
None => {
let msg = format!("Use of undeclared module `::{}`",
names_to_string(&module_path[..]));
(span, msg)
}
};
resolve_error(self, span, ResolutionError::FailedToResolve(&*msg));
return None;
}
Indeterminate => {
panic!("indeterminate unexpected");
}
Success((resulting_module, resulting_last_private)) => {
containing_module = resulting_module;
last_private = resulting_last_private;
}
}
let name = segments.last().unwrap().identifier.name;
match self.resolve_name_in_module(containing_module,
name,
namespace,
NameSearchType::PathSearch,
false) {
Success((Target { binding, .. }, _)) => {
let (def, lp) = binding.def_and_lp();
Some((def, last_private.or(lp)))
}
_ => None,
}
}
fn resolve_identifier_in_local_ribs(&mut self,
ident: hir::Ident,
namespace: Namespace)
-> Option<LocalDef> {
// Check the local set of ribs.
let (name, ribs) = match namespace {
ValueNS => (ident.name, &self.value_ribs),
TypeNS => (ident.unhygienic_name, &self.type_ribs),
};
for (i, rib) in ribs.iter().enumerate().rev() {
if let Some(def_like) = rib.bindings.get(&name).cloned() {
match def_like {
DlDef(def) => {
debug!("(resolving path in local ribs) resolved `{}` to {:?} at {}",
name,
def,
i);
return Some(LocalDef {
ribs: Some((namespace, i)),
def: def,
});
}
def_like => {
debug!("(resolving path in local ribs) resolved `{}` to pseudo-def {:?}",
name,
def_like);
return None;
}
}
}
}
None
}
fn resolve_item_by_name_in_lexical_scope(&mut self,
name: Name,
namespace: Namespace,
record_used: bool)
-> Option<Def> {
// Check the items.
let module = self.current_module;
match self.resolve_item_in_lexical_scope(module, name, namespace, record_used) {
Success((target, _)) => {
match target.binding.def() {
None => {
// This can happen if we were looking for a type and
// found a module instead. Modules don't have defs.
debug!("(resolving item path by identifier in lexical scope) failed to \
resolve {} after success...",
name);
None
}
Some(def) => {
debug!("(resolving item path in lexical scope) resolved `{}` to item",
name);
// This lookup is "all public" because it only searched
// for one identifier in the current module (couldn't
// have passed through reexports or anything like that.
Some(def)
}
}
}
Indeterminate => {
panic!("unexpected indeterminate result");
}
Failed(err) => {
debug!("(resolving item path by identifier in lexical scope) failed to resolve {}",
name);
if let Some((span, msg)) = err {
resolve_error(self, span, ResolutionError::FailedToResolve(&*msg))
}
None
}
}
}
fn with_no_errors<T, F>(&mut self, f: F) -> T
where F: FnOnce(&mut Resolver) -> T
{
self.emit_errors = false;
let rs = f(self);
self.emit_errors = true;
rs
}
fn find_fallback_in_self_type(&mut self, name: Name) -> FallbackSuggestion {
fn extract_path_and_node_id(t: &Ty,
allow: FallbackChecks)
-> Option<(Path, NodeId, FallbackChecks)> {
match t.node {
TyPath(None, ref path) => Some((path.clone(), t.id, allow)),
TyPtr(ref mut_ty) => extract_path_and_node_id(&*mut_ty.ty, OnlyTraitAndStatics),
TyRptr(_, ref mut_ty) => extract_path_and_node_id(&*mut_ty.ty, allow),
// This doesn't handle the remaining `Ty` variants as they are not
// that commonly the self_type, it might be interesting to provide
// support for those in future.
_ => None,
}
}
fn get_module<'a, 'tcx>(this: &mut Resolver<'a, 'tcx>,
span: Span,
name_path: &[ast::Name])
-> Option<Module<'a>> {
let root = this.current_module;
let last_name = name_path.last().unwrap();
if name_path.len() == 1 {
match this.primitive_type_table.primitive_types.get(last_name) {
Some(_) => None,
None => {
match this.current_module.children.borrow().get(last_name) {
Some(child) => child.type_ns.module(),
None => None,
}
}
}
} else {
match this.resolve_module_path(root,
&name_path[..],
UseLexicalScope,
span,
PathSearch) {
Success((module, _)) => Some(module),
_ => None,
}
}
}
fn is_static_method(this: &Resolver, did: DefId) -> bool {
if let Some(node_id) = this.ast_map.as_local_node_id(did) {
let sig = match this.ast_map.get(node_id) {
hir_map::NodeTraitItem(trait_item) => match trait_item.node {
hir::MethodTraitItem(ref sig, _) => sig,
_ => return false,
},
hir_map::NodeImplItem(impl_item) => match impl_item.node {
hir::ImplItemKind::Method(ref sig, _) => sig,
_ => return false,
},
_ => return false,
};
sig.explicit_self.node == hir::SelfStatic
} else {
this.session.cstore.is_static_method(did)
}
}
let (path, node_id, allowed) = match self.current_self_type {
Some(ref ty) => match extract_path_and_node_id(ty, Everything) {
Some(x) => x,
None => return NoSuggestion,
},
None => return NoSuggestion,
};
if allowed == Everything {
// Look for a field with the same name in the current self_type.
match self.def_map.borrow().get(&node_id).map(|d| d.full_def()) {
Some(DefTy(did, _)) |
Some(DefStruct(did)) |
Some(DefVariant(_, did, _)) => match self.structs.get(&did) {
None => {}
Some(fields) => {
if fields.iter().any(|&field_name| name == field_name) {
return Field;
}
}
},
_ => {} // Self type didn't resolve properly
}
}
let name_path = path.segments.iter().map(|seg| seg.identifier.name).collect::<Vec<_>>();
// Look for a method in the current self type's impl module.
if let Some(module) = get_module(self, path.span, &name_path) {
if let Some(binding) = module.children.borrow().get(&name) {
if let Some(DefMethod(did)) = binding.value_ns.def() {
if is_static_method(self, did) {
return StaticMethod(path_names_to_string(&path, 0));
}
if self.current_trait_ref.is_some() {
return TraitItem;
} else if allowed == Everything {
return Method;
}
}
}
}
// Look for a method in the current trait.
if let Some((trait_did, ref trait_ref)) = self.current_trait_ref {
if let Some(&did) = self.trait_item_map.get(&(name, trait_did)) {
if is_static_method(self, did) {
return TraitMethod(path_names_to_string(&trait_ref.path, 0));
} else {
return TraitItem;
}
}
}
NoSuggestion
}
fn find_best_match(&mut self, name: &str) -> SuggestionType {
if let Some(macro_name) = self.session.available_macros
.borrow().iter().find(|n| n.as_str() == name) {
return SuggestionType::Macro(format!("{}!", macro_name));
}
let names = self.value_ribs
.iter()
.rev()
.flat_map(|rib| rib.bindings.keys());
if let Some(found) = find_best_match_for_name(names, name, None) {
if name != &*found {
return SuggestionType::Function(found);
}
} SuggestionType::NotFound
}
fn resolve_expr(&mut self, expr: &Expr) {
// First, record candidate traits for this expression if it could
// result in the invocation of a method call.
self.record_candidate_traits_for_expr_if_necessary(expr);
// Next, resolve the node.
match expr.node {
ExprPath(ref maybe_qself, ref path) => {
let resolution = match self.resolve_possibly_assoc_item(expr.id,
maybe_qself.as_ref(),
path,
ValueNS,
true) {
// `<T>::a::b::c` is resolved by typeck alone.
TypecheckRequired => {
let method_name = path.segments.last().unwrap().identifier.name;
let traits = self.get_traits_containing_item(method_name);
self.trait_map.insert(expr.id, traits);
intravisit::walk_expr(self, expr);
return;
}
ResolveAttempt(resolution) => resolution,
};
// This is a local path in the value namespace. Walk through
// scopes looking for it.
if let Some(path_res) = resolution {
// Check if struct variant
if let DefVariant(_, _, true) = path_res.base_def {
let path_name = path_names_to_string(path, 0);
let mut err = resolve_struct_error(self,
expr.span,
ResolutionError::StructVariantUsedAsFunction(&*path_name));
let msg = format!("did you mean to write: `{} {{ /* fields */ }}`?",
path_name);
if self.emit_errors {
err.fileline_help(expr.span, &msg);
} else {
err.span_help(expr.span, &msg);
}
err.emit();
self.record_def(expr.id, err_path_resolution());
} else {
// Write the result into the def map.
debug!("(resolving expr) resolved `{}`",
path_names_to_string(path, 0));
// Partial resolutions will need the set of traits in scope,
// so they can be completed during typeck.
if path_res.depth != 0 {
let method_name = path.segments.last().unwrap().identifier.name;
let traits = self.get_traits_containing_item(method_name);
self.trait_map.insert(expr.id, traits);
}
self.record_def(expr.id, path_res);
}
} else {
// Be helpful if the name refers to a struct
// (The pattern matching def_tys where the id is in self.structs
// matches on regular structs while excluding tuple- and enum-like
// structs, which wouldn't result in this error.)
let path_name = path_names_to_string(path, 0);
let type_res = self.with_no_errors(|this| {
this.resolve_path(expr.id, path, 0, TypeNS, false)
});
self.record_def(expr.id, err_path_resolution());
match type_res.map(|r| r.base_def) {
Some(DefTy(struct_id, _)) if self.structs.contains_key(&struct_id) => {
let mut err = resolve_struct_error(self,
expr.span,
ResolutionError::StructVariantUsedAsFunction(&*path_name));
let msg = format!("did you mean to write: `{} {{ /* fields */ }}`?",
path_name);
if self.emit_errors {
err.fileline_help(expr.span, &msg);
} else {
err.span_help(expr.span, &msg);
}
err.emit();
}
_ => {
// Keep reporting some errors even if they're ignored above.
self.resolve_path(expr.id, path, 0, ValueNS, true);
let mut method_scope = false;
self.value_ribs.iter().rev().all(|rib| {
method_scope = match rib.kind {
MethodRibKind => true,
ItemRibKind | ConstantItemRibKind => false,
_ => return true, // Keep advancing
};
false // Stop advancing
});
if method_scope && special_names::self_.as_str() == &path_name[..] {
resolve_error(self,
expr.span,
ResolutionError::SelfNotAvailableInStaticMethod);
} else {
let last_name = path.segments.last().unwrap().identifier.name;
let mut msg = match self.find_fallback_in_self_type(last_name) {
NoSuggestion => {
// limit search to 5 to reduce the number
// of stupid suggestions
match self.find_best_match(&path_name) {
SuggestionType::Macro(s) => {
format!("the macro `{}`", s)
}
SuggestionType::Function(s) => format!("`{}`", s),
SuggestionType::NotFound => "".to_string(),
}
}
Field => format!("`self.{}`", path_name),
Method |
TraitItem => format!("to call `self.{}`", path_name),
TraitMethod(path_str) |
StaticMethod(path_str) =>
format!("to call `{}::{}`", path_str, path_name),
};
let mut context = UnresolvedNameContext::Other;
if !msg.is_empty() {
msg = format!(". Did you mean {}?", msg);
} else {
// we check if this a module and if so, we display a help
// message
let name_path = path.segments.iter()
.map(|seg| seg.identifier.name)
.collect::<Vec<_>>();
let current_module = self.current_module;
match self.resolve_module_path(current_module,
&name_path[..],
UseLexicalScope,
expr.span,
PathSearch) {
Success(_) => {
context = UnresolvedNameContext::PathIsMod(expr.id);
},
_ => {},
};
}
resolve_error(self,
expr.span,
ResolutionError::UnresolvedName(
&*path_name, &*msg, context));
}
}
}
}
intravisit::walk_expr(self, expr);
}
ExprStruct(ref path, _, _) => {
// Resolve the path to the structure it goes to. We don't
// check to ensure that the path is actually a structure; that
// is checked later during typeck.
match self.resolve_path(expr.id, path, 0, TypeNS, false) {
Some(definition) => self.record_def(expr.id, definition),
None => {
debug!("(resolving expression) didn't find struct def",);
resolve_error(self,
path.span,
ResolutionError::DoesNotNameAStruct(
&*path_names_to_string(path, 0))
);
self.record_def(expr.id, err_path_resolution());
}
}
intravisit::walk_expr(self, expr);
}
ExprLoop(_, Some(label)) | ExprWhile(_, _, Some(label)) => {
self.with_label_rib(|this| {
let def_like = DlDef(DefLabel(expr.id));
{
let rib = this.label_ribs.last_mut().unwrap();
rib.bindings.insert(label.name, def_like);
}
intravisit::walk_expr(this, expr);
})
}
ExprBreak(Some(label)) | ExprAgain(Some(label)) => {
match self.search_label(label.node.name) {
None => {
self.record_def(expr.id, err_path_resolution());
resolve_error(self,
label.span,
ResolutionError::UndeclaredLabel(&label.node.name.as_str()))
}
Some(DlDef(def @ DefLabel(_))) => {
// Since this def is a label, it is never read.
self.record_def(expr.id,
PathResolution {
base_def: def,
last_private: LastMod(AllPublic),
depth: 0,
})
}
Some(_) => {
self.session.span_bug(expr.span, "label wasn't mapped to a label def!")
}
}
}
_ => {
intravisit::walk_expr(self, expr);
}
}
}
fn record_candidate_traits_for_expr_if_necessary(&mut self, expr: &Expr) {
match expr.node {
ExprField(_, name) => {
// FIXME(#6890): Even though you can't treat a method like a
// field, we need to add any trait methods we find that match
// the field name so that we can do some nice error reporting
// later on in typeck.
let traits = self.get_traits_containing_item(name.node);
self.trait_map.insert(expr.id, traits);
}
ExprMethodCall(name, _, _) => {
debug!("(recording candidate traits for expr) recording traits for {}",
expr.id);
let traits = self.get_traits_containing_item(name.node);
self.trait_map.insert(expr.id, traits);
}
_ => {
// Nothing to do.
}
}
}
fn get_traits_containing_item(&mut self, name: Name) -> Vec<DefId> {
debug!("(getting traits containing item) looking for '{}'", name);
fn add_trait_info(found_traits: &mut Vec<DefId>, trait_def_id: DefId, name: Name) {
debug!("(adding trait info) found trait {:?} for method '{}'",
trait_def_id,
name);
found_traits.push(trait_def_id);
}
let mut found_traits = Vec::new();
let mut search_module = self.current_module;
loop {
// Look for the current trait.
match self.current_trait_ref {
Some((trait_def_id, _)) => {
if self.trait_item_map.contains_key(&(name, trait_def_id)) {
add_trait_info(&mut found_traits, trait_def_id, name);
}
}
None => {} // Nothing to do.
}
// Look for trait children.
build_reduced_graph::populate_module_if_necessary(self, &search_module);
{
for (_, child_names) in search_module.children.borrow().iter() {
let def = match child_names.type_ns.def() {
Some(def) => def,
None => continue,
};
let trait_def_id = match def {
DefTrait(trait_def_id) => trait_def_id,
_ => continue,
};
if self.trait_item_map.contains_key(&(name, trait_def_id)) {
add_trait_info(&mut found_traits, trait_def_id, name);
}
}
}
// Look for imports.
for (_, import) in search_module.import_resolutions.borrow().iter() {
let target = match import.type_ns.target {
None => continue,
Some(ref target) => target,
};
let did = match target.binding.def() {
Some(DefTrait(trait_def_id)) => trait_def_id,
Some(..) | None => continue,
};
if self.trait_item_map.contains_key(&(name, did)) {
add_trait_info(&mut found_traits, did, name);
let id = import.type_ns.id;
self.used_imports.insert((id, TypeNS));
let trait_name = self.get_trait_name(did);
self.record_import_use(id, trait_name);
if let Some(DefId{krate: kid, ..}) = target.target_module.def_id() {
self.used_crates.insert(kid);
}
}
}
match search_module.parent_link {
NoParentLink | ModuleParentLink(..) => break,
BlockParentLink(parent_module, _) => {
search_module = parent_module;
}
}
}
found_traits
}
fn record_def(&mut self, node_id: NodeId, resolution: PathResolution) {
debug!("(recording def) recording {:?} for {}", resolution, node_id);
assert!(match resolution.last_private {
LastImport{..} => false,
_ => true,
},
"Import should only be used for `use` directives");
if let Some(prev_res) = self.def_map.borrow_mut().insert(node_id, resolution) {
let span = self.ast_map.opt_span(node_id).unwrap_or(codemap::DUMMY_SP);
self.session.span_bug(span,
&format!("path resolved multiple times ({:?} before, {:?} now)",
prev_res,
resolution));
}
}
fn enforce_default_binding_mode(&mut self,
pat: &Pat,
pat_binding_mode: BindingMode,
descr: &str) {
match pat_binding_mode {
BindByValue(_) => {}
BindByRef(..) => {
resolve_error(self,
pat.span,
ResolutionError::CannotUseRefBindingModeWith(descr));
}
}
}
//
// Diagnostics
//
// Diagnostics are not particularly efficient, because they're rarely
// hit.
//
#[allow(dead_code)] // useful for debugging
fn dump_module(&mut self, module_: Module<'a>) {
debug!("Dump of module `{}`:", module_to_string(&*module_));
debug!("Children:");
build_reduced_graph::populate_module_if_necessary(self, &module_);
for (&name, _) in module_.children.borrow().iter() {
debug!("* {}", name);
}
debug!("Import resolutions:");
let import_resolutions = module_.import_resolutions.borrow();
for (&name, import_resolution) in import_resolutions.iter() {
let value_repr;
match import_resolution.value_ns.target {
None => {
value_repr = "".to_string();
}
Some(_) => {
value_repr = " value:?".to_string();
// FIXME #4954
}
}
let type_repr;
match import_resolution.type_ns.target {
None => {
type_repr = "".to_string();
}
Some(_) => {
type_repr = " type:?".to_string();
// FIXME #4954
}
}
debug!("* {}:{}{}", name, value_repr, type_repr);
}
}
}
fn names_to_string(names: &[Name]) -> String {
let mut first = true;
let mut result = String::new();
for name in names {
if first {
first = false
} else {
result.push_str("::")
}
result.push_str(&name.as_str());
}
result
}
fn path_names_to_string(path: &Path, depth: usize) -> String {
let names: Vec<ast::Name> = path.segments[..path.segments.len() - depth]
.iter()
.map(|seg| seg.identifier.name)
.collect();
names_to_string(&names[..])
}
/// A somewhat inefficient routine to obtain the name of a module.
fn module_to_string<'a>(module: Module<'a>) -> String {
let mut names = Vec::new();
fn collect_mod<'a>(names: &mut Vec<ast::Name>, module: Module<'a>) {
match module.parent_link {
NoParentLink => {}
ModuleParentLink(ref module, name) => {
names.push(name);
collect_mod(names, module);
}
BlockParentLink(ref module, _) => {
// danger, shouldn't be ident?
names.push(special_idents::opaque.name);
collect_mod(names, module);
}
}
}
collect_mod(&mut names, module);
if names.is_empty() {
return "???".to_string();
}
names_to_string(&names.into_iter().rev().collect::<Vec<ast::Name>>())
}
fn err_path_resolution() -> PathResolution {
PathResolution {
base_def: DefErr,
last_private: LastMod(AllPublic),
depth: 0,
}
}
pub struct CrateMap {
pub def_map: RefCell<DefMap>,
pub freevars: FreevarMap,
pub export_map: ExportMap,
pub trait_map: TraitMap,
pub external_exports: ExternalExports,
pub glob_map: Option<GlobMap>,
}
#[derive(PartialEq,Copy, Clone)]
pub enum MakeGlobMap {
Yes,
No,
}
/// Entry point to crate resolution.
pub fn resolve_crate<'a, 'tcx>(session: &'a Session,
ast_map: &'a hir_map::Map<'tcx>,
make_glob_map: MakeGlobMap)
-> CrateMap {
let krate = ast_map.krate();
let arenas = Resolver::arenas();
let mut resolver = create_resolver(session, ast_map, krate, make_glob_map, &arenas, None);
resolver.resolve_crate(krate);
check_unused::check_crate(&mut resolver, krate);
CrateMap {
def_map: resolver.def_map,
freevars: resolver.freevars,
export_map: resolver.export_map,
trait_map: resolver.trait_map,
external_exports: resolver.external_exports,
glob_map: if resolver.make_glob_map {
Some(resolver.glob_map)
} else {
None
},
}
}
/// Builds a name resolution walker to be used within this module,
/// or used externally, with an optional callback function.
///
/// The callback takes a &mut bool which allows callbacks to end a
/// walk when set to true, passing through the rest of the walk, while
/// preserving the ribs + current module. This allows resolve_path
/// calls to be made with the correct scope info. The node in the
/// callback corresponds to the current node in the walk.
pub fn create_resolver<'a, 'tcx>(session: &'a Session,
ast_map: &'a hir_map::Map<'tcx>,
krate: &'a Crate,
make_glob_map: MakeGlobMap,
arenas: &'a ResolverArenas<'a>,
callback: Option<Box<Fn(hir_map::Node, &mut bool) -> bool>>)
-> Resolver<'a, 'tcx> {
let mut resolver = Resolver::new(session, ast_map, make_glob_map, arenas);
resolver.callback = callback;
build_reduced_graph::build_reduced_graph(&mut resolver, krate);
session.abort_if_errors();
resolve_imports::resolve_imports(&mut resolver);
session.abort_if_errors();
resolver
}
__build_diagnostic_array! { librustc_resolve, DIAGNOSTICS }